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Adaptive End-effector Pose Control for Tomato
Harvesting Robots

Dong Wang, Yongxiang Dong, Jie Lian, Dongbing Gu

Abstract—This paper investigates the development of a tomato-
harvesting robot operating on a smart farm and primarily studies
the reachable pose of tomatoes in the non-dexterous workspace of
manipulator. The end-effector can only reach the tomatoes with
reachable poses when the tomatoes is within the non-dexterous
workspace. If the grasping posture is not reachable, it will lead to
grasping failure. An adaptive end-effector pose control method
based on a genetic algorithm(GA) is proposed to find a reachable
pose. The inverse kinematic solution based on analysis method of
the manipulator is analyzed and the objective function of whether
the manipulator has a solution or not is obtained. The grasping
pose is set as an individual owing to the position of the tomatoes
is fixed and the grasping pose is variable. The GA is used to
solve until a pose that can make the inverse kinematics have a
solution is generated. This pose is the reachable grasping pose of
the tomato at this position. The quintic interpolation polynomial
is used to plan the trajectory to avoid damage to tomatoes owing
to fast approaching speed and a distance based background
filtering method is proposed. Experiments were performed to
verify the effectiveness of the proposed method. The radius of
the workspace of the UR3e manipulator with the end-effector
increased from 550 to 800 mm and the grasping rang expanded
by 208%. The harvesting success rate using the adaptive end-
effector pose control method and trajectory planning method was
88%. The cycle of harvesting a tomato was 20s. The experimental
results indicated that the proposed tomato-recognition and end-
effector pose control method are feasible and effective.

Index Terms—Harvesting robot, manipulator, end-effector pose
control, non-dexterous workspace.

I. INTRODUCTION

Tomatoes have a large demand and output all over the world
as a vegetable with high nutritional values. The production
of tomatoes in the world increased from 124 million tons to
177 million tons per year during 2003-2017. According to the
data on the overall labor distribution of tomato cultivation, the
highly repetitive task of harvesting accounts for 25%–40%
of the total labor (Callejón-Ferre et al., 2015). Using large-
scale agricultural harvesting devices for batch harvesting is
difficult owing to the soft and fragile characteristics of ripe
tomatoes. Hence, it is necessary to develop harvesting robots
with autonomous perception and precise grasping capabilities
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to reduce the harvesting costs and improve the harvesting
efficiency. Planting is more standardized with the development
of smart farms and plant factories making it possible to
commercialize harvesting robots.

A robot for greenhouse tomato harvesting was develope-
d(Lili et al., 2017). The built robot consisted of a four-
wheel independent steering system, a five-degree-of-freedom
(5-DOF) harvesting manipulator, and a binocular stereo vision
steering system. It used the Otsu algorithm and an elliptical
template method for tomato recognition and the harvesting
success rate was approximately 86%. Ye et al. (Ye et al., 2021)
developed a litchi harvesting robot, which used a particle
swarm optimization algorithm to plan the obstacle avoidance
trajectory of a 6-DOF manipulator and an improved rapidly
exploring random tree (RRT) algorithm to improve the path
planning speed. Ling et al. (Ling et al., 2019) designed a
dual-arm collaborative robot for tomato harvesting and used
the information of point clouds to reconstruct the scene for
the recognition and positioning of tomatoes. One manipulator
grasps the tomato and the other manipulator cuts the tomato
stem when the target tomato is positioned. The success rate
of tomato recognition was over 96%, and the harvest success
rate reached 87.5%. Other scholars also performed tomato-
harvesting experiments in laboratory environments (Fujinaga
et al., 2019; Feng et al., 2015; Ishii et al., 2021; G. Liu et al.,
2020; Benavides et al., 2020).

The success rate of harvesting is lower in the actual
environment. There are some problems such as background
interference, obstacle avoidance of manipulator and tomatoes
not in the workspace. Yaguchi et al. (Yaguchi et al., 2016)
developed a tomato-harvesting robot that can be used outdoors.
The robot directly exposed to sunlight, its harvesting speed is
about 23 s/fruit, and the success rate is approximately 60%.
Silwal et al. (Silwal et al., 2017) built a field apple-harvesting
robot. The robot uses the self-designed end-effector and uses
color and point cloud for apple recognition and positioning.
The positioning time is 1.5 s/fruit, and the success rate of apple
harvesting is 84%. Arad et al. (Arad et al., 2020) built a field
sweet-pepper-harvesting robot. The robot uses a depth camera
combined with a color and shape recognition algorithm to
identify sweet peppers and stems with a LED lighting system.
The robot uses a visual servo control method to harvest sweet
peppers. The harvesting success rate is 61% and the harvesting
time is 24 s/fruit. Other scholars also conducted research on
harvesting robot for tomatoes, sweet peppers, and other fruits
(Lehnert et al., 2020; Gongal et al., 2015; Hayashi et al., 2010;
Wang et al., 2019; Bac et al., 2014; Barth et al., 2019; Zhao
et al., 2016; Lin et al., 2020; McCool et al., 2016).
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Many scholars studied the dexterous workspace and grasp-
ing pose of manipulators. Rauchfuss et al. (Rauchfuss & Yang,
2000) calculated the reachable area of each joint by studying
the conversion relationship of the wrist joint of the manipulator
and finally obtained the reachable area of the end-effector
of the manipulator in non-dexterous workspace. However,
they did not discuss what pose can be reached in the non-
dexterous workspace. Cao et al. (Cao et al., 2018) studied
the dexterity of a manipulator. They defined the dexterity
of the manipulator when grasping an object inspired by the
human pose when grasping objects. The robot obtained the
pose with high dexterity when grasping the target object and
finally grasped it. Their study did not distinguish the non-
dexterous workspace of the manipulator and they did not study
the scenario in which the manipulator could not achieve a
grasp with some pose in the non-dexterous workspace.

The pose calculation differs based on different inverse
solution methods of manipulator. The solution methods of
manipulator inverse kinematics (IK) are divided into two
categories: analytical and numerical method. Aristidou et al.
(Aristidou & Lasenby, 2011) proposed forward and backward
reaching IK, which uses a forward and backward iterative
approach to determine each joint position via locating a point
on a line. This method improves the calculation speed of
IK and reduces the calculation consumption. The commonly
used IK algorithm TRAC-IK was proposed by Beeson et al.
(Beeson & Ames, 2015). They aimed at solving the problem of
open-source Orocos Kinematics and Dynamics Library repeat-
edly exhibiting false-negative failures on various humanoid
platforms using a set of sequential quadratic programming
IK algorithms that use various quadratic error metrics and a
combined algorithm that concurrently runs the best performing
sequential quadratic programming algorithm and the improved
inverse Jacobian implementation to improve the success rate of
IK. Diankov et al. (Diankov, 2010) designed the IK algorithm
IK FAST based on the analytical method. The angles of each
joint of the manipulator were obtained by solving the pose and
position matrix of the manipulator. All the solutions that could
reach the target point were obtained, and the desired optimal
solution was obtained through selection.

In summary, the current research on tomato-harvesting
robots primarily focuses on tomato recognition and grasp-
ing tasks. In laboratory and other structured environments,
the success rate of tomato detection and grasping is 80%–
90%. However, the success rates of tomato recognition and
harvesting in outdoor unstructured environments is lower than
that, at approximately 80% and 60%, respectively. In outdoor
environments, the effectiveness of tomato recognition is easily
affected by light and background interference. It is necessary
to develop some filters to eliminate this interference. Owing
to the narrow harvesting space, only a small manipulator can
be used for harvesting, which results in many fruits appearing
in the non-dexterous workspace, such as the boundary of the
manipulator. The reachable end-effector pose is required to
grasp the fruit in the non-dexterous workspace. Achieving
a good effect in non-dexterous workspace using existing
manipulator solution methods is difficult. The IK solution
based on numerical method cannot separate the position matrix

from the pose matrix. Thus, it cannot obtain a more accurate
pose when obtaining an accurate position. The IK based on
the analytical method cannot obtain an approximate solution
when the tomatoes are in a non-dexterous workspace and no
solution is available for the given grasping pose. This results in
a large number of points not being reached by the manipulator
in the non-dexterous workspace.

This paper describes the development of a tomato-
harvesting robot with focus on end-effector pose control, toma-
to recognition, and manipulator trajectory planning methods.
First, an adaptive end-effector pose control method is proposed
to solve the problem of the end-effector having difficulty
reaching the tomatoes in the non-dexterous workspace. Schol-
ars’ research on the dexterous workspace of the manipulator
has focused on finding the dexterous workspace of the ma-
nipulator, and then giving up the non-dexterous workspace
to operate the manipulator in the dexterous workspace in
recent years. However, many tomatoes are located in the non-
dexterous workspace of the harvesting robot. It is necessary
to overcome the difficulty of grasping with the manipulator in
the non-dexterous workspace to improve the harvesting range
and success rate of the harvesting robot. For the tomatoes
in the non-dexterous workspace where the IK cannot be
obtained with the current grasping pose, GA is used to find its
reachable pose to make the manipulator have the IK solution
and complete the grasp. The equation solved by the IK analysis
method of the manipulator is analyzed, and the fitness function
of whether the manipulator has a IK solution or not is obtained.
The pose matrix is used as the input, and the pose that
can make the manipulator have the IK solution is obtained
using the GA without changing the position matrix. The result
from this algorithm improves the success rate of harvesting
tomatoes in non-dexterous workspace to expand the grasping
range of the harvesting robot and accordingly improve the
harvesting success rate. Second, a background filtering method
is proposed, which can filter out the background whose
distance is larger than the workspace of the manipulator. Third,
The quintic interpolation polynomial is used to plan the end-
effector trajectory to avoid damage to tomatoes owing to fast
approaching speed. The planning result can limit the speed of
the end-effector in the last stage near the tomato to ensure that
the end-effector can perform the grasping task slowly. Finally,
experiments were performed to verify the effectiveness of the
proposed methods.

II. TOMATO HARVESTING ROBOT HARDWARE AND
SOFTWARE ARCHITECTURE

A. Hardware system

The hardware system of the robot consists of a mobile
platform, a 6-DOF manipulator UR3e, an end-effector, a depth
camera, a 3D Lidar, and an industrial computer (Fig. 1).
Specifically, the mobile platform at the bottom of robot is
a SongLing ground mobile robot, which can rotate in all
directions and navigate using the 3D Lidar installed on top of
the control cabinet. The Universal Robot UR3e manipulator
has six degrees of freedom and it is installed on top of the
control cabinet with a payload of 3 kg and a workspace
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radius of 500 mm. Fig. 2 presents the kinematics model of the
UR3e manipulator, which was developed using the modified
Denavit-Hartenberg (D-H) method. For the convenience of
calculation, tool link 7 and the length of wrist3 to tool link
7 are added. The D-H modeling parameters are presented in
Table I. The end-effector of manipulator is a pneumatic control
soft gripper with a maximum load of 500 g and a length
of 200 mm. A RealSense D435i depth camera installed on
the end-effector and a RGB camera installed on the control
cabinet are combined for tomato recognition and positioning.
The industrial computer uses Intel i5 8400 CPU with 4.0 GB
of running memory to host the entire robot software system.

Fig. 1. Hardware system of tomato harvesting robot.y4
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Fig. 2. Link coordination system of the robot.

B. Software framework

The software system architecture is shown in Fig. 3. The
Robot Operating System (ROS) was installed in the Ubuntu
18.04 system of the industrial computer, which exchanges
the information with various sensors and controllers. The
industrial computer communicate with the depth camera, soft
gripper, manipulator, and mobile robot using USB 3.0, an I/O

TABLE I
D-H PARAMETERS OF THE MANIPULATOR

Linkages
i

Twist angles
ai − 1/(◦)

Length
ai − 1/(mm)

Offset of linkages
di/(mm)

Angel range
θi/(◦)

1 0 0 151 θ1 (0)
2 90 0 0 θ2 (-90)
3 0 -243 0 θ3 (0)
4 0 -213 112 θ4 (-90)
5 90 0 85 θ5 (0)
6 -90 0 0 θ6 (0)
7 0 0 201 0

interface, and Ethernet to implement various tasks, including
tomato recognition and positioning, harvesting manipulator
control, end-effector control, and mobile robot control.
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Fig. 3. Block diagram of tomato harvesting robot system.

C. Harvesting process

The harvesting process is shown in Fig. 4, which consists
of four steps: moving and scanning, tomato recognition and
positioning, manipulator action execution, and tomato grasp-
ing. In the first step, the harvesting robot uses the 3D Lidar
and depth camera to navigate and build maps, and moves
for tomato detection in the plant factory. The second step
involves scanning the environment of the plant factory while
the harvesting robot is moving to recognize the tomatoes.
The depth information of a tomato center point is obtained
by the depth camera, and the 3D coordinate of the tomato is
determined based on the position of the tomato in the image.
If the recognized tomato is determined to be in the workspace
of the manipulator, the harvesting robot stops moving and
releases the obtained coordinate of the tomato through the
ROS node. In the third step, the harvesting manipulator reads
the position of the tomato by subscribing to the ROS node, and
converts the information from the camera coordinate frame to
the manipulator coordinate frame. The manipulator uses the
RRT algorithm to plan the path and uses the IK fast solver
to obtain the joint angle of manipulator. The manipulator
executes the obtained result and makes the gripper reach the
tomato position. The final step closes the gripper to grasp
the tomato and separates the stem by rotating the end joint
of manipulator. Pneumatic soft grasper is used to solve the
grasping problem caused by different shapes and sizes of
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tomatoes. The selected soft grasper can grasp round objects
between 4-8 cm and different shapes object such as eggs
and bottles. The grasper completely overcomings individual
differences in the same type of tomato.

Step 1

Moving and scanning

Step 2

Tomato recognition and 

positioning

Step 3

Trajectory planning and 

execution of manipulator

Step 4

Grasping tomato and 

separating from stem

Fig. 4. Tomato harvesting process.

III. TOMATO RECOGNITION AND END-EFFECTOR POSE
CONTROL METHODS

A. Tomato recognition method

Accurate recognition and positioning of tomatoes is the
first important step for tomato harvesting robot. In this paper,
the robot uses a RealSense D435i depth camera to scan
the environment and perform the recognition and positioning
tasks. The depth measurement range of the RealSense D435i
depth camera is 0.2m-10m. The depth error is 1% of the
measurement distance.

The recognition algorithm based on color segmentation can
satisfy the requirements of tomato recognition as the colors
of tomatoes and leaves differ significantly. The image is
converted from the RGB color space to the HSV color space
and the detection threshold range is set to H: 0-10, S: 43-255
and V: 46-255. The pixels within the set range are extracted
and the tomato is positioned using a Hough circle fitting
approach and the center position of tomatoes is obtained.

Background objects similar to the tomato colors may cause
a false positive error for color-based recognition. A distance-
based background filtering method is proposed to solve this
problem. The UR3e manipulator used has a working radius
of 500 mm. The soft gripper at the end of manipulator
can extend the maximum workspace range to approximately
800 mm based on the depth information returned from the
depth camera. The distance-based background filtering method
can filter out the background pixels that are more than 850
mm away from the basis of manipulator. Fig. 5 shows the
comparison between the original RGB image and the image
after background filtering.

After background filtering, the color segmentation method is
used to perform the tomato-recognition task. The coordinates
of the recognized tomato center point are released through a

(a) Original RGB image (b) Image after background filtering

Fig. 5. Tomato background filtering.

ROS node, which provide a basis for the subsequent grasping
task.

B. Manipulator workspace analysis

The manipulator has a primary workspace, also known as
reachable workspace. Given a set of positions, if the end-
effector of the manipulator has at least one pose to reach
the position in the set, then the set is the reachable space
of the manipulator. The secondary workspace, known as the
dexterous workspace, is a subset of the primary workspace.
Given a set of positions, if the end-effector of the manipulator
has any pose solution to reach the position in the set, then the
set is the secondary workspace of the manipulator. The area
outside the dexterous workspace in the primary workspace
is called the non-dexterous workspace (Siciliano & Khatib,
2016).

Owing to the narrow harvesting environment, only the
small manipulator can be selected for harvesting. However,
the workspace of a small manipulator is small, and the
non-dexterous workspace accounts for a large proportion.
As shown in Fig. 6, the dexterous workspace diameter of
the UR3e manipulator is 1000 mm and the diameter of the
primary workspace is 1146 mm(Universal ROBOTS, 2022).
Since the workspace of the UR3e manipulator is spherical,
the proportion of the non-dexterous workspace of the UR3e
manipulator in the primary workspace can be calculated using
(1),

o =
r3m − r3p
r3m

, (1)

where rm is the radius of the primary workspace, rp is the
radius of the dexterous workspace. Using (1), it can observe
that the area of the non-dexterous workspace accounts for 34%
of the primary workspace.

If an end-effector is attached at the end of the manip-
ulator, the proportion of non-dexterous workspace increases
significantly. The dexterous and primary workspace of UR3e
manipulator were calculated using MATLAB. The length of
the end-effector is 200 mm. The dexterous workspace of
manipulator was simulated using a fixed end-effector pose, and
the primary workspace of the manipulator was simulated with
a flexible pose. The Monte Carlo method is used to calculate
the workspace, and randomly generated 100,000 points. As
shown in Fig. 7, the diameter of dexterous workspace of UR3e
manipulator reached 1100 mm, the primary workspace reached
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(a) Top view (b) Side view

Fig. 6. Workspace of UR3e manipulator.

1600 mm, and the non-dexterous workspace accounted for
76% of the primary workspace after installing the end-effector.
When the target point is in the non-dexterous workspace of the
manipulator, the manipulator may not reach the target point
with the desired pose, and may only reach the target point with
a specific end-effector pose. This is why in the actual grasping
process, the manipulator cannot reach the target point with the
desired pose, but it can reach the target point by dragging the
manipulator through teaching. If the UR3e manipulator can
successfully reach all points in the non-dexterous workspace,
its workspace can be expanded by 208% and the grasping
range of the harvesting robot can be effectively improved.

(a) Workspace of UR3e obtained us-
ing a fixed pose

(b) Workspace of UR3e obtained us-
ing a flexible pose

Fig. 7. Workspace of UR3e manipulator with different pose control method.

The harvesting robot must grasp non-spherical fruits such as
cucumbers and eggplants in an end-effector pose perpendicular
to the fruit. Unlike non-spherical fruits, spherical fruits such as
tomatoes can be grasped and harvested in any pose. According
to the grasping characteristics of spherical fruit, an adaptive
end-effector pose control method is proposed. It involves cal-
culating the end-effector pose that can cause the manipulator
to reach the target point in the non-dexterous workspace to
improve the harvesting range of the harvesting manipulator.

C. Initial grasping pose and interpolation points calculation

The appropriate initial grasping pose is preliminarily cal-
culated using the position of the tomato and the current

end-effector position of the manipulator. The camera and
end-effector of manipulator are calibrated using a nonlinear
estimator method (Qiu et al., 2021). The rotation matrix of
the manipulator end-effector with the depth camera can be
obtained after calibration, and its rotation relationship can be
added to ROS to establish the TF tree of the depth camera
and manipulator, which can directly read the rotation matrix T1
from the camera coordinate system camera to the manipulator
base coordinate system base through ROS. TF conversion is
performed through the rotation matrix T1 to convert the tomato
three-dimensional coordinates a0(xa0, ya0, za0) obtained from
the camera and the origin g0(0, 0, 0) of the tool coordinate
system of the manipulator end-effector into the base coordi-
nate system base. The tomato position a(xa1, ya1, za1) and
g(xg, yg, zg) in the manipulator base coordinate system is
calculated as

a = T1 × a0, (2)

g = T1 × t0. (3)

The distance from the tomato to the base of the manipulator
is calculated to determine whether the target tomato center
point is in the workspace of the manipulator,

l =
√
x2a1 + y2a1 + z2a1. (4)

The threshold value of the distance is 850mm since the
radius of UR3e workspace is 800mm after the installation
of the soft gripper and to avoid the positioning error of the
camera. If l > 850, the tomato is beyond the grasping range of
the manipulator, and the tomato is abandoned. If l < 850, the
tomato is within the grasping range of the manipulator. Subse-
quently, the grasping pose is calculated. The direction vector
a0 between the manipulator’s end-effector coordinate system
origin g(xg, yg, zg) and the tomato position a(xa1, ya1, za1) is
calculated, and a0 is unitized to obtain a unit vector a as

a0 = [xa1 − xg, ya1 − yg, za1 − zg], (5)

a =
a0

|a0|
= [xa, ya, za], (6)

where the direction vector a is the desired pose of the harvest-
ing manipulator’s end-effector. The obtained direction vector
a can only represent the z-axis direction of the desired end-
effector pose. Additionally, its conversion relationship with
the z-axis of the base coordinate system must be calculated.
To make the pose of manipulator end-effector the same as
the direction vector a, the base coordinate system is rotated
such that the z-axis direction vector z[0, 0, 1] is rotated as
a[xa, ya, za]. The coordinate system transformation relation-
ship is shown in Fig. 8.

To avoid the deadlock phenomenon of the manipulator,
quaternion is needed to represent the rotation. The rotating
quaternion q is represented by

q = cos
θ

2
+ sin

θ

2
u, (7)
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Fig. 8. Transformation relationship of coordinate system. The vector between
the end-effector of the manipulator and the the tomato is used as the grasping
pose and an interpolation point is added at the end of the grasping vector to
ensure that the manipulator grasps the tomato in the correct direction.

where θ is the angle between z and a. u is the direction vector
perpendicular to z and a.

To facilitate the calculation of cos θ2 and sin θ
2 , let h be the

intermediate vector at θ
2 between z and a. Then h is

h =
z + a

|z + a|
. (8)

Since u is the direction vector perpendicular to z + a,

a · h = cos
θ

2
, (9)

a× h = sin
θ

2
u. (10)

With the quaternion q1 from which the z-axis of manipulator
end-effector coordinate system rotates to the rotation vector a,
the quaternion q1 can be obtained by

q = a · h+ a× h, (11)

thus the rotation quaternion q is obtained, multiplying the
manipulator end-effector coordinate frame z-axis vector z by
the rotation quaternion q gets the manipulator end-effector
pose p as

p = q × z. (12)

Finally, harvesting robot can determine the grasping pose
and position of the end-effector by combining the position
information of the tomato given by the camera.
D. Analysis of inverse kinematics based on analytical method

The obtained end-effector grasping pose is used for path
planning. If the manipulator can successfully perform path
planning, grasping is executed. However, when the tomato is
in the non-dexterous workspace, there is often no IK solution
with the initial grasping pose. As shown in Fig. 9, the spherical
surface is used to simplify the grasping pose, and each vector
from the center of the spherical to the point on the spherical
surface is used as a grasping pose. When the tomato is
located in the non-dexterous workspace of the manipulator, the
grasping pose of the tomato is divided into two categories. One
is the pose that can reach the center point of the tomatoes. The
set of reachable poses is called reachable pose area, and the
other is the unreachable pose area. When tomato is in different

positions of the manipulator, its reachable and unreachable
pose areas are different. When the initial tomato grasping pose
is in the unreachable pose region, a pose that can make the
manipulator reach the target point must be determined. If this
pose can be determined, the manipulator can grasp the tomato.
The combination of analytical solution algorithm and GA is
used to determine the reachable pose of the manipulator. The
implementation process of this method is described in detail
below.

Reachable pose

Reachable pose area

Initial grasping pose 
(Possibly Unreachable)

Tomato center

Unreachable pose area

Fig. 9. The reachable pose area of tomatoes at different positions in
manipulator coordinates is different. If the grasping pose obtained by relative
position is not reachable, it is necessary to find a reachable pose to complete
the grasping of tomatoes.

The path planning and end-effector control of the manipula-
tor require the mapping from the Cartesian space coordinates
of the end effector to the joint space of the manipulator. As
shown in Fig. 10, the process of using all joint angles to
obtain the position and pose matrix of the end-effector is called
forward kinematics, and determining the angle of each joint is
called IK when the position and pose matrix of the end-effector
are known. The forward kinematics of the manipulator can be

1 2
, ,...,

n
q q q

Fig. 10. Relationship between forward and inverse kinematics.

solved when the structural parameters and joint angles of the
manipulator are known. The harvesting manipulator model is
shown in Table 1 and Fig. 2. The conversion matrix between
two adjacent links of the manipulator can be calculated using
the D-H parameters in Table 1 and (13) as

i−1
i T =


Cθi −Sθi 0 αi−1

SθiCαi−1 CθiCαi−1 −Sαi−1 −diSαi−1
SθiSαi−1 CθiSαi−1 Cαi−1 diCαi−1

0 0 0 1

 .
(13)

The structural parameters of the manipulator and (13) are
combined to obtain the homogeneous transformation matrix
0
1T−6

7T , and the homogeneous transformation matrix 0
1T−6

7T
is multiplied to obtain the homogeneous transformation matrix
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Ttool of the manipulator from the base to the tool coordinate
system as

Ttool =
0
1 T

1
2 T

2
3 T

3
4 T

4
5 T

5
6 T

6
7T, (14)

calculate 6
0T from 7

0T and 7
6T ,

0
6T = Ttool × 6

7T
−1 =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 , (15)

where
nx = −S6C1S234 + S1S5C6 + C1C5C6C234,
ox = −S1S5S6 − C1C234C5S6 − C1C6S234,
ax = S1C5 − S5C1C234,
px = d4S1 + d5C1S234 + a2C1C2 + a3C1C23,
ny = S1C234C5C6 − S5C1C6 − S1S234S6,
oy = −S1S6C234C5 + S5S6C1 − S1S234C6,

ay = −S1S5C234 − C1C5,
py = −d4C1 + d5S1S234 + a2S1C2 + a3S1C23,
nz = s234C5C6 + S6C234,
oz = C234C6 − S234S6C5,
az = −S234S5,
pz = −d5C234 + a2S2 + a3S23 + d6,
Si = sinθi,
Ci = cosθi,
S23 = sin(θ2 + θ3),
C23 = cos(θ2 + θ3),
S234 = sin(θ2 + θ3 + θ4),
C234 = cos(θ2 + θ3 + θ4).
6
1T is used to solve the equation to simplify the calculation

of the IK of the manipulator to find the relationship between
the the IK and the grasping pose. Solve θ1-θ6 by making the
terms on both sides of the equation 6

1T equal.

1
6T =


C234C5C6 − S234S6 −C234C5S6 − S234C6 −C234S5 a3C23 + a2C2 + d5S234

−S5C6 S5S6 −C5 −d4
S234C5C6 + C234S6 C234C6 − S234C5S6 −S234S5 a3S23 + a2S2 − d5C234

0 0 0 1

 , (16)

1
6T =


C1 S1 0 0
−S1 C1 0 0
0 0 1 −d1
0 0 0 1

×

nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 . (17)

A formula is proved to facilitate our next calculation.
Suppose there is − sin(θ)px + cos(θ)py = −d, then
θ = atan2(py, px) − atan2(−d,±

√
p2x + p2y − d2), where

atan2(x, y) is the azimuth from the origin to the point
(x, y). Prove, let px = ρ cos(φ), py = ρ sin(φ), where
ρ =

√
p2x + p2y , φ = atan2(py, px). It can be obtained by

substituting into the original equation,
cos(θ) sin(φ)− sin(θ) cos(φ) = −dρ

sin(φ− θ) = −dρ
cos(φ− θ) = ±

√
1− d2

ρ2

φ− θ = atan2(−dρ ,±
√
1− d2

ρ2 )

, (18)

from (18),

θ = atan2(py, px)− atan2(−d,±
√
p2x + p2y − d2). (19)

It can be obtained from (16) and (17),

− S1px + C1py = −d4. (20)

It can be obtained by substituting into (20),

θ1 = atan2(py, px)− atan2(−d4,±
√
p2x + p2y − d4

2),
(21)

for θ1 to have a solution,
√
p2x + p2y − d4

2 ≥ 0 is required. For
θ1, px and py are the factors that determine whether there is a
solution. They are only related to the position of the tomato,

not to the grasping pose. It can be obtained from the (16) and
(17),

− S1nx + C1ny = −S5C6, (22)

− S1ox + C1oy = S5S6, (23)

− S1ax + C1ay = −C5, (24)

from (22), (23),

S5 = ±
√
(−S1nx + C1ny)

2
+ (−S1ox + C1oy)

2
, (25)

S6 =
−S1ox + C1oy

S5
, (26)

C6 =
S1nx − C1ny

S5
, (27)

from (24),

θ5 = atan2(S5, S1ax − C1ay), (28)

from (25), (26),

θ6 = atan2(
−S1ox + C1oy

S5
,
S1nx − C1ny

S5
), (29)

θ5 and θ6 has solution when θ1 has a solution. Therefore, when√
p2x + p2y − d4

2 ≥ 0, the IK of the three joint angles θ1, θ5,
θ6 of the manipulator can be obtained. The IK of the remaining
three joint angles are calculated to explore the relationship
between the grasping pose and the IK of the manipulator. From
(16), (17),

C1ax + S1ay = −C234S5, (30)

az = −S234S5, (31)

C1px + S1py = a3C23 + a2C2 + d5S234, (32)

pz − d1 = a3S23 + a2S2 − d5C234, (33)
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from (30), (31),

θ234 = atan2(−az
S5
,−C1ax + S1ay

S5
), (34)

from (32), (33),

−AS2 +BC2 = C, (35)

where, A = −2B2a2, B = 2B1a2, C = B2
1 +B2

2 + a22 − a23,
B1 = C1px + S1py − d5S234, B2 = pz − d1 + d5C234. (35)
has the same formula form as (19), so it can be obtained from
(35) and (19),

θ2 = atan2(B,A)− atan2(C,±
√
A2 +B2 − C2), (36)

from (36), if
√
A2 +B2 − C2 ≥ 0, θ2 has a solution. Take θ2

into (32), (33),

S23 =
B2 − a2S2

a3
, (37)

C23 =
B1 − a2C2

a3
, (38)

θ23 = atan2(B2−a2S2

a3
, B1−a2C2

a3
)

θ4 = θ234 − θ23
θ3 = θ23 − θ2

(39)

All 6 joint angles of the IK of the manipulator have
been obtained. From (36) - (39),

√
A2 +B2 − C2 ≥ 0, θ2,

θ3 and θ4 have solutions. Then this pose is the reachable
pose of the manipulator at the target point. According to
(21) - (39),

√
p2x + p2y − d4

2 and
√
A2 +B2 − C2 restrict

the existence of inverse solution of the manipulator. When√
p2x + p2y − d4

2 ≥ 0 and
√
A2 +B2 − C2 ≥ 0, the IK of all

six joint angles of the manipulator can be obtained. It is only
related to the position of the tomatoes and the manipulator,
not the harvesting pose. Adjusting the grasping pose of the
manipulator will not affect

√
p2x + p2y − d4

2.√
A2 +B2 − C2 contains the elements px, py , pz in the

position matrix and ax, ay , az , ox, oy in the pose matrix.
This equation is not only related to the tomato position, but
also related to the harvesting pose. This is a complex multi-
variate problem. When the tomatoes are in the non-dexterous
workspace of the manipulator, if the harvesting pose may
not be reachable by the manipulator,

√
A2 +B2 − C2 < 0

occur. Then only 3 joint angles of the manipulator can be
obtained and the remaining 3 have no solution. Therefore, GA
is used to find the reachable grasping pose of the manipula-
tor. The reachable grasping pose of the manipulator at this
point can be found by obtaining the pose matrix that makes√
A2 +B2 − C2 ≥ 0.

E. Calculation of reachable pose based genetic algorithm
The three components of Euler angles of manipulator end-

effector pose are coded into three genotypes respectively. The
rotation Euler angle that base coordinate system z-axis rotates
to the direction vector a is calculated by

ψ = arctan
(
za
ya

)
θ = arctan

(
za
xa

)
.

ϕ = arctan
(
ya
xa

) (40)

A group of Euler angles is represented as an individual,
and different Euler angles represent different genotypes. The
individual representation is expressed as

x = (ψn, θn, ϕn). (41)

To improve the convergence speed of the algorithm, the
search space of end-effector pose is appropriately reduced.
When the manipulator cannot reach the center point of the
target tomato with the pose towards the target tomato, it
must not reach from the back direction of the target tomato.
The search space of the end-effector pose is limited to the
hemisphere with the pose calculated in (40) as the center and
the target tomato center as the sphere center. This is achieved
by limiting the upper and lower limits of three genotypes. The
search space for each genotype is expressed as

arctan( zaya )−
π
2 ≤ ψi ≤ arctan( zaya ) +

π
2

arctan( zaxa
)− π

2 ≤ θi ≤ arctan( zaxa
) + π

2

arctan( yaxa
)− π

2 ≤ ϕi ≤ arctan( yaxa
) + π

2

∀i = 1, ..., n.

After limiting the range of each genotype, the individual
Euler angle composed of each genotype is combined with
the position of the tomato center to obtain the position
and pose matrix. Take the position and pose matrix into√
A2 +B2 − C2. From the above analysis, all 6 joint angles

of the manipulator have solutions when
√
A2 +B2 − C2 ≥ 0.

Therefore, take
√
A2 +B2 − C2 as the objective function, the

larger the value of
√
A2 +B2 − C2, the higher the fitness. The

objective function and fitness of the algorithm are designed as

K = A2 +B2 − C2, (42)

φ = K (43)

The population size is set to 17, and the initialization
population is evenly distributed on a 45 degree sphere centered
on the calculated pose vector in (16). The center of the sphere
is the center point of the target tomato. The initial individuals
of the population are evenly sampled in each interval and coor-
dinate plane of the 45 degree hemisphere. As shown in Fig. 11,
the red vector is the calculated initial pose vector in (16), the
blue vector is the initialization population vector, and the green
sphere is the search space of the GA. A uniform distribution
can avoid the gene aggregation of randomly distributed initial
individuals and cause the population to converge more rapidly.
The initial individuals of the population are expressed as

x1 = (ψ, θ, ϕ), x2 = (ψ +
π

8
, θ, ϕ), x3 = (ψ − π

8
, θ, ϕ),

x4 = (ψ +
π

4
, θ, ϕ), ..., x17=(ψ +

π

4
, θ +

π

4
, ϕ) .

Roulette wheel selection is used for individual selection,
one-point crossover method is used for inheritance, and simple
mutation method is used for gene variation and iteration is
set to 2000. When the objective function K ≥ 0, the cycle
stopped and the obtained end-effector pose and the IK of 6
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Search space

Tomato 

center point

Calculated

pose vector

Initialize

population

(a) Stereogram

Calculated pose vector

Initialize 

population

Search 

space

(b) Top view

Fig. 11. The search area is the hemisphere centered on the grasping pose
calculated from the relative position and 16 initial poses are generated as
the initialized population centered on the grasping pose calculated from the
relative position.

Tomato recognition

Is there an IK 
solution for the 

Initial pose

Objective function: 𝐴𝐴2 + 𝐵𝐵2 − 𝐶𝐶2

Grasping

Move robot

Individual: pose matrix

No

No

Is it in the 
workspace

Yes

Yes

Calculate reachable pose: GA

Path planning

Fig. 12. Flowchart of the adaptive end-effector pose control algorithm.

joint angles are returned. The flowchart of the adaptive end-
effector pose control algorithm is given in Fig. 12 and the
algorithm is expressed as

Remark 1: Aiming at the problem that the manipulator has
difficult grasping tomatoes in the non-dexterous workspace, an
adaptive end-effector pose control method is proposed. For the
target tomato that cannot be reached with the calculated initial
end-effector pose, GA is used to determine the end-effector
pose that can make the manipulator reach the target point. The
adaptive end-effector pose control method can fully utilize the
manipulator workspace, reach more grasping positions, and
improve the success rate of tomato harvesting.

F. Grasping trajectory planning for harvesting manipulator

The tomato harvesting robot is equipped with a UR3e 6-
DOF manipulator and a soft gripper to grasp tomatoes. During
path planning of the manipulator, if no constraints are added,
the planned path of manipulator may approach the tomato
from any direction. However, the existence of the gripper
determines that harvesting robot can only grasp a tomato from

Algorithm 1: Adaptive end-effector pose control algorithm
Input: a, g and rm.

1 if |a| < rm then
2 a0 = a− g;
3 p = a0

|a0| ;
4 if K < 0 then
5 Initialize P(i);
6 i = 1;
7 while ((i < 2000)or(K < 0));
8 do
9 Evaluate and Sort P(i) by Fitness;

10 Select operation to P(i);
11 Crossover operation to P(i);
12 Mutation operation to P(i);
13 P (i+ 1) = P (i);
14 i = i+ 1;
15 end
16 end
17 end

the gripper-opening direction on the final distance close to
tomato. Otherwise, the manipulator approaching the tomato
from other directions will cause the gripper to collide with
the tomato and fail to grasp it correctly. To overcome this
challenge, a method based on adding interpolation point to
constrain the manipulator is proposed to enable the planned
path of manipulator to approach the tomato along the direction
of the gripper opening and avoid collision between gripper and
tomato.

The interpolation point is the point that manipulator end-
effector must pass during path planning. Under the manipula-
tor end-effector coordinate frame tool, the interpolation b is set
at 100 mm in front of the tomato position a(xa, ya, za) on end-
effector pose p. In Section III.C, the pose p of the manipulator
end-effector based on the manipulator base coordinate frame
base is obtained. The distance was selected as 100 mm to
ensure sufficient margin for different size tomatoes. When the
gripper is grasping, it must first reach point b which is 100
mm in front of the target tomato with the direction of the
gripper opening towards tomato, and then it must reach the
final harvesting point with the gripper opening towards the
tomato to avoid the gripper closing to the tomato from other
directions and collide with the tomato. The interpolation b in
the manipulator end-effector coordinate frame is 100 mm in
front of the tomato position a and the direction is the pose p of
the manipulator end-effector. Let the vector from interpolation
point b to the origin of base coordinate frame as b and k as
the scaling factor. b is obtained as

(1− 1

k
)|a| = 0.1, (44)

b =
1

k
a =

[
xa
|a| − 0.1

|a|
, xb
|a| − 0.1

|a|
, xc
|a| − 0.1

|a|

]
. (45)

After vector b is obtained, the coordinate of the interpolation
point b can be obtained as (xa

|a|−0.1
|a| , xb

|a|−0.1
|a| , xc

|a|−0.1
|a| ).

Subsequently, through the TF conversion relationship from
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manipulator end-effector coordinate frame tool to the manipu-
lator base coordinate frame base, the coordinate of interpola-
tion point b under the base of the manipulator can be obtained.
Interpolation point b is added in the trajectory planning of
manipulator to ensure that the gripper is grasped from the
gripper opening direction.

There are errors between the real position of tomato and
the position calculated by acquisition owing to the camera and
calibration errors. The errors may result in a collision between
the end-effector of manipulator and the target tomato. If the
harvesting robot approaches the tomato with a high speed,
the tomato may be hit or damaged. If the overall grasping
speed is low, it will result in a low grasping efficiency. In
industrial applications, the quintic interpolation polynomial
has not been used widely because it has no uniform speed
section. However, the application of a quintic interpolation
polynomial for end-effector speed planning on harvesting
robot can adequately solve the problem that the end-effector of
the manipulator contacting the tomato with high speed results
in tomato damage.

The quintic interpolation polynomial requires six initial
constraints. The initial desired position x0 of the manipulator
at t0 and the target position xn at tn, the velocities of the initial
position and target position v0 and vn, and the accelerations
a0 and an of the initial position and target positions jointly
constitute the six basic constraints for the end trajectory
planning of the manipulator.{

x(0) = x0
x(tn) = xn

,

{
x

′
(0) = v0

x
′
(tn) = vn

,

{
x

′′
(0) = a0

x
′′
(tn) = an.

(46)

To avoid the collision damage to the tomato caused by the
end-effector of manipulator approach to the tomato with fast
speed, the speed of the manipulator end-effector is limited
when approaching the tomato. When the end-effector of ma-
nipulator approaches the tomato, the manipulator is controlled
to reduce to a slow speed and a small acceleration. Speed and
acceleration of the manipulator at the start and end positions
is limited to 0, the velocity at the interpolation point b is
limited to 20 mm/s, and the acceleration is limited to 0. The
coefficients c0 − c5 can be obtained by substituting the above
conditions into the quintic interpolation polynomial as

x(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5. (47)

The end-effector position, velocity, and acceleration at each
time are obtained using quintic interpolation polynomials. The
Jacobian matrix is converted to each joint of the manipulator
to obtain the control quantity of each joint:

v = J(θ)θ
′
, (48)

where v = [vx, vy, vz, ωx, ωy, ωz], θ
′
= [θ

′

1, θ
′

2, θ
′

3, θ
′

4, θ
′

5, θ
′

6].
Similarly, the acceleration of each joint can be obtained.

Remark 2: The manipulator path is planned using interpo-
lation point constraints to enable the manipulator to approach
and grasp the tomato with the opening direction towards the
tomato, avoiding the grasping failure caused by the gripper
approaching the tomato from the side when the manipula-
tor approaches the tomato. The end-effector speed of the
manipulator is planned by quintic interpolation polynomial

programming to reduce the speed when the end-effector of
manipulator is close to the tomato. The collision between
the end-effector and the tomato with a high speed caused by
position error is avoided.

G. Tomato grasping and separation
A soft gripper is used to grasp the tomato, and the end joint

rotation of the manipulator is used to achieve the separation
of tomato stems. Ripe tomato has a raised abscission layer
at the junction of stalk and branch. The toughness of the
abscission layer is significantly lower than the other stalks and
branches. Rotating the ripe tomato by 90◦ − 180◦ can easily
realize separation of tomatoes and stems without damaging
tomatoes and branch (J. Liu et al., 2020). Therefore, the
method of rotating the tomatoes is used to separate the stalks.
Compared with the scissors-hand method of finding tomato
stalks and then using scissors to cut stalks to separate them,
the scissors-hands method requires a more accurate judgment
on the position of stalks. It is often necessary to use point
clouds and other methods for recognition and positioning,
which significantly increases the amount of calculations. In
addition, this method requires scissors to accurately reach the
position of tomato stem for cutting, which also places high
requirements on the control of manipulator. The gripper adopts
a pneumatic soft structure, and the gripper adopts soft material
to avoid damage to the tomato during the grasping. Compared
with electric control, pneumatic control does not require an
additional mechanism on the end-effector of manipulator,
which can effectively reduce the mechanism and load of the
manipulator’s end-effector and make the grasping work more
convenient.

To test performance of the proposed tomato recognition
method based on background filtering, the recognition ef-
fect of the purely using HSV color segmentation algorithm
and deep learning YOLOv4 algorithm is compared. Multi-
ple experiments were performed under different experimental
backgrounds and occlusion scenarios. Videos were captured
using a RealSense D435i depth camera with 640 × 480
pixels. Experiments were performed using the harvesting robot
equipped with an Intel Core i7-8850H 2.6 GHz CPU industrial
computer.

In the absence of background interference, both color
segmentation and deep learning algorithms could correctly
recognize the target. When the background interference was
large, as shown in Fig. 13(a), the tomato recognition algorithm
based on color segmentation could not correctly recognize the
tomato. The tomatoes or red area in the background interfered
with recognition results in the wrong positioning of tomato
center position. The larger the tomatoes and red range in
the background, the greater the deviation is, which cause
the harvesting robot to fail to grasp the tomato. Yolov4 can
accurately recognize the tomato after background filtering.

As shown in Fig. 13(b) and Fig. 13(c), the background was
filtered out and all pixels outside the manipulator workspace
range were replaced with gray. The image after background
filtering could only observe the objects in the manipulator
workspace, which effectively eliminated background interfer-
ence and reduced the complexity of the image. This method
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improved the recognition rate of tomato and effectively in-
creased the recognition speed. 100 groups of experiments at
different positions and angles by color segmentation were
performed. The success rate of tomato recognition after fil-
tering background was 96%, and the recognition speed was
20 frames/s.

(a) Recognition disturbed by background

(b) Tomato recognition after filtering out background interference

(c) Yolov4 after filtering out background interference

Fig. 13. Tomato recognition based on background filtering.

H. Tomato grasping

UR3e and UR5 manipulator are used to harvest tomatoes in
the non-dexterous workspace respectively to prove the applica-
bility of the algorithm and present a more intuitive effect. The
successful grasp using adaptive pose control method with the
scene that cannot be reached using the fixed pose is compared.
Let the manipulator reach the nearest point to the tomato with
a fixed pose when the manipulator cannot reach with a fixed
pose, Fig. 14 and Fig. 15 show the comparison effect. Different
poses would lead to different harvesting results when har-
vesting tomatoes in a non-dexterous workspace. Two different
models of manipulators are used to verify the generalizability
of our algorithm.

Experimental data indicates that the adaptive end-effector
pose control method can effectively improve the reachable
range of the manipulator from the Fig. 14 and Fig. 15.
The manipulator determines the end-effector pose that can

make it reach the target point that is in the non-dexterous
workspace through the GA. The adaptive pose control method
can enable the manipulator to grasp the tomatoes in the
dexterous workspace, and significantly improve the success
rate of tomato grasping in the range of 550-800 mm in a non-
dexterous workspace. To further highlight the beneficial effect
of the adaptive end-effector pose control method, the volume
of the expanded grasping area with that of the original area is
compared by

s =
r3m − r3p
r3p

, (49)

where rm is the radius of the primary workspace, rp is the
radius of the dexterous workspace.

As shown in Fig. 16, the radius of UR3e manipulator
grasping range was increased from 550 to 800 mm and
UR5 manipulator grasping range was increased from 850 to
1050 mm. the grasping range of the UR3e manipulator was
increased by 208% and the UR5 manipulator was increased
by 89% through the calculation of (49), so as to improve
the grasping success rate. The greater the ratio of the end-
effector length to the radius of the dexterous workspace
of the manipulator, the higher the ratio of the increase in
the graspable range. The calculation time increased because
determining the appropriate end-effector pose using the GA
required a significant amount of time, but the calculation time
can satisfy the requirements of the harvesting robot.

Tomato grasping experiments were performed to evaluate
the proposed control method. 10 sets of experiments with a
total of 400 grasps are conducted. Each set of experiments used
the adaptive end-effector pose control method and the pose p
for 20 grasps, and the position of each tomato was different.
After each set of 40 grasps, the distance between the tomato
and the manipulator was increased. The distance between
the tomato and manipulator was the Euclidean distance from
the position of the tomato center point to the origin of
the manipulator base coordinate frame. The path planning
algorithm used the RRT algorithm. The results are shown in
Table II.

TABLE II
SUCCESS RATE OF MANIPULATOR REACHING TARGET POSITION BASED ON

DIFFERENT POSE CONTROL METHODS

Number

Distance
from target

point to
base(mm)

Success
rate of

fixed pose

Average
time of

fixed pose(ms)

Success
rate of

adaptive
pose

Average
time of
adaptive
pose(ms)

1 0-100 0 0 0 0
2 100-200 80% 5 100% 58
3 200-300 100% 4 100% 4
4 300-400 100% 4 100% 4
5 400-500 100% 4 100% 4
6 500-600 75% 4 100% 79
7 600-700 10% 5 100% 170
8 700-800 0 0 65% 1163
9 800-900 0 0 5% 4218
10 900-1000 0 0 0 0

In the experiment of group 1, the tomatoes were 0-100
mm away from the base of the manipulator. The manipulator
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(a) Tomato grasping using the reach-
able grasping pose obtained by the
adaptive pose algorithm

(b) Enlarged of (a) (c) Failed grasping owing to unreach-
able poses

(d) Enlarged of (c)

Fig. 14. Comparison of reachable and unreachable grasping pose of UR3e manipulator.

(a) Tomato grasping using the reach-
able grasping pose obtained by the
adaptive pose algorithm

(b) Enlarged of (a) (c) Failed grasping owing to unreach-
able poses

(d) Enlarged of (c)

Fig. 15. Comparison of reachable and unreachable grasping pose of UR5 manipulator.

can not reach any center point of tomato because this range
was within the singularity range of the manipulator. In the
experiment of group 2, the tomatoes were 100-200 mm away
from the base of the manipulator. The manipulator can reach
most positions with the fixed pose method, and the success
rate was 80% with an average time of 5 ms. The manipulator
reached all center points of tomatoes with the adaptive end-
effector pose, and the average time was 58 ms.

In the experiment of groups 3-5, the tomatoes were 200-500
mm away from the base of the manipulator. The manipulator
can reach all center points of tomatoes with the fixed pose and
adaptive end-effector pose, and the average time was 4 ms.
The manipulator was far away from its own singular points
and boundary range in this interval and can effectively reach

the target points.

In the experiment of group 6, the tomatoes were close to
the boundary of the manipulator dexterous workspace, and
the success rate of the fixed end-effector pose control method
began to decline. The success rate was 75% when the tomatoes
were 500-600 mm away from the base of the manipulator. The
success rate decreased steeply to 10% in the experiment of
group 7, in which the tomatoes were 600-700 mm away from
the base of the manipulator. It was almost difficult to reach
the target points, but the calculation time was 4 ms which was
rapid. In the experiment of groups 6 and 7, the adaptive control
method successfully reached all center points of tomatoes, but
the calculation time increased rapidly, which were 79 and 170
ms.
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550mm

800mm

Non-Dexterous 
workspace

Dexterous 
workspace

Fig. 16. Workspace of harvesting manipulator.

From the experiments of group 8, the fixed end-effector
pose can not reach any target point. The success rate of the
adaptive end-effector pose was 65% when the tomatoes were
700-800 mm away from the base of the manipulator, and
the average calculation time was 1163 ms. In the experiment
of group 9, the tomatoes were 800-900 mm away from the
base of the manipulator. The success rate of the adaptive end-
effector pose was 5% and the target point almost exceeded the
workspace of the manipulator. In the experiment of group 10,
the tomatoes position completely exceeded the workspace of
the manipulator, and the target point can not be reached using
any pose control method.
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Fig. 17. Position, speed and acceleration of end-effector.

The relationship between the position, velocity, acceleration
and time of the end-effector obtained by trajectory planning
using the quintic interpolation polynomial is shown in Fig.
17. The green curve is the trajectory curve with velocity

(a) The gripper is close to the tomato
from the side

(b) Failed to grasp due to collision
with tomato

14

(c) The opening of the clamping claw
is toward the tomato

(d) Successfully grasp the tomato

Fig. 18. The manipulator grasp the tomato successfully by add interpolation
points.

constraint added at interpolation point b, and the red curve is
the trajectory curve without the interpolation point constraint.
The figure shows that the two curves reach the same position
simultaneously, and the curves can remain smooth without
a jump. The green curve with interpolation points reaches
interpolation point b at a faster speed and decreases to a lower
speed. Finally, it reaches the tomato position at a slower speed
and an acceleration close to 0, which ensures the safe grasping
of the tomato and avoids the damage of the tomato by the end-
effector.

The method of tomato grasping by adding interpolation
points was verified by experiments. As shown in Fig. 18 (a)-
(b), the harvesting manipulator grasped the tomato from the
side resulting in failed harvesting. As show in Fig.18 (c)-
(d), the end-effector approached the tomato from the side,
and the tomato was pushed aside by the end-effector without
being wrapped by the end-effector, resulting in the failure of
grasping.

As shown in Fig. 19, the adaptive end-effector pose control
method and manipulator path control method with interpola-
tion point constraints proposed in this paper were used for
tomato harvesting. After the harvesting-robot recognizes the
tomato, it calculates the appropriate grasping pose p, which is
not a reachable pose. The reachable pose is obtained by using
adaptive pose control algorithm and adds 0.1 m in front of
the tomato in the pose as an interpolation point for trajectory
planning. The manipulator approaches from the front of the
tomato according to the planned trajectory and completed
the grasp, places the grasped tomato into the harvest basket
and finally returns to the initial pose to complete a round of
grasping tasks and ready for the next tomato harvesting.

100 harvesting experiments on tomatoes in different posi-
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Fig. 19. Tomato harvesting with adaptive end-effector pose control method and path control method with interpolation points.

tions were performed, and 88 of these were successful. The
main reason for the failure was that the vibration caused by
the grasping induced other tomatoes positioning errors. The
experimental results show that the robot harvesting success
rate is 88%, and the average time for the robot to complete a
cycle of grasping task is approximately 20 s.

IV. CONCLUSION

(1) The reachable end-effector pose of the harvesting ma-
nipulator is calculated using a GA to enable the manipulator’s
end-effector reach the tomato position when the tomatoes
are in a non-dexterous workspace such as the boundary of
the manipulator. The radius of the workspace of the UR3e
manipulator with the end-effector increased to 550-800 mm
and the workspace of the UR3e manipulator with end-effector
installed expands by 208%. Harvesting robot completes a cycle
of grasping task is 20 s.

(2) The quintic interpolation polynomial is used for the
trajectory planning of the end-effector. The interpolation point
is added to constrain the pose and speed of the end-effector
at the interpolation point to enable the end-effector to slowly
approach the tomato in the direction of opening towards the
tomato, which reduces the tomato damage rate.

(3) Tomato-harvesting experiments were performed using
the three methods proposed in this paper. The results show
that the tomato recognition is not disturbed by the background,
the grasping range is larger, the end-effector no longer collides
with the tomato, and the tomato grasping can be performed

successfully. The experiments verified the effectiveness and
feasibility of the proposed algorithms.

V. FUTURE WORK

(1) The largest failure in the experiment was due to the
shaking of tomatoes caused by grasping, resulting in the
continuous shaking of the position of the remaining tomatoes
in the process of grasping, which finally resulted in the
failure of grasping. Therefore, the prediction algorithm of
shaking tomato will be designed to improve the success rate
of grasping shaking tomato in the future.

(2) The selection of tomato for harvesting in the same area
is random, resulting in low harvesting efficiency currently. In
the future, a method of planning a tomato-harvesting sequence
will be designed to optimize the tomato-harvesting sequence
and improve the harvesting efficiency in combination with the
information of tomato distribution in the area.
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