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Abstract 26 

The purpose of this narrative review is to provide a critical reflection of how new analytical 27 

machine learning approaches could provide the platform to harness variability of patient 28 

presentation to enhance clinical prediction. The review includes a summary of current 29 

knowledge on the physiological adaptations present in people with spinal pain. We discuss 30 

how contemporary evidence highlights the importance of not relying on single features when 31 

characterizing patients given the variability of physiological adaptations present in people 32 

with spinal pain. The advantages and disadvantages of current analytical strategies in 33 

contemporary basic science and epidemiological research are reviewed and we consider how 34 

new analytical machine learning approaches could provide the platform to harness the 35 

variability of patient presentations to enhance clinical prediction of pain persistence or 36 

recurrence. We propose that modern machine learning techniques can be leveraged to 37 

translate a potentially heterogeneous set of variables into clinically useful information with 38 

the potential to enhance patient management. 39 

  40 
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The burden of musculoskeletal spinal pain 41 

The 2019 Global Burden of Disease Study has highlighted the enormous global 42 

burden of spinal pain disorders. Low back pain (LBP) and neck pain (NP) disorders are the 43 

largest contributors to all spain pain disorders(Urwin et al. , 1998), hence, are the focus of 44 

this review. The prevalence of LBP and NP increased between 15-20% from 2005 to 2015, 45 

reaching a current estimate of 539 and 358 million people, respectively (Hurwitz et al. , 46 

2018). LBP and NP have been reported to be the 4th and 19th leading causes of disability in 47 

2019 (Vos et al. , 2020), with current estimates of years lived with disability (YLDs) reported 48 

to be a combined total of 94 million years (Hurwitz, Randhawa, 2018). Most new episodes of 49 

spinal pain recover rapidly within the first 6 to 12 weeks from onset (Costa et al. , 2012, Hush 50 

et al. , 2011), although up to 30% of individuals report incomplete recovery after one year 51 

from baseline (Henschke et al. , 2008). 52 

The societal and economic costs of spinal pain disorders are high, driven largely by a 53 

small fraction of individuals with persistent pain (Carroll et al. , 2008). The total cost for LBP 54 

was estimated at AUD $9 billion in 2001 in Australia (Maetzel and Li, 2002, Walker et al. , 55 

2003), with similar proportions observed in the Netherlands and the United Kingdom 56 

(Dagenais et al. , 2008, Maniadakis and Gray, 2000, van Tulder et al. , 1995) In the 57 

Netherlands, the total health care cost in 1996 for NP was estimated at €485million 58 

(Borghouts et al. , 1999). Considering the rising costs of health care, it is plausible that these 59 

estimates would be higher today.  60 

The high prevalence and significant burden of spinal pain disorders have resulted in a 61 

proliferation of research over the past three decades (Wang and Zhao, 2018). However, even 62 

though several treatments have been investigated for the management of spinal pain, the 63 

long-term effect sizes of these interventions are modest at best (Foster, 2011, Patel et al. , 64 

2013). A critical factor that explains the small average treatment effect that has generated a 65 
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surge in research and clinical interest in the last decade is the concept of “heterogeneity” 66 

(Foster et al. , 2013) or “variability” (van Dieen et al. , 2019) – two words with the same 67 

meaning, but used in a different research context. Clinical heterogeneity is a term used to 68 

reflect the wide range of individual responses to specific treatments. Physiological variability 69 

is a term used to reflect the variation in individual and contextual physiological or 70 

psychological responses to pain or injury. Surprisingly, little research has attempted to 71 

directly bridge the study of physiological variability to develop therapeutic strategies and 72 

decision-making systems that manage the issue of clinical heterogeneity. 73 

Research in spinal pain disorders has evolved to encompass a breadth of scientific 74 

disciplines, varying from basic science (Falla et al. , 2004, Hodges et al. , 1999) to 75 

epidemiological research (Saragiotto et al. , 2016a). Basic science investigations have ranged 76 

from studying individual muscle activity (Falla, Jull, 2004, Hodges, Cresswell, 1999), multi-77 

muscle synergies (Gizzi et al. , 2015, Liew et al. , 2020a, Liew et al. , 2018), motor-unit 78 

(Falla et al. , 2010, Yang et al. , 2016a), spinal (Yu et al. , 2017) and supraspinal activation 79 

(Hodges et al. , 2009, Jacobs et al. , 2010, Tsao et al. , 2008). Epidemiological research has 80 

also encompassed a wide range of methodologies from cross-sectional diagnostic (Kim et al. , 81 

2018), longitudinal prognostic (Costa, Maher, 2012), longitudinal trajectory analysis 82 

(Kongsted et al. , 2016), randomized controlled clinical trials (Griffin et al. , 2017, Marin et 83 

al. , 2017, Saragiotto et al. , 2016b), stratified care (Foster, Hill, 2013, Kent et al. , 2010), and 84 

causal mediation analysis (Lee et al. , 2015).  85 

We argue that the dearth of translational research that maps variability from the bench 86 

to patient heterogeneity at the bedside could come from the challenge of managing and using 87 

high-dimensional multivariate data. The primary purpose of this review aims to address this 88 

gap in translational spinal pain research that sits at the nexus of basic science and 89 

epidemiology. We intend to achieve this aim by (1) reviewing current knowledge of the 90 
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physiological adaptations present in people with spinal pain, (2) the advantages and 91 

disadvantages of current analytical strategies in contemporary basic science and 92 

epidemiological research, (3) a critical reflection of new analytical machine learning (ML) 93 

approaches that could provide the platform to harness variability in translational research, and 94 

lastly (4) ending the review with a short commentary of the potential clinical implications 95 

that could emanate from this review.  96 

State-of-art knowledge of physiological adaptations in spinal pain  97 

There is an extensive body of literature describing neuromuscular and biomechanical 98 

changes in people with spinal pain. Some of the more common changes in motor output 99 

observed in people with chronic symptoms compared to asymptomatic individuals include 100 

reduced strength and endurance (Conway et al. , 2018, Lindstroem et al. , 2012, Moreno 101 

Catalá et al. , 2018, Sanderson et al. , 2019b) and poorer force steadiness (Muceli et al. , 102 

2011), as well as decreased range, speed, accuracy, variability, and smoothness of movement 103 

(Alsubaie et al. , 2021, Dideriksen et al. , 2014, Falla et al. , 2017, Gizzi et al. , 2019, Salehi et 104 

al. , 2021, Vaisy et al. , 2015). Studies utilizing electromyography (EMG) have revealed 105 

various changes in muscle behaviour which likely contribute to such variation in motor output 106 

including changes in motor unit behaviour (Falla, Lindstrøm, 2010, Yang et al. , 2016b), 107 

delayed muscle responses to perturbations (Boudreau and Falla, 2014, Falla, Jull, 2004, 108 

Hodges and Richardson, 1996, Knox et al. , 2018), an altered distribution and loss of 109 

variability of muscle activity (Falla and Gallina, 2020, Falla et al. , 2014, Sanderson et al. , 110 

2019a), greater myoelectric manifestations of fatigue (Beneck et al. , 2013, Falla et al. , 2003, 111 

Roy et al. , 1989),increased muscle co-activation (Bonilla-Barba et al. , 2020, Falla et al. , 112 

2013), and altered muscle synergies (Liew, Del Vecchio, 2018).  113 
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Additionally, there is evidence of changes in brain organization including the 114 

convergence of brain representations for multiple muscles (Tsao et al. , 2011) and 115 

modification of the size and location of cortical representations (Elgueta-Cancino et al. , 2018, 116 

Tsao, Galea, 2008). Collectively this research suggests that there are some neuromuscular 117 

adaptations to pain that may be more consistent amongst people with spinal pain (Figure 1).  118 

What is evident however from the existing literature is the massive amount of 119 

discrepancy in study findings which is likely at least partly explained by the variation in 120 

experimental methods, tasks examined, and clinical status of the patients tested (e.g. varying 121 

levels of pain intensity/disability and presence or absence of psychological features) amongst 122 

other factors. These discrepancies are evident from the conclusions of systematic reviews 123 

examining changes in neuromuscular or biomechanical features in people with 124 

musculoskeletal pain where heterogeneity across studies is identified such that meaningful 125 

conclusions cannot be drawn (Sanderson et al. , 2021, Wernli et al. , 2020). However, such 126 

discrepancy can also be attributed to the physiological variability described above. Indeed, 127 

studies that have examined subject-specific responses often reveal variability in 128 

neuromuscular adaptations in people with spinal pain. For example, in a recent study, we 129 

showed that people with chronic non-specific LBP, on average, activate more cranial regions 130 

of the lumbar erector spinae compared to asymptomatic individuals when they perform the Ito 131 

test sustained until exhaustion (main effect for group; F = 44.00, P < 0.001, ηp2 = 0.65; 132 

Figure 2A). However, when reviewing individual responses, it was evident that several of the 133 

participants with chronic LBP performed the task with the same distribution of erector spinae 134 

activity as seen in asymptomatic people i.e. a more diffuse distribution of activity (Figure 2B). 135 

Given this variability, it is unlikely that the same findings of any study on people with spinal 136 

pain could be entirely replicated on a completely different cohort.  137 
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Such variation between individuals may relate to several factors including the 138 

redundancy of the muscle system, anthropometric features, the magnitude of pain intensity 139 

and disability, extent of peripheral or central sensitization, and the presence of psychological 140 

features such as the extent of fear of movement. Although there is some evidence to support 141 

an association between the extent of pain and/or disability and the extent of physiological 142 

adaptations (Alsultan et al. , 2020, Falla et al. , 2011, Jacobs et al. , 2017, O'Leary et al. , 143 

2011, Salehi, Rasouli, 2021, Schabrun et al. , 2017) which can explain some variation in 144 

amongst people with spinal pain, this relationship doesn’t always hold (Jacobs et al. , 2016, 145 

Steele et al. , 2014). Likewise, there are examples where the extent of psychological factors 146 

such as fear of movement, catastrophizing, and anxiety are associated with physiological 147 

features (Alsubaie, Martinez-Valdes, 2021, Alsultan, De Nunzio, 2020, Vaisy, Gizzi, 2015, 148 

Van Damme et al. , 2014), but again, this is not always the case (Lima et al. , 2018, Veeger et 149 

al. , 2020).  150 

Evidence to support the individual-specific reorganization of the motor strategy to 151 

complete a given task when in pain comes from experimental pain studies. Studies have 152 

shown that the injection of a noxious stimulus in a single muscle can trigger subject-specific 153 

adaptations allowing individuals to complete a motor task when in pain albeit with a unique 154 

redistribution of muscular activity (Gizzi, Muceli, 2015, Hodges et al. , 2013). These findings 155 

help to explain the individual responses seen in clinical populations.  156 

What has become particularly evident from the body of research on physiological 157 

adaptations in people with spinal pain is that we cannot rely on single features given the 158 

variability of neuromuscular adaptations in people with spinal pain.  159 
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Limitations of current analytical approaches 160 

Scalar vs functional variables  161 

𝑌 = 𝑓(𝑋) +  𝜖 (1) 162 

In the majority of research undertaken in contemporary spinal pain research, data are 163 

collected on one or more outcomes (Y, also termed as dependent variables), at each unique 164 

value of a set of covariates (X, also termed predictors or independent variables). A statistical 165 

model is created (Eqn 1), to estimate the function 𝑓 which maps 𝑋 to 𝑌, and 𝜖 being the error. 166 

There are two primary reasons why researchers may be interested in estimating 𝑓 – for 167 

inference or prediction.  168 

Statistical inference (e.g. null-hypothesis significance testing), seeks primarily to 169 

estimate the uncertainty of the relationship (i.e. 𝑓), producing estimates such as the 170 

confidence interval. This paradigm is at the heart of much spinal pain research seeking to 171 

either test competing theories of altered neuromuscular function with pain (Falla, Jull, 2004), 172 

or to test the effectiveness of competing therapies on clinical outcomes (Poquet et al. , 2016, 173 

Saragiotto, Machado, 2016a). Statistical prediction, on the other hand, focuses on how 174 

accurate the outcome 𝑌 can be estimated based on knowing the value of the predictors 𝑋. 175 

Statistical prediction has also been termed as prognostic modelling (Steyerberg et al. , 2013). 176 

Statistical prediction is typically undertaken because the outcome cannot be easily measured, 177 

but the predictors are more easily obtained. At the heart of statistical prediction is not 178 

necessarily knowing the structure of the function 𝑓, but achieving a prediction of the outcome 179 

that exceeds a clinically desirable accuracy threshold.  180 

Regardless of whether statistics are used for inference or prediction purposes, many 181 

traditional statistical methods, such as the Analysis of Variance (ANOVA) and linear 182 

regression, rely on the presence of variables to lie on the scalar domain. Scalar variables are 183 
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those that take on discrete variables – e.g. range of motion (ROM) and maximal strength. In 184 

contrast to scalar variables, functional variables are those with values that change as a 185 

function of time and/or space (distance). It is argued that many variables collected in spinal 186 

pain research are collected across time and space, thus making them functional. For example, 187 

muscle activation magnitude can be collected over a gait cycle (van den Hoorn et al. , 2015) 188 

and different regions of the lumbar spine (Murillo et al. , 2019), pain intensity can be 189 

recorded daily for over a year (Kongsted et al. , 2017), and strength can be collected over a 190 

joint’s ROM (Suryanarayana and Kumar, 2005). The functional nature of many routinely 191 

collected variables in spinal pain research precludes the use in their original form within 192 

traditional statistical models.  193 

To use functional variables in traditional statistics, they must first be transformed to 194 

lie on the scalar domain. Some transformations include extracting the peak value, taking the 195 

average, or finding the difference between the maximum and minimum value of functional 196 

variables. The primary advantage of using scalar variables is that it opens up many more 197 

statistical models to be available to the researcher. Another advantage of scalar variables is 198 

the inherent interpretability of the model’s solution – a necessity in inferential problems. 199 

Interpretability is also a necessity if clinicians were to depend on such models for clinical 200 

decision-making (2018). For example, in linear regression, the 𝛽 coefficient can be easily 201 

understood as a change in 𝑌 for a unit change in 𝑋. Despite its obvious advantages, 202 

transforming functional to scalar variables removes a significant amount of information 203 

contained within the original variables. This could lead to potential false-negative findings 204 

during statistical inference or lack of an impact in improving a model’s accuracy during 205 

prediction. 206 
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p>>n in the era of Big data 207 

In both statistical inference and prediction, when there are more covariates 𝑝, than the 208 

sample size 𝑛, the model cannot be estimated with conventional fitting methods (e.g. OLS) as 209 

the corresponding algorithm for parameter estimation suffers from a singular matrix. In 210 

addition, traditional statistical models rely on the presence 𝑛 being much greater than 𝑝, so 211 

that the estimated model’s solutions have a low variance. For inferential problems, a low 212 

variance provides a study with adequate statistical power to detect a true effect; whilst for 213 

prediction problems, a low variance allows the model to generalize well in performance 214 

beyond the original data used to develop the model.  215 

Technological advancement has meant that it is becoming easier to collect more data 216 

than could easily exceed sample size. For example, up to 126 biomechanical variables can be 217 

extracted from a single accelerometer (Benson et al. , 2018). The issue of big 𝑝 is not 218 

restricted to laboratory based research, but can be quite common in contemporary clinical 219 

epidemiological research (Ford et al. , 2018). For example, a typical practice is to treat the 220 

aggregate score of a psychological questionnaire into a single value (Miller et al. , 1991, 221 

Sullivan et al. , 1995). For psychological assessments, it is quite conceivable that two 222 

individuals can have the same aggregate score, but have different individual items’ scores. A 223 

previous study reported that individual item responses from a questionnaire resulted in the 224 

identification of more clinical subgroups than using the aggregate score of the questionnaire 225 

(Nielsen et al. , 2016). Whilst data aggregation techniques often simplify the subsequent 226 

analysis, it may result in the loss of subject-specific information.  227 

Managing high-dimensional data using machine learning  228 

ML in spinal pain research has proliferated over the last decade (Azimi et al. , 2020, 229 

Tagliaferri et al. , 2020), more so in LBP than in NP. ML has been used in research that 230 



11 

 

revolves around the themes of diagnosis and prediction, image segmentation, movement and 231 

muscle assessment in spinal pain disorders, causal analysis, and identifying clinical 232 

subgroups with homogeneous clinical characteristics. In the present section, we focus the 233 

discussion on how ML can be used to manage the issues related to measuring functional 234 

variables in a high-dimensional space, and consequently optimize the clinical prediction of 235 

the status and/or progression of spinal pain disorders. 236 

Contemporary machine learning models 237 

ML models for clinical prediction can be used to predict quantitative (e.g. pain 238 

intensity on a visual analog scale) or qualitative (e.g. recovered vs non-recovered) outcomes. 239 

The former is termed regression whilst the latter is termed classification. ML models vary in 240 

their flexibility in estimating the function 𝑓 which maps the predictors 𝑋 to predict the 241 

outcome 𝑌. A model’s flexibility is typically inversely related to the interpretability of the 242 

function 𝑓. For example, an example of a low flexibility ML model is OLS, where the 243 

outcome 𝑌 is a linear function of the estimated parameters (𝛽 coefficient). The low flexibility 244 

means that the function 𝑓 is explicitly known (i.e. 𝛽 coefficient), but at the expense that 245 

potentially non-linear relationships may be overlooked. For example, using stepwise linear 246 

regression, a 1% point increase in neck disability index (NDI) at baseline resulted in a 0.9% 247 

point increase at 12-month follow-up in a clinical cohort of individuals with cervical 248 

radiculopathy (Liew et al. , 2020b). In contrast, some of the most flexible ML models such as 249 

artificial neural networks (ANN), can model highly non-linear relationships, but at the 250 

expense that the function 𝑓is essentially a “BlackBox”. For example, one study reported that 251 

artificial neural networks (ANN) (96.9%) resulted in more accurate prediction in 2-year post-252 

surgical satisfaction in patients with lumbar spinal stenosis, compared to logistic regression 253 

(88.4%) (Azimi et al. , 2014). Most ML research in spinal pain have used highly flexible ML 254 

models -  support vector machine (SVM) (Ashouri et al. , 2017, Jiang et al. , 2017, 255 
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Lamichhane et al. , 2021, Lee et al. , 2019, Silva et al. , 2015), and ANN (Fidalgo-Herrera et 256 

al. , 2020, Hu et al. , 2018, Magnusson et al. , 1998). However, what constitutes the most 257 

important variable or the magnitude of effect each variable has on the prediction remains 258 

“hidden” in the ANN model.  259 

The physiological data used for prediction in spinal pain ML studies typically consist 260 

of temporal (Ashouri, Abedi, 2017, Fidalgo-Herrera, Martínez-Beltrán, 2020, Hu, Kim, 2018, 261 

Magnusson, Bishop, 1998), spatial (Lamichhane, Jayasekera, 2021), and spatio-temporal 262 

functional variables (Jiang, Luk, 2017). An important pre-processing step in many ML 263 

methods is that the variables are required to lie on a scalar domain. Some studies use 264 

Principal Components Analysis (PCA) (Ashouri, Abedi, 2017) on functional data to extract 265 

scalar features, whilst others directly extract scalar features from the original variables 266 

(Fidalgo-Herrera, Martínez-Beltrán, 2020, Jiang, Luk, 2017, Lamichhane, Jayasekera, 2021, 267 

Magnusson, Bishop, 1998). An important limitation of using dimension reduction techniques 268 

like PCA on functional data is a loss in spatial and/or temporal information, and often there is 269 

no strong prior knowledge as to what are the most important features to select. 270 

Newer machine learning models 271 

Functional data boosting 272 

Functional data boosting (FDboost) (Brockhaus et al. , 2020) is a ML method that 273 

produces intrinsically interpretable model solutions. FDboost does not only allow modelling 274 

linear, smooth non-linear, and random effects as known from classical statistics but can also 275 

incorporate functional variables, both as an outcome or predictor without any pre-processing 276 

or loss of information. These user-specified effects are estimated in FDboost using a gradient 277 

boosting algorithm, which comes with an inherent variable selection. FDboost can thus also 278 

deal with settings where p>>n due to its penalized estimation algorithm. For example, from 279 

94 scalar and functional candidate covariates on 46 participants, FDboost was able to select 3 280 
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covariates to classify individuals with and without NP with an area under the Receiver 281 

Operating Characteristic curve (AUC) of 80.8% (Liew et al. , 2020c). In a classification study 282 

on LBP, FDboost was not only able to achieve excellent prediction performance (> 90% 283 

AUC), but it could quantify when within the movement cycle a covariate was driving the 284 

prediction (Liew et al. , 2020d).  285 

Patients in clinical research are traditionally assessed only at baseline or at few 286 

follow-up time points (Costa, Maher, 2012). Recently, research has begun tracking daily 287 

(Bedson et al. , 2019) and weekly (Irgens et al. , 2020) pain reports, as well as duration of 288 

spinal motion (Lagersted-Olsen et al. , 2016) of patients by leveraging mobile phone short 289 

messaging services or applications. In addition, the emergence of personal wearable sensor 290 

technologies means that data can be collected almost continuously (Burns et al. , 2021). To 291 

date, researchers have largely used dimension-reduction strategies such as clustering (Irgens, 292 

Kongsted, 2020), to identify homogeneous clinical subgroups from their pain trajectory 293 

patterns. We argue that the richness of pain trajectory patterns, or indeed any functional data, 294 

in explaining and predicting the course of spinal pain can be better harnessed using 295 

techniques such as FDboost.    296 

Deep learning 297 

Deep learning are a special field of ML where models consist of deep ANN (DNN), 298 

i.e., neural networks with many hidden intermediate layers. An ANN has typically few 299 

intermediate layers (e.g. 1-3), whereas DNNs are made by many more hidden layers (e.g. 11 300 

to 19) (Simonyan and Zisserman, 2015). DNNs can deal with various model inputs such as 301 

images, texts, and also functional data (Perdices et al. , 2021). The larger number of 302 

intermediate layers in DNNs provides the capacity to learn multiple levels of abstraction of 303 

the input data. DNNs have yielded outstanding results in a wide range of research fields, 304 

including audio classification, natural language processing, or image recognition among 305 
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many others, and in some cases, outperforming traditional ML models (Esteva et al. , 2019, 306 

Faust et al. , 2018). Although DNNs are still underexploited in spinal pain research, some 307 

studies have applied them to LBP classification or chronic pain syndromes, both with good to 308 

excellent performance (97% and 86%, respectively) (Hu, Kim, 2018, Santana et al. , 2019). 309 

A disadvantage of DNNs in clinical research is their lack of interpretability. However, 310 

there is an increasing number of post-modelling techniques, such as DeepLIFT (Shrikumar et 311 

al. , 2017), that can inform end-users on the relative importance of each covariate in the 312 

outcome prediction. An exciting new extension to DNNs that could generate high 313 

performance, yet interpretable model solutions is the so-called “wide-and-deep”, or semi-314 

structured neural networks (Rügamer et al. , 2021). Semi-structured neural networks combine 315 

a “BlackBox” DNN, alongside a wide and interpretable network. Semi-structured deep 316 

regression follows this idea by embedding most of the commonly known statistical regression 317 

models in a neural network (Rügamer, Shen, 2021). Semi-structured regression models would 318 

fit well in a scenario whereby clinicians desire high interpretability of the relationship of 319 

some variables (e.g. effect of fear on long-term disability) but require less interpretability on 320 

the relationship of others (e.g. facial expression images of pain on long-term disability) 321 

(Bargshady et al. , 2020). Variables can make a useful contribution to a model’s overall 322 

predictive performance, but because the specific nature of such relationships to the outcome 323 

may not be as important to a clinician, a “Blackbox” approach could be used to model these 324 

variables. 325 

Emerging evidence of physiological predictors in spinal pain research  326 

Biomarkers such as biomechanical or electrophysiological variables can be related to 327 

and influence the clinical presentation of people with spinal pain. Clinically, these markers 328 

appear to be ideal candidate variables that could be leveraged for clinical prediction and 329 

inform therapeutic management. For example, a study reported that 11 kinematic features 330 
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obtained during gait selected by Neighbourhood Component Analysis could discriminate 331 

between individuals with and without NP with an accuracy of 90% (Jiménez-Grande et al. , 332 

2021) (Figure 3). In addition, another study reported that seven EMG functional variables 333 

collected during a low-load lifting task could discriminate individuals with and without LBP 334 

with the area under the receiver operator curve (AUC) of 90.4% (Liew, Rugamer, 2020d) 335 

(Figure 4).  336 

Although most studies have assessed people with current pain, preliminary findings 337 

demonstrate that kinematic and neuromuscular features can also differentiate asymptomatic 338 

people from people with recurrent pain who are in a period of remission (Devecchi et al. , 339 

2021, Liew, Rugamer, 2020d). For example, individuals in remission of NP could be 340 

discriminated from asymptomatic controls with an AUC of 87%, using 6 variables that 341 

consisted of neuromuscular and psychological variables (Devecchi et al. , 2020) (Figure 5). In 342 

a further example, nine EMG functional variables were able to discriminate between 343 

individuals in remission of their LBP against asymptomatic controls with an AUC of 91.2% 344 

(Liew, Rugamer, 2020d). Interestingly, three EMG variables used to discriminate healthy 345 

from individuals in remission, also were found to discriminate healthy from individuals with 346 

LBP (Liew et al., 2020). This suggests that physical impairments may persist despite pain 347 

resolution, which could place an individual at a greater risk of recurrence. Overall, these 348 

findings promote the need to consider biomechanical and electrophysiological biomarkers as 349 

potential predictors of pain persistence or recurrence.  350 

Clinical implications 351 

Given the significant variability in the physiological and psychological response to 352 

spinal pain, an important issue is how ML can be used to leverage high-dimensional features 353 

to optimize clinical management. We provide a few clinically oriented examples. 354 
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LBP and NP daily pain recovery trajectories exhibit substantial inter-subject variation 355 

(Irgens, Kongsted, 2020, Kongsted, Hestbaek, 2017), which consequently benefit from the 356 

derivation of clinical subgroups. It is acknowledged that for both LBP and NP, most of the 357 

recovery occurs within the first six weeks (Carroll, Hogg-Johnson, 2008, Costa, Maher, 358 

2012) and that those who experience a little reduction in symptoms during this period, go on 359 

to experience persistent pain. A previous study reported that visual trajectory patterns could 360 

be used as a qualitative predictor of 12 weeks recovery, providing indirect evidence that early 361 

recovery phase pain trajectories could play an important role in long-term clinical prediction 362 

(Myhrvold et al. , 2020). It may be that intensive pain recording during the first six weeks 363 

after symptom onset could be used to objectively quantify “early recovery trajectory”, such 364 

that each participant would have an associated functional trajectory. Such trajectories can 365 

subsequently be used in functional data techniques like FDboost, to quantitatively predict 366 

long-term recovery status.  367 

Physiological variables have not been largely been considered as candidate predictors 368 

when developing statistical models in spinal pain, perhaps based on the assumption that they 369 

often exhibit prohibitively large inter-individual variability (Gizzi, Muceli, 2015, Hodges, 370 

Coppieters, 2013). An excellent example is that of static spinal alignment and its poor 371 

association with spinal pain (Hanten et al. , 2000, Mitchell et al. , 2008, Widhe, 2001). 372 

Clinicians will have significant difficulty in distinguishing a patient from a healthy subject 373 

from a static image of the patient’s spinal alignment. Yet, most clinicians would have little 374 

difficulty identifying a person in pain from their movements. For example, individuals with 375 

LBP consistently lift slower than healthy individuals (Nolan et al. , 2019). In addition, static 376 

postures often correlate poorly with dynamic movements (Paterson et al. , 2015). We argue 377 

that because dynamic movement variables provide greater subject-specific insights to a 378 



17 

 

complex system than static variables, the former would provide greater opportunities to 379 

develop personalized management strategies.   380 

Conclusion 381 

Spinal pain disorders are highly prevalent and disabling, with significant individual 382 

and societal costs. It is well established that pain can affect multiple levels of the human 383 

physiological and psychological systems. However, physiological variables have rarely been 384 

used directly in clinical epidemiological studies, likely due to two reasons – significant inter-385 

individual variation and high-dimensionality of the data. We presented the case in this review 386 

of how modern ML techniques can be leveraged to translate a potentially heterogeneous set 387 

of variables into clinically useful information that can ultimately improve patient 388 

management.  389 

Figure Legends 390 

Figure 1: Common physiological adaptations and changes in motor output observed in 391 

people with spinal pain 392 

Figure 2:  A. Examples of a topographical map of lumbar erector spinae EMG amplitude 393 

recorded from a control participant and person with chronic non-specific LBP as they 394 

performed the Ito test sustained until exhaustion. The centroid of the EMG amplitude map is 395 

depicted by the crosshair and the scale is indicated in μV. B. Absolute mean locations 396 

(standard error) of the y-coordinate of the centroid of the EMG amplitude map for controls 397 

(CON) and people with chronic non-specific LBP throughout the endurance contraction. Note 398 

that people with chronic non-specific LBP, on average, activated more cranial regions of the 399 

lumbar erector spinae compared to asymptomatic individuals when they perform the Ito test 400 

sustained until exhaustion. C. When considering individual responses, it was evident that 401 

several of the participants with chronic LBP performed the task with the same distribution of 402 
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erector spinae activity as seen in asymptomatic people i.e. a more diffuse distribution of 403 

activity. Reprinted from Sanderson et al., 2019 with permission. 404 

Figure 3: Classification performance of curvilinear (left) and rectilinear gait (right). A. 405 

Curvilinear and rectilinear tasks performed by subjects wearing reflective markers on their 406 

head, trunk, shank, ankle, and foot to capture body kinematics B. Accuracy of the classifiers 407 

(SVM, K-NN, and LDA) using the gait kinematic features selected by the feature filter, 408 

Neighbour component analysis (NCA). The two data tips marked show the highest accuracy 409 

achieved for each gait. C. Optimal hyperplane learned by SVM based on jerk data extracted 410 

from head movement during gait. Reprinted from Jiménez-Grande et al., 2021 with 411 

permission. 412 

Figure 4: Mapping electromyography (EMG) alterations in individuals with LBP compared 413 

to controls in a lifting task, onto resultant class probabilities. FDboost first identifies the time-414 

varying β-coefficient of each functional predictor, which represents the change in log odds 415 

for a unit change in predictor value from the control group. Second, the cumulative change 416 

over time in log-odds is determined for each functional predictor, and the cumulative change 417 

over predictors are combined additively and transformed to class probabilities. * reflects the 418 

instance where the EMG differences between groups are maximally different, which 419 

corresponds to the instance where the β-coefficient has the highest magnitude. 420 

Figure 5: Classification conducted to discriminate individuals in remission of neck pain and 421 

asymptomatic controls. A Feature selection and their importance are obtained from a random 422 

forest algorithm (selected features presented in black). B Example of one individual classified 423 

in the control group using the k-nearest neighbor (KNN) classifier – one test observation 424 

(grey) is classified based on the closest k training observations (k=5). For the graphical 425 

purpose, the high-dimensional space obtained from the six selected features has been reduced 426 
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using locally linear embedding (LLE). MQ, movement quality (obtained from velocity and 427 

smoothness of neck movements); SCM, sternocleidomastoid muscle. 428 
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