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Abstract  35 

Tension type headache (TTH) is a prevalent but poorly understood pain disease. Current 36 

understanding supports the presence of multiple associations underlying its pathogenesis. Our 37 

aim was to compare competing multivariate pathway models that explains the complexity of 38 

TTH. Headache features (intensity, frequency, or duration - headache diary), headache-related 39 

disability (Headache Disability Inventory-HDI), anxiety/depression (Hospital Anxiety and 40 

Depression Scale), sleep quality (Pittsburgh Sleep Quality Index), widespread pressure pain 41 

thresholds (PPTs) and trigger points (TrPs) were collected in 208 individuals with TTH. Four 42 

latent variables were formed from the observed variables - Distress (anxiety, depression), 43 

Disability (HDI subscales), Severity (headache features), and Sensitivity (all PPTs). Structural 44 

equation modelling (SEM) and Bayesian network (BN) analyses were used to build and 45 

compare a theoretical (𝒎𝒐𝒅𝒆𝒍𝒕𝒉𝒆𝒐𝒓𝒚) and a data-driven (𝒎𝒐𝒅𝒆𝒍𝑩𝑵) latent variable model. The 46 

𝒎𝒐𝒅𝒆𝒍𝑩𝑵 (root mean square error of approximation [RMSEA] = 0.035) provided a better 47 

statistical fit than 𝒎𝒐𝒅𝒆𝒍𝒕𝒉𝒆𝒐𝒓𝒚  (RMSEA = 0.094). The only path common between 𝒎𝒐𝒅𝒆𝒍𝒃𝒏 48 

and 𝒎𝒐𝒅𝒆𝒍𝒕𝒉𝒆𝒐𝒓𝒚  was the influence of years with pain on TrPs. The 𝒎𝒐𝒅𝒆𝒍𝑩𝑵 revealed that 49 

the largest coefficient magnitudes were between the latent variables of Distress and Disability 50 

(β=1.524, P=0.006). Our theoretical model proposes a relationship whereby psycho-physical 51 

and psychological factors result in clinical features of headache and ultimately affect disability. 52 

Our data-driven model proposes a more complex relationship where poor sleep, psychological 53 

factors, and the number of years with pain takes more relevance at influencing disability. Our 54 

data-driven model could be leveraged in clinical trials investigating treatment approaches in 55 

TTH. 56 

Keywords: Tension type headache, structural equation modelling, Bayesian network, pain. 57 
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Perspective 62 

A theoretical model proposes a relationship where psycho-physical and psychological factors 63 

result in clinical manifestations of headache and ultimately affect disability. A data-driven 64 

model proposes a more complex relationship where poor sleep, psychological factors, and 65 

number of years with pain takes more relevance at influencing disability. 66 
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Path Analysis Models Integrating Psychological, Psycho-physical and 81 

Clinical Variables in Individuals with Tension-Type Headache 82 

 83 

Introduction  84 

The Global Burden of Disease Study reported that neurological conditions represent the 85 

leading cause of disability-adjusted life-years [13]. Primary headaches are the most common 86 

pain disorders attended by neurologists in clinical practice. Tension-type headache (TTH), in 87 

particular, is probably the most common type of headache showing a worldwide prevalence of 88 

42% [21]. The one-year prevalence of TTH has increased from 16% to 21% during the last 89 

decade [21]. Despite its prevalence, TTH is the most neglected primary headache, probably 90 

because its underlying mechanisms are not completely understood [32]. 91 

Current understanding supports several mechanisms behind the pathogenesis of 92 

TTH[50]. These mechanisms consist of pressure pain hyperalgesia [20]; 93 

psychological/emotional factors[6], sleep disorders[6], musculoskeletal impairments[3, 10], 94 

genetics[14] or humoral and immune responses [17] and can be involved in TTH at the same 95 

time in a complex matrix. The interaction between these mechanisms is different in men and 96 

women with TTH [25]. 97 

When quantifying complex multivariate pathways where variables can simultaneously 98 

depend on and influence other variables, structural equation modelling (SEM) has been the “de 99 

facto” statistical method. A conundrum in SEM occurs when the theoretical model results in a 100 

poor statistical fit [8]  - how can a better alternative model be derived? Some studies using 101 

SEM manually alter the paths until the fit of the model crosses the desired threshold, a 102 

challenging task if there are many variables and paths [24]. An alternative approach is adopting 103 

a data-driven modelling approach that efficiently searches the model space and selects a 104 

pathway model that achieves the best statistical fit [5]. One such data-driven approach is 105 

Bayesian Networks (BN) [5, 37, 38]. BN emphasizes learning structural pathways directly from 106 
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data [42]. The learned structural model using BN can then be fitted using traditional SEM 107 

analysis. Using BN to learn a structural model may not only be useful when a theoretical model 108 

poorly fits the data, but it may be equally useful to statistically compare two competing 109 

pathway models. We argue that supplementing traditional theory-based approaches with data-110 

driven approaches provide a better framework to efficiently test-explore-retest competing 111 

causal models, especially in a complex disorder such as TTH. The primary objective of this 112 

study was to understand the multivariate psychological, neuro-physiological, and clinical pain 113 

contributions to TTH. The secondary objective was to explore alternative path models using a 114 

data-driven approach and verify which models best explain the complex presentation of TTH.  115 

  116 

Methods 117 

Participants 118 

        A cross-sectional cohort study following the Strengthening the Reporting of Observational 119 

studies in Epidemiology (STROBE) guidelines [54] was conducted. Consecutive individuals 120 

with headaches were recruited from an university-based hospital between January 2017 and 121 

December 2019. Diagnosis was performed following the third edition criteria of the 122 

International Classification of Headache Disorders (ICHD-III), the beta [1] or final [2] version 123 

by neurologists with more than 20 years of clinical experience in headaches. They were 124 

excluded if presented with 1, any other primary or secondary headache including medication 125 

overuse headache; 2, previous neck/head trauma; 3, cervical herniated disk on medical records; 126 

4, systemic medical disease which modify pain perception, e.g., brain tumour, rheumatoid 127 

arthritis, polyneuropathy, fibromyalgia syndrome; 5, had received any therapy different than 128 

their usual medication intake the previous 6 months; or, 6, pregnancy. The study was approved 129 

by the Local Ethical Committees of Universidad Rey Juan Carlos (URJC 23/2018), and 130 

Hospital Rey Juan Carlos (HRJ 07/18). All participants read and signed a written consent form 131 
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prior to their participation in the study.  132 

Evaluations were conducted when patients were headache-free and when at least one 133 

week had elapsed since the headache attack. In patients with a high frequency of headaches, 134 

i.e., chronic TTH, evaluation was conducted at least 3 days after a headache if possible or when 135 

the intensity of pain the day of the evaluation was ≤3 points on the numerical pain rate scale 136 

(NPRS). Participants were asked to avoid any analgesic or muscle relaxant 24 hours before 137 

their examination. No change was made on their regular medication treatment if taken. In fact, 138 

just 22% of the sample regularly intake amitriptyline as prophylactic medication. 139 

Clinical Variables: Headache Diary 140 

A 4-week diary was used to obtain features of headache attacks[43]. Accordingly, 141 

participants registered in the diary the number of days with headache in days/month (HFreq), 142 

the duration of the headache episodes in hours/day (HDura), and the intensity of pain of each 143 

headache attack (HInten) on an 11-point NPRS (0: no pain; 10: the worst unimaginable pain). 144 

In addition, they were also asked for describing the presence (or lack of) headache-associated 145 

symptoms (if existed), such as phonophobia or phonophobia, for further confirm the diagnosis 146 

of TTH [43].  147 

Headache Disability Inventory  148 

Headache-related disability was assessed with the Headache Disability Inventory (HDI) 149 

- a questionnaire including 25 items about the impact of headache on emotional functioning 150 

and daily activities [30]. Thirteen items evaluate the emotional burden (HDI-E, score 0 to 52), 151 

and the remaining 12 items the physical burden (HDI-P, score 0 to 48) of headache. A greater 152 

score suggests a greater headache-related burden. The HDI exhibited good test-retest reliability 153 

[31].  154 
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Psychological Variables 155 

Anxiety and Depressive Levels  156 

The Hospital Anxiety and Depression Scale (HADS) was used to determine the presence 157 

of anxiety/depressive symptoms. Seven items assess anxiety (HADS-A) and the other seven 158 

assess depressive (HADS-D) symptoms [55].  Each question is scored on a 4-point scale 159 

ranging from 0 to 3 points (total score of each scale 0-21 points) where a higher score indicates 160 

greater symptoms [34]. The HADS has shown good internal consistency in people with 161 

headache [34]. These items were codified as Anx and Dep in the SEM. 162 

Sleep Quality  163 

The Pittsburgh Sleep Quality Index (PSQI) was used to assess the quality of sleep [55]. 164 

This 24-items questionnaire evaluates sleep quality over the previous month by asking aspects 165 

such as usual bed-time, usual wake time, the number of actual hours slept, and the number of 166 

minutes to fall asleep. All questions are answered on a Likert-type scale (0–3). The total score 167 

ranges from 0 to 21 where a higher score indicates worse sleep quality (codified as sleep).  168 

Psycho-physical Variables 169 

Pressure pain thresholds (PPT) were assessed the temporalis muscle (trigeminal point, 170 

PPThx), cervical spine (extra-trigeminal point, PPTcx), second metacarpal, and tibialis anterior 171 

to assess widespread pressure pain sensitivity with an electronic pressure algometer (Somedic® 172 

Algometer, Sollentuna, Sweden). The mean value of PPTs over the second metacarpal and the 173 

tibialis anterior muscle was used in the analysis (remote pain-free point, PPTrm). The mean of 174 

3 trials on each point, with a 30s resting period for avoiding temporal pain summation, was 175 

calculated. The order of assessment was randomized. Since no side-to-side differences are 176 

commonly seen, the mean of both sides for each point was used within the main analysis.  177 

Since widespread pressure pain hyperalgesia is associated with the presence of trigger 178 

points (TrPs) [41], the total number of TrPs was calculated on each subject. Trigger points in 179 
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the temporalis, masseter, suboccipital, upper trapezius, sternocleidomastoid, and splenius 180 

capitis muscles were bilaterally explored according to international guidelines [16]: 1, presence 181 

painful spot in a palpable taut band in the muscle; 2, local twitch response on palpation of the 182 

muscle taut band; and 3, reproduction of referred pain with manual palpation.  183 

Statistical Analysis 184 

Packages  185 

All analyses were performed using the R software (v4.0.2). The following packages 186 

were used: mice[52] for missing data pattern inspection and data imputation, lavaan[47] for 187 

SEM analysis, semPlot [11] for visualizing SEM paths, bnlearn[48] for BN structural learning, 188 

SEMsens [35] for sensitivity analysis of SEM models, and, finally, semTools[33] which fits a 189 

SEM model across our 20 imputed datasets and pools the statistical outputs using Rubin’s rule. 190 

All codes and results are included in an online repository (https://bernard-191 

liew.github.io/2020_cts_bn/4-TTH.html). No a priori power analysis was performed to guide 192 

the sample size determination. 193 

Missing Data Management 194 

The proportion of missing data ranged from 0.48% to 18.75% (Suppl. Fig. 1). The 195 

number of different patterns of missing data ranged from one to 24 (Suppl. Fig. 2). Also, when 196 

comparing the baseline characteristics of individuals with and without missing data, there is no 197 

evidence that those with missing data had more severe headache symptoms (Table 1). Hence, 198 

the data was judged to be suitable for multiple imputations to be performed. Herein, we used 199 

the Multivariate Imputation by Chained Equations method [52]. The random forest method was 200 

used for imputation. We generated 20 imputed datasets using a maximum number of iterations 201 

of 30 for each imputation. 202 

https://bernard-liew.github.io/2020_cts_bn/4-TTH.html
https://bernard-liew.github.io/2020_cts_bn/4-TTH.html
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Bayesian Network (BN) 203 

BN is a graphical modelling technique [40] that can leverage either data alone, or data 204 

combined with an expert prior knowledge to learn multivariate pathway models. Building a 205 

BN model using a data-driven approach involves two stages: 1) structure learning - identifying 206 

which arcs are present in the graphical model, and 2) parameter learning - estimating the 207 

parameters that regulate the strength and the sign of the corresponding relationships.  208 

As previously mentioned, BN can easily include prior knowledge, sourced from the 209 

literature and experts, during the model building process. In the BN framework, prior TTH 210 

knowledge of known relationships can be included or excluded in the model by enforcing these 211 

as included and excluded arcs, respectively. Excluded arcs are always removed from the 212 

model’s structure, whilst included arcs are always incorporated in the structure. Excluded arcs 213 

are those that contravene known biological or physical associations. In the current study, we 214 

enforced the following as excluded arcs: 215 

• No arcs point to the variables of Age, Sex, and YearsP (years with pain). For YearsP, the 216 

variable reflected a historical measure, which cannot be dependent on the other variables. 217 

• No arcs pointing from the latent variable of Disability.  218 

• No arcs pointing to and from the variables PPTcx, PPThx, PPTrm , HInten, HDura, HFreq, 219 

HDI_E, HDI _P, Dep, Anx; as these variables were modelled as part of four latent variables 220 

(Figure 1). 221 

In the current study, we enforced the following as included arcs: 222 

• Arcs pointing from the latent variable to each of their observed variables, as modelled in the 223 

measurement model were enforced in the model (Figure 1). 224 

For each of the 20 imputed datasets, we made use of model averaging to reduce the 225 

potential of including spurious relationships in the BN, using bootstrap resampling (B = 50) 226 

and performing structure learning on each of the resulting samples (total resamples being 1000) 227 
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using the hill-climbing (HC) algorithm. An “average” consensus model was calculated by 228 

selecting those arcs that have a frequency greater than 50% in the bootstrapped samples, a data-229 

driven threshold estimated from the frequencies themselves to create a sparse and interpretable 230 

DAG network [49]. This DAG was again used for SEM analysis, the procedures of which have 231 

been reported in previous paragraphs – and we term this 𝑚𝑜𝑑𝑒𝑙𝐵𝑁. 232 

Structural Equation Modelling (SEM) 233 

SEM are probabilistic models that unite multiple predictors and outcome variables in a 234 

single model, and where latent variables can also be included. First, SEM was used to assess 235 

the fit of the proposed measurement model (Figure 1), which defines the relationship between 236 

the observed variables, and the latent variables of Severity (intensity, duration, and frequency 237 

of the headache), Sensitivity (PPTs), Distress (depression and anxiety), and Disability (physical 238 

and emotional burden). Next, SEM was used to fit the theoretical path model (𝑚𝑜𝑑𝑒𝑙𝑡ℎ𝑒𝑜𝑟𝑦), 239 

which was informed by the literature [3, 6, 10, 18, 20, 25, 50] (Figure 2), and using the DAG 240 

learned from BN. 241 

For both the measurement and path models, Maximum Likelihood was used to estimate 242 

the model’s parameters, whilst the ‘Huber-White’ robust standard errors were used. An 243 

excellent model fit is determined when two of the four fit indices exceed the thresholds: (a 244 

root-mean-square error of approximation [RMSEA] ≤0.05; standard root mean residual 245 

[SRMR] ≤0.05; confirmatory fit index [CFI] ≥0.95; and non-normed fit index [NNFI] ≥0.95) 246 

[26]. For the estimated parameters, a more stringent P-value < 0.025 (Bonferroni correction for 247 

two SEM analyses) was considered to be statistically significant. 248 

Sensitivity analysis 249 

A sensitivity analysis was conducted on 𝑚𝑜𝑑𝑒𝑙𝐵𝑁. to quantify the potential effect 250 

unmeasured confounding variables would have on our results, using the phantom variable 34. 251 

A phantom variable is a latent variable without observed indicators but with mean, variance, 252 
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covariances, and paths to variables in the model set to specific values – known as sensitivity 253 

parameters. The path coefficients from the phantom variable to variables in the analytic model 254 

quantify the hypothetical relations between a potential confounder and variables in the model 255 

that could change the statistical conclusions of the model. A conclusion can be made that 256 

potential missing confounders may be present if small sensitivity parameters significantly alter 257 

the results of the model. Path coefficients with a change in value between the original 𝑚𝑜𝑑𝑒𝑙𝐵𝑁 258 

and the mean coefficient larger than 10% across all included sensitivity parameters can be 259 

considered to be sensitive to missing confounders [35]. A limitation of the implementation of 260 

the SEMsens package is that it can only perform sensitivity analysis on a single dataset at a 261 

time. We performed sensitivity analysis across the datasets and report the mean and SD values 262 

of the original and perturbed coefficients and percentage change in coefficient value between 263 

the original 𝑚𝑜𝑑𝑒𝑙𝐵𝑁 and perturbed models.  264 

 265 

Results 266 

A total of 208 participants with TTH were included in the analysis. Table 1 summarizes 267 

the descriptive characteristics of the cohort.  268 

Measurement model 269 

      The tested measurement model and associated standardized regression weights are reported 270 

in Figure 1. Fit for the measurement model was excellent (RMSEA = 0.025, CFI = 0.994, 271 

SRMR = 0.043, NNFI = 0.990). 272 

Testing and examining 𝒎𝒐𝒅𝒆𝒍𝒕𝒉𝒆𝒐𝒓𝒚  273 

     The tested theoretical model and associated standardized regression weights are reported in 274 

Figure 2. The standard errors, 95% confidence intervals (CI) and P-values can be found in 275 

Table 2. The 𝑚𝑜𝑑𝑒𝑙𝑡ℎ𝑒𝑜𝑟𝑦 had fit values of RMSEA = 0.094, CFI = 0.814, SRMR = 0.111, 276 

NNFI = 0.766, reflecting an inadequate model fit. Severity was significantly associated with 277 
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Disability (𝛽 = 1.201, 𝑃 = 0.012), Sex was significantly associated with Distress (𝛽 =278 

0.403, 𝑃 = 0.008), TrPs was significantly associated with Sensitivity (𝛽 = −0.347, 𝑃 <279 

0.001), and YearsP was significantly associated with TrPs (𝛽 = 0.200, 𝑃 = 0.004) (Table 2). 280 

Testing and examining 𝒎𝒐𝒅𝒆𝒍𝒃𝒏 281 

The tested BN model and associated standardized regression weights are reported in 282 

Figure 3. The standard errors, 95% confidence intervals (CI) and P-values can be found in 283 

Table 3. The 𝑚𝑜𝑑𝑒𝑙𝑏𝑛 had fit values of RMSEA = 0.035, CFI = 0.975, SRMR = 0.063, NNFI 284 

= 0.968, reflecting an excellent model fit. The only path common between 𝑚𝑜𝑑𝑒𝑙𝑏𝑛 and 285 

𝑚𝑜𝑑𝑒𝑙𝑡ℎ𝑒𝑜𝑟𝑦 was the influence of YearsP on TrPs, with the relationship in 𝑚𝑜𝑑𝑒𝑙𝑏𝑛 being 𝛽 =286 

0.237(𝑃 < 0.001) (Table 3). In this model, there was no direct relationship between Severity 287 

and Disability (see Figure 3). Instead, Severity was significantly associated with Sleep (𝛽 =288 

0.858, 𝑃 = 0.007) and Distress (𝛽 = 0.818, 𝑃 = 0.023), and these latter variables acted as 289 

mediators to Disability (Figure 3). 290 

Sensitivity analysis 291 

Results of the sensitivity analysis can be found in Table 4. Based on a threshold change 292 

in the coefficient value of 10%, seven paths in 𝑚𝑜𝑑𝑒𝑙𝐵𝑁 are likely to be affected by the 293 

presence of missing confounding variables. Of the seven, the path most likely to be affected 294 

include the relationship between Disability and Sleep, where their coefficients changed on 295 

average by > 20% across the sensitivity parameters (Table 4). Further, we note that the range 296 

of the perturbed coefficients spans both positive and negative values (and thus includes zero as 297 

well) for eight of the 13 paths. 298 

 299 

Discussion 300 

Current understanding supports the presence of biopsychosocial associations behind the 301 

pathogenesis of TTH, which lends itself suited to be analyzed within the SEM framework. This 302 

Commented [b1]: Some editing and realised some typos… 
please check if discussion needs editing. 



13 

 

study applied SEM to validate and compare two candidate multivariate pathway models - a 303 

theoretical and a data-driven model, to better understand the complex interactions between 304 

psychological, neuro-physiological and clinical variables in TTH.  305 

The 𝑚𝑜𝑑𝑒𝑙𝑡ℎ𝑒𝑜𝑟𝑦 revealed a role for TrPs and Distress influencing Sensitivity (Fig. 2). 306 

The association between the number of TrPs and widespread pain sensitivity in TTH has been 307 

previously suggested[41]. The association between Sensitivity and TrPs was higher within the 308 

𝑚𝑜𝑑𝑒𝑙𝐵𝑁 (Fig. 3) than in the 𝑚𝑜𝑑𝑒𝑙𝑡ℎ𝑒𝑜𝑟𝑦 (Fig. 2), but in the opposite way, i.e., Sensitivity 309 

leads to TrPs. A bidirectional association between Sensitivity (central mechanism) and TrPs 310 

(peripheral mechanism) is possible since nociception from TrPs lead to central sensitization, 311 

but central sensitization also promotes TrP pain[15]. Our findings suggest that Sensitivity and 312 

TrPs may be influenced by a common mechanism (sensitization), explaining why the TrPs and 313 

Sensitivity path exhibited a high chance of missing confounding (table 4). Further, although 314 

the presence of TrPs seems to be clear in TTH and our models support their role, their clinical 315 

relevance is still unclear[36] since just low to moderate evidence supports a positive effect of 316 

TrP treatment in TTH[12].  317 

Interestingly, the path between years with headache predicted the number of TrPs in 318 

both models. Current knowledge of the pathogenesis of TTH suggests that this headache has a 319 

muscle component contributing to the sensitization process related to the transition from acute 320 

to chronic TTH[4]. It would be expected that patients with a longer history of pain are more 321 

prone to develop TrPs due to a temporal summation muscle nociception. Nevertheless, TrPs 322 

and years with pain path exhibited the highest chance of missing confounding (table 4).  323 

Moderate evidence supports the presence of widespread hyperalgesia as a manifestation 324 

of sensitization in TTH, particularly in the chronic form[20]. The 𝑚𝑜𝑑𝑒𝑙𝑡ℎ𝑒𝑜𝑟𝑦 showed that 325 

Sensitivity was influenced by TrPs and Distress. These findings agree with a meta-analysis 326 

reporting that baseline PPTs predict pain and disability[27]. Additionally, linear associations 327 
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between PPTs and pain and related-disability are not commonly reported in the literature[29]. 328 

Our 𝑚𝑜𝑑𝑒𝑙𝑡ℎ𝑒𝑜𝑟𝑦 supports this lack of association since the association between Sensitivity 329 

and Severity was small. It has been postulated that Sensivitity reflects a neurophysiological 330 

mechanism whereas Severity represents the clinical expression of pain. 331 

         In the 𝑚𝑜𝑑𝑒𝑙𝑡ℎ𝑒𝑜𝑟𝑦, we proposed that Sex influences Distress and that Distress influences 332 

Sensitivity (Fig. 2); but the 𝑚𝑜𝑑𝑒𝑙𝐵𝑁  found that Sex influences Sensitivity, and that was the 333 

path to Distress but mediated by sleep quality (Fig. 3). The results of the 𝑚𝑜𝑑𝑒𝑙𝐵𝑁 proposes 334 

that females exhibit lower PPTs than males, a common finding reported in the literature[45]. 335 

In fact, sex differences, not only in Sensitivity, but also in Distress, could determine specific 336 

approaches to be applied in TTH[25].  337 

The association between stress and sleep in TTH has been previously reported[46]. The 338 

influence of sleep on Distress was more relevant in the 𝑚𝑜𝑑𝑒𝑙𝐵𝑁 than in the 𝑚𝑜𝑑𝑒𝑙𝑡ℎ𝑒𝑜𝑟𝑦. This 339 

effect supports previous assumptions that poor/lack of sleep is a trigger factor for headache[28]. 340 

Accordingly, the 𝑚𝑜𝑑𝑒𝑙𝐵𝑁 would suggest that poor sleep plays a higher relevant role in the 341 

chronicity of TTH than theoretically expected but mediating an effect on Distress. Further, the 342 

relevance of poor sleep agrees with recent evidence supporting that sleep interventions not only 343 

improve the quality of sleep but also decrease headache frequency in TTH[51]. 344 

In the 𝑚𝑜𝑑𝑒𝑙𝑡ℎ𝑒𝑜𝑟𝑦, we hypothesized that Sensitivity would influence Severity (Fig. 2). 345 

However, the 𝑚𝑜𝑑𝑒𝑙𝐵𝑁 revealed that Severity was not directly influenced by any modelled 346 

factor. These results propose the relevance of headache parameters as independent features to 347 

be considered in TTH. This was also supported by the fact that Severity did not have an effect 348 

on Disability in the 𝑚𝑜𝑑𝑒𝑙𝐵𝑁. One question that remains to be answered is the “cause” of 349 

Severity, since the 𝑚𝑜𝑑𝑒𝑙𝐵𝑁 did not identify any variable influencing on these variables. It is 350 

possible that headache attacks are clinical features intrinsic to the disease itself than the others 351 

modelled variables. 352 
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 353 

 354 

Clinical Application 355 

Based on the pain-stimulus responses and symptoms, TTH could be classified as a 356 

“nociplastic condition”, where exaggerated responses as well as other central nervous system-357 

derived symptomatology, e.g., poor sleep, memory problems, or mood disorders are 358 

present[22]. The current study using SEM confirms that TTH represents a multidimensional 359 

pain condition where multimodal approaches should be applied. The application of SEM 360 

revealed a complex matrix of interactions between biological and psychological variables. 361 

These variables have been identified as prognostic factors associated with less favorable 362 

outcomes from preventive medication treatments in chronic headache[44]. Emotional variables 363 

are considered modifiable risk factors of chronic conditions[46]. Accordingly, treatment of 364 

psychological or emotional factors should include cognitive behavior, education or coping 365 

strategies.  366 

Similarly, SEM also revealed that muscle TrPs play a relevant role in both path models. 367 

Management of these impairments should include tissue-based impairment strategies (bottom-368 

up) such as manual therapy, exercise or dry needling. A recent Delphi study concluded that the 369 

top therapeutic strategies used by physical therapist for managing headaches consisted of upper 370 

cervical spine mobilisations, therapeutic exercises of the cervical spine and lifestyle advices[9]. 371 

         Current findings suggest that management of TTH should include a multi-model program 372 

consisting of targeting musculoskeletal disorders (manual therapy), central nervous excitability 373 

(neuroscience education), psychological factors (cognitive behaviour or copying strategies) 374 

and include advises on healthy lifestyles (physical activity)[19]. These interventions should be 375 

adapted to the clinical presentation of each patient since the influence of each of the identified 376 

variables in the current study will be unique. As concluding remark, our data-driven model 377 
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could be leveraged in clinical trials investigating treatment approaches in TTH, for instance, 378 

targeting first sleep and cognitive/emotional factors as earlier as possible at the beginning of 379 

the disease to reduce excitability of the central nervous system.  380 

Strengths and Limitations 381 

The biggest limitation of this study was that the cross-sectional nature precludes the 382 

ability to disentangle between-subjects from within-subjects relationships. For example, cross-383 

sectional analysis cannot distinguish whether Distress is associated with Disability because 384 

whenever people feel distressed results in Disability (a within-subjects effect) or because 385 

people who are on average distressed tend to have greater Disability (a between-subjects 386 

effect). Given that temporal precedence is a key requirement for determining causality, causal 387 

inference based on this study should be made with caution.   388 

Based on our sensitivity analysis residual or unmeasured confounding variables cannot 389 

be rejected. These unmeasured confounding variables can substantially impact the model by 390 

introducing spurious arcs between the observed variables. For example, the fact that several 391 

ranges of perturbed coefficients in Table 4 contain the value zero implies the possibility that 392 

the corresponding arcs do not correspond to statistically significant effects. Furthermore, given 393 

that the ranges include both positive and negative coefficients suggests the possibility that the 394 

direction of the effects may be incorrectly estimated even for arcs that are not spurious. The 395 

model averaging technique for learning Bayesian networks described in the Methods addresses 396 

the former concern in part by removing arcs we cannot establish with a sufficient degree of 397 

confidence, but it has limited power in addressing the latter because bootstrapping is likely to 398 

preserve any systematic effects arising from confounding. Techniques for reducing the effects 399 

of confounding in bootstrap have been proposed in the literature[39] but they require strong 400 

assumptions on the causal structure linking the observed and the unobserved variables that are 401 

not appropriate to investigations in which we wish to discover the structure from data. As an 402 
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alternative, a combination of multiple imputations and causal discovery algorithms, could be 403 

used to detect possible sources of confounding, albeit at a significant computational cost[23]. 404 

Further, network models learned by causal discovery algorithms that can address confounding 405 

have less power and are markedly more complicated to interpret as they use several different 406 

types of arcs to express confounded and unconfounded relationships[7]. Although SEM allows 407 

for the estimation of numerous associations simultaneously, it comes at a cost of making many 408 

assumptions (linearity, distributional, and no-confounding) across all paths - which make it 409 

challenging to verify. Alternative mediation analysis approaches with greater modelling 410 

flexibility and better ability for causal identification assumptions, may be more suitable when 411 

the research question focuses on testing a few associations[53]. 412 

The strength of this paper is that it synergizes the strengthening of two complementary 413 

statistical approaches to help us better understand the pathophysiology of a complex disorder. 414 

Nevertheless, limitations in relation to the sample should be also considered. First, the sample 415 

was recruited from different university-based headache centers; therefore, they may be not 416 

representative of the general population. Second, the impact of medication was not considered. 417 

Third, it should be noted that the scores of some of the variables, e.g., anxiety/depression, were 418 

low; therefore, it is possible that the influence of these factors may be different in individuals 419 

experiencing higher levels. Finally, we just explored static psycho-physical outcomes, i.e., 420 

PPTs, but not other such as conditioned pain modulation (CPM) or temporal summation (TS). 421 

We do not currently know if these other sensitivity variables would show different associations.  422 

 423 

Conclusion 424 

This study compared two pathway models that quantified the multivariate relationships in TTH. 425 

Our theoretical model proposes a relationship whereby psycho-physical and psychological 426 

factors result in clinical features of headache and ultimately affect disability. Our data-driven 427 
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model proposes a complex relationship where poor sleep, psychological factors, and number 428 

of years with pain takes more relevance at influencing disability. Our data-driven model could 429 

be leveraged in clinical trials investigating treatment approaches in TTH, for instance, targeting 430 

first sleep and cognitive/emotional factors as earlier as possible at the beginning of the disease 431 

to reduce excitability of the central nervous system. 432 

 433 

Legend of Figures 434 

Figure 1: Measurement model with standardized regression coefficients. Abbreviations: Anx: 435 

Hospital Anxiety and Depression Scale, anxiety subscale; Dep: Hospital Anxiety and 436 

Depression Scale, depression subscale; PPTcx: pressure pain threshold cervical spine; 437 

PPThx: pressure pain threshold temporalis muscle; PPTrm: pressure pain threshold at remote 438 

region (mean of second metacarpal and tibialis anterior); HDura: headache duration; HFreq: 439 

headache frequency; HInten: headache intensity; HDI_E: Headache Disability Inventory, 440 

emotional subscale; HDI_P: Headache Disability Inventory, physical subscale 441 

Figure 2: Directed acyclic graph of theoretical model with standardized regression 442 

coefficients. Nodes shaded grey are latent variables. Observed variables of latent variables 443 

not included to reduce visual clutter, but its associated coefficients can be found in Table 2.  444 

Abbreviations: YearsP: number of years with headache; TrPs: trigger points 445 

Figure 3: Directed acyclic graph of Bayesian Network model with standardized regression 446 

coefficients. Nodes shaded grey are latent variables. Observed variables of latent variables 447 

not included to reduce visual clutter, but their associated coefficients can be found in Table 3.  448 

Abbreviations: YearsP: number of years with headache; TrPs: trigger points 449 

 450 

 451 
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 452 

 453 

 454 

Legend of Supplementary Figures 455 

Supplementary Figure 1: Proportion of missing data for the variables of the study. Red 456 

colour means “good” missing data (<5%). Green colour means “OK” missing data (<20%). 457 

Anx: Hospital Anxiety and Depression Scale, anxiety subscale; Dep: Hospital Anxiety and 458 

Depression Scale, depression subscale; PPTcx: pressure pain threshold cervical spine; 459 

PPThx: pressure pain threshold temporalis muscle; PPTrm: pressure pain threshold at remote 460 

region (mean of second metacarpal and tibialis anterior); HDura: headache duration; HFreq: 461 

headache frequency; HInten: headache intensity; HDI_E: Headache Disability Inventory, 462 

emotional subscale; HDI_P: Headache Disability Inventory, physical subscale; Sleep: 463 

Pittsburgh Sleep Quality Index; yearsP: years with headache; TrPs: trigger points. 464 

 465 

Supplementary Figure 2: 466 

Missing data patterns. Column-wise labels are the variables included in the analysis. 467 

Left row-wise labels reflect the number of participants with a missing data pattern. Right row-468 

wise labels reflect the number of missing variables. The blue cell indicates no missing data, the 469 

red cell indicates missing data. Abbreviation: Anx: Hospital Anxiety and Depression Scale, 470 

anxiety subscale; Dep: Hospital Anxiety and Depression Scale, depression subscale; PPTcx: 471 

pressure pain threshold cervical spine; PPThx: pressure pain threshold temporalis muscle; 472 

PPTrm: pressure pain threshold at remote region (mean of second metacarpal and tibialis 473 

anterior); HDura: headache duration; HFreq: headache frequency; HInten: headache intensity; 474 

HDI_E: Headache Disability Inventory, emotional subscale; HDI_P: Headache Disability 475 
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Inventory, physical subscale; Sleep: Pittsburgh Sleep Quality Index; yearsP: years with 476 

headache; TrPs: trigger points. 477 

Figures 478 

Figure 1479 

  480 

Figure 2 481 

 482 
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Figure 3 483 

 484 

Supplementary figure 1 485 

 486 
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Supplementary figure 2 487 

 488 

 489 
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Table 1: Descriptive characteristics of cohort 

 

Variables No missing (n = 137) With missing (n = 71) Total (n = 208) P value 

Male (n, %) 39(28.47) 20(28.17) 59(28.37) 0.964 

Female (n, %) 98(71.53) 51(71.83) 149(71.63) 0.964 

Age (years) 47.21(14.22) 39.86(13.47) 44.72(14.37) < 0.001 

Years with headache 10.78(11.67) 9.38(10.3) 10.34(11.25) 0.415 

Headache intensity 

(NPRS, 0.10) 
6.31(2.86) 5.67(2.13) 6.1(2.65) 0.097 

Headache duration (hours) 7.21(4.53) 7.91(3.87) 7.41(4.35) 0.308 

Headache frequency 

(days/month) 
17.28(9.16) 15.88(10.05) 16.82(9.45) 0.325 

Trigger points 6.69(3.7) 5.06(3.46) 6.15(3.69) 0.003 

HDI-E (0-52) 20.15(13.5) 14.44(11.1) 19.07(13.24) 0.028 

HDI-P (0-48) 23.71(12.67) 18.94(9.53) 22.8(12.26) 0.047 

Sleep (0-21) 8.24(4.62) 7.38(3.69) 8.01(4.39) 0.237 

HADS-D (0-21) 8.38(4.32) 5.97(4.54) 7.92(4.45) 0.005 

HADS-A (0-21) 10.15(4.75) 8.84(4.12) 9.91(4.66) 0.153 

PPT head (kPa) 182.2(77.66) 316.11(177.44) 227.91(136.61) < 0.001 

PPT cervical (kPa) 194.32(81.62) 249.99(106.64) 213.32(94.46) < 0.001 

PPT remote (kPa) 320.02(135.35) 383.04(173.47) 341.13(151.74) 0.005 

Categorical variable of gender analysed via Chi-Square test, whilst all other variables analysed via linear regression with 

missing (no/yes) as independent variable. 

Abbreviations. NPRS: Numerical pain rating scale; HDI-E: Headache Disability Inventory, emotional subscale; HDI-P: 

Headache Disability Inventory, physical subscale; Sleep: Pittsburgh Sleep Quality Index; HADS-A: Hospital Anxiety and 

Depression Scale, anxiety subscale; HADS-D: Hospital Anxiety and Depression Scale, depression subscale; PPT: Pres-

sure pain thresholds 
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Table 2: Parameter estimates for the model theory 
 

DV IV Coef SE LB UB Pval Sig type 

Disability HDI_P 0.672 0.109 0.457 0.885 0.000 s LV 

Disability HDI_P 1.000      LV 

Distress Anx 0.323 0.295 -0.254 0.899 0.275 ns LV 

Distress Dep 1.000      LV 

Sensitivity PPThx 1.036 0.077 0.885 1.188 0.000 s LV 

Sensitivity PPTrm 1.021 0.078 0.869 1.174 0.000 s LV 

Sensitivity PPTcx 1.000      LV 

Severity HFreq 1.187 0.336 0.527 1.843 0.000 s LV 

Severity HInten 0.704 0.280 0.158 1.254 0.012 s LV 

Severity HDura 1.000      LV 

Disability Severity 1.201 0.476 0.264 2.133 0.012 s Reg 

Disability Sleep 0.068 0.127 -0.180 0.315 0.593 ns Reg 

Distress YearsP -0.009 0.028 -0.063 0.046 0.753 ns Reg 

Distress Sex 0.403 0.150 0.107 0.697 0.008 s Reg 

Sensitivity TrPs -0.347 0.070 -0.485 -0.209 0.000 s Reg 

Sensitivity Distress -1.890 0.899 -3.650 -0.123 0.036 ns Reg 

Severity Sensitivity -0.006 0.077 -0.159 0.145 0.936 ns Reg 

Severity Age 0.064 0.052 -0.037 0.165 0.216 ns Reg 

Sleep Severity 0.953 0.452 0.069 1.837 0.035 ns Reg 

TrPs YearsP 0.200 0.069 0.065 0.334 0.004 s Reg 

TrPs Sex 0.348 0.167 0.018 0.677 0.038 ns Reg 

Abbreviations: DV: dependent variable (or latent variable); IV: independent variable (or observed 

variable); Coef: standardized coefficients; SE: standard error; LB: 2.5% lower bound of 95% confi-
dence interval; UB: 97.5% upper bound of 95% confidence interval; Pval = p value; Sig = signifi-

cance; LV: latent variable analysis; Reg: regression analysis; Anx: Hospital Anxiety and Depression 

Scale, anxiety subscale; YearsP: number of years with headache; Dep: Hospital Anxiety and Depres-
sion Scale, depression subscale; TrPs: trigger points; PPTcx: pressure pain threshold cervical spine; 

PPThx: pressure pain threshold temporalis muscle; PPTrm: pressure pain threshold at remote region 

(mean of second metacarpal and tibialis anterior); HDura: headache duration; HFreq: headache fre-

quency; HInten: headache intensity; HDI_E: Headache Sisability Inventory, emotional subscale; 

HDI_P: Headache Disability Inventory, physical subscale; Sleep: Pittsburgh Sleep Quality Index 

Table 3: Parameter estimates for model Bayesian network  
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DV IV Coef SE LB UB Pval Sig type 

Disability HDI_P 0.796 0.084 0.631 0.960 0.000 s LV 

Disability HDI_P 1.000      LV 

Distress Anx 0.296 0.117 0.068 0.524 0.012 s LV 

Distress Dep 1.000      LV 

Sensitivity PPThx 1.036 0.078 0.883 1.189 0.000 s LV 

Sensitivity PPTrm 1.023 0.078 0.870 1.176 0.000 s LV 

Sensitivity PPTcx 1.000      LV 

Severity HFreq 1.261 0.326 0.626 1.900 0.000 s LV 

Severity HInten 0.713 0.326 0.074 1.351 0.029 ns LV 

Severity HDura 1.000      LV 

Disability YearsP 0.187 0.067 0.055 0.319 0.005 s Reg 

Disability Age -0.188 0.063 -0.312 -0.063 0.003 s Reg 

Disability Sleep -0.336 0.272 -0.869 0.197 0.217 ns Reg 

Disability Distress 1.524 0.553 0.439 2.607 0.006 s Reg 

Distress Severity 0.818 0.360 0.112 1.524 0.023 s Reg 

Distress Sleep 0.293 0.096 0.105 0.482 0.002 s Reg 

Sensitivity Sex -0.866 0.176 -1.212 -0.520 0.000 s Reg 

Sleep Sensitivity -0.197 0.077 -0.349 -0.046 0.011 s Reg 

Sleep Age 0.131 0.065 0.004 0.257 0.043 ns Reg 

Sleep Severity 0.858 0.318 0.237 1.484 0.007 s Reg 

TrPs Sensitivity -0.492 0.072 -0.634 -0.350 0.000 s Reg 

TrPs YearsP 0.237 0.060 0.119 0.354 0.000 s Reg 

TrPs Age -0.321 0.059 -0.435 -0.206 0.000 s Reg 

Abbreviations: DV: dependent variable (or latent variable); IV: independent variable (or observed vari-

able); Coef: standardized coefficients; SE: standard error; LB: 2.5% lower bound of 95% confidence 
interval; UB: 97.5% upper bound of 95% confidence interval; Pval = p value; Sig = significance; LV: 

latent variable analysis; Reg: regression analysis; Anx: Hospital Anxiety and Depression Scale, anxiety 

subscale; YearsP: number of years with headache; Dep: Hospital Anxiety and Depression Scale, depres-
sion subscale; TrPs: trigger points; PPTcx: pressure pain threshold cervical spine; PPThx: pressure pain 

threshold temporalis muscle; PPTrm: pressure pain threshold at remote region (mean of second meta-

carpal and tibialis anterior); HDura: headache duration; HFreq: headache frequency; HInten: headache 
intensity; HDI_E: Headache Sisability Inventory, emotional subscale; HDI_P: Headache Disability In-

ventory, physical subscale; Sleep: Pittsburgh Sleep Quality Index 
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Table 4: Sensitivity analysis of model developed using Bayesian network across imputed datasets. Values represent the mean (one standard 2 

deviation) across the imputed datasets. 3 

DV IV Original coefficient 
Mean perturbed 

coefficient 
Min perturbed co-

efficient 
Max perturbed co-

efficient 
% Change 

Disability Sleep -0.295 (0.03) -0.223 (0.027) -0.906 (0.039) 0.743 (0.026) 24.653 (2.058) 

Sensitivity Sex -0.447 (0.079) -0.364 (0.065) -0.45 (0.07) -0.197 (0.204) 18.422 (6.024) 

Sleep Severity 0.402 (0.086) 0.464 (0.069) -0.554 (0.227) 1.282 (0.172) 15.466 (16.948) 

TrPs YearsP 0.237 (0.015) 0.272 (0.013) -0.259 (0.095) 0.929 (0.119) 14.972 (2.965) 

Sleep Sensitivity -0.178 (0.048) -0.202 (0.038) -0.831 (0.159) 0.329 (0.161) 13.483 (7.197) 

TrPs Age -0.322 (0.066) -0.288 (0.053) -0.324 (0.072) -0.194 (0.232) 10.696 (5.338) 

Distress Severity 0.583 (0.001) 0.521 (0.008) -0.541 (0.002) 1.546 (0.036) 10.365 (1.762) 

TrPs Sensitivity -0.432 (0.021) -0.47 (0.02) -1.066 (0.021) 0.016 (0.015) 8.664 (1.584) 

Disability Distress 0.965 (0.02) 1.001 (0.027) 0.225 (0.202) 1.984 (0.071) 7.527 (8.673) 

Distress Sleep 0.422 (0.03) 0.415 (0.036) -0.106 (0.156) 1.017 (0.102) 6.036 (3.016) 

Disability YearsP 0.196 (0.004) 0.206 (0.005) -0.303 (0.005) 0.806 (0.005) 5.783 (0.685) 

Disability Age -0.199 (0.005) -0.19 (0.013) -0.275 (0.015) -0.143 (0.154) 4.364 (3.396) 

Sleep Age 0.126 (0.012) 0.124 (0.014) 0.026 (0.053) 0.183 (0.159) 2.83 (4.833) 

Abbreviations: DV: dependent variable; IV: independent variable; Anx: Hospital Anxiety and Depression Scale, anxiety subscale; YearsP: number of years with 

headache; Dep: Hospital Anxiety and Depression Scale, depression subscale; TrPs: trigger points; PPTcx: pressure pain threshold cervical spine; PPThx: pressure 

pain threshold temporalis muscle; PPTrm: pressure pain threshold at remote region (mean of second metacarpal and tibialis anterior); HDura: headache duration; 

HFreq: headache frequency; HInten: headache intensity; HDI_E: Headache Sisability Inventory, emotional subscale; HDI_P: Headache Disability Inventory, physi-

cal subscale; Sleep: Pittsburgh Sleep Quality Index 
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