
Efficient Malicious Packet Detection in Software Defined Networks

Perekebode Amangele

A thesis submitted for the degree of

Doctor of Philosophy

Department of Computer Science and Electronic Engineering

University of Essex

December 2022

Summary

The emergence of software defined networking is proving to be a strong platform for future networks

due to its advantages with regards to management of enterprise networks. One of the key areas

where SDN is altering the management of networks is in the area of security. Additionally, the use

of machine learning methods for network security is becoming increasingly investigated by both

academia and industry. However, existing machine learning based intrusion detection systems can

be highly computationally intensive. This forms the motivation for this research that combines the

SDN architecture with machine learning to provide greater efficiency for intrusion detection. In this

work, a novel solution using a hierarchical machine learning approach based on a SDN topology is

presented. In the proposed solution, the SDN architecture uses machine learning at the controller

that allows an efficient malicious packet detection mechanism at the edge of the network when

compared to a flat traditional architecture. The methodology deployed includes a unique sub-flow

classification based on supervised learning. The solution is demonstrated with the widely used

CICIDS 2017 and the CICIDS 2018 datasets. The thesis shows significant savings in the traffic

processed at the edge for the purposes of intrusion detection. Results show as much as a 74-98%

savings in traffic processed for intrusion detection resulting in as much as 1000 times decrease in

processing time (or increase in prediction rate) for malicious packet detection. The results also

demonstrate that the savings have no significant impact on the overall accuracy of the system.

This represents significant savings in network resources allowing for scarce network/computing

resources to be deployed to other services. This work is a significant contribution to machine

learning based network security research and forms a strong basis for future research in the security

of next generation networks.

i

Acknowledgements

My profound gratitude to my wife, Margaret and my daughter Preye who have both being incred-

ibly helpful and my major source of motivation.

My sincere appreciation to Professor Martin Reed for being a tremendous and helpful guide and

supervisor.

I also acknowledge my sponsors, the Petroleum Technology Development Fund (PTDF), Nigeria.

May thanks to all those who helped to make this journey a success whose names I may not be

able to mention here.

Thank you all and God bless.

ii

List of Acronyms

BOTNET - Robot Network

CART - Classification and Regression Tree

CIC-IDS - Canadian Institute of Cybersecurity - Intrusion Detection Dataset

DDoS - Distributed Denial of Service

DoS - Denial of Service

eCDF - Empirical Cumulative Distribution Function

FTP - File Transfer Protocol

HIDS - Host Intrusion Detection System

HOIC - High Orbit Ion Cannon

IDS - Intrusion Detection Systems

IP - Internet Protocol

KNN - K-Nearest Neighbour

LDA - Linear Discriminant Analysis

LOIC - Low Orbit Ion Cannon

LR - Logistic Regressor

ML - Machine Learning

NB - Naive Bayes

NIDS - Network Intrusion Detection System

PCAP - Packet Capture

PSCAN - Port Scan

SDN - Software Defined Networks

SQL - Structured Query Language

SSH - Secure Shell

SVC - Support Vector Classifier

iii

iv

TCAM - Ternary Content-Addressable Memory

TLS - Transport Layer Security

WAN - Wide Area Networks

XSS - Cross-Site Scripting

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Proposed 2-Stage Hierarchical Machine Learning Based SDN Security Solution . . 3

1.3 Research Methodology . 5

1.4 Research Scope, Outline and Contributions . 6

1.5 Thesis outline . 7

2 Background 8

2.1 Introduction . 8

2.2 Network Security Concepts . 8

2.2.1 The Network Security Model . 9

2.3 Intrusion Detection Systems . 12

2.3.1 Signature-based IDS . 14

2.3.2 Anomaly-based IDS . 16

2.4 What is an IP Flow? . 16

2.4.1 IP Flow Record . 17

2.4.2 Flow Duration . 18

2.5 Flow Monitoring and Export . 18

2.6 IP Flow Monitoring for Network Security . 19

2.6.1 Internet Protocol Flow Information eXport(IPFIX) 20

2.6.2 Netflow . 21

2.7 An Overview of SDN . 21

2.7.1 SDN Architecture . 22

2.7.2 OpenFlow . 23

v

CONTENTS vi

2.7.3 OpenFlow Switch . 24

2.7.4 Flow Entry . 25

2.7.5 SDN Security . 26

2.8 Network Edge . 27

2.9 Machine Learning Techniques for Network Security 28

2.9.1 Classification and Regression Tree (CART)/Decision Tree Classifier 29

2.9.2 Gini Index . 30

2.9.3 Random Forest classifier . 31

2.10 Machine Learning Based Network Security . 32

2.11 Summary . 35

3 Methodology 36

3.1 Introduction . 36

3.2 Intrusion Detection Datasets . 36

3.2.1 Dataset Analysis . 37

3.2.2 Attack Profiles . 38

3.3 Data Pre-processing . 39

3.3.1 Feature Selection . 41

3.4 Experimental Framework . 43

3.4.1 IP Packet Processing . 44

3.4.2 Subflow Times . 46

3.4.3 Maximum Flow Duration . 46

3.4.4 Feature Extraction . 46

3.4.5 Experimental Design . 48

3.5 Summary . 49

4 Intrusion Detection Model Design 50

4.1 Introduction . 50

4.2 Model Evaluation . 52

4.2.1 Model Evaluation Results for DDoS . 53

4.2.2 Model Evaluation Results for BOTNET . 54

4.2.3 Model Evaluation Results for Portscan . 55

4.3 Model Implementation Performance . 56

CONTENTS vii

4.3.1 Model Implementation Performance for DDoS 59

4.3.2 Model Implementation Performance for BOTNET 66

4.3.3 Model Implementation Performance for Portscan 69

4.3.4 Model Implementation Performance for Patator 73

4.4 The Single Model Problem . 73

4.5 Classifier Design Scenarios . 74

4.5.1 Scenario 1 - Single Multiclass Classifier . 75

4.5.2 Scenario 2 - Merged Multiple Binary Classifier 75

4.5.3 Scenario 3 - Isolated Multiple Binary Classifier 76

4.6 Design Scenario Analysis . 77

4.6.1 Design Scenario Analysis Based on Recall Metric 78

4.6.2 Design Scenario Analysis Based on F1 Score Metric 79

4.7 Simplified Emulation of Hierarchical Intrusion Detection Solution 80

4.8 Summary . 83

5 Hierarchical Detection with Categorical Class. 85

5.1 Introduction . 85

5.2 Limitations of Machine Learning Based IDS Research 87

5.3 Sub-Flow Enabled Real Time Intrusion Detection 87

5.3.1 Sub-Flow IP Traffic Classification . 88

5.3.2 Traffic Classification Based on Different Flow Monitoring Methods 90

5.4 Sub-Flow Based Hierarchical Intrusion Detection Solution 92

5.5 Classification Metrics Based on Hierarchical Solution 93

5.6 Hierarchical Intrusion Detection Results . 95

5.6.1 SSH BruteForce . 96

5.6.2 Denial of Service (DoS) . 101

5.6.3 Distributed Denial of Service (DDoS) . 104

5.6.4 Web Attack . 110

5.6.5 Infiltration Attack . 114

5.6.6 BoT Attack . 118

5.7 Summary of Results . 120

5.8 Summary . 121

CONTENTS viii

6 Improving efficiency by probabilistic classification 123

6.1 Introduction . 123

6.2 Why Random Forest Classifier . 124

6.3 Probability Threshold Analysis . 124

6.4 Malicious Packet Detection Efficiency based on The Probabilistic Approach 125

6.4.1 Brute-Force Attack . 127

6.4.2 DoS Attack . 127

6.4.3 DDoS Attack . 130

6.4.4 Web Attack . 131

6.4.5 Infiltration Attack . 131

6.4.6 BoT Attack . 131

6.5 Summary of Results for Probabilistic Classification 138

6.6 Chapter Summary . 139

7 Conclusion and Analysis 140

7.1 Analysis and Limitations . 140

7.2 Future Work . 142

Appendices 145

A Feature Selection Using Mean Decrease Accuracy 146

B Procedures for IP Packet Processing 148

C List of Re-Engineered Flow Features 149

D Sanity Check Results for Re-engineered Data 151

E ECDC Curves for Re-Engineered Data 2017 153

F Machine Learning with Scikit Learn 156

List of Figures

1.1 Inefficient Intrusion Detection without Hierarchical Solution 3

1.2 Enterprise Campus Implementation . 4

1.3 Efficient Intrusion Detection using Hierarchical Solution 5

2.1 Network Security Model . 10

2.2 DDoS Attack in SDN . 12

2.3 Classification of Intrusion Detection Systems . 14

2.4 Classification of Intrusion Detection Systems . 15

2.5 IP Flow . 17

2.6 Sample Flow Record Showing Some of the Representative Fields 17

2.7 Traffic Monitoring Techniques . 19

2.8 IPFIX Architecture . 21

2.9 SDN Architecture . 23

2.10 OpenFlow Switch . 25

2.11 Main Components of a Flow Entry . 26

2.12 The Network Edge . 28

2.13 Machine Learning- Based Traffic Classification Techniques 29

2.14 Decision Tree Structure . 30

2.15 Random Forest Algorithm Structure . 32

3.1 Performance Evaluation of the 6 Machine Learning Algorithms for DDoS 43

3.2 CICIDS2017 Dataset Re-engineering . 44

3.3 CSVs Representing IP Subflows . 45

3.4 Comparison of packet counts between CICFlowmeter for Re-engineered Data (method

used in this thesis) . 45

ix

LIST OF FIGURES x

3.5 Experimental Design for Hierarchical Solution . 49

3.6 Experimental Design for Non-Hierarchical Approach 49

4.1 1st Stage Design Framework . 51

4.2 Model Evaluation using k-fold Cross Validation . 52

4.3 Evaluation Results for DDoS showing Test Score, Fit Score and Fit Time 54

4.4 Performance Evaluation of the Top 2 Machine Learning Algorithms for DDoS At-

tacks showing Score Time . 54

4.5 Evaluation Results for BOTNET . 55

4.6 Evaluation Results for Portscan . 56

4.7 Model Implementation . 57

4.8 Sample Confusion Matrix . 58

4.9 Implementation Results for DDoS . 61

4.10 Prediction Times for CART and NB Using 1st 6 Feature Set for DDoS 61

4.11 Prediction Accuracy for DDoS Across the Different Feature Selection Results DDoS 62

4.12 Model Implementation Metrics for DDoS . 62

4.13 Confusion Matrix for DDoS . 63

4.14 CART for DDoS Classification . 65

4.15 CART for DDoS Classification (showing just top three nodes) 66

4.16 Implementation Results for BOTNET . 67

4.17 Prediction Times for CART and KNN Using 1st 6 Feature Set (BOTNET) 68

4.18 Prediction Accuracy for BOTNET across the Different Feature Selection Results . 68

4.19 Model Implementation Metrics for BOTNET . 69

4.20 Confusion Matrix for BOTNET . 69

4.21 Implementation Results for Portscan . 71

4.22 Prediction Accuracy for Portscan across the Different Feature Selection Results . . 71

4.23 Model Implementation Metrics for Portscan . 72

4.24 Confusion Matrix for Portscan . 72

4.25 Model Implementation Metrics for Patator . 73

4.26 The Single Model Problem . 74

4.27 Design Scenario 1 - Single Multiclass Classifier . 75

4.28 Design Scenario 2 - Multiple Parallel Classifier . 76

4.29 Design Scenario 3 - Isolated Parallel Classifier . 77

LIST OF FIGURES xi

4.30 Design Scenario 1 Analysis based on Recall Metric 79

4.31 Design Scenario 1 Confusion Matrix . 79

4.32 Design Scenario 1 Analysis based on F1 Score Metric 80

4.33 Hierarchical Solution Showing Classifier Model . 81

4.34 Simplified emulation of 2nd stage used to estimate performance benefits of a hier-

archical design. 82

4.35 Actual 2nd Stage operation as used in later chapters. 82

4.36 2nd Stage Emulation Results . 83

5.1 Enterprise View of Hierarchical Solution . 86

5.2 Empirical Cumulative Distribution Function for Re-engineered Data 88

5.3 Subflow Classification (note DDOS, BOT and PSCAN all have F1 scores close to 1

hence only DDOS is shown) . 90

5.4 Classification results for BOT traffic using OpenFlow and Extended Features (Note:

mean attack flow duration was 0.48s . 91

5.5 Classification results for WEBATTACK traffic using OpenFlow and Extended Fea-

tures . 92

5.6 Sub-Flow Based Hierarchical Machine Learning Solution 2 93

5.7 Sending all Classified Atttack Flows to 2nd Stage Classifer 94

5.8 Sending all Classified Benign Flows to 2nd Stage Classifer 95

5.9 1st Stage Detection for BruteForce Attack . 97

5.10 Hierarchical Intrusion Detection Results for SSH/FTP BruteForce Attack 99

5.11 Sample Confusion Matrix for BruteForce Detection 100

5.12 1st Stage Detection for DoS Attack . 101

5.13 Hierarchical Intrusion Detection Results for DoS Attack 103

5.14 Sample Confusion Matrix for DoS Attack Detection 103

5.15 1st Stage Detection for DDoS-LOIC Attack . 104

5.16 Hierarchical Intrusion Detection Results for DDoS Attack 106

5.17 Sample Confusion Matrix for DDoS Attack Detection 107

5.18 1st Stage Detection for DDoSHOIC Attack . 107

5.19 Hierarchical Intrusion Detection Results for DDoS Attack 109

5.20 Sample Confusion Matrix for DDoS Attack Detection 110

5.21 1st Stage Detection for Web Attack (Thus 22nd) 110

LIST OF FIGURES xii

5.22 Hierarchical Intrusion Detection Results for Web Attack (Thur 22nd) 112

5.23 Sample Confusion Matrix for Web Attack Detection 113

5.24 1st Stage Detection for Web Attack . 113

5.25 Hierarchical Intrusion Detection Results for Web Attack (Fri 23) 114

5.26 Sample Confusion Matrix for Web Attack Detection 114

5.27 1st Stage Detection for Infiltration Attack . 116

5.28 Hierarchical Intrusion Detection Results for Infiltration Attack 117

5.29 Sample Confusion Matrix for Infiltration Attack Detection 118

5.30 1st Stage Detection for BoT Attack . 118

5.31 Hierarchical Intrusion Detection Results for BoT Attack 119

5.32 Sample Confusion Matrix for BoT Attack Detection 120

6.1 Simplified Illustration of Random Forest Probabilities 124

6.2 Experimental Design based on Probabilistic Method 126

6.3 Efficiency Results for BruteForce . 128

6.4 Efficiency Results for DoS . 129

6.5 Reduction in False Negatives using Hierarchical Solution without Probability Option130

6.6 Detection Efficiency Results for DDoS-HoIC . 132

6.7 Detection Efficiency Results for DDoS-HOIC . 133

6.8 Detection Efficiency Results for WEB Attack . 134

6.9 Detection Efficiency Results for WEB Attack . 135

6.10 Detection Efficiency Results for Infiltration Attack 136

6.11 Detection Efficiency Results for BoT Attack . 137

B.1 Reverse Engineering of IP Packets . 148

B.2 Sample Flow Statistics from PCAP . 148

C.1 CICIDS2017 Dataset Re-Engineered Traffic Flow Features 150

D.1 Fragmented Packets in CICIDS2017 Dataset . 151

D.2 Unique Flows from Csv vs Total Flows from Code 152

E.1 eCDC Curve for Patator Traffic . 153

E.2 eCDC Curve for Ddos Traffic . 154

E.3 eCDC Curve for Bot Traffic . 154

LIST OF FIGURES xiii

E.4 eCDC Curve for Pscan Traffic . 155

E.5 eCDC Curve for WebAttack Traffic . 155

F.1 Machine Learning Output Parameters using Scikit Learn 156

F.2 Extended Machine Learning Output using Scikit Learn 157

List of Tables

3.1 CICIDS2017 Dataset Summary . 38

3.2 CICIDS2018 Dataset Summary . 39

3.3 Dataset Attack Profile . 40

3.4 Feature Selection using Random Forest Regressor for DDoS as suggested by [1] . . 42

3.5 Feature Selection using Mean Decrease Accuracy for DDoS 42

3.6 Comparison of F1 Scores for Different Feature Selection Methods 43

3.7 Most common features when considering the first 6 most important features of each

attack type . 43

4.1 Performance Evaluation of 5 Machine Learning Algorithms for DDoS Attacks . . . 53

4.2 Performance Evaluation of 5 Machine Learning Algorithms for BOTNET Attacks . 55

4.3 Performance Evaluation of 5 Machine Learning Algorithms for PORTSCAN Attacks 56

4.4 Prediction Times for DDoS Using Different Feature Selection Results 60

4.5 Prediction Accuracy for DDoS Using Different Feature Selection Results 60

4.6 Prediction Times for BOTNET Using Different Feature Selection Results 67

4.7 Prediction Accuracy for BOTNET Using Different Feature Selection Results 67

4.8 Prediction Times for Portscan Using Different Feature Selection Results 70

4.9 Prediction Accuracy for Portscan Using Different Feature Selection Results 70

5.1 Derived Detection Metrics for SSH/FTP BruteForce 97

5.2 Hierarchical Intrusion Detection Results for SSH Brute-Force 100

5.3 Derived Detection Metrics for DoS Attack . 101

5.4 Hierarchical Intrusion Detection Results for Denial of Service (DoS) Attack 102

5.5 Derived Detection Metrics for DDoS Attack . 104

xiv

LIST OF TABLES xv

5.6 Hierarchical Intrusion Detection Results for Distributed Denial of Service (DDoS)

Attack . 106

5.7 Derived Detection Metrics for DDoSHOIC Attack 108

5.8 Hierarchical Intrusion Detection Results for Distributed Denial of Service (DDoS)

Attack . 109

5.9 Derived Detection Metrics for Web Attack (Thus 22) 111

5.10 Table showing Hierarchical Intrusion Detection Results for Web Attack (Thur 22) 112

5.11 Derived Detection Metrics for Web Attack (Fri 23) 114

5.12 Table showing Hierarchical Intrusion Detection Results for Web Attack 115

5.13 Derived Detection Metrics for Infiltration Attack 116

5.14 Table showing Hierarchical Intrusion Detection Results for Infiltration Attack . . . 117

5.15 Table showing Hierarchical Intrusion Detection Results for BoT Attack 119

5.16 Summary Table for Hierarchical Detection Results Using Chosen, Agressive, Flow

Cut-Off Criteria (Detection at or less than 10% mean flow duration) 121

6.1 Classification Probability Operation for Hierarchical SDN Security Solution 126

6.2 Traffic Classification Probabilities, Basic Statistics and Probability by Traffic Per-

centiles . 127

6.3 Efficiency of Hierarchical Solution with Probabilistic Method 138

A.1 First 6 Features for BOTNET . 146

A.2 First 6 Features for Portscan . 147

A.3 First 6 Features for Patator . 147

Chapter 1

Introduction

The emergence of Software-defined Networking (SDN) [2] promises to address several of the diffi-

culties associated with managing traditional networks. This is because, IP networks, despite their

widespread adoption on the internet architecture, are complex and difficult to manage [3]. This

simplified network management, stems largely from the introduction of centralised control and

network programmability. The SDN landscape also promises to alter network security adminis-

tration as network administrators look to take advantage of SDN to improve security services on

the network. SDNs offer increased ability to collect network statistics data which allows Open-

Flow [4] [5] enabled forwarding devices to collect traffic information in a timely manner which is

very useful for security mechanisms responsible for intrusion detection. This, in addition to the

centralised processing capabilities and network-wide view available to SDN further allows the SDN

to serve as a platform to improve the security mechanism of networks.

Existing network security solutions include the use of firewalls, antivirus and intrusion detection

systems [6]. Network intrusion detection systems (NIDS) [7] are a critical security mechanism in

enterprise networks. Several researchers have explored the implementation of intrusion detection

systems in the fast growing SDN landscape [8] [9] [6] [7] [10]. A major motivation for this research is

the conviction that the SDN architecture provides some unique features which potentially improves

the secure administration of networks. This work will explore this improvement in terms of early

attack detection and efficiency. One area of network intrusion detection that has received a lot of

interest recently is machine learning based intrusion detection systems. Existing machine learning

based network security research mostly focus on applying machine learning algorithms on historic

data with little recourse to the real-time implications of such studies on the IP network. Most

1

CHAPTER 1. INTRODUCTION 2

research work in this domain, also do not take into consideration, the possible integration of their

evaluations in real network architectures. Work done in this thesis is aimed at bridging this gap

in the literature. Also, it is critical to note that the time it takes to identify an attack usually

results in a small amount of attack leakage [11]. One of the main contributions of this work is to

propose mechanisms to reduce attack leakage resulting from delays in attack detection.

This work focuses on improving the security of SDN based enterprise networks using a novel

hierarchical intrusion detection system. The specific areas of improvement include real-time intru-

sion detection using IP flow information. This involves sub-flow classification (flow-based) of IP

traffic which targets IP traffic classification at levels as low as 1% of traffic flow duration. Another

area of improvement achieved by this work is in reduced edge processing for intrusion detection.

Enterprise networks still feature fully intelligent edge devices even when instances of SDN so-

lutions are deployed. This work pushes that boundary a little further with a view to reducing

the security workload at the edge. This work also demonstrates potentially improved intrusion

detection rate by deploying a novel hierarchical intrusion detection solution based on the software

defined network architecture.

The hierarchical intrusion detection solution deploys machine learning [12] for its operation.

The need for the use of Machine Learning as a network security tool is to improve automation.

This further breaks the human loop in the network security pipeline. This eliminates the need

to have domain experts looking at the data and trying to infer the presence of an malicious

traffic. Machine learning also adds additional intelligence powered by the data-driven learning

process. This work will form a strong platform for advancements in Artificial Intelligence (AI)

based Cybersecurity.

1.1 Problem Statement

With the increasing volume and complexity of network traffic and applications, network intrusion

detection requirements have also become more challenging. The future of network intrusion de-

tection favours a flow based approach as against a knowledge based or payload based approach

for reasons such as data encryption amongst others. One of the ways to leverage the flow based

approach is by the use of machine learning methods. However, machine learning based intrusion

detection systems can be highly computationally intensive. Figure 1.1 gives a fundamental illus-

tration of this problem. It is not unusual for an edge intrusion detection system to be required

to process packets at about 100Gb/s. This requires a lot of computational power to be able to

CHAPTER 1. INTRODUCTION 3

keep up with real-time applications. This potentially impacts significantly on the total cost of

ownership (TCO) [13] of the network. This leads to the research question: given the computa-

tionally intensive nature of machine learning based IDS, can we leverage on the SDN architecture

to provide an efficient malicious packet detection solution at the edge of the network?

100Gb/s 100Gb/sClassifier
(Intrusion Detector) Switch

10Gb/s

10Gb/s

10Gb/s

10Gb/s
Packet stream

Classifier processes every

packet in this data stream

Figure 1.1: Inefficient Intrusion Detection without Hierarchical Solution

1.2 Proposed 2-Stage Hierarchical Machine Learning Based

SDN Security Solution

This thesis proposes a novel, two-stage hierarchical machine learning process, integrated into SDN

architecture for efficient network traffic intrusion detection and mitigation. One major advan-

tage of using SDN, is its ability to effect network-wide security rules as opposed to the local

policy implementation of traditional networks [14]. In addition, the centralised nature of the SDN

controller holds significant bearing towards the application of machine learning for network man-

agement, monitoring and security. The work done in this thesis explores a unique approach in this

regard. Hence, the SDN controller is leveraged to offer a lightweight machine learning instance

which combines with a second stage edge classifier to provide efficient intrusion detection. Also,

an advantage of using machine learning methods are their ability to use flow-based information

which eliminates the rigours of packet payload inspection techniques used to create rule-based

intrusion detection systems. This solution is based on a unique combination of SDN and machine

learning. Figure 1.2 illustrates a potential deployment of the proposed hierarchical solution in a

campus implementation. The proposed solution would also be applicable to a data center and

other enterprise network segments.

The idea behind this solution is to deploy a lightweight traffic classifier at the controller with

the aim of detecting anomalies early on in the lifespan of the flow. The results of this early

detection allows for only a select portion of packets to be sent to the edge classifier. This offers a

considerable reduction in processing requirement for intrusion detection at the edge. A high level

CHAPTER 1. INTRODUCTION 4

illustration of the proposed solution is shown in Figure 1.3. Please note that the values shown in

this figure are solely for illustration. Actual experimental values are presented in Chapters 5 and

6. The work of this thesis in Chapters 4-6 shows a considerable reduction in processing effort at

the edge with an almost insignificant impact on the overall accuracy of detection.

Server
Farm

SDN Controller
(Control Plane)

Access
(Data Plane)

Nodes

Classifier 1

Classifier 2
(Edge Classifier)

Distribution

Core

Figure 1.2: Enterprise Campus Implementation

CHAPTER 1. INTRODUCTION 5

100Gb/s 100Gb/sClassifier
(Anomaly Detector) Switch

10Gb/s

10Gb/s

10Gb/s

10Gb/s

100Gb/s

100Gb/s

Classifier 2

TCAM

10Gb/s

10Gb/s

10Gb/s

10Gb/s

SDN Controller
(Classifier 1)

60Gb/s

40Gb/s

5Gb/s35Gb/s

Packet stream

Reduced packet stream

OpenFlow statistics Control
signal

Good Malicious

Good

35Gb/s
Good traffic allowed through

Figure 1.3: Efficient Intrusion Detection using Hierarchical Solution

1.3 Research Methodology

This work will take a modelling approach using realistic data flows. The data flows will be obtained

using IP packets from existing intrusion detection datasets that are described in Chapter 2. Due

to difficulties in obtaining real-time and real-life intrusion detection datasets, we experiment with

existing historic data, by re-engineering the data to create the flexibility to simulate a real-time

system. The model is implemented using python based frameworks to process packets into flows.

The complete process for creating this experimental model is described in Chapter 5. Afterwards,

existing machine learning algorithms from SciKit Learn [15] are used to simulate the malicious

packet detection process. It should however be noted that this thesis is about the application of

machine learning and not about the machine learning itself. In practice, for final deployment, a

great deal of optimisation of the machine learning may be required as is commented in Chapter 7.

The entire solution is modelled in python to allow for sufficient flexibility to demonstrate the

concepts required to demonstrated that the research question is solved.

CHAPTER 1. INTRODUCTION 6

1.4 Research Scope, Outline and Contributions

This works provides an efficient intrustion detection system utilising SDN. It should be noted that

this work does not focus on securing SDN but focuses on leveraging SDN to secure the enterprise

network. In addition, this work does not aim to exhaustively investigate the optimisation of the

machine learning process but rather focuses on using machine learning as a tool for achieving

specialised network security.

The main contributions of this thesis are:

• Proposes a novel hierarchical machine learning based SDN security solution that offers im-

proved packet processing efficiency when compared to non-hierarchical traditional machine

learning based intrusion detection systems.

• Using a sub-flow based classification that goes beyond the approach of most works that carry

out machine learning based intrusion detection using historic1 static data.

• The proposed solution forms the basis for achieving near real-time attack detection in SDN.

• Offers improved understanding on the response of different attack types towards sub-flow

based traffic classification.

• Creates a modification to the IPFIX architecture to allow for sub-flow traffic generation.

This enables sub-flow based real-time malicious packet detection.

• This work forms a strong platform for future research in the security of next generation

networks.

This work has been published:

• P. Amangele, M. J. Reed, M. Al-Naday, N. Thomos and M. Nowak, “Hierarchical Machine

Learning for IoT Anomaly Detection in SDN,” 2019 International Conference on Informa-

tion Technologies (InfoTech), 2019, pp. 1-4, https://doi.org/10.1109/InfoTech.2019.

8860878 (Work from Chapter 3)

• P. Amangele and M. J. Reed, “Federated learning for intrusion detection in software defined

networks,” to be submitted for publication to IEEE International Conference on Communi-

cations 2023. (Work from Chapter 4 and 5)

1i.e., all the packets/flow data after the attack is complete

https://doi.org/10.1109/InfoTech.2019.8860878
https://doi.org/10.1109/InfoTech.2019.8860878

CHAPTER 1. INTRODUCTION 7

1.5 Thesis outline

After this introduction, Chapter two gives a review of relevant literature while identifying gaps in

literature with regards to work carried out in this thesis. The chapter also reviews key background

concepts and technologies required for this work. Chapter three provides the platform for the de-

sign of the intrusion detection model that will be deployed in the proposed solution. Chapter four

gives a detailed description of the experimental design. This includes the data re-engineering and

the traffic classification processes. Chapter four also presents results obtained from the simulation

of the proposed hierarchical SDN security solution. Chapter five presents the processes and re-

sults obtained from modifying the hierarchical solution for improved detection efficiency. Finally,

Chapter 7 comments on the results achieved, describes limitations of the work and suggests future

work.

Chapter 2

Background

2.1 Introduction

This chapter explains the background technologies and concepts which have been investigated or

utilised in this work. Such concepts include: Software Define Networking (SDN), network security,

machine learning, intrusion detection systems, intrusion detection datasets amongst others. This

is necessary to provide the foundation knowledge required to understand the work done in later

chapters. This chapter also discusses similar research works which have been carried out in the

area of machine learning based intrusion detection systems and other network security applications.

This chapter also highlights the gap in literature and technology, which this work addresses.

2.2 Network Security Concepts

Network security is a critical subset of the cybersecurity [16] landscape. The American National

Research Council describes a cyberattack as the intentional modification, disruption, disassembly

and destruction of computer systems and networks or information and programs transmitted or

contained in computer systems and networks [17]. According to [18], Cybersecurity can be defined

as securing hardware, software, data and information that exists in an online system (internet) from

any form of breach. While [16] refers to Cybersecurity as the act of ensuring that the cyberspace

is safe from damage or threat, [18] defines Cybersecurity as securing hardware, software, data and

information that exists in an online system (internet) from any form of breach. According to the

UK’s National Cyber Security Centre, 39% of businesses report identifying a cyber attack with

the average cost of each cyber attack estimated to be about £4,200 [19]. Recent security breaches

8

CHAPTER 2. BACKGROUND 9

include the May 2022 attack on Cisco, where the attackers conducted a series of sophisticated

voice phishing attacks on Cisco’s network [20] [21]. In a similar report, Finland’s parliamentary

website was the target of a DDoS attack in August 2022, following the country’s move to join

NATO [22].

It can be seen that the network is a constant parameter in every definition and description

of Cybersecurity. Cybersecurity generally seeks to protect data and applications domiciled on

the network and also data in transit across networks. Therefore network security techniques

contribute significantly towards achieving a healthy cyberspace. Network security breaches have

the potential to disrupt e-commerce, compromise business data, breach people’s privacy and distort

the integrity of information [23]. In extreme cases, such breaches may lead to a threat to national

security. Anomaly detection [24] [25] is an important subset of network security. This research

focuses on network traffic intrusion detection in SDN.

2.2.1 The Network Security Model

The broad requirement for network security is expected to follow the CIA (confidentiality, integrity,

availability) model [26]. This is also known as the CIA triad. This is shown in Figure 2.1. The

actual origin of this model seems unclear. However, the term ’CIA’ as relates to information

security has become very popular since the turn of the 20th century with the massive expansion of

the information ecosystem. Today, the CIA triad is a widely accepted model in both information

security and Cybersecurity scenarios [27]. The three components of the CIA triad represents the

three important network security factors [28]. As Figure 2.1. shows, the intersection of these three

components is a fundamental requirement for for a secure network infrastructure. Work done in

this research impacts on all three components of the CIA triad. The novel hierarchical machine

learning security solution proposed in this research improves real-time intrusion detection in SDN.

It also improves the efficiency of attack detection. The specific attacks and the datasets will be

introduced later, however, the attack types addressed in this thesis are listed below under the

appropriate CIA categories.

Confidentiality

Data confidentiality is the ability to keep the data in an information system secret [29]. This is

usually achieved using techniques such as Data Encryption and Access Control [26]. This compo-

nent of the CIA triad ensures that only users who are authorised to access specific data and other

CHAPTER 2. BACKGROUND 10

IDS

CONFIDENTIALITY

AVAILABILITY INTEGRITY

Brute-Force, Web-Attacks,
Infiltration, Portscan

DoS,
DDoS,
BoT

Brute-Force,
Web-Attacks,
Infiltration,
BoT

Figure 2.1: Network Security Model

resources on the network are able to do so. Similarly, and equally importantly, the confidentiality

requirement also dictates that users who are are not explicitly authorised are actively prevented

from gaining access to specific network resources. An effective intrusion detection system con-

tributes to data confidentiality in an information system. Timely detection of malicious traffic

can prevent unauthorised users from accessing exclusive network resources thus maintaining the

confidentiality requirement of the network. The attack types utilised in this thesis that fall under

this category include brute force attacks [30] [31], web attacks [32], infiltration and portscan-

ning [33] [34]. Later we will see brute force attacks within the data set in this thesis include

credential stuffing by using common username/passwords in SSH, FTP and web applications; this

would allow an attacker to gain access to systems and at least break confidentiality. The web

attacks (in addition to brute force) include SQL injection, cross-site scripting (XSS) which can

be used to obtain data maliciously. Infiltration is a generic term for gaining access to a system,

in this thesis the utilised data set sent an email with a payload used to scan and exploit internal

systems [1]. Finally portscanning is where an attacker scans available systems to determine their

open ports and the services running on those ports. This is a reconnaissance attack that is usually

the first step in breaking confidentiality. Portscan attacks can also serve as an enabler for DDoS

and other network based threats [33].

Integrity

Data integrity is the prevention of data in an information system from alteration and is usually

implemented using the hash function (MD, MD5, SHA-1, SHA-126) [29] [35] [36]. Also, data

CHAPTER 2. BACKGROUND 11

integrity is the assurance that data in an information system has not been modified, either in

storage or in transit, either by accident or intentionally [37]. This is one of the most critical

requirements in any information system as this forms the basis for cyber attacks that may lead to

breaches resulting in financial fraud with devastating effects. Different strategies are required to

prevent the modification of data in transit and data in storage. Different network security strategies

prevent data in motion from being intercepted and modified by man-in-the-middle [38] attacks.

Also, different network intrusion detection systems (IDS) [39] prevent unauthorised entities that

may have the intention of unlawfully modifying data, from accessing such stored data. The attack

types used in the thesis that fall under this category include again brute force attacks, web attacks

and infiltration, as explained above under confidentiality, they can all lead to integrity issues as

well.

Availability

The data availability component of the CIA triad ensures the timely and reliable access to data

and other network resources [37]. This means that authorised users must have uninterrupted

access to relevant network resources. In network security, availability is one of the strategies that

ensures information security. This is because network security strategies protect network devices

and ensures that data and other critical network resources are available. An effective intrusion

detection system can prevent Denial of Service (DoS) [40] attacks which may be intended to

render critical network resources to be unavailable to legitimate users. In this thesis, the primary

attack types from the dataset which address availability are DoS [41], DDoS [42] [33] and Bot

attacks [43] [44]. Note that Bot attacks are used to launch a large number of attacks, the volume

often appears like a form of DoS hence it is useful to include them under Availability, however,

they may be used to also launch high-volume attacks that target confidentiality or integrity. In

fact, it can be argued that the other earlier attack types can also be used for availability attacks

as well, for example an SQL injection that deletes a data base. Additionally, availability attacks

can be used as first steps to mask confidentiality/integrity attacks.

A DDoS attack is a particular category of availability attacks that attempts to disrupt and

deny network services to legitimate users by overwhelming the target resource with extremely

high volume of malicious requests [45]. This usually results to huge losses for service providers

and businesses. With the increasing sophistication of networks, DDoS attacks have also become

increasingly sophisticated. Attackers now utilise malicious software applications to gain control of

CHAPTER 2. BACKGROUND 12

Server
Farm

SDN Controller

Nodes

Benign Users

Attacker

OpenFlow Switch

Se
cu

re
 C

h
an

n
e

l

Impact: Saturate
compute resources

Impact: Saturate
link capacity

Impact: Overload
buffer memory

Normal traffic

Attack traffic

Figure 2.2: DDoS Attack in SDN

a collection of machines within a network [46]. These compromised machines are then remotely

manipulated to launch simultaneous attacks to the victim. In addition to loss of revenue resulting

from down time caused by DDoS attacks, businesses also incur additional costs due to recovery

operations [47]. The common types of DDoS attacks include; http flood attacks, Slow and Low-rate

DDoS attacks, Syn Flooding attacks, UDP Flooding attacks, ICMP Flooding attacks and DHCP

Flooding attacks. Figure 2.2 illustrates the general architecture of DDoS attacks with reference to

SDN. DDoS attacks are included in the work of this thesis as the chosen dataset includes DDoS

attack generated using both the so called High Orbit Ion Cannon and Low Orbit Ion Cannon to

create HTTP application layer flooding attacks from multiple source addresses.

2.3 Intrusion Detection Systems

In today’s world, corporations and even countries leverage on the internet and the enterprise

network, to expand business frontiers. The internet and other advancements in computing and

networking technologies have also had a profound impact on governance and national/international

security. Governance and business needs have driven enterprises and governments to develop

CHAPTER 2. BACKGROUND 13

complicated computing and networking systems [48]. This is even made more demanding with

the emergence of internet of things (IoT) [29]. These networks incorporate a complicated array

of technologies including very high end servers, massive storage systems, wireless technologies,

unified voice, data and video services, etc in addition to other sophisticated applications. Modern

demands have required these networks to be more open to diverse array of users such as employees,

business partners, customers, citizens etc. The different network access points incorporated to

achieve this makes modern networks more more vulnerable to attacks and breaches [48]. This

has led to the development of various intrusion detection systems(IDS) and intrusion prevention

systems(IPS) [49] [50]. However, this thesis will focus more on intrusion detection systems.

An intrusion detection system is a device or software application responsible for detecting

actions that may compromise the confidentiality, integrity and availability of a computing system

or network. Its objective is to observe the activities in a network and identify possible breaches or

attacks [51]. An intrusion detection system can also be described as any mechanism that observes

and controls suspicious actions and policy violations in a network [52]. There are two main types

of intrusion detection systems: Host based intrusion detection systems (HIDS) [53] and network

based intrusion detection systems (NIDS) [54]. For HIDS, the IDS is deployed separately on a

single host and is responsible for monitoring the activities and characteristics of the particular

host [55]. A network based IDS is usually located at network points such as routers and firewalls

and monitors traffic for a specific network segment in order to detect network intrusions. Both

types of IDSs sends alerts to network administrators and users if suspicious activities are detected.

There are three major mechanisms used for intrusion detection systems: signature based IDS,

anomaly-based IDS. and hybrid detection [6]. Each category is defined by how it identifies network

attacks [51] [56] [57]. Figure 2.3 shows the different detection mechanisms of network intrusion

detection systems. The signature and anomaly based systems are described briefly in the next

subsections. The hybrid detection system integrates both signature based and anomaly based

techniques in attack detection.

CHAPTER 2. BACKGROUND 14

Intrusion Detection Systems
(IDS)

Intrusion Detection Systems
(IDS)

Signature
based

Anomaly
based

Hybrid
system

Knowledge based

Signature
Matching

State
Transition
Analysis

Rule based

Signature based IDS
(Misuse Detection)

Machine learning based
(Supervised ML)

Figure 2.3: Classification of Intrusion Detection Systems

2.3.1 Signature-based IDS

Signature-based IDS also called misuse detection maintain a database of the knowledge base or

rules used for detecting known attack types. Signature based detection techniques can further be

classified into knowledge based techniques and machine learning based techniques. In knowledge

based technique, network traffic or host audit data (such as log outputs) are compared against

predefined attack patterns or rules contained in the existing database. However, this method of

intrusion detection has its disadvantages. The major disadvantage is that knowledge based IDS

can only detect attacks whose signatures are available in the IDS database. The dynamic nature

of network attacks means that new attacks can go undetected with a resultant increase in the

false negative rate. The continuous emergence of new attacks makes the signature update com-

plicated. Another disadvantage is the amount of time it takes to process the signature lookup as

every instance requires looking through the entire database. Additionally, knowledge based IDS

is a payload-based traffic identification technique which examines the entire payload of the pack-

ets. The evolution of transport layer security (TLS) and other secure communication techniques,

ensures that network traffic is fully encrypted and hence payload based traffic identification mech-

anisms are becoming less applicable. Also legal issues relating to payload inspection have become

more crucial in recent years. These amongst other reasons have given rise to the need for flow

based traffic identification mechanisms. Knowledge based techniques can be further classified into

signature matching, state transition analysis and rule based expert systems. Figure 2.4 gives a

hierarchical view of the different techniques in signature based IDS.

CHAPTER 2. BACKGROUND 15

Intrusion Detection Systems
(IDS)

Intrusion Detection Systems
(IDS)

Signature
based

Anomaly
based

Hybrid
system

Knowledge based

Signature
Matching

State
Transition
Analysis

Rule based

Signature based IDS
(Misuse Detection)

Machine learning based
(Supervised ML)

Figure 2.4: Classification of Intrusion Detection Systems

Machine learning based IDS has been attracting increased attention recently. Machine learn-

ing based detection (under Signature based IDS also called misuse detection) utilises a learning

based system to identify attack types based on learned normal and attack behaviour. Misuse

detection utilises supervised machine learning methods. The goal of this method is to create a

general representation of known attack types. This method provides very high detection accuracy

for known attacks. As expected, this technique would struggle to detect unknown attacks. Just

like knowledge based IDS, the machine learning based IDS also requires regular update and main-

tenance of the signature database which impacts the operational overhead Generally, some of the

advantages of deploying a machine learning based IDS over traditional knowledge based IDS may

be summarized as follows:

• Traditional knowledge based IDS can be easily bypassed by implementing slight variations in

known attack patterns. However, machine learning IDS based on either continuously trained

supervised learning or unsupervised learning can easily identify the different attack variants

as it learns the characteristics and behaviour of the traffic flow.

• The complex properties of the attack behaviour as embedded in the traffic can be captured

by machine learning based IDS. This improves the accuracy and speed of detection when

compared with traditional knowledge based systems.

• Very high detection accuracy of known attacks.

• Machine learning based IDS are not affected by encrypted communication protocols which

may have been deployed on the network

However, one of the disadvantages of machine learning IDSs are that machine learning tends

to be computationally highly intensive. Indeed this gives one of the strongest motivations for this

CHAPTER 2. BACKGROUND 16

work: how to apply machine learning for intrusion detection in a manner that increases efficiency.

It should be noted that advantages resulting from unsupervised machine learning techniques are

not listed here. Work done in this thesis is limited to machine learning IDS based on supervised

learning as many researchers comment that supervised learning is most appropriate for specific

attack detection, as opposed to general anomaly detection we consider next, see the survey of the

area by Mishra et al. [6]. Further discussion on machine learning based IDS techniques is provided

in Section 2.9.

2.3.2 Anomaly-based IDS

Anomaly based intrusion detection systems are based on the hypothesis that the behaviour of

attack traffic is different from that of normal traffic [58]. This type of IDS models the normal

behaviour of the system and looks to identify patterns whose behaviour is not normal or expected

[59]. This method utilizes collected historical data related to the behaviour of legitimate traffic or

users to create a model or baseline traffic pattern. Incoming traffic is compared with the model

and any significant deviation from the model is classified as an anomaly. A major advantage of this

method of intrusion detection is that it can detect new types of attack and thus has a high capacity

for low false negative rate. This advantage is the result of the system’s ability to model the normal

operation of a network and detect deviations from the model. Some disadvantages of this technique

include the intrinsic complexity if the system and its high false positive rate. Anomaly detection

techniques are broadly classified into three types: statistical techniques, machine learning based

techniques and finite state machine based techniques. It should be noted that the machine learning

techniques used in an anomaly-based IDS are mostly semi-supervised and unsupervised learning

methods. However, this thesis does not aim to cover anomaly detection. Although the general

high-level approach could be potentially re-engineered to provide anomaly detection.

2.4 What is an IP Flow?

The main purpose of a data network is the transmission of data from one point represented by a

device to another point. This transfer of data is possible through the routing of IP packets from

from one point to another. IP flow is an important concept in the context of this research. The

machine learning based intrusion detection solution proposed in this work is a flow-based system,

hence a thorough understanding of an IP flow is essential. According to the Internet Engineering

CHAPTER 2. BACKGROUND 17

Task Force as stated in RFC 7011, “a flow is defined as a set of packets or frames passing an

Observation Point in the network during a time interval” [60]. An IP flow is essentially a stream

of data packets defined by a specific set of properties. Generally, a flow is defined by the 5-tuple

properties of source IP address, destination IP address, source port number, destination port

number, and transport layer protocol. These properties bunch all the packets in one direction of

communication in a single socket. The source and the destination IP addresses specify beginning

and the end of the Observation Point as stipulated in the RFC definition. This is illustrated in

Figure 2.5.

CISCO NETWORK DIAGRAM Bode Amangele | July 31, 2021

Time Interval

IP Flow

(Packets)

- Source IP
- Destination IP
- Source Port
- Destination Port
- Transport Layer Protocol

Figure 2.5: IP Flow

2.4.1 IP Flow Record

A flow record is a collection of information about a specific flow instance. The collected infor-

mation about a flow is generally grouped into two categories: measured properties of the flow

and characteristic properties of the flow. The measured properties of the flow are the statistical

measurements derived from the flow of the packets such as total number of packets, total number

of bytes, packet inter arrival times etc. Characteristic properties are the intrinsic properties of

the flow packets such as source and destination IP addresses. A sample flow record from the

CICIDS2017 Dataset is shown in Figure 2.6

FlowID SourceIP DestinationIP SrcPort DstPort Timestamp FwdPkts BwdPkts FlowDur FwdPktLenMeanBwdPktLenMeanFwdPktLenStdBwdPktLenStdFwdPktLenMinBwdPktLenMin

0 192.168.10.15-192.168.10.3-63567-53-17192.168.10.15192.168.10.3 63567 53 05/07/2017 10:17 4 2 0.06061 71 155 0 0 71 155

1 192.168.10.12-173.241.242.220-46124-443-6192.168.10.12173.241.242.220 46124 443 05/07/2017 02:10 11 6 6.15606 77.18182 646.1667 71.2573 759.7174 40 52

FlowID SourceIP DestinationIP SrcPort DstPort Timestamp FwdPkts BwdPkts FlowDur

0 192.168.10.15-192.168.10.3-63567-53-17192.168.10.15192.168.10.3 63567 53 05/07/2017 10:17 4 2 0.06061

1 192.168.10.12-173.241.242.220-46124-443-6192.168.10.12173.241.242.220 46124 443 05/07/2017 02:10 11 6 6.15606

Figure 2.6: Sample Flow Record Showing Some of the Representative Fields

CHAPTER 2. BACKGROUND 18

2.4.2 Flow Duration

The IETF in RFC5102 [61] describes flow duration as the time difference between the first observed

packet of a flow and the last observed packet of the same flow. There are various conditions that

may define flow duration. According to RFC5102, the following properties of a flow determine the

flow duration:

• Idle timeout: A flow may be terminated if no packets belonging to the flow have been

observed within a specific time interval. There is no specified standard value for this time

interval and may depend on the flow metering system or the intended application.

• Active timeout: A flow may be terminated if it has reached a specific time interval even if

there is still a continuous flow of packets. Once again, there is no specified standard value for

this time interval and may depend on the flow metering system or the intended application.

• End of flow detected: A flow may be terminated if the metering process detects signals

which indicate the end of the flow. An example of such signal is the TCP FIN flag.

• Forced end: A flow may be terminated by an external event such as a shutdown of the

metering process which may be initiated by an external application.

• Lack of resources: A flow may be terminated for lack of resources available to either or

both of the metering process and the exporting process. Such resource may be storage or

processing capacity.

In this work, the active timeout parameter will be used to define flow duration. This will be

elaborated further in subsequent sections.

2.5 Flow Monitoring and Export

Network monitoring techniques are generally classified into two categories: active and passive.

In the active approach, tools like ping [62] and traceroute [63] are used to introduce traffic into

the network to perform different network management procedures [64]. In the passive approach,

existing network traffic is observed as it passes a specific measurement point. The passive approach

of network monitoring is further divided into packet capture and flow monitoring (or flow export).

Packet capture involves the complete capture of individual IP packets or frames as they traverse a

measurement point on the network. This method offers the most detail regarding network traffic

CHAPTER 2. BACKGROUND 19

but is generally expensive to perform given the extremely high data rates of modern networks

resulting in substantial processing and storage requirements. Flow monitoring on the other hand

is more scalable and adaptable to high speed networks. In this approach IP packets are aggregated

into flows as defined in Section 2.4. These flows are then exported and stored and subsequently

used for various network analysis. This method is less expensive and offers significant reduction

in data to the tune of 1/2000 of the original traffic(packet) volume [64]. Additionally, flow export

ensures more privacy than packet capture because only packet header information is utilised. The

different traffic monitoring techniques are illustrated in Figure 2.7. The analysis in this work will

be based on the flow export approach.

CISCO NETWORK DIAGRAM Bode Amangele | August 6, 2021

Time Interval

IP Flow

(Packets)

Trafiic
Monitoring

Active Passive

- Source IP
- Destination IP
- Source Port
- Destination Port
- Transport Layer Protocol

Packet
Capture

Flow
Export

TraceroutePing

Figure 2.7: Traffic Monitoring Techniques

There are different network protocols and technologies that have been developed to implement

the export of IP flow traffic for various purposes such as network monitoring, security and other

network administration tasks. The two most common protocols for flow monitoring are IP Flow

Information eXport(IPFIX) and Netflow.

2.6 IP Flow Monitoring for Network Security

IP flow exports are useful for the detection of most network attacks and are implemented in

systesm such as Netflow of IPFIX [65]. A common characteristic of these attacks is that they may

affect certain measured properties of an IP flow record. These metrics include packet and byte

counts and number of active flows in a given time interval. These attacks may also affect other

characteristic properties of an IP flow record such as suspicious port numbers as well as suspicious

CHAPTER 2. BACKGROUND 20

source and destination IP addresses of the traffic. Flow based intrusion detection systems analyse

IP traffic flow properties and detect attacks. Also, compared to conventional NIDS, flow based

NIDS process a significantly lower volume of data which makes flow based IDS the logical option

for high speed networks. However, it may be argued that IP traffic flows do not carry sufficient

information for adequate network intrusion detection as compared to packet inspection [66]. This

can be dependent on the intended application. Flows are generally believed to posses limited

information as regards network interactions. However, with available information, it is possible to

model communication patterns between network devices. For many network attacks, the available

information is sufficient. In addition, the modelling of attack traffic patterns from available flow

information has improved with the use of machine learning techniques.

In this thesis, the flow monitoring implemented for for the proposed hierachical SDN security

solution is based on SDN counters available to the OpenFlow protocol and also to a flow export

and monitoring mechanism based on the IPFIX standard.

2.6.1 Internet Protocol Flow Information eXport(IPFIX)

Internet Protocol Flow Information Export (IPFIX) is an industry standard flow export protocol.

It specifies a common, universal standard for IP flow information export from network nodes. The

IPFIX protocol defines standard templates on how IP flow information should be formatted and

transferred from an exporter to a collector [67]. This allows network operators and vendors to

implement a common standard for IP traffic flow information export [68]. This is necessitated

by the fact that network flow data is becoming increasingly central to network management and

security. A flow record is a representation of the connection between two sockets and represents a

finer-grained view of network traffic than that provided by interface-level counters queried by the

Simple Network Management Protocol (SNMP) [69].

The Internet Engineering Task Force specifies the requirements and architecture for IPFIX in

RFC 3917 [67] and RFC5470 [70] respectively. An overview of the IPFIX architecture is shown in

Figure 2.8. Since the work done in this research does not involve a testbed, the flow monitoring

architecture in this work does not completely align with Figure 2.8. In this work, the entire IPFIX

architecture and procedures are simulated in python. Further details of this will be provided in

Chapter 4 where IPFIX is assumed to obtain the flow features used for the edge classifier, later

called the second stage classifer from Chapter 4 onwards.

CHAPTER 2. BACKGROUND 21

CISCO NETWORK DIAGRAM Bode Amangele | August 16, 2021

Time Interval

IP Flow

(Packets)

- Source IP
- Destination IP
- Source Port
- Destination Port
- Transport Layer Protocol

Packet
Capture

Flow
Metering

Flow
Export

Data
Collection

Packets
Flow

Records

Flow
Export

Protocol

Figure 2.8: IPFIX Architecture

2.6.2 Netflow

Netflow is a Cisco proprietary protocol that allows the collection of network traffic features across

an interface or an observation point. Cisco’s Netflow v9 is the foundation upon which the IPFIX

protocol is built. Although there were third-party compatible implementations of Netflow, the

IPFIX protocol was built out of Netflow v9 to allow for standard industry-wide compatibility

across flow export protocols [64]. Other candidate protocols evaluated by the IPFIX Working

Group were CRANE, Diameter, LFAP, and Streaming IPDR [71]. The basic output for Netflow

is a flow record as defined in Section 2.4.1. Netfow defines several different formats for IP flow

records. The most recent format provided by Netflow version 9 is the template-based flow record

format. A major benefit of the template-based format is that new traffic features can be added

more easily an this allows for backward compatibility with previous versions and third-party

application compatibility [72]. However, the IPFIX protocol shall be used as the reference for this

research work.

2.7 An Overview of SDN

Over the past few decades, the traditional network architecture has remained unchanged. On the

other hand, the increasingly dynamic nature of network services, applications and requirements,

has put a reasonable burden on conventional network. Most traditional network devices have

control and forwarding functionalities operating on the same device. Software Defined Networks

(SDN) is a next generation networking concept which offers greater flexibility and control compared

to traditional networks [73]. SDN is based on the concept of centralizing control plane intelligence

while keeping the data plane separate [74]. This allows the network nodes to keep their switching

fabric (the data plane) while transferring their intelligence (switching and routing capabilities) to

the SDN controller. SDN provides logically centralised control over the network and separates the

control and data planes, by abstracting the lower-level functionality allowing network management

and control to be directly programmable [73] [75].

CHAPTER 2. BACKGROUND 22

This is achieved by extracting the networks control logic (control plane) from the underlying

switches and routers that perform the actual task of traffic forwarding (data plane). With this sep-

aration, network nodes become simple forwarding devices and the control function is implemented

in a centralised controller [75].

2.7.1 SDN Architecture

The SDN architecture consists of three layers [73] namely: the application layer, the control layer

and the infrastructure layer [76]. This is shown in fig 2.9

Infrastructure Layer: also called the data plane, consists of the forwarding devices which can

be accessed through an open interface by which packet forwarding is done [77]. The decision

making capabilities have been extracted from the devices and they rely on the control plane for

forwarding decisions. Much of the work done in this thesis involves operations at the data plane.

Control Layer: the main element of the control plane is the logically centralised SDN Controller

which coordinates the communication between the data plane and the application layer. The

control plain is considered the ‘brain’ of SDN which allows the programming of network control

and management ensuring a flexible network administration. Similarly, a significant portion of

work done in this thesis involves operation at the control plane.

Application Layer: the application layer sits above the control layer and holds the applications

that deliver network services. The application layer maintains a global view of the network through

the control plane and provides the interface for user applications to interact with the network [78]

[76]. However, work done in this thesis does not focus on the application plane.

This work focuses mainly on the control and forwarding planes and the communication between

them.

CHAPTER 2. BACKGROUND 23

Application Application

Control Plane

Data
Plane

Data
Plane

Data
Plane

Data
Plane

Data
Plane

Data
Plane

Data
Plane

Application Layer

Infrastructure Layer

Control Layer

Network (Forwarding) Devices

Figure 2.9: SDN Architecture

2.7.2 OpenFlow

The OpenFlow protocol was developed as a result of the need to have programmable networks [79].

The open and vendor-neutral nature of SDN requires a secure communication channel between

the Controller and both planes above and below the controller. OpenFlow is the first standard

communication protocol that was developed to interface between the control and data layers of the

SDN architecture [80]. OpenFlow provides an open protocol which allows the SDN controller or

the network administrator to program different routers and switches; OpenFlow achieves this by

enabling software-based access to the flow tables that provide forwarding instructions to switches

and routers [74]. Using this feature, network administrators can quickly modify network topology

and implement packet filtering amongst other management and control tasks. The interaction

between the controller and the OpenFlow switch or forwarding device(s) is shown in Figure 2.10.

The OpenFlow protocol supports the following message types [81]: (1) Controller-to-switch

messages which are initiated by the SDN controller and are used to directly manage or inspect

the state of the forwarding devices on the network. An important example of this message type

in the context of this work is the Modify-State message (2) Asynchronous messages which are

initiated by the switch and are used to update the controller about network events such as the

CHAPTER 2. BACKGROUND 24

arrival of a packet or of other switch state changes. An important example is the Packet-in message

(3) Symmetric messages which are unsolicited messages initiated by either the controller or the

forwarding device. These are mostly hello type network messages and other routine network

control messages.

2.7.3 OpenFlow Switch

The concept of the OpenFlow switch exploits the fact that most Ethernet switches and routers

contain flow-tables. The OpenFlow Switch is the general term for referring to dedicated OpenFlow

or OpenFlow-enabled forwarding devices. Dedicated OpenFlow switches do not support the usual

Layer 2 and Layer 3 functionalities while the OpenFlow-enabled switches are the regular Ethernet

switches and routers that have the OpenFlow capability as an added feature. The OpenFlow

switch consists of one or more flow tables and a group table. These tables perform packet lookup

and forwarding. The OpenFlow switch also contains one or more OpenFlow Channels which

manages communication with the controller. The controller manages the switch and the switch

communicates with the controller via the OpenFlow Protocol [81]. Figure 2.10 shows the main

components of an OpenFlow switch. The work done in this research will be a compromise between

the two classes of OpenFlow switches as will be explained in later sections.

CHAPTER 2. BACKGROUND 25

Data
Plane

Data
Plane

Data
Plane

Data
Plane

Flow
Table

Flow
Table

Flow
TablePort

Port Port

Port

OpenFlow
Channel

OpenFlow
Channel Group

Table
Control Channel

Datapath

OpenFlow Protocol

Controller

OpenFlow Switch

Figure 2.10: OpenFlow Switch

2.7.4 Flow Entry

One of the key components of the OpenFlow pipeline is the flow table. Each flow table consists

of several flow entries. Each flow entry has the following fields [81]: (1) A Match Field that

contains characteristic features that define the flow. This may consist of ingress ports and packet

header information. This is used to match against packets (2) Instructions which defines how

the packets in the flow should be processed and (3) Counters which holds statistics that keep

track of the number packets and bytes in the flow [79]. The counters are also updated when the

packets are matched (4) Priority which defines the order of matching precedence of the flow entry

(5) Timeouts which sets the maximum amount of time before which a flow is removed by the

switch (6) Cookie which is a control field used by the controller to filter flow entries based on flow

statistics and other control requests (7) Flags dictate the way flow entries are managed. Figure

2.11 shows the main components of a flow entry table.

CHAPTER 2. BACKGROUND 26

Data
Plane

Data
Plane

Data
Plane

Data
Plane

Flow Entry

Flow Table

Flow Entry

Flow Entry

Flow Entry

Match Fields Priority Counters Instructions Timeouts Cookie Flags

Match Fields Priority Counters Instructions Timeouts Cookie Flags

Figure 2.11: Main Components of a Flow Entry

2.7.5 SDN Security

There are generally two sides of SDN security; first, that the peculiar characteristics of SDN can

be utilised to improve network security, secondly, that the SDN architecture in itself introduces

security vulnerabilities [82]. The concept of software defined networking detaches the control and

data planes within a network device. This separation provides a means for dynamic manage-

ment of computer networks. The network control logic is then implemented in a software-based

controller which provides dynamic control of network configurations and operations [10]. Key

features of SDN include the programmability of the data plane and the controller’s global view of

the network. Additionally, the OpenFlow Switch Specification [81] which defines the southbound

protocol responsible for communication between the control and data planes is able to provide

network flow statistics at the data plane. These network flow statistics are able to support net-

work monitoring for security and other network management functions. As a result of this SDN

feature, network attacks can be detected by collecting traffic flow information and examining the

flow statistics. There are various techniques to analyse flow statistics with respect to attack detec-

tion, however, this work will focus on the use of machine learning for flow analysis. Once attack

is detected, SDN-specific characteristics allow the implementation of intrusion protection systems

by modifying flow rules to filter or block malicious traffic.

One of the major advantages of SDN is centralised control. The ability of the SDN Controller

to deploy network-wide policies and directly program network control ensures a more flexible and

agile network solution. The centralised controller can instruct forwarding devices to allow or block

traffic (as well as deciding the route). This feature of SDN is key to network security and can

be leveraged to implement a more robust and intelligent network security solution. One solution

which will be considered in this research is Machine Learning based SDN security solution.

CHAPTER 2. BACKGROUND 27

Despite its ability to enhance network security, the SDN architecture introduces new security

vulnerabilities into the network. The centralized controller becomes a central point of failure and

becomes a prime target for attack [83]. Software bugs in the controller could lead to various prob-

lems such as malicious remote access to the controller, redirecting packets (loss of confidentiality)

and DDoS attacks. Generally, any attack on the controller is capable of taking down the entire

network. In the data plane (infrastructure layer), too many packets representing new flows could

be sent rapidly to the forwarding device resulting in TCAM (flow table) [3] exhaustion attacks.

This makes the TCAM to fill up and either stops new flows or causes the new flows to be processed

very slowly. Also, communication channels between isolated planes can become another point of

attack [83].

2.8 Network Edge

The edge of the network is an important concept in this work. There are different definitions of a

network edge. Researchers in [84] describe the edge network as the local network as against the

core network. A network edge can further be described as the point where an enterprise network

connects to a third party network infrastructure. The third party network could be the internet,

the WAN network or the cloud infrastructure. However, the network edge referred to in this work

would follow a slightly different definition. In the context of this work, the network edge refers to

the entry point into the enterprise core network. Edge devices could include routers, switches and

a variety of other wired and wireless access devices. Based on Figure 1.2, the network edge can

be illustrated as shown in Figure 2.12.

CHAPTER 2. BACKGROUND 28

Server
Farm

SDN Controller
(Control Plane)

Access
(Data Plane)

Nodes

Classifier 1

Classifier 2
(Edge Classifier)

Distribution

Core

Network Edge

Figure 2.12: The Network Edge

2.9 Machine Learning Techniques for Network Security

Supervised machine learning methods have shown more success in network security applications.

Although, this requires access to large volumes of labelled data which are very difficult to generate

[85].

Existing research in traffic flow identification utilise human experience, thresholds and rule-

based mechanisms to achieve traffic classification [86]. Unfortunately, these methods require ex-

tensive domain knowledge, and the complexities of modern networks and the volume and nature

of today’s network traffic make these methods increasingly difficult to implement. Exploring ma-

chine learning techniques can present new methods for more effective traffic classification. Machine

learning has been proven to be very useful in proffering solutions in fields that have large repre-

sentative data [87]. The field of networking is not exempted in this trend as there has been an

upsurge of network related datasets in recent years.

Work done in this research have been carried out using supervised machine learning. Supervised

machine learning is mainly split into classification and regression. The malicious packet detection

problem is considered a classification problem hence classification technique is utilised in this work.

IP traffic classification has been used for a variety of network management operations including

network security. Other areas where traffic classification is applied include QoS and performance

monitoring. Traffic classification involves the ability to accurately segregate IP traffic based on pre-

CHAPTER 2. BACKGROUND 29

defined categorizations [87]. The classical method of traffic classification involves the use of Internet

Assigned Numbers Authority (IANA) [88] registered port numbers for traffic classification. With

the increasing complexity of network communication technology, this technique has been shown

to be ineffective. Some of the reasons for this include port negotiation, traffic encapsulation,

manipulation of well-known port numbers which could all be deployed to bypass firewalls [89].

There are three main traffic classification techniques that leverage on machine learning; payload-

based traffic classification, host-behaviour-based traffic classification, and flow feature-based traffic

classification. Work done in this research utilises flow-feature based traffic classification which is

further sub divided as shown in Figure 2.13. The supervised complete flow-feature based TC and

the early and sub-flow-based TC are both used in this work and are shown in red.

IP Traffic Classification

Payload-based TC

Host behaviour-based TC

Flow feature-based TC

Supervised Complete Flow Feature-based TC

Unsupervised Complete Flow Feature-based TC

Early and Sub-flow-based TC

Encrypted TC

NFV and SDN for TC

Figure 2.13: Machine Learning- Based Traffic Classification Techniques

Work done in this research evaluates the effectiveness of various machine learning algorithms

using the CICIDS2017 and the CICIDS2018 IDS datasets and simulated in a distributed-learning

SDN architecture.

A number of different machine learning algorithms have been used for network traffic classi-

fication and prediction. The dominant algorithms utilised in this research are decision trees and

random forest classifiers. Hence discussions in this section will be limited to these two algorithms if

the reader would like a general overview of machine learning algorithms excellent texts are [90] [91].

2.9.1 Classification and Regression Tree (CART)/Decision Tree Classi-

fier

A decision tree is a popular machine learning method. As the name implies, decision trees make

decisions based on a tree structure. Typically, decision trees comprise of a single root node,

multiple internal (decision) nodes and multiple leaf (terminal) nodes. The leaf denotes the decision

outcome while every other node corresponds to a test on an attribute [90]. The typical structure

of a decision tree is shown in Figure 2.14.

CHAPTER 2. BACKGROUND 30

The root nodes represent the entire samples in the dataset. This continuously gets divided

into two or more child nodes. The samples in each decision node are split into child nodes based

on statistical calculations carried out on the features. The route from a root node to a leaf node

is a decision sequence. The goal is to generate a tree model capable of predicting unseen samples.

The decision tree model is created recursively. The recursion terminates when any of the three

conditions are achieved: 1) when all samples in a given node belong to the same class, in which

case further splitting is not required; 2) when all the samples in a given node possess identical

feature values making further splitting impossible; 3) when there are no samples in a given node,

also making further splitting impossible.

Root Node

Decision Node Decision Node

Decision NodeLeaf Node

Leaf Node Leaf Node

Leaf Node Leaf Node

Branch/Sub-Tree

Figure 2.14: Decision Tree Structure

The major challenge in the implementation of the decision tree algorithm is the selection of

the optimal splitting feature. This is the feature or attribute which is considered at the root node

and is considered as the most important feature for the classification of the dataset. The same

attribute selection process also applies at every node.

There are two common attribute selection measures used by decision tree algorithms: 1) Infor-

mation Gain and 2) Gini Index. The Classsification and Regresion Tree (CART) algorithm which

is utilised in this work uses the gini index for its attribute selection. Also, the gini index attributes

are considered to be continuous which represents the nature of the dataset utilised in this work.

2.9.2 Gini Index

The Gini index is a popular method for selecting the splitting feature of a decision tree. The Gini

value Gini(D) of a dataset D, represents the likelihood of two samples randomly selected from the

CHAPTER 2. BACKGROUND 31

data belonging to separate classes and is given by [90]

Gini(D) = 1−
c∑

i=1

(Pi)
2 (2.1)

where Pi is the probability of the ith class and c is the number of classes. The lower the Gini

value Gini(D), the higher the purity of the data D and the less likely for the node to be split.

If a feature is used to split the data, producing the child nodes labelled 1 . . . U , then the data

represented at one of these child nodes u is denoted Du.

To select the split feature, the Gini index of splitting datset D with feature b is given as

Gini index(D, b) =

U∑
u=1

|Du|
|D|

Gini(Du) (2.2)

where discrete feature b has U possible values {b1, b2, ..., bU} and

Du = all samples in D with the value bu for feature b i.e., all the data split by node u, as defined

above.

D = total number of samples in data and

Gini(Du) = Gini value for Du at node u.

This is calculated for all the features and the feature with the lowest Gini index is selected as the

splitting feature. Next, the split point or value is calculated. Split points for the selected feature

are chosen and the algorithm calculates the Gini index for each split point. The split point with

the lowest Gini index represents the optimal point and is selected. The Gini index for each split

point is thus derived, much the same way as with discrete value features. An example showing

the calculation of the Gini value from experiments carried out in this research is given in Section

4.3.1. The utilisation of decision tree classifiers for network security is shown in [92], [93], [94].

2.9.3 Random Forest classifier

Random Forests is a Decision Tree based ensemble learning algorithm. Ensemble methods in

machine learning involves the use of multiple similar models which have been trained indepen-

dently. The individual predictions of each model are then combined to give the final prediction

output. All the concepts of the Decision Tree algorithm apply here. Random Forest algorithm

is a combination of multiple Decision Trees forming a forest of trees. It builds decision trees

with the available data and extracts the prediction from each tree [95]. Some level of randomness

is generated when creating the models in order to provide more accurate results. The required

CHAPTER 2. BACKGROUND 32

randomness is achieved by training each model on a different subset of the available data. The

algorithm will then present a prediction output based on the aggregation of the predictions from

the forest of trees [96]. Methods utilised by the Random Forest algorithm to combine the outputs

of the multiple decision trees include: averaging, voting, and combining by learning [90]. A simple

graphical illustration of the Random Forest algorithm is shown in Figure 2.15. A random forest

classifier will be specifically used in Chapter 6.

Training
Data

1

Decision
Tree

1

Combining Strategy

Prediction

Training
Set

Test Set

Training
Data

1

Training
Data

n

Decision
Tree

2

Decision
Tree

n

Figure 2.15: Random Forest Algorithm Structure

2.10 Machine Learning Based Network Security

In recent years, the share volume of network attacks have overwhelmed security analysts. As a

result, network administrators and network security researchers have been exploring the use of

machine learning to automate intrusions and anomaly detection, but progress made in the past

have been slow. However, with the emergence of big data, the use of machine learning for network

security is showing significant promise [85].

The detection mechanisms used for network intrusion detection systems (IDS) are of three

types: misuse detection, anomaly detection and hybrid detection. Machine learning algorithms

can be used to implement both the misuse detection and the anomaly detection [6]. Supervised

learning methods are used for misuse detection while semi and unsupervised methods are used for

anomaly detection. Supervised machine learning techniques utilises a learning based approach to

discover attack profiles based on learned attack and benign profiles. The goal of supervised learning

approach is to create a model representation of established attack profiles. Generally, misuse

CHAPTER 2. BACKGROUND 33

detection techniques are unable to detect new and unknown attacks. However, it compensates

with its high detection accuracy of well known attacks [92]. Just like signature based IDSs, the

ML based IDS also requires regular update and maintenance of its detection models which adds to

the overhead of its implementation. This research focuses on the machine learning based technique

for misuse detection systems.

In traditional networks, Machine Learning has been used to detect malicious traffic and classify

network attacks accordingly [14]. As networks become increasingly larger and more complex, and

applications also growing significantly, network management across distributed sites is becoming

increasingly difficult [86]. Machine Learning methods have demonstrated significant potential in

the classification of network traffic and are widely used for classification and prediction problems

[97]. The machine learning approach eliminates the need to manually analyse and encode traffic

anomaly patterns as well as the rigours and uncertainties in statistically profiling normal traffic [98].

For SDN, the centralised nature of the controller holds significant bearing towards the application

of machine learning for network management, monitoring and security. The work done in this

thesis explores a unique approach that utilises this fact. The major advantage for using machine

learning algorithms for SDN security is its ability to effect network-wide security rules as against

local policy implementation of traditional networks [14]. Another advantage is its ability to use

flow-based information which eliminates the rigours of packet payload inspection techniques to

create rule-based intrusion detection systems.

Several researchers have carried out research works on machine learning based IDSs and other

network security applications. Researchers in [99] explored the use of the CatBoost and LightGBM

algorithms to perform binary classification of network traffic to detect attacks. Both algorithms

also perform well when utilised for the multi-label classification. The CatBoost algorithm returns

a slightly higher accuracy but requires up to 20 times more train time for binary classification

and approximately 3 times more train time for multi-label classification. The CICIDS dataset was

used for this work comprising typical network attacks such as DoS, DDoS, Portscan, BruteForce,

WebAttacks, Bot and Inflitration. Kim et al in [92] have proposed a multiple classifier method

which integrates a hierarchical combination of misuse detection and anomaly detection model

as against just combining their results. The misuse model is implemented using the decision tree

classifier DTC4.5 while the anomaly detection module is implemented using a collection of one class

SVM algorithm. The proposed hybrid IDS was evaluated using the NSL-KDD data set. Results

from this work show that the training and testing times for the anomaly detection model are 50%

CHAPTER 2. BACKGROUND 34

and 60% respectively compared to conventional models. Additional results also demonstrate that

the proposed hybrid solution delivers better detection rate for known and unknown attacks when

compared to conventional methods while maintaining a low false positive rate.

S. Nanda et al in [97] proposed the use of Machine Learning algorithms to detect potentially

harmful connections and likely attack destinations. This solution utilizes four widely used Machine

Learning algorithms: the Bayesian Network, C4.5, Nayes-Bayes and Decision Table to make the

required predictions with experimental results showing that the Bayesian Network returned an

average prediction accuracy of 91.68%. The Machine Learning output is then used to define

adequate security rules on the SDN Controller to block potential attack traffic.

In [100], L. Barki et al utilize the Support Vector Classifier and the Neural Networks Classifier

to detect harmful DDoS traffic to the SDN Controller. The proposed solution is implemented

using Mininet and Ryu Controller. Simulation of the results shows effectiveness of the solution on

different topologies.

S. Gangadhar et al [14] extends the application of Machine Learning to improve traffic tolerance

in SDNs by extending the functionality of the SDN Controller to integrate a resilient framework,

ReSDN. The ReSDN deploys Machine Learning to detect DDos traffic in a real-time system

achieving high levels of traffic tolerance.

Work done in [101] highlights the vulnerability of the SDN Controller to link flooding attack

(LSA) and demonstrates how Deep Learning techniques can be used to mitigate these attacks. A

novel solution, Cyberpulse is proposed, which conducts network surveillance by classifying network

traffic using machine learning and deep learning methods and implemented as an additional module

in the Floodlight controller. For every traffic flow in the network, Cyberpulse examines the flow

statistics on the control channel and classifies the flow using a multi-layer learning approach which

is able to correctly identify traffic flows that reveal LSA characteristics. Experimental results show

Cyberpulse to have high accuracy and high false positive rate when compared to other competing

solutions on realistic networks executed using mininet.

Researchers in [98] proposed a network intrusion detection and response system, Eunoia, based

on the Random Forest classifier and applied in SDN. The system consists of data preprocessing,

predictive data modelling, decision making and response subsystems. The system responds to

anomaly detection by utilising reactive routing to optimize limited SDN resources. Experimental

results demonstrate the ability of the SDN controller to mitigate known and unknown attacks that

can not be eliminated by signature-based intrusion detection systems.

CHAPTER 2. BACKGROUND 35

In [55], an IoT-based intrusion detection and mitigation framework, IoT-IDM is introduced.

The framework provides network-level for smart home environments by identifying and mitigating

potential attacks. This is implemented by deploying SDN architecture in IoT-IDM and leveraging

on its network programability and visibility. Machine learning techniques are then utilised to

detect compromised smart devices on the home network upon which IoT-IDM generates pushes

specific mitigation policies to underlying forwarding devices.

One finding from the review of the literature, was that none of these proposed solutions demon-

strate any real-time considerations of the flow based approaches. The real-time implication of

flow-based network intrusion detection systems in SDN is yet to be extensively researched. Also,

the concept of utilising the unique advantage of the SDN topology to implement efficient intrusion

detection systems is yet to be extensively investigated. This work aims to contribute to that gap

by investigating techniques that will allow near real-time flow based intrusion detection in SDN

while also improving the efficiency of the detection process.

2.11 Summary

This chapter reviewed relevant research works on intrusion detection systems for networks. The

chapter also highlighted the advantages of machine learning based intrusion detection systems

as against traditional signature based systems. The chapter also reviewed research works which

tested their proposed machine learning based solutions on various publicly available datasets.

However, there is a significant gap in most of these research works. Most of the proposed machine

learning based solutions are tested on static, historical datasets which does not reflect the real-time

nature of real life production networks. No research work has investigated sub-flow based machine

learning security solutions for SDN with reference to specific attack types. Also very little has

been done in the area of exploring the hierarchical combination of the SDN controller and the

edge devices towards improving the security performance of modern networks. These gaps and a

few more will be addressed in this thesis.

The chapter also presented brief description of the different attack types present in the dataset

which will be used in this thesis and also a brief description of the machine learning algorithms

that will be used. Relevant SDN and IP traffic flow concepts are also presented.

Chapter 3

Methodology

3.1 Introduction

This chapter presents details of the experimental methodology used to implement the security

solution proposed in this work. The chapter also presents the datasets and other tools and ap-

plications used in this work. It is important to note that Chapter 4 utilises a slightly different

methodology from Chapters 5 and 6. In Chapter 4, the original traffic flow information contained

in the dataset has been used for the experimentation and evaluation. The methodology for this

is described in Section 3.3. The methodology for the work done in Chapters 5 and 6 involve the

re-engineering of the IP packets to recreate the traffic flows. This is described in Section 3.4.

3.2 Intrusion Detection Datasets

Intrusion Detection Systems (IDS) are a focal point of this research. There is a shortage of reliable

datasets for carrying out performance analysis and evaluation of proposed IDS and IPS systems [1].

Most real world datasets cannot be shared for reasons relating to privacy. Based on studies carried

out, there are about eleven publicly available since 1998 [29]. Many of these datasets are outdated

and largely no longer reliable to use. Some of these datasets include; DARPA (Lincoln Laboratory

1998-1999) [102], DEFCON (The Shmoo Group, 2000-2002) [103] and ADFA (University of New

South Wales) [104]. Some of the attributes that make these datasets unreliable to use include

limited attack variety, insufficient volume of data, anonymous packet and payload content, a lack

of feature set and Meta data and such other characteristics that may not correctly depict recent

trends of network attacks.

36

CHAPTER 3. METHODOLOGY 37

The work done in [1] generates a reliable intrusion detection dataset (CICIDS2017) which

addresses most of the shortfalls from previously available IDS datasets. The dataset contains

benign traffic and seven standard network attack flows which correlates contemporary real world

scenarios. In addition, the dataset has the following attributes; it complies with the framework

proposed in [1] for a reliable intrusion detection benchmark dataset, is completely labeled, has

about 80 network traffic features and has an adequate Meta Data. This dataset will be used in

this thesis to evaluate the proposed hierarchical SDN security solution.

3.2.1 Dataset Analysis

The work done in this thesis will be carried out using the CICIDS2017 and the CICIDS2018

datasets. Information on how the dataset was generated can be found in [105], [1], [106] and [107].

Both datasets are essentially a continuation of the other with the 2018 version version containing

additional attack profiles. The purpose of both datasets is for network security and intrusion

detection research, hence covers a wide range of attacks. The CICIDS2017 has been used in

Chapter 4 while the CICIDS2018 has been used in Chapters 5 and 6.

The CICIDS2017 dataset comprises broadly of seven attack categories with some of the attacks

further broken down into different types. The seven attack categories are: BOT, DDOS, DOS

(DoS Slowloris, DoS Hulk, DoS Golden Eye, Heartbleed, DoS Slowhttptest), FTP Patator (ssh-

patator, ftp-patator), Infiltration, Portscan and Web Attack (Web Attack SQL, Web Attack XSS,

Web Attack Brute Force). In addition to the already mentioned attacks, the 2018 version contains

the DDoS-LOIC and DDoS-HOIC variations of the DDoS attack. These attack types (and others)

are described well by [42] [108] [41] [44] [109] [110] [23] [45]. A breakdown of the composition

of the attack traffic flows in the dataset is shown in Tables 3.1 and 3.2. The dataset consists

of raw packet capture files (as PCAP format files), system logs of each machine deployed in the

testbed, and CSV files representing vector space models [111] [112] of the data. The PCAP files

are very important to this work as it holds the raw captured IP packets. PCAP is the default

file format for packet capture tools like Wireshark. The PCAP files are initially analysed using

Wireshark to extract some packet features such as timestamps which are later used in the data

re-engineering procedures. It is important to note that the IP packets contained in the dataset are

approximately 1.1 tera bytes packet capture (PCAP) files. The size of the PCAP files is one of

the reasons that makes this work computationally intensive as will be pointed out in subsequent

sections of this thesis. The original dataset CSV files are used for the work in Chapter 4. For the

CHAPTER 3. METHODOLOGY 38

Table 3.1: CICIDS2017 Dataset Summary

Attack Sub Type Count Total
DDOS DDOS 128027

BENIGN 97718 225745

BOT BOT 1966
BENIGN 189067 191033

PORTSCAN PORTSCAN 158930
BENIGN 127537 286467

INFILTRATION INFILTRATION 36
BENIGN 288566 288602

FTP PATATOR SSH-PATATOR 5897
FTP-PATATOR 7938
BENIGN 432074 445909

WEBATTACK WEBATTACK SQL 21
WEBATTACK XSS 652
WEB ATTACK BRUTE FORCE 1507
BENIGN 168186 672703

DOS DOS SLOWLORIS 5796
DOS HULK 231073
DOS GOLDENEYE 1029
HEARTBLEED 11
DOS SLOWHTTPTEST 5499
BENIGN 440031 672703

works in Chapters 5 and 6, the original IP packets from the raw packet capture files have been

re-engineered to recreate a more flexible version of the traffic flows. More details of how this has

been done can be found in Section 3.4. This modified dataset is used in Chapters 5 and 6.

3.2.2 Attack Profiles

The different attack scenarios and profiles found in the dataset have been generated using various

tools and applications. Table 3.3 gives a list of the different attack profiles and the respective

tools with which they were generated. The table also shows the duration of each attack and other

testbed information.

CHAPTER 3. METHODOLOGY 39

Table 3.2: CICIDS2018 Dataset Summary

No. Flows No. Flows
BruteForce Wed-14-02-2018 DoS Fri-16-02-2018
Benign 5478650 Benign 5363486
FTP-BruteForce 193360 DoS-Hulk 91557
SSH-Bruteforce 94237 DoS-SlowHTTPTest 105550
Total 5766247 Total 5560593

DDoS-LOIC Tue-20-02-2018 DDOS-HOIC Wed-21-02-2018
Benign 6061102 Benign 6105843
DDoS-LOIC-HTTP 260079 DDOS attack-HOIC 967187
DDoS-LOIC-UDP 1668 DDOS attack-LOIC-UDP 1527
Total 6322849 Total 7074557

Web Attack Thu-22-02-2018 Web Attack Fri-23-02-2018
Benign 6338216 Benign 6095665
Brute Force -Web 137 Brute Force -Web 123
Brute Force -XSS 43 Brute Force -XSS 73
SQL Injection 17 SQL Injection 33
Total 6338413 Total 6095894

Infiltration Wed-28-02-2018 BoT Fri-02-03-2018
Benign 6943937 Benign 6281634
Infilteration 44 Bot 143011
Total 6943981 Total 6424645

3.3 Data Pre-processing

Proof of the concept proposed in this work requires evaluation with Intrusion Detection Datasets.

Obtaining reliable and recent Intrusion Detection Datasets for studies of this nature have always

proved to be difficult. Two IDS Datasets made available to the research community by the Cana-

dian Institute of Cybersecurity was chosen for this work. The two datasets are: the CICIDS2017

Dataset and the CICIDS2018 Dataset. The traffic profile of the CICIDS2017 Dataset has already

been presented in Section 3.2.1.

The complete dataset comprises of a set of csv files and a set of traffic capture files in PCAP

format [113]. This section describes work done on the csv files. The csv files presents the data

in a vector space model. The entries of the data in this form are IP traffic flows. Each flow

entry carries a label characterising it as either benign or malicious (based on the attack profile).

However, the vector space model as presnted at this stage is not Machine Learning ready. The

bulk of the work in this section is to make the data Machine Learning ready. This process is

accomplished using the Python data processing tools Pandas and Numpy [114], [115], [116]. This

CHAPTER 3. METHODOLOGY 40

Table 3.3: Dataset Attack Profile

Attack Tools Duration
Attacker
Machine

Victim
Machine

Bruteforce
attack

FTP – Patator,
SSH-Patator

1 Day Kali linux
Ubuntu 16.4
(Web Server)

DoS attack
Hulk, GoldenEye,
Slowloris, Slowhttptest

1 Day Kali linux
Ubuntu 16.4
(Apache)

DDoS+
PortScan

Low Orbit Ion Canon (LOIC)
for UDP, TCP, or
HTTP requests

2 Days Kali linux

Windows Vista,
7, 8.1,
10 (32-bit) and
10 (64-bit)

Web attack
Damn Vulnerable Web App (DVWA)
In-house selenium framework
(XSS and Brute-force)

2 Days Kali linux
Ubuntu 16.4
(Web Server)

Infiltration
attack

First level: Dropbox download
in a windows machine,
Second Level: Nmap and portscan

2 Days Kali linux
Windows Vista
and Macintosh

Botnet
attack

Ares (developed by Python):
remote shell,
file upload/download,
capturing, screenshots and key logging

1 Day Kali linux

Windows Vista,
7, 8.1,
10 (32-bit) and
10 (64-bit)

section of the experimental framework consists of the following procedures:

1. Data Cleanup - Some of the data entries returned values like ’not a number’ (NaN), infinity

and blank values. These values are not compatible with the Machine Learning algorithms

and as such would have to be replaced or deleted to make the data compatible for Machine

Learning. Although the volume of these entries were not significant enough to to impact the

final Machine Learning results, they were replaced by either the mean feature value or by

zero.

2. Label Coding - The labels (or the target values, y) on the dataset come with attack names.

These names have to be encoded to make the data ready for Machine Learning. In this

procedure, the target labels on the dataset have been encoded with values 0 for benign

packet and between 1 and N − 1, where N is the number of classes [117]

3. Delete Unwanted Columns - The following feature columns were deleted from the data;

’FlowID’, ’SourceIP’, ’DestinationIP’, ’SrcPort’, ’DstPort’, and ’Timestamp’. The ’FlowID’,

’SourceIP’ and ’SrcPort’ are not in machine readable format and are characteristic properties

of the flow. In fact including the IP addresses, ports and FlowID would severely bias the

results as these are highly correlated to the classes (attack or benign) as was the nature of

CHAPTER 3. METHODOLOGY 41

the testbed used to generate the dataset. They are also not critical to the intrusion detection

process. This is because the intrusion detection process is designed to receive only measured

properties of the flow to perform traffic classification.

3.3.1 Feature Selection

The CICIDS2017 dataset is presented with 80 network traffic flow features. A description of the

80 features are given in [118]. The 80 features have either been extracted or calculated by the

creators of the dataset using the CICFlowmeter [119]. To ensure an efficient classification model,

a best short feature set is selected. This short feature set should be able to deliver a comparable

level of classification accuracy as with the complete feature set. Feature selection plays a critical

role in machine learning and is often performed as a data pre-processing step for creating robust

learning models [120] [121]. The creators of the dataset utilized Random Forest Regressor for

feature selection. The results do not show any metric to measure the accuracy of this process. To

improve the feature selection process, we utilize the Mean Decrease Accuracy method [122] [123].

Although, Mean Decrease Accuracy method is also an implementation of Random Forests, this

method is not directly integrated into Scikit-learn.

The Mean Decrease Accuracy method directly measures the impact of each feature on the

accuracy of the model [122]. It achieves this by sequentially excluding each feature and calculating

the impact on the accuracy of the model. This provides an indication of how important each feature

is. The lower the accuracy of the model upon exclusion of a feature, the more important is the

feature for classification. Tables 3.4 and 3.5 present the results of both feature selection methods.

Table 3.6 shows a comparison of F1 scores between the the two methods. It is seen that with the

CICIDS2017 method [1], there is a 20.79% reduction in F1 score as the features are reduced from

12 to 3. However, with the MDA method, there is an insignificant reduction in F1 score with

a similar reduction in features. The results obtained from the Mean Decrease Accuracy method

are used to evaluate the intrusion detection model for the proposed hierarchical malicious packet

detection solution. The Mean Decrease Accuracy method of feature selection has been applied to

all the attack categories and the results recorded in Appendix A. In the following sections, we will

consider this in more detail across different machine learning models and the different attacks.

To design and evaluate the proposed intrusion detection model using the available dataset, the

following process is utilized; the performance and accuracy of the selected features is tested with six

common Machine Learning algorithms. The result of this process informs the choice of an optimal

CHAPTER 3. METHODOLOGY 42

Table 3.4: Feature Selection using Random Forest Regressor for DDoS as suggested by [1]

Feature Importance
Fwd Packet Length Max 0.5746
Subflow Fwd Bytes 0.2516
Total Length of Fwd Packets 0.1675
Init Win bytes forward 0.0022
Destination Port 0.0011
Init Win bytes backward 0.0005
Bwd Packet Length Mean 0.0003
FIN Flag Count 0.0003
Bwd Packet Length Min 0.0002
Flow IAT Min 0.0002
Bwd Packets/s 0.0002
Avg Bwd Segment Size 0.0002
Fwd IAT Std 0.0001

Table 3.5: Feature Selection using Mean Decrease Accuracy for DDoS

Feature Importance
Fwd Packet Length Max 0.815
Destination Port 0.4995
Init Win bytes forward 0.1707
Subflow Fwd Bytes 0.0408
Total Length of Fwd Packets 0.0344
Bwd IAT Total 0.0279
Bwd IAT Mean 0.0223
Fwd IAT Std 0.0114
Bwd Packet Length Mean 0.0095
Packet Length Std 0.0092
Packet Length Variance 0.0043
Idle Min 0.004
Flow IAT Mean 0.0037

combination of feature set and Machine Learning algorithm for use in building the intrusion

detection model for the proposed 2-stage Machine Learning SDN architecture. Figure 3.1 shows the

performance evaluation score of the different algorithms based on different combination of feature

sets. The first combination contains all 80 traffic features, the second and third combinations

comprise the first 6 and the first 3 most important features from the feature selection process.

Table 3.7 gives a list of the most common features when considering the first 6 most important

features of each attack type. Initial results indicate that the Decision Tree Classifier (CART) and

the K-Nearest Neighbor (KNN) both return a high evaluation score of approximately 99% across

all feature set combinations.

CHAPTER 3. METHODOLOGY 43

Table 3.6: Comparison of F1 Scores for Different Feature Selection Methods

MDA F1 Score CICIDS2017 F1 Score
1st 12 Features 0.9997 0.9998
1st 6 Features 0.9994 0.792
1st 3 Features 0.9994 0.792

Table 3.7: Most common features when considering the first 6 most important features of each
attack type

Feature Attacks
Flow Duration BoT, Infiltration
Bwd IAT Std BoT, Infiltration
Init Win bytes forward BoT, Patator, DDoS
Init Win bytes backward BoT, DDoS
Total Length of Fwd Packets PSCAN, DDoS
Fwd Packet Length Max PSCAN, DDoS
Subflow Fwd Bytes PSCAN, DDoS
Fwd IAT Min Patator, Infiltration

Figure 3.1: Performance Evaluation of the 6 Machine Learning Algorithms for DDoS

3.4 Experimental Framework

This section presents the experimental framework used to demonstrate and evaluate the proposed

hierarchical intrusion detection solution in SDN. This solution is completely modelled in Python.

The reason for modelling this solution in Python is to allow for sufficient flexibility to demonstrate

CHAPTER 3. METHODOLOGY 44

the concepts required to prove the hypothesis. Network simulation applications such as Mininet,

Opnet Modeller and GNS3 were initially considered to evaluate the proof of concept of this work.

However, after preliminary investigations, it was evident that these applications would not deliver

the flexibility required.

3.4.1 IP Packet Processing

This is the first step in the experimental framework. The IP packet processing is performed using

the Scapy Library in Python. This procedure involves converting the raw data into a vector space

model. The raw data from this dataset is in the form of IP packets captured and stored in PCAP

files. In order to process the PCAP files, an IP flow meter has been designed in python. This was

done using the Scapy library in Python. The IP flow meter reads the pcap files and reconstructs

the flows based on the flow conditions as specified by the authors of the dataset. The reason for

reconstructing the flows from the IP packet capture is to create the ability to truncate each flow

at selected time intervals creating subflows in the process. This is achieved by inserting a subflow

generator into the flow meter that was designed. The authors of the dataset have created the

threat vectors and have specified the details of each threat.

Using these details it was possible to link the attack vectors (and thus the label of the attack)

so specific hosts in the large number of packet capture files; consequently, this was used to label

the flows descriptions produced by the flow meter. This IP packets reverse-engineering process is

illustrated at a high level in Figure 3.2. From the Figure, csv2 is the output of the re-engineering

process. An illustration of csv2 is shown in Figure 3.3.

Sub-flow
Generator

Flow Meter

IP Packets
Flow Statistics

csv1

csv2

CICIDS 2017
DATASET

Figure 3.2: CICIDS2017 Dataset Re-engineering

CHAPTER 3. METHODOLOGY 45

Flow statistics
PCAP Files

csv1

CICIDS 2017
DATASET

Flow Meter
(Python)

X Y

Subflow=0.05s

X Y

Max Flow = 120s
csv2

X Y

Subflow=0.0125s

X Y

Subflow=0.025s

.

Figure 3.3: CSVs Representing IP Subflows

The following procedures are carried out in this section of the experimental framework:

1. Recreate IP flows by reverse engineering the IP packets using PCAP files from the dataset.

2. Relevant statistics for each flow is calculated during the reverse engineering process.

3. Match the flows recreated with the flows already recorded in the csv file. This is necessary

in order to match the labels correctly on the recreated flows.

Further details of these procedures are given in Appendix B. As flow extraction from the PCAPs

was essential to this work, a significant amount of work was invested in carefully checking that

the flow meter was working correctly. For example the flows captured by the thesis flow meter

was compared to the CSV files generated by the data set authors which used their CICFlowmeter.

Relevant sanity checks are carried out on the re-engineered data to ensure adequate representation

of the original data. It was found that the flows discovered were similar, however, it appears that

the CICFlowmeter did not capture all of the threat packets, as shown in Figure 3.4. This was

confirmed by manually checking to see that some packets were omitted by the CICFlowmeter.

This gave further validation that reengineering the flows was required.

-0.3%

+27.6%

+0.15%
+2.11%

+13.2%

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

BOT DDOS PSCAN PATATOR WEBATTACK

Attack Packets

Csv Code

(a) Total Attack Packets

-0.024%

+0.18% -0.07%

+0.05%

-0.2%

+0.072

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

BOT DDOS PSCAN PATATOR WEBATTACK DOS

Total Processed Packets

Pcap Csv Code

(b) Total Processed Packets

Figure 3.4: Comparison of packet counts between CICFlowmeter for Re-engineered Data (method
used in this thesis)

CHAPTER 3. METHODOLOGY 46

3.4.2 Subflow Times

As explained in Section 3.4.1, the traffic is sampled at 14 different subflow time intervals including

the maximum flow time of 120s. The different subflow timeintervals are: 0.0125, 0.025, 0.05,0.1,0.3,

0.5, 0.7, 1.0, 1.5, 2.0, 30.0, 60.0 and 120 seconds. These have been chosen in a semi-logarithmic

manner in order to emphasise subflows at lower times closer to the start of the flow. This is

done this way because the CICIDS2017 dataset literature [1] which was discussed in Section 3.2.1

did not consider subflow durations in its work. Also, subsequent works such as [99] which was

discussed in Section 2.10, and are based on the CICIDS dataset also have not considered this

limitation. This is required in order to properly investigate the real time detection properties

of the proposed hierarchical solution. This means that the two-stage intrusion detection process

shown in Figure 3.5 is repeated fourteen times for attack type.

3.4.3 Maximum Flow Duration

One major consideration in the experimental framework is the maximum flow duration. This is

built into the flow meter that has been designed in python. The captured packets are processed

into flows and the flow duration is determined as explained in Section 2.4.2. As explained in Section

2.4.2, the active timeout parameter has been used to determine the maximum flow duration for

this experiment. The IPFIX Standard does not specify any fixed time frame as the standard IP

flow duration. The IPFIX Standard allows for the maximum flow duration to be determined by

the type of application and the metering process. In this experiment, the maximum flow duration

has been chosen as 120s. The major reason for this is because the original authors of the dataset

have chosen this value as the maximum flow duration for their capture and it is desirable for the

re-engineered data to replicate the original data as much as possible. Also, since this research

focuses on near real time intrusion detection, there is more focus on the early stages of the flow

and 120s sufficiently covers this.

3.4.4 Feature Extraction

The flow features for the re-engineered IP flows are either extracted or calculated by the flow

meter. A total of forty six flow features are extracted. The flow features comprise of characteristic

flow properties and measured flow properties as discussed in Section 2.4.1. The characteristic

flow features do not form part of the input to the machine learning model. The main reason

for this is because these features will create a high level of bias on the machine learning model.

CHAPTER 3. METHODOLOGY 47

Additionally, most of the characteristic properties of the flow are not directly in a readable format

for the machine learning algorithms. A total of six characteristic flow features have been extracted;

the flow ID, the source and destination IP addresses, the source and destination port numbers,

and the timestamp. The remaining forty flow features are calculated and form the input of the

machine learning algorithms. The flow properties of each sub-flow are calculated separately and

represents a snapshot of the flow within that time window and are unique for each subflow. The

flow properties are calculated with reference to the IPFIX Standard which was introduced in

Section 2.6.1. A total of forty six flow features were calculated by the flow meter. The complete

list of extracted flow features is given in Appendix C.1.

It should be noted that the first stage intrusion detection will be carried out using limited

traffic flow features. This limitation arises from the OpenFlow protocol itself. OpenFlow was

designed to be a flow-based configuration protocol for packet forwarding devices rather than a

data export or network monitoring tool [64]. According to the Open Networking Foundation’s

OpenFlow Switch Specification [81], the OpenFlow protocol provides the following five Flow Stat

Fields on the OpenFlow Switch:

1. OXS OF DURATION: This field represents the elapsed time the flow entry has been installed

in the switch.

2. OXS OF IDLE TIME: This field: represents the elapsed time for which the flow entry has

not matched any packets.

3. OXS OF FLOW COUNT: This field is only used when the aggregated approach [124] to

flow entry is utilised.

4. OXS OF PACKET COUNT: This field represents the total number of packets matched by

a flow entry.

5. OXS OF BYTE COUNT: This field represents the total number of bytes matched by a flow

entry.

Fields 1-3 above are specific to the flow entry on the OpenFlow Switch. Only 4 and 5 are original

flow properties of the actual packet stream. This concept is what is utilised in the OpenFlow based

traffic classification which is performed at the first stage of the hierarchical intrusion detection

solution. This clearly indicates that the gross flow level information available through OpenFlow

counters are the packet count and the byte count. These are part of the forty six flow features

that have been extracted by the flow meter.

CHAPTER 3. METHODOLOGY 48

3.4.5 Experimental Design

This section presents the complete experimental design. It shows the different components of

the complete workflow and their inter-connectivity. The experimental framework simulates a

hierarchical intrusion detection system in SDN. This is illustrated in Figure 3.5. The first stage

intrusion detection module is domiciled in and simulates the SDN controller. The second stage

intrusion detection module is co-located at the edge (forwarding) device. These intrusion detection

modules are Machine Learning models obtained by training a Machine Learning Algorithm with

the data processed in Section 3.4.1. The flow meter receives the IP packets and reconstructs the

flows based on flow and threat vector information provided in the original dataset. This has been

described in Section 3.4.1. The IP packet stream shown in the figure is contained in the packet

capture (PCAP) files described in section 3.2.1. A critical part of the flow meter is the sub-flow

generator which generates fourteen sub-flows F(i) as specified in Section 3.4.2. Each sub-flow with

OpenFlow features F(i)OF is spilt into train and test data, F(i)OF−train and F(i)OF−test, with a

40% test data ratio. The train portion of each sub-flow is used to train the machine learning

algorithm to create the first stage model. The output of the first stage model is processed as

dictated by the decision box. The idea behind processing the output from the first stage has

been introduced in Section 5.5 and will be discussed further in Section 5.6. The predicted attack

flows are dropped and the predicted benign flows are first translated to full features and are then

passed on to the second stage classification. The reason for the translation of features is because

the flow monitoring at the second stage is not based on OpenFlow and hence not limited to just

OpenFlow features as was the case in the first stage. The total classified results from the first

and the second stages are then combined to give the final hierarchical classification output. This

combination is necessary because only the negative classifications were sent to the second stage

but the final hierarchical results have to be presented and analysed in terms of the overall positive

and negative classifications. Figure 3.6 illustrates the non-hierarchical method. Note that this

figure also contains the flow meter and the sub-flow generator. This ensures that sub-flows of

identical duration to those from the hierarchical solution are created. The same feature extraction

procedures and the same train-test split size as was used in the hierarchical experiment is also

used for here. This allows for a balanced comparion between the two methods. It should be noted

that the processing of the data to create the models and test results is computationally intensive.

Each attack dataset typically represent 6 hours of packet flows that have to be processed by

the flow meter for each sub-flow. Then the features have to be collected and used to train the

CHAPTER 3. METHODOLOGY 49

model, then the model is tested. Separate models are created for each sub-flow and the process

repeated for each attack. The entire process is then repeated for the non-hierarchical approach

but with the non-hierarchical approach utilising only one classifier. The comprehensive results of

the experiment is given in Section 5.6. Please note that this process as described in Figure 3.5 has

been modified in Chapter 6. The details of the modification have been provided in Chapter 6.

ML
Train

1st Stage
Model

F(i)OF F(i)OF-train

EXPERIMENTAL DESIGN

Train

Test

No
Split

F(i)OF-test

Sub-flow
Generator

FOF

ML
Train

2nd

Stage
Model

F(i)CF

F(i)CF-train
Split

F(i)CF-test

Classification
= Benign

Translate
to full

features

Yes

Drop
packets

Final
classification
output

Combine
classification

results

Combination bc only the n predictions
were sent to the 2nd stage and the overall
final results will have to be presented in
terms of the overall p and n predictions.

Flow Meter

IP Packets

FINAL DIAGRAM

Split

F(i)Sub-flow
Generator

Flow Meter

Split

F(i)Sub-flow
Generator

Flow Meter

Split

Figure 3.5: Experimental Design for Hierarchical Solution

ML
Train

1st Stage
Model

F(i)OF

F(i)OF-train
No

Split

F(i)OF-test

Sub-flow
Generator

ML
Train

Edge
Classifier

F(i)CF F(i)CF-train
Split

F(i)CF-test

Classification
= Benign

Translate
to full

features

Yes

Drop
packets

Final
classification
output

Combine
classification

results

Flow Meter

IP Packets

Figure 3.6: Experimental Design for Non-Hierarchical Approach

3.5 Summary

The main contribution of this chapter is the introduction of a novel methodology for evaluating

intrusion detection solutions. This involves the creation of a sub-flow generator in the flow meter

design based on the IPFIX standard which does not provide for sub-flow generation. This chapter

also presented a unique experimental framework which allowed for distributed machine learning

instances which would be used to simulate a hypothetical SDN topology to be used for the work

in Chapters 5 and 6. Also, the methodology described in this chapter forms the basis for the first

stage design framework presented in Chapter 4.

Chapter 4

Intrusion Detection Model Design

4.1 Introduction

This chapter explores the machine learning models that will be applied later in Chapter 5 to

the hierarchical solution, briefly introduced in Chapter 1. The main aim of this chapter is to

focus on the machine learning model itself before it is later applied to the hierarchical approach.

To obtain this model, different machine learning algorithms are evaluated based on the unique

requirements of the proposed hierarchical security solution. The unique requirements for the

hierarchical solution are:

1. Fast detection times to allow for timely intrusion detection, this is particularly important as

the proposed solution entails a two-stage hierarchical machine learning process;

2. Fast model train time to allow for quick deployment and live update of the model

3. Good recall to ensure that a high proportion of the attack traffic is detected.

Five machine learning algorithms have been chosen for this evaluation. The five algorithms have

been selected across linear and non-linear algorithms. The five machine learning models evaluated

are; Linear Discriminant Analysis, Logistic Regression, Decision Tree Classifier, K-Nearest Neigh-

bours Classifier and Gaussian Naive Bayes. The evaluation is made using the intrusion detection

dataset CICIDS2017 [1], which has been introduced in Section 3.2.1. This choice of algorithms was

inspired by the literature search documented in Chapter 2, a good summary is given by Mishra

et al. [6]. One notable machine learning technique which has not been considered is that of deep

neural networks. As pointed out by Mishra et al., while deep neural networks are very attractive

50

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 51

for image classification, they have limitations for very fast packet processing due to the high rate

of traffic requiring very intensive processing using graphic processing units (GPUs). In the future,

when GPU based deep neural networks become cheaper, it might be a solution that could be

investigated.

Work done in this chapter has been carefully synthesised to develop a design framework.

Although this design framework is original to work done in this thesis, it can be adapted to any

dataset and to any machine learning algorithms. The design framework is shown in Figure 4.1.

Data Preprocessing

Model Evaluation

Model Implementation
performance Analysis

Design Scenarios

Feature Selection
Data CleanupCICIDS 2017

Dataset

Fit Time
Score Time
Test Score

Train Time
Predict Time
Precision
Recall
Confusion
Matrix

5 Machine Learning
Algorithms

5 Machine Learning
Aloriths

Final Model for 1st
Stage Classifier

Single Multiclass Classifier
Merged Multiple Binary Classifier
Isolated Multiple Binary Classifier

Figure 4.1: 1st Stage Design Framework

The data prepossessing stage involves preparing the CICIDS2017 dataset into a format suitable

for Machine Learning. This section also involves reducing the dimensionality of the data through

a feature reduction process. In the model evaluation section, five Machine Learning algorithms

are chosen and evaluation parameters such as fit time, score time and test score are used to

evaluate the performance of the different algorithms. The model implementation performance

section simulates actual deployment of the five algorithms to create classification models which

are deployed in an SDN architecture. The parameters of interest for this analysis are the train

time, predict time, prediction accuracy, recall and F1 score. The confusion matrix is also utilised

for this stage of analysis. Further down on the framework, three different design scenarios are

then created as shown in Figures 1.29, 1.30, 1.31. A single scenario from this section is adopted

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 52

as the first stage classifier based on additional evaluation results as presented in Section 1.7. The

adopted design scenario captures output from all previous blocks of the framework.

The methodologies presented in this chapter utilise standard features of the Python library

scikit-learn [15] unless otherwise stated.

At the end of this chapter a brief emulation will demonstrate a preliminary estimation of how

the machine learning could be applied to a hierarchical model to test the approach.

4.2 Model Evaluation

The process of model evaluation involves training and evaluating the model using the train portion

of the dataset. This is carried out using K-fold cross validation with a split size of 10. In this

process, the evaluation metrics of fit time, score time and test score are used. The fit time is the

mean time the train data takes to fit the model on across the entire cross validation split. Note

that with a split size of 10, a tenth of the data is used as a test set. The score time is the mean

time expended by the model on each test set across the entire cross validation split. The test score

is the mean accuracy score on the test set across the entire cross validation split. This is illustrated

in Figure 4.2. Upon satisfactory response of these metrics, the resulting model is used to simulate

model implementation. The following sections will provide more detail of the model evaluation

process across different attack types. The use of cross validation allows the repeatability of the

model across different data. In practice, for the data sets used here the variation was very small,

and thus the basic statistics on this variability are only shown in the first two cases, for all others

the variability was equally small.

Cross
Validate
K=10

Train/Test
Split
Test size
= 0.2

Algorithm
Data
f0

Prediction

?0 , ?1 , ?2«..?n

Model

µ0Model Validation

Subflows
f1, f2, f3...fn

SINGLE MODEL APPROACH

Algorithm Cross Validate
K = 10

Train Data

Test Data

Model

Fit time
Score time
Test Score

Predict time
Recall
Precision
F1 Score

Model Evaluation

Model
Implementation

Model

Train using
Train/Test Split

Figure 4.2: Model Evaluation using k-fold Cross Validation

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 53

4.2.1 Model Evaluation Results for DDoS

As explained in Section 4.2, the evaluation score shown in Figure 3.1 has been split into the more

specific components of the fit time, score time, and test score. This second phase evaluation

utilizes the first six features from the feature selection process.

Results for DDoS once again show CART and KNN returning very high test scores (average

0.99) but this second phase evaluation results show a significant difference in fit and score times as

shown in Table 4.1. The results show that CART returns a significantly lower fit and score times

than KNN. Figures 4.3 further splits the results into 2 graphs. Figure 4.3a shows the test scores

and figure 4.3b shows the fit and score times for for the model evaluation for DDoS attacks. The

score time is a parameter of significant importance for the design of the intrusion detector model.

This is because the classifiers need to make classifications in real-time at a rate comparable to the

traffic flow rate.

The evaluation score times for CART and KNN (the closest competitors for DDoS) are shown

in Figure 4.4 and shows a factor of nearly 1000 in favour of CART. This suggests CART to be a

more likely suitable algorithm for the design of the classifiers of the hierarchical model. Also, the

attack types considered in this research is limited to the available dataset.

Table 4.1: Performance Evaluation of 5 Machine Learning Algorithms for DDoS Attacks

MODEL EVALUATION (DDoS)

Algorithm Fit Time (s) Score Time (s)
Test Score

Mean Std Dev Min Max
LR 0.890995 0.001988 0.667 0.002 0.663 0.671
LDA 0.105983 0.002194 0.773 0.003 0.768 0.778
KNN 2.301868 2.258479 0.992 0 0.992 0.993
CART 0.12518 0.003014 0.999 0 0.999 1
NB 0.048441 0.00269 0.812 0.002 0.808 0.815

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 54

(a) Test Score (b) Fit and Score Times

Figure 4.3: Evaluation Results for DDoS showing Test Score, Fit Score and Fit Time

Figure 4.4: Performance Evaluation of the Top 2 Machine Learning Algorithms for DDoS Attacks
showing Score Time

4.2.2 Model Evaluation Results for BOTNET

Model evaluation results for the BOTNET attack is shown in Table 4.2. These results follow

a similar trend to DDoS. The results for BOTNET show CART with the highest test score of

99.94% and a score time of 0.00216s. LDA returns a marginally faster time of 0.00209s but has a

lower test score of 98.96%. Once again KNN returns a very good test score of 99.68% but returns

a high score time of 0.253s which is higher by an approximate factor of 100 to the CART score

time. The reason for this large difference in score time is because the KNN algorithm calculates

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 55

distance from the reference sample to all training samples. Hence when the training data is very

large, this results in a decline in classification speed [125] as evidenced by the the high score times

recorded in this results. Figure 4.5 further illustrates the comparison of test score and score time

between the different algorithms.

Table 4.2: Performance Evaluation of 5 Machine Learning Algorithms for BOTNET Attacks

MODEL EVALUATION (BOT)

Algorithm Fit Time (s) Score Time (s)
Test Score

Mean Std Dev Min Max
LR 1.708155 0.003533 0.99 0.001 0.988 0.991
LDA 0.074206 0.002095 0.99 0.001 0.988 0.991
KNN 1.110726 0.253919 0.997 0 0.997 0.998
CART 0.188147 0.002161 0.999 0 0.999 1
NB 0.036608 0.003665 0.315 0.012 0.307 0.35

(a) Test Score (b) Score Time

Figure 4.5: Evaluation Results for BOTNET

4.2.3 Model Evaluation Results for Portscan

Model evaluation results for the Portscan attack are shown in Table 4.3. These results follow a

similar trend to DDoS and BOT with CART returning the most impressive metrics. The results

for BOTNET show CART once again with the highest test score of 99.80% and a score time of

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 56

0.00399s. LDA yet again returns a marginally faster time of 0.00309s but this time returns a much

lower test score of 76.12%. Similar to the two previous attack scenarios, KNN returns a very good

test score of 99.32% but returns a much higher score time of 1.18s which makes KNN relatively

unsuitable for the classifiers of the proposed Hierarchical Machine Learning SDN security model.

Figure 4.6 further illustrates the comparison of test score and score time between the different

algorithms.

Table 4.3: Performance Evaluation of 5 Machine Learning Algorithms for PORTSCAN Attacks

MODEL EVALUATION (PSCAN)
Algorithm Fit Time (s) Score Time (s) Test Score
LR 0.73465 0.004272 0.411039
LDA 0.133543 0.003092 0.761238
KNN 1.846937 1.18761 0.993206
CART 0.278064 0.003995 0.998051
NB 0.063132 0.00619 0.603121

(a) Test Score (b) Score Time

Figure 4.6: Evaluation Results for Portscan

4.3 Model Implementation Performance

The model implementation is a critical stage of the Classifier design. The model implementation

procedure involves applying the hitherto unseen test data on the model. This is illustrated in

Figure 4.7. While the model evaluation procedure simulates the process of creating the the model,

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 57

the model implementation procedure simulates the actual operation of the model upon deploying

the model in a production network. The results of this procedure represents an indication of the

actual performance of the algorithms when deployed in real scenario. During model evaluation,

the evaluation parameters considered were the fit time, the score time and the test score. In terms

of model implementation, the parameters of interest at this stage of design are the train time,

predict time, recall, precision and F1 score.

Cross
Validate
K=10

Train/Test
Split
Test size
= 0.2

Algorithm
Data
f0

Prediction

?0 , ?1 , ?2«..?n

Model

µ0Model Validation

Subflows
f1, f2, f3...fn

SINGLE MODEL APPROACH

Algorithm Cross Validate
K = 10

Train Data

Test Data

Model

Fit time
Score time
Test Score

Predict time
Recall
Precision
F1 Score

Model Evaluation

Model
Implementation

Model

Train using
Train/Test Split

Figure 4.7: Model Implementation

To understand how these metrics are derived, a sample confusion matrix is shown in Figure

4.8. In machine learning, classification results are usually summarized in a confusion matrix [126].

In relation to work done in this research, negative refers to benign flows while positive refers to

attack flows. True negative (TN) refers to the portion of the classification output that has

correctly identified benign flows while false positive (FP) is the portion of the output that

has incorrectly identified benign flows as attack flows. The false negative (FN) is the most

important confusion matrix component with respect to work done in this thesis. FN represents

the portion of the classification output that has incorrectly identified attack flows as benign flows.

This has the greatest security implication in networks and is a critical parameter in the recall

metric and other accuracy metrics which would be used in the evaluation of the proposed security

solution. Finally, the true positive (TP) refers to the portion of the classification output that

has correctly identified the attack flows.

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 58

60Gb/s

40Gb/s

5Gb/s

35Gb/s

Reduced packet stream

35Gb/s
Good traffic allowed through

1) If all Ps are sent to classifier 2 and all Ns allowed through

a) In this case, a high FP in the the first stage means unnecessary
overload on classifier 2. which will impact n network efficiency.

b) Also in this scenario, a high FN in the first stage will be highly
detrimental to network security because substantial attack traffic
will be allowed through to network.

2) If all Ns are sent to classifier 2 and all Ps are dropped

a) In this case, a high FP in the first stage means loss of information as
substantial good traffic will be dropped.

b) In this scenario, a high FN in the first stage which would have been
detrimental to network security is addressed by classifier 2.

True Negative

TN

TN FP

FN TP
False Positive

FP

True Positive

TP

Actual Negative

(Benign Flows)

Actual Positive

(Attack Flows)

Classified Negative

(Benign Flows)

Classified Positive

(Attack Flows)

False Negative

FN

Figure 4.8: Sample Confusion Matrix

Equations 4.1, 4.2 and 4.3 give the calculations for recall, precision and F1 score respectively.

As expected, the recall metric is the most critical accuracy metric in the evaluation of the proposed

hierarchical intrusion detection solution. The recall metric is a measure of completeness and is an

indication of how much of the available attack flows have been correctly classified. From Equation

4.1, it can be seen that the recall metric defines the ratio of accurate attack classifications in

relation to the total attack flows present in the dataset. This is indirectly proportional to the FN

value, hence a large FN value gives a low recall value. An intrusion detection system with a low

recall value offers little protection to the network. Therefore, one of the main goals of the proposed

solution is to have a low FN output and a high recall value. A high recall metric is of particular

importance in the design of the intrusion detection module because of the need for a very low

false negative output. The implication of a low false negative output is that malicious packets or

flows are not erroneously allowed through to the network as benign packets or flows. Precision

on the other hand gives a measure of how precise the flow classifications have been. Precision

gives a measure of how much of the classified flows have been correctly classified. The precision

metric defines the ratio of accurate attack classifications in relation to all the attack classifications

(both accurate and inaccurate attack classifications) as seen in Equation 4.2. While the precision

metric is one of the standard ways of evaluating the accuracy of the intrusion detection model, it

does not represent complete protection of the network. Hence, the precision metric is only used

for limited analysis in this work. These parameters could be considered to be analogous to the

already considered model evaluation parameters. The impact of these metrics on the proposed

solution is considered in more depth in the next Section 5.5.

Recall =
TP

TP + FN
(4.1)

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 59

Precision =
TP

TP + FP
(4.2)

The F1-score combines the recall and precision metrics by calculating their harmonic mean. Since

the F1-score gives a balanced measure of the precision and recall, it is only used for selected

analysis in this work.

F1-Score =
2(Precision ∗Recall)

Precision+Recall
(4.3)

The more generic accuracy measure given in Equation 4.4 is less critical in this application. This

is because in an imbalanced dataset (like the ones used for this study), can return a very high

accuracy but the classification results may have completely missed out all the attack traffic. Given

that the essence of this study is to detect malicious IP packets represented in the dataset, the

generic accuracy value will not be used as the key measure of accuracy. Section 5.5 explains in

further detail how the relevant metrics impact on the design and operation of the hierarchical

solution.

Accuracy =
TP + TN

TP + FP + FN + TN
(4.4)

The Model implementation results further validate the evaluation results. In the Model Implemen-

tation results, further reference is made of feature selection. The Model Implementation metrics

of train time, predict time and prediction accuracy are presented with different feature selection

results. The Model Implementation metrics are presented first using all the features available on

the respective datasets, secondly with the first six important features and lastly with the first

three important features. Further analysis of the results suggest an optimal use of the first six

important features for Model Implementation of all attack categories.

4.3.1 Model Implementation Performance for DDoS

Initial model implementation results for DDoS showing the performance metrics of prediction

time and prediction accuracy are presented in Tables 4.4 and 4.5. The results in Table 4.4 show a

significant reduction in prediction time across all the algorithms when the features are reduced from

all eighty available features to the first six and to the first three. CART returns an 85% reduction

in prediction time when all available eighty features are reduced to six features while maintaining

its 99.9% prediction accuracy. This conforms to the trend captured in the model evaluation and

thus validates the model evaluation results. NB offers a 93% reduction in prediction time but gives

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 60

Table 4.4: Prediction Times for DDoS Using Different Feature Selection Results

Predict Time for DDoS (s)
Algorithm All Features 1st 6 Features 1st 3 Features
LR 0.008985 0.001996 0.000998
LDA 0.007979 0.000998 0.000998
KNN 5.971206 5.626392 11.625983
CART 0.012965 0.002023 0.002023
NB 0.094778 0.006981 0.003963

Table 4.5: Prediction Accuracy for DDoS Using Different Feature Selection Results

PREDICTION ACCURACY for DDoS
Algorithm All Features 1st 6 Features 1st 3 Features
LR 0.9459 0.64111 0.6675
LDA 0.9808 0.77263 0.7445
KNN 0.9978 0.99235 0.9975
CART 0.9997 0.99937 0.9975
NB 0.8061 0.80956 0.8515

a prediction accuracy of 80.6% and 80.9% when reduced from eighty to six features respectively.

Although KNN returns a consistently high prediction accuracy of 99.9%, its prediction times are

much higher (5.97s and 5.62s) which makes it unsuitable for the proposed Hierarchical Classifier

design. LDA and LR return a much reduced prediction accuracy when the feature set is reduced.

A graphical comparison between the two nearest candidates for this attack category (CART and

NB) are shown in Figure 4.9. Figure 4.10 also clearly shows the prediction time difference between

CART and NB when using the preferred choice of six features. Figure 4.11 shows the combined

accuracy of all five algorithms across the three feature selection results while Figure 4.12 presents

results which include other model implementation metrics such as precision, recall and F1 score.

Here it is seen that the critical metric of recall is highest for CART across all other algorithms.

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 61

(a) CART Predict Time (b) KNN Predict Time

Figure 4.9: Implementation Results for DDoS

Figure 4.10: Prediction Times for CART and NB Using 1st 6 Feature Set for DDoS

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 62

Figure 4.11: Prediction Accuracy for DDoS Across the Different Feature Selection Results DDoS

An imbalanced data can have a very high accuracy but the
predictions/classification results may have completely missed out all tha
attack traffic.

The more generic accuracy measure given in Equation xx is less critical in
this application. This is because in an imbalanced dataset (Like the ones
used for this study),….

In this section we also show a summary of the design results as seen in
Figure xxx.

LR LDA KNN CART NB

Prediction Accuracy 0.99 0.99 0.9973 0.9993 0.3134

Precision 0.9801 0.9801 0.9973 0.9993 0.9887

Recall 0.99 0.99 0.9973 0.9993 0.3135

F1 Score 0.9851 0.9851 0.9973 0.9993 0.4652

0

0.2

0.4

0.6

0.8

1

1.2

MODEL IMPLEMENTATION BOT

Prediction Accuracy Precision Recall F1 Score

LR LDA KNN CART NB

Prediction Accuracy 0.64111 0.77263 0.99235 0.99937 0.80956

Precision 0.71 0.84 0.99 0.99 0.86

Recall 0.64 0.77 0.99 0.99 0.81

F1 Score 0.63 0.75 0.99 0.99 0.8

0
0.2
0.4
0.6
0.8

1
1.2

MODEL IMPLEMENTATION (DDoS)

Prediction Accuracy Precision Recall F1 Score

Figure 4.12: Model Implementation Metrics for DDoS

The Model Implementation results presented thus far provides a framework for the choice of

an optimal Classifier Model for the design of the 1st stage classifier for the proposed Hierarchical

Machine Learning security architecture for SDN. To further expand the framework, additional

performance measures need to be evaluated. The confusion matrix puts real numbers to the

prediction accuracy results and helps to further explain each model’s performance. The confusion

matrix for CART implementation for DDoS is presented in Figure 4.13a. It shows a total of

45,143 traffic flows in the test/validation dataset out of which 19,679 entries are benign and

25,464 are DDoS traffic. The CART Classifier failed to classify 18 DDoS traffic flows returning a

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 63

false negative of 18 while also returning a false positive of 10, failing to classify 10 benign traffic.

The 1st stage Classifier of the proposed Hierarchical Machine Learning Architecture is required

to have very low false negative as has been explained in Sections 4.1 and 5.5. From the Model

Implementation framework considered thus far, the LDA provides the lowest false negative of 2 as

seen in figure 4.13b but provides a very high false positive of 10,262. This explains the reason for

the LDA Classifier returning a very high recall of 99.99% on the DDoS traffic (from the output of

Scikit Learn but not shown here). While the very low FN (high recall) from LDA is a very useful

result, the very high FP (low precision) output will overload the 2nd stage classifier and possibly

impact on the overall efficiency of the solution as has been explained in Section 5.5. Further

investigation is required to determine the possibility of reducing the FP of the LDA Classifier and

hence determining its suitability for use as the 1st stage Classifier. In this regard the CART offers

a more balanced combination of FN and FP.

(a) CART (b) LDA

Figure 4.13: Confusion Matrix for DDoS

For further analysis of the Model Implementation results for CART, a visualisation of the

decision tree is presented in Figure 4.14. It is seen that the attribute or feature at the root node

is Forward Packet Length Max which was already seen in Table 3.5 as the most important feature

from the feature selection process. The train data is 180592 samples (IP flows) as also seen at the

root node. The tree has 14 leaf or terminal nodes with all 180592 samples distributed to these

nodes after fulfilling required conditions on decision nodes. For further analysis, a section of the

decision tree is shown in Figure 4.15. From Figure 4.15, it is seen that the gini value at the root

node is 0.491. The gini value at the root node takes into consideration the entire dataset, D. For

example, for the DDoS example of Figure 4.15, the CART algorithm calculates this value from

Equation 2.1 and is shown thus:

Gini(D) = 1−
2∑

i=1

(Pi)
2

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 64

Gini(D) = 1− ((
78047

180592
)2 + (

102545

180592
)2) = 0.491

While the above calculates the Gini value for the whole dataset across all features, the Gini index

for selecting the split attribute, b, for dataset D is calculated using Equation 2.2:

Gini index(D, b) =

U∑
u=1

|Du|
|D|

Gini(Du)

which resulted in the choice of Forward Packet Length Max as the most important attribute in

the train data. The details of this is not shown on the tree output and is also not shown here due

to the large nature of the dataset and the complex nature of the calculations. Further explanation

on the operation of the decision tree algorithm is given in Section 2.9.1. The root node is further

split to another decision node shown on the left with a sample value of 125641. Since this is a

decision node, the process described above is repeated and the node is further split into other child

nodes. This process continues recursively until a leaf node is achieved. The root node also splits

into a leaf node shown on the right with a sample size of 24951. The gini value for this node is 0

which implies a homogeneous class distribution. In this case all the 54951 samples are classified

as benign.

Every machine learning instance of decision tree implemented in this research produces a tree

of this nature. In the course of this work, hundreds of decision trees have been generated which

all follow the same explanation provided in this section.

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 65

Figure 4.14: CART for DDoS Classification

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 66

Figure 4.15: CART for DDoS Classification (showing just top three nodes)

4.3.2 Model Implementation Performance for BOTNET

Initial model implementation results for BOTNET attack showing the critical metrics of prediction

time and prediction accuracy are presented in Tables 4.6 and 4.7. Similar to the Model Implemen-

tation results for DDoS, the results in Table 4.6 show a significant reduction in prediction time

across all the algorithms when the features are reduced from all eighty available features to the

first six and to the first three. CART returns an 82% reduction in prediction time when all avail-

able eighty features are reduced to six features while maintaining its 99.9% prediction accuracy.

Although KNN also returns a consistently high prediction accuracy of 99.9%, its prediction times

are much higher (5.6s and 0.65s) which makes it relatively unsuitable for the proposed Hierarchical

Classifier design. As with the results for DDoS, NB offers a 93% reduction in prediction time but

gives very low prediction accuracy across the 3 feature reduction results. LDA and LR return

a much reduced prediction accuracy when the feature set is reduced. This once again conforms

to the trend captured in the model evaluation and thus validates the model evaluation results.

A graphical comparison between the two nearest candidates for this attack category (CART and

KNN) are shown in Figure 4.16. Figure 4.17 also clearly shows the prediction time difference

between CART and KNN when using the preferred choice of six features. Figure 4.18 shows the

combined accuracy of all five algorithms across the three feature selection results while Figure 4.19

presents results which include other model implementation metrics such as precision, recall and

F1 score. Here, it is seen that the more critical metric of recall returns a value of over 99% across

all algorithms except the Naive Bayes which returns a value of 31.1% recall. However, CART

returns a precision of 99.93% (the highest amongst the the other algorithms), which explains the

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 67

Table 4.6: Prediction Times for BOTNET Using Different Feature Selection Results

PREDICT TIME (BOT)
Algorithm All Features 1st 6 Features 1st 3 Features
LR 0.006956 0.000998 0.000997
LDA 0.006983 0.000998 0.000997
KNN 5.654006 0.653103 0.4088
CART 0.01299 0.002338 0.001994
NB 0.084774 0.005985 0.001994

Table 4.7: Prediction Accuracy for BOTNET Using Different Feature Selection Results

PREDICTION ACCURACY (BOT)
Algorithm All Features 1st 6 Features 1st 3 Features
LR 0.9881 0.99 0.9899
LDA 0.9827 0.99 0.99
KNN 0.9974 0.9973 0.9954
CART 0.9992 0.9993 0.9952
NB 0.3524 0.3134 0.1769

99.93% F1-Score which is also the highest amongst the other algorithms.

(a) CART Predict Time (b) KNN Predict Time

Figure 4.16: Implementation Results for BOTNET

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 68

Figure 4.17: Prediction Times for CART and KNN Using 1st 6 Feature Set (BOTNET)

Figure 4.18: Prediction Accuracy for BOTNET across the Different Feature Selection Results

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 69

An imbalanced data can have a very high accuracy but the
predictions/classification results may have completely missed out all tha
attack traffic.

The more generic accuracy measure given in Equation xx is less critical in
this application. This is because in an imbalanced dataset (Like the ones
used for this study),….

In this section we also show a summary of the design results as seen in
Figure xxx.

LR LDA KNN CART NB

Prediction Accuracy 0.99 0.99 0.9973 0.9993 0.3134

Precision 0.9801 0.9801 0.9973 0.9993 0.9887

Recall 0.99 0.99 0.9973 0.9993 0.3135

F1 Score 0.9851 0.9851 0.9973 0.9993 0.4652

0

0.2

0.4

0.6

0.8

1

1.2

MODEL IMPLEMENTATION BOT

Prediction Accuracy Precision Recall F1 Score

Figure 4.19: Model Implementation Metrics for BOTNET

To further expand the model implementation performance results presented thus far for BOT-

NET, the Confusion Matrix output from selected classifiers are presented. For BOTNET attacks,

the confusion matrix for CART gives the best results. The Confusion Matrix for CART is pre-

sented in figure 4.20a and shows that there are 38,183 flows in the test data, of which 37,802 are

benign flows while 381 are BOTNET attacks. Of the 37,802 benign flows, the Classifier returned

a FP value of 14 while returning a FN value of 11 from the 381 BOTNET attack flows. From

figure 4.20b, NB returns a low FN of 17 but returns but a very high FP of 26,196.

(a) CART (b) KNN

Figure 4.20: Confusion Matrix for BOTNET

4.3.3 Model Implementation Performance for Portscan

Initial model implementation results for Portscan attack showing the critical metrics of prediction

time and prediction accuracy are presented in Tables 4.8 and 4.9. As with previous results, Table

4.8 shows a significant reduction in prediction time across all the algorithms when the features

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 70

Table 4.8: Prediction Times for Portscan Using Different Feature Selection Results

PREDICT TIME (PSCAN)
Algorithm All Features 1st 6 Features 1st 3 Features
LR 0.015584 0.000998 0.000999
LDA 0.015621 0.001001 0.000998
KNN 22.390143 3.288231 1.484005
CART 0.017952 0.007008 0.004017
NB 0.119708 0.010971 0.003989

Table 4.9: Prediction Accuracy for Portscan Using Different Feature Selection Results

PREDICTION ACCURACY (PSCAN)
Algorithm All Features 1st 6 Features 1st 3 Features
LR 0.9483 0.4074 0.4055
LDA 0.9886 0.762 0.6421
KNN 0.9992 0.9947 0.9947
CART 0.9998 0.9979 0.9975
NB 0.6907 0.6077 0.6045

are reduced from all eighty available features to the first six and to the first three. CART returns

a 61% reduction in prediction time when all available eighty features are reduced to six features

while maintaining its 99.9% prediction accuracy. KNN is the only other algorithm that returns

a consistently high prediction accuracy of 99.9%, but its prediction times are much higher (22.3s

and 3.2s) which makes it relatively unsuitable for the proposed Hierarchical Classifier design. NB,

LDA and LR all return a much reduced prediction accuracy when the feature set is reduced. A

graphical comparison between the two nearest candidates for this attack category (CART and

KNN) are shown in Figure 4.21. Figure 4.22 shows the combined accuracy of all five algorithms

across the three feature selection results while Figure 4.23 presents results which include other

model implementation metrics such as precision, recall and F1 score. Once again, it it is seen here

that CART consistently posts the highest of all the metrics including the critical recall metric,

amongst all the other algorithms.

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 71

(a) CART Predict Time (b) KNN Predict Time

Figure 4.21: Implementation Results for Portscan

Figure 4.22: Prediction Accuracy for Portscan across the Different Feature Selection Results

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 72

An imbalanced data can have a very high accuracy but the
predictions/classification results may have completely missed out all tha
attack traffic.

The more generic accuracy measure given in Equation xx is less critical in
this application. This is because in an imbalanced dataset (Like the ones
used for this study),….

In this section we also show a summary of the design results as seen in
Figure xxx.

LR LDA KNN CART NB

Prediction Accuracy 0.99 0.99 0.9973 0.9993 0.3134

Precision 0.9801 0.9801 0.9973 0.9993 0.9887

Recall 0.99 0.99 0.9973 0.9993 0.3135

F1 Score 0.9851 0.9851 0.9973 0.9993 0.4652

0

0.2

0.4

0.6

0.8

1

1.2

MODEL IMPLEMENTATION BOT

Prediction Accuracy Precision Recall F1 Score

LR LDA KNN CART NB

Prediction Accuracy 0.64111 0.77263 0.99235 0.99937 0.80956

Precision 0.71 0.84 0.99 0.99 0.86

Recall 0.64 0.77 0.99 0.99 0.81

F1 Score 0.63 0.75 0.99 0.99 0.8

0
0.2
0.4
0.6
0.8

1
1.2

MODEL IMPLEMENTATION (DDoS)

Prediction Accuracy Precision Recall F1 Score

LR LDA KNN CART NB

Prediction Accuracy 0.4074 0.762 0.9947 0.9979 0.6077

Precision 0.2157 0.8322 0.9948 0.998 0.7403

Recall 0.4074 0.7621 0.9948 0.998 0.6078

F1 Score 0.259 0.7393 0.9948 0.998 0.5068

0

0.2

0.4

0.6

0.8

1

1.2

MODEL IMPLEMENTATION (PSCAN)

Prediction Accuracy Precision Recall F1 Score

Figure 4.23: Model Implementation Metrics for Portscan

Considering the Confusion Matrix for Portscan, Figure 4.24b shows that LDA returns the least

FN value of 29, resulting in the highest recall value of 99.9% (not shown in the report). However,

LDA gives a very high FP value of 13586. While a very low FN and high recall is the desirable

requirement for the design of the 1st stage Classifier, further investigations may need to be carried

out to determine the suitability of LDA for the 1st stage Classifier design. CART on the other

hand provides a more balanced combination of FN and FP and gives a recall value of 99.6%. The

confusion Matrix for CART is shown in figure 4.24a.

The work of this section has shown that the CART decision tree algorithm is the most appro-

priate from those tested as it has high precision and recall with low run-time requirements.

(a) CART (b) LDA

Figure 4.24: Confusion Matrix for Portscan

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 73

4.3.4 Model Implementation Performance for Patator

Figure 4.25 shows the model implementation metrics for patator attack. As can be seen, these

also favour the choice of the CART algorithm as can be seen from results of the critical metric

of recall and other performance metrics. The other analysis shown for the previous attack types

have been excluded for this attack as there is no significant deviation in the analysis.

In this section we also show a summary of the design results as seen in
Figure xxx.

LR LDA KNN CART NB

Prediction Accuracy 0.99 0.99 0.9973 0.9993 0.3134

Precision 0.9801 0.9801 0.9973 0.9993 0.9887

Recall 0.99 0.99 0.9973 0.9993 0.3135

F1 Score 0.9851 0.9851 0.9973 0.9993 0.4652

0

0.2

0.4

0.6

0.8

1

1.2

MODEL IMPLEMENTATION BOT

Prediction Accuracy Precision Recall F1 Score

LR LDA KNN CART NB

Prediction Accuracy 0.64111 0.77263 0.99235 0.99937 0.80956

Precision 0.71 0.84 0.99 0.99 0.86

Recall 0.64 0.77 0.99 0.99 0.81

F1 Score 0.63 0.75 0.99 0.99 0.8

0
0.2
0.4
0.6
0.8

1
1.2

MODEL IMPLEMENTATION (DDoS)

Prediction Accuracy Precision Recall F1 Score

LR LDA KNN CART NB

Prediction Accuracy 0.4074 0.762 0.9947 0.9979 0.6077

Precision 0.2157 0.8322 0.9948 0.998 0.7403

Recall 0.4074 0.7621 0.9948 0.998 0.6078

F1 Score 0.259 0.7393 0.9948 0.998 0.5068

0

0.2

0.4

0.6

0.8

1

1.2

MODEL IMPLEMENTATION (PSCAN)

Prediction Accuracy Precision Recall F1 Score

LR LDA KNN CART NB

Prediction Accuracy 0.968 0.9575 0.9994 0.9997 0.2583

Precision 0.9378 0.9375 0.9995 0.9997 0.9691

Recall 0.968 0.9575 0.9995 0.9997 0.2583

F1 Score 0.9527 0.9474 0.9995 0.9997 0.378

0
0.2
0.4
0.6
0.8

1
1.2

MODEL IMPLEMENTATION (PATATOR)

Prediction Accuracy Precision Recall F1 Score

Figure 4.25: Model Implementation Metrics for Patator

4.4 The Single Model Problem

The single model problem arises from the fact that the machine learning algorithm is trained on

traffic with a specific attack profile. Whereas, in a practical scenario, the intrusion detector is

exposed to multiple attack profiles. The single model problem refers to using a different attack

traffic as input to an intrusion detection model that has been trained on a different attack type.

This experiment is necessary to highlight and to better understand the advantage of using a single

class classifier; the metrics to focus on are the precision and recall. From the results as shown

in Figure 4.26, it is seen clearly that there exists a potential problem whenever the attack type

does not match the trained classification model. From the result, it is seen that BOT traffic on

a DDoS Model yields impractical 6.7% precision and 38.8% recall values while same BOT traffic

on a PSCAN Model yields 1.64% precision and 34.72% recall on the attack traffic. Similar trends

occur for the other attack traffic and different models as shown in the figure except for DDoS

traffic on PSCAN Model which gives relatively high precision and recall values of 81.22% and

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 74

63.15% respectively. A possible reason for this is that port scanning attacks is one of the means

by which DDoS is achieved. While typical port scanning attacks can be used to achieve DDoS, not

all DDoS attacks are achieved by port scan. Hence the traffic profile of both attacks may contain

some similarities which may reflect in the PSCAN model allowing the PSCAN model return a

fairly accurate prediction when DDoS traffic is applied to it. Is is also seen that precision and

recall for benign traffic across all options are consistently high with very few exceptions. This is

because the traffic profile of the benign traffic across all datasets is expected to be similar. An

important conclusion for this experiment/simulation is that results could be used to investigate

relationships between different attack types. Additionally, this gives justification to seek better

design scenarios which is addressed in subsequent sections.

DDoS
Model

Bot
Traffic

Precision

DDoS
MODEL

6.7% Attack 38.88%
99.35% Benign 94.69%

PSCAN
MODEL

BOT
MODEL

Bot
Traffic

Bot
Traffic

PSCAN
MODEL

BoT
MODEL

DDoS
MODEL

DDoS
Traffic

DDoS
Traffic

PSCAN
Traffic

PSCAN
Traffic

PRECISION RECALL

1.64% Attack 34.72%
99.17% Benign 79.38%

0% Attack 0%
41.24% Benign 90.82%

81.22% Attack 63.15%
62.98% Benign 81.11%

0% Attack 0%
44.16% Benign 100%

0% Attack 0%
43.53 Benign 97.40%

A B C D E F

A1 B2 C3 D4 E5 F6

Model features

Traffic features

Figure 4.26: The Single Model Problem

4.5 Classifier Design Scenarios

The results in Section 4.3 suggest a decision-tree based approach. The combined results of model

evaluation and implementation presented in the previous sections show that the CART model

delivers the best combination of results to be the classifier for the intrusion detection module.

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 75

Hence, the analysis presented in this section will be entirely based on the Decision Tree model. This

section demonstrates the different possible ways the final classifier model could be implemented

to develop the intrusion detection module. Once again, the critical metrics are the predict time,

precision, recall and F1 score. Here, the predict time has been modified to express rate (flow per

second) which can be described as analogous to data rate, in an attempt to standardize the time

metric. This is necessary because the different scenarios do not utilise the same size of dataset (in

terms of flows), and as such a straight timing measurement could be misleading.

4.5.1 Scenario 1 - Single Multiclass Classifier

In this scenario, the 3 attack datasets of DDoS, BoT and PSCAN are merged into a single com-

posite dataset containing 13 features. The 6 important features (as established in section 3.3.1) of

each attack is contained in the composite 13 features. The composite (merged) attack data is used

to train a CART model with 4 labels; benign, DDoS, BoT and PSCAN. Figure 4.26 illustrates

the single multiclass classifier scenario and also shows a summary of the results. The results show

an average 99.87% precision across the 3 attack types resulting in a similar 99.87% recall and f1

scores. Also, the results show that the predict time for Scenario 1 is 0.023967s (3.8m flows/s.)

SINGLE

MULTICLASS

MODEL

Merged Data

DDoS + BoT + Pscan

13 Features

140,544 flows

Precision: 0.9987

Recall: 0.9987

F1: 0.9987

Pred Time: 0.023967s

*Rate: 3.8x10e6 flows/s

Benign

DDos

BoT

Pscan

Figure 4.27: Design Scenario 1 - Single Multiclass Classifier

4.5.2 Scenario 2 - Merged Multiple Binary Classifier

In this scenario, 3 separate models are deployed in parallel. Each model is trained on each of

the 3 different attacks. Hence, the 3 separate models are for DDoS, BoT and PSCAN. The same

composite dataset that was used in scenario 1 is also utilized for this scenario. A filter is placed

ingress to each classifier to ensure that each classifier only receives data with the features with

which it was trained. The layout for the Merged Multiple Binary Classifier is shown in Figure 4.28

which also shows a summary of the results. From the results, the DDoS portion of this model gives

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 76

an attack precision and recall value of 99.91% with a response time of 0.02236s (14.06 flows/s).

The BoT portion gives an attack precision of 55.53% and recall of 99.76%. A possible reason

for the irregular BoT results is the imbalanced nature of the BoT attack data. For the PSCAN

portion of the model, the attack precision and recall are given as 72.25% and 99.95% respectively.

The response times for the BoT and PSCAN sections of the model are 0.12169s (10.84m flows/s)

and 0.025958s (11.74m flows/s) respectively.

DDoS MODEL

Precision: 0.9991

Recall: 0.9991

F1: 0.9991

Pred Time: 0.009996s

*Rate: 14.06e6 flows/s

Benign

BoT MODEL

Pscan MODEL

ddos feature filter

bot feature filter

pscan feature filter

6 features

6 features

6 features

Merged Data

DDoS + BoT + Pscan

13 Features

140,544 flows

DDoS

Benign

Bot

Benign

Pscan

Precision: 0.5553

Recall: 0.9976

F1: 0.7134

Pred Time: 0.012969s

*Rate: 10.84e6 flows/s

Precision: 0.7228

Recall: 0.9965

F1: 0.8379

Pred Time: 0.025958s

*Rate: 11.74e6 flows/s

Figure 4.28: Design Scenario 2 - Multiple Parallel Classifier

4.5.3 Scenario 3 - Isolated Multiple Binary Classifier

The implementation of scenario 3 is similar to scenario 2. The difference is in the application

of the test attack data. In this case, the 3 attack datasets are kept separate and each is fed to

the corresponding sub classifiers (which operate in parallel) and the required metrics of attack

precision, recall, F1 score and time/rate are obtained. This scenario gives an average attack

precision and recall output of 99.68% each across all 3 sub classifiers with prediction time of

0.002991s (15.09m flows/s), 0.001996s (19.13m flows/s) and 0.002993 (19.12m flows/s) for DDoS,

BoT and PSCAN respeectively. The layout of the isolated multiple binary classifier is shown in

figure 4.29.

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 77

DDoS MODEL

Precision: 0.9995

Recall: 0.9995

F1: 0.9995

Pred Time: 0.002991s

*Rate: 15.09e6 flows/s

Benign

BoT MODEL

Pscan MODEL

ddos traffic

6 features

45,143 flows DDoS

Benign

Bot

Benign

Pscan

Precision: 0.993

Recall: 0.993

F1: 0.993

Pred Time: 0.001996s

*Rate: 19.13e6 flows/s

Precision: 0.9980

Recall: 0.9980

F1: 0.9980

Pred Time: 0.002993s

*Rate: 19.12e6 flows/s

bot traffic

6 features

38,183 flows

pscan traffic

6 features

57,220 flows

Figure 4.29: Design Scenario 3 - Isolated Parallel Classifier

4.6 Design Scenario Analysis

Scenario 1 offers the indications of being the most practical solution of the three. It gives better

precision and recall scores than scenario 2. One of the drawbacks of scenario 2 is the distributed

nature of the classification models which has the potential of making it more processor intensive.

Scenario 3 has both distributed classification models and distributed datasets, both of which could

make implementation quite problematic.

For a composite attack dataset, the straight timing (predict time) metric could be more appro-

priate. If comparison is being made between 2 models or 2 scenarios with different test datasets

(different size or number of flows), then the rate metric might be more appropriate because the

straight time will not be absolute, given the different volume of data and hence the different work-

load of the model. However, the rate metric (flow/s) could also have its own inherent drawback

given that each flow is a different size (bytes or packets). Hence flow/s may not be be a standard

timing metric across different classifiction models.

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 78

4.6.1 Design Scenario Analysis Based on Recall Metric

Recall is a measure of the TP rate and gives a measure of the percentage of attack flows that was

correctly predicted/classified. Out of all the attack flows, the recall determines what percentage

was correctly classified. Given the nature of the proposed hierarchical solution, this requirement

is considered most critical hence the recall metric is given the highest prority value. Equation

4.1 clearly shows recall to be the ratio of TP to all attack flows. In essence Recall answers the

question: of all the attack flows what proportion was correctly classified by the Model.

The results for Design Scenario 1 gives the Confusion Matrix shown in Figure 4.31. Calculating

the recall for scenario 1 gives:

RecallScenario1 =
25, 374 + 352 + 31, 643

25, 374 + 352 + 31, 643 + 10 + 71 + 3
=

57, 369

57, 453
= 0.9985

Similar procedure gives recall values for Design Scenario 2 as 0.991, 0.9976 and 0.9965 with an

average value of 0.9977.

Also, similar procedure gives recall values for Design Scenario 3 as 0.9995, 0.9930 and 0.9980

with an average of 0.9968.

As already seen in section 4.6, Scenario 1 provides the best results for recall which is critical

for the Hierarchical Machine Learning SDN Security solution. However, the differences between

the recall values are small, consequently, if run-time performance was critical Scenario 3 might be

suitable.

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 79

1st Stage Classifier Design

0

0.005

0.01

0.015

0.02

0.025

0.03

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

Scenario 1 Scenario 2 Scenario 3

P
re

d
ic

t
Ti

m
e

(s
)

R
ec

al
l

Classifier 1 Design Scenarios

Recall Predict Time (s)

Figure 4.30: Design Scenario 1 Analysis based on Recall Metric

n = 140,544
Predicted

Benign

Predicted

DDoS

Predicted

BOT

Predicted

PSCAN

Actual

Benign

82992

TN

8

FP

85

FP

6

FP

Actual

DDoS

10

FN

25374

TP

0

FN

0

FN

Actual BOT
71

FN

0

FN

352

TP

10

FN

Actual

PSCAN

3

FN

0

FN

0

FN

31643

TP

Figure 4.31: Design Scenario 1 Confusion Matrix

4.6.2 Design Scenario Analysis Based on F1 Score Metric

The F1 Score incorporates the precision metric into its value in addition to recall. Precision is a

measure of how accurate or precise the attack classification has been and is given by Equation 4.2:

which gives a ratio of correct attack classification to all attack classification. In essence, precision

answers the question: of all the attack predictions given by the Model, what proportion is correct.

Hence the F1 Score gives a more balanced measure as against the recall metric which give a more

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 80

specific measure. F1 Score is given by Equation 4.3: For Design Scenario 1:

F1 ScoreScenario1 =
2(0.9987 ∗ 0.9987)
0.9987 + 0.9987

= 0.9985

Similar procedure gives F1 score for Scenario 2 as 0.9991, 0.7134, 0.8379 giving an average of

0.8499. Similar procedure gives F1 score for Scenario 3 as 0.9995, 0.9930, 0.9980 giving an average

of 0.9968.

As already seen in Section 4.6, Design Scenario 1 returns a marginal F1 Score advantage over

Design Scenario 3 with Design Scenario 2 returning an undesirably low F1 Score. This further

emphasises the suitability of Design scenario 1 for the Hierarchical Machine Learning SDN Security

solution.

1st Stage Classifier Design

0

0.005

0.01

0.015

0.02

0.025

0.03

0.75

0.8

0.85

0.9

0.95

1

1.05

Scenario 1 Scenario 2 Scenario 3

p
re

d
ic

t
ti

m
e

(S
)

F1
 s

co
re

Classifier 1 Design Scenarios

F1 Score Predict Time (s)

Figure 4.32: Design Scenario 1 Analysis based on F1 Score Metric

4.7 Simplified Emulation of Hierarchical Intrusion Detec-

tion Solution

To give motivation for the later chapters, the work in this section looks at initial performance

consideration of the hierarchical intrusion detection solution. Figure 4.33 shows the updated

version of the hierarchical solution given the results of the intrusion detection module design.

The figure shows the Decision Tree Model (CART) being adopted as the classifier for the first and

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 81

CART SDN Controller

CART

SDN Switch

TCAM

(Flow Table)

Gross flow level

information

Traffic flow

(In)
Traffic flow

(Out)

Packet level

information

Flow table

update

Flow table

update

Figure 4.33: Hierarchical Solution Showing Classifier Model

second stage. It is important to state that this does not represent the actual operation of the second

stage. This is described in Chapter 5, but is necessary at this stage of the work, to demonstrate the

potential benefits of moving from a centralised classifier alone to the proposed two-stage classifier.

Figures 4.34 and 4.35 illustrate the difference in operation between the simplified emulation of the

second stage and the actual operation of the second stage that is used in the later chapters. In

Figure 4.34, gross flow level information from the traffic is fed into the classifier from where traffic

is classified as good or bad and the flow table updated to drop bad traffic.

Results for this comparison are shown in Fig. 4.36 for three different attack types: DDoS, BOT

and PSCAN. These results are using the selected CART algorithm for Classifier 2 with the 6 most

important features (derived from Section 3.3.1 and compare the effort if only implementing the

single stage classifier at the edge vs implementing the two stage classifier. The results show a

44% and 43% reduction in traffic volume for PSCAN and DDoS respectively and 85% and 50%

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 82

CART
Gross flow level

information

Classifier

Output
Good

Bad

Flow Rule

table

update

Simplified Emulation of 2nd Stage

Figure 4.34: Simplified emulation of 2nd stage used to estimate performance benefits of a hierar-
chical design.

CART
Packets in Drop bad packets

Allow good

packets

Expected 2nd Stage Operation

Figure 4.35: Actual 2nd Stage operation as used in later chapters.

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 83

reduction in effort for PSCAN and DDoS respectively. The traffic volume is measured by number

of flows while effort is measured by predict or classification time. The results show the reduction

on effort in the second stage classifier is significant, in particular for the BOT and PSCAN traffic

(with BOT nearly zero). Given that effort is directly proportional to traffic volume, the reduced

traffic volume resulting from the intrusion detection at the first stage has resulted in reduced effort

at the second stage.

Different attack type = Different volume of

traffic

Generally a function of how accurate the 1st

detection stage is.

A way of showing potentially how the

hierarchical solution could be better.

PSCAN

44% reduction in traffic volume

85% reduction in effort

DDoS

43% reduction in traffic volume

50% reduction in effort

0.002023
0.002338

0.007008

0.000998

0

0.000997

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

DDoS BOT PSCAN

P
re

d
ic

t
Ti

m
e

 (
s)

Predict Time Comparison

1st Stage 2nd Stage

45143

38183

57220

25456

384

31832

0

10000

20000

30000

40000

50000

60000

70000

DDoS BOT PSCAN

N
o

 o
f

Fl
o

w
s

Traffic Volume Comparison

1st Stage 2nd Stage

Figure 4.36: 2nd Stage Emulation Results

4.8 Summary

The main contribution of this Chapter is the design of a unique machine learning based intrusion

detection model which shows potential for hierarchical operation in SDN. The hierarchical solution

requires a machine learning based intrusion detector with quick response time and high recall value.

This is designed to allow for a near real-time attack detection at a reasonably high accuracy level.

A reasonably low model train time is also required to allow for quick deployment and dynamic

update of the model. A machine learning algorithm learns from experience: practical applications

need to incorporate some form of feedback mechanism that responds to changes in attack profile.

One method to achieve this is by adopting reinforcement learning. This feedback mechanism is

CHAPTER 4. INTRUSION DETECTION MODEL DESIGN 84

not within the scope of this work. However, to accommodate for this technique within this study

is one of the reasons why the model train time has been considered as a design parameter for

the intrusion detection model. Among the five machine learning algorithms tested, the non-linear

algorithms Decision Tree Classifier provided the best response to these specifications. This solution

has been evaluated using the CICIDS2017 dataset.

Also, experiments which support a better understanding of the single model problem was

carried out. The experiments show that it is more effective to have different intrusion detector

models for different attack profiles. To reduce the effect of this problem, different design scenarios

were created. Results from the design scenarios support the use of a single multi-class model which

has been trained on a combination of different attack profiles.

Work done in this chapter has been synthesised to develop a design framework that can be

adapted to different network traffic datasets and to different machine learning algorithms to create

robust and efficient intrusion detector module for network security applications.

The chapter concludes by presenting a simplified operation of the proposed hierarchical security

solution. Results from this experiment demonstrates substantial promise in the area efficient

intrusion detection in a network security application.

Chapter 5

Hierarchical Intrusion Detection

with Categorical Classification

5.1 Introduction

Chapter 4 explored the use of machine learning algorithms for malicious flow detection in network

traffic. This chapter will apply the results and concepts from Chapter 4 to an enterprise solu-

tion. Figure 5.1 shows the enterprise model of the proposed solution. The use of SDN allows a

hierarchical approach to machine learning with the aim of reducing the packet level processing for

malicious packet detection at the edge through applying centralised machine learning in the SDN

controller. Results from the classifier design analysis from Chapter 4 support a decision-tree based

approach and show that it promises a considerable reduction in the per-packet processing at the

network edge compared to a single stage classifier as illustrated in Section 4.7. The fast predict

time of the decision-tree based classifier also allows for a near real-time detection of attack traffic

which is also a function of the attack type.

85

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 86

SDN
Controller

Forwarding
Device

Forwarding
Device

Forwarding
Device

Edge Classifier
(Reduce packet-level
processing)

Central Classifier
(Highly simplified
input) Global view of network

OpenFlow

DDoS Attack

Figure 5.1: Enterprise View of Hierarchical Solution

The proposed SDN intrusion detection solution integrates a 2-stage Machine Learning in-

stance as shown in Figure 5.1. The first instance of machine learning, i.e., Classifier 1, works on

summarised network flow traffic features based on gross level flow information available through

OpenFlow counters. This is further explained in Section 3.4.4. The central or first stage classi-

fier is used to identify potentially harmful network traffic which is then redirected into a second

intrusion detection stage or packets dropped by forwarding device.

Work in this chapter presents results from the intrusion detection process of both the first and

second stage classifiers. The general overview of work done in this chapter is as represented in

Figure 1.3. At this point, it is unclear if Classifier 2 may also be deployed to provide additional

functionalities such as QoS and Routing Optimization or Resource Management [51], which could

be a source of further investigation and outside the scope of this work. Previous topologies

presented have not focused much on the actual traffic flow and the mechanisms around it. The

Machine Learning intrusion detection process is not intended to replace the standard SDN traffic

flow decision process but to complement it. Also a standard access control or intrusion detection

system will match the properties of this first packet against any pre-configured security rules.

This is insufficient for dynamic intrusion detection because an attacker can clone the first packet

to bypass the pre-configured security rules. Hence the use of measured aggregate flow statistics

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 87

for intrusion detection using machine Learning. However, work done in Chapter 4 is based on

completed flows. This represents the limitation of most published research work in this area. This

is the major motivation behind re-engineering the data to simulate real-time dynamic traffic flow.

5.2 Limitations of Machine Learning Based IDS Research

Results from work done in Chapter 4 are based on flow statistics derived from completed IP traffic

flows without much recourse to flow duration and hence duration of attack traffic. Flow duration as

defined in Section 2.4.2 is the time difference between the first observed packet of a flow and the last

observed packet of the same flow. According to [45], most detection methods begin investigating

network attacks after these attacks have occurred and have already and have already caused

considerable damage to the system. Other recent works such as [127], [128], [129], [100], [1], [130],

and [131] have also not considered flow duration in their machine-learning based solutions.

This presents a challenge for real world applications as the attack flow would have already

passed through at the time of detection. Reducing the data dimensionality using feature selection

is not sufficient to ensure real time intrusion detection. This gives rise to the research question as

stated in Section 1.4; what portion of a network traffic flow is required to get reasonable intrusion

detection or at what time in the duration of a network traffic flow can a reasonable intrusion

detection accuracy be obtained in SDN using Machine Learning techniques? This is one of the

questions that the remainder of this research will answer.

5.3 Sub-Flow Enabled Real Time Intrusion Detection

One way to address the limitations discussed in Section 5.2 is to create subsets of IP traffic flow and

perform intrusion detection on each subset to determine how well attack traffic will be classified

or predicted at intervals within the lifespan of the flow. Many Papers and research works miss this

crucial point as stated in Section 5.2 In this section, this concept will be implemented using the

CICIDS2018 Datasets. First, the dataset is re-engineered to create the flexibility to alter traffic

flow duration. A total of forty six flow features and fourteen sub-flows have been generated for

each attack. Detailed explanation of the IP traffic re-engineering process has been given in Section

3.4.1.

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 88

5.3.1 Sub-Flow IP Traffic Classification

Due to the flexibility of the re-engineered data, time-based IP traffic subflows are sampled at

specific subflow threshold values during the flow’s lifespan. The flow statistics for each subflow

correctly reflects the threshold value. For the purpose of this analysis, a flow active time of two

minutes is assumed for all flows. To properly visualise the temporal distribution of the various

IP traffic on the labeled datasets, an empirical cumulative distribution function (eCDF) for flow

duration is applied. Sample eCDF for DDOS and BOT traffic are shown in Figure 5.2. From

the figure, it is seen that at approximately 10s, nearly 100% of all the DDoS attack would have

occurred. This means that any real time malicious traffic detection must occur well before this

time. The BoT attack duration is even smaller with nearly 100% of all BoT attack traffic occurring

before 0.1s. This concept will be utilised in analysing the results of the hierarchical solution in

Section 5.6. A semi-logarithmic scale is used to search sub-flows each of which represent a snapshot

of the complete flow at the instance of time. The complete eCDF curves are given in Section 5.6

as part of the results for the hierarchical solution.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

eC
DF

 P
(t<

X)

10 2 10 1 100 101

time X (s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Benign
DDOIS-HOIC

(a) eCDF for DDOS Traffic

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

eC
DF

 P
(t<

X)

10 2 10 1 100 101

time X (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Benign
BoT

(b) eCDF for BOT Traffic

Figure 5.2: Empirical Cumulative Distribution Function for Re-engineered Data

The intrusion detection module used for this analysis is the CART Decision Tree Classifier

obtained from Chapter 4. As explained in section 5.3.1, the classifier is separately trained on each

sub-flow. This is explained by the fact that, in practice, if a classifier is deployed to detect attack

traffic at say 2s flow interval, it is expected that the classifier should be trained with traffic data

of corresponding characteristics. However, one of the main objectives of this work is to investigate

how the classifier responds to a change in flow duration and a change in flow monitoring approach.

A summary of the sub-flow classification results for a cross-section of the attack traffic is shown

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 89

in Figure 5.3. The classifier works quite well on automated attacks such as DDOS and BOT. As

expected, the classifier does not work as well on non-automatically generated attacks e.g. WEB-

XSS which is the result of a user accessing a vulnerable page, the attack, from a traffic level, looks

identical to “good” traffic. In practice this would need to be detected using “end-point” detection

that looks inside packet contents and server log-files. As seen, there is less significant change in

F1 score for the automated attacks of DDOS and BOT across the different sub-flows. This is

not the case with the Web attacks for which classifier performance significantly degrades at lower

sub-flow times. This is one of the concepts that will be utilised in developing the hierarchical

solution as seen in Section 5.6. It is seen that the results presented in Figure fig:example3.43

utilise the F1-score. This is used to show the general classifier performance across the different

sub-flow times being the harmonic mean of the precision and recall. It should be noted that based

on these results, the classifier working well on an attack type does not automatically imply that

the hierarchical solution will be suitable for that attack type. Complete results for all sub-flow

classifications are provided in subsequent sections. Section 5.6 which deals specifically with the

development and analysis of the hierarchical solution will utilise the recall metric as the basis for

its accuracy analysis. this is because the recall metric represents a stronger security implication

with the hierarchical solution.

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 90

10 2 10 1 100 101 102

Flow Duration x (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F1
Sc

or
e

Web-xss Traffic
Web-BruteForce Traffic
DDOSHOIC Traffic
BOT Traffic

Figure 5.3: Subflow Classification (note DDOS, BOT and PSCAN all have F1 scores close to 1
hence only DDOS is shown)

5.3.2 Traffic Classification Based on Different Flow Monitoring Meth-

ods

Once again, the non-automatically generated attacks eg Webattack-Bruteforce is more significantly

affected by a change in flow monitoring approach. Figures 5.4 and 5.5 show the effect of classi-

fication using OpenFlow monitoring and the Flowmeter for BOT and Webattack traffics. Figure

5.5 shows that there is no significant difference at lower sub-flows for Web attacks given that

classifier performance degrades significantly. At higher sub-flows above 1s, classifier performance

picks up significantly but shows some variation based on flow monitoring approach. For DDOS

attacks shown in Figure 5.4, there is a slight reduction in Classifier performance with OpenFlow

monitoring but still considered to give fairly reasonable attack detection rate. This is sufficient

to provide reasonable attack detection at lower sub-flow times suggesting a high possibility for

real-time attack detection. This shows that there is still ample time within the flow’s lifespan to

compensate for the drop in classifier accuracy due to the combination of OpenFlow monitoring

and sub-flow classification. Once again, this concept will be used in the development of the hierar-

chical solution as seen in Section 5.6. The precision metric is used for this results as it illustrates

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 91

the variation between the two flow monitoring approaches better.

10 2 10 1 100 101 102

Flow Duration x (seconds)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io

n

DDOS-HOIC Complete Features
DDOS-HOIC OpenFlow Features

Figure 5.4: Classification results for BOT traffic using OpenFlow and Extended Features (Note:
mean attack flow duration was 0.48s

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 92

10 2 10 1 100 101 102

Flow Duration x (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ec

is
io

n

Web Complete Features
Web OpenFlow Features

Figure 5.5: Classification results for WEBATTACK traffic using OpenFlow and Extended Features

5.4 Sub-Flow Based Hierarchical Intrusion Detection Solu-

tion

The layout of the proposed Subflow based Hierarchical Machine Learning solution is shown in Fig-

ure 5.6 and is a disected representation of the experimental procedures in Section 3.4.5.. Classifier

1 is trained and fitted for realistic features that can be captured with OpenFlow. Many papers

also ignore this crucial point: that not all flow parameters can be collected in practice. Classifi-

cation results based on OpenFlow monitoring give varying responses depending on attack type.

The second stage detector further reduces the false negative component with the aim of reducing

the false negative rate (FNR), thereby increasing the overall attack detection of the system.

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 93

fn

fn

1 2 3

1

4 5 6 7 N8

1st Stage
ML

2nd Stage

ML

Agg

G

B1

G

B2

OpenFlow
Monitoring

TP (Drop)

(If Bad, add flow to Stage 2)

Complete Flow
Features

Packet level info
via TCAM

4-7

1-7

Compare B1 and B2

Packet Stream

fi1

Flow before detection at 1st Stage

*How long?

* Key Question
Is B1 enough to determine if flow

is bad? Or B1 and B2?

What length of Packet flow is
enough to determine if flow is

bad?

Answer could be attack specific.

TP + FP (Drop)

TN+FN

fi2

Figure 5.6: Sub-Flow Based Hierarchical Machine Learning Solution 2

5.5 Classification Metrics Based on Hierarchical Solution

Classification metrics based on the Hierarchical solution are presented here based on two opera-

tional options:

1) If all classified attack flows (Ps) from 1st stage are sent to classifier 2 and all

classified benign flows (Ns) from 1st stage are allowed through

a) In this case, a high False Positive Rate (FPR) in the the first stage means unnecessary

overload on classifier 2 which will impact network efficiency. FPR is given by

FPR =
FP

TN + FP
(5.1)

b) Also in this scenario, a high False Negative Rate (FNR) in the first stage will be highly detri-

mental to network security because substantial attack traffic will be allowed through to network.

FNR is given by

FNR =
FN

FN + TP
(5.2)

Figure 5.7 shows an illustration for option 1

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 94

100Gb/s

Classifier 2

TCAM

SDN Controller
(Classifier 1)

60Gb/s

40Gb/s

5Gb/s

35Gb/s

Reduced packet stream

OpenFlow statistics Control
signal

Good
Malicious

35Gb/s
Good traffic allowed through

1) If all Ps are sent to classifier 2 and all Ns
allowed through

a) In this case, a high FP in the the first stage
means unnecessary overload on classifier
2. which will impact n network efficiency.

b) Also in this scenario, a high FN in the first
stage will be highly detrimental to network
security because substantial attack traffic
will be allowed through to network.

2) If all Ns are sent to classifier 2
and all Ps are dropped

a) In this case, a high FP in the first
stage means loss of information
as substantial good traffic will be
dropped.

b) In this scenario, a high FN in the
first stage which would have been
detrimental to network security is
addressed by classifier 2.

1)

All classified attack flows

A high FPR overloads classifier 2

All classified benign flows

A high FNR results in malicious flows
being allowed into the network

Figure 5.7: Sending all Classified Atttack Flows to 2nd Stage Classifer

2) If all benign flows (Ns) from 1st stage are sent to classifier 2 and all attack flows

(Ps) from 1st stage are dropped

a) In this case, a high False Positive Rate (FPR) in the first stage means loss of information

as substantial good traffic will be dropped. FPR is defined in Equation 5.1.

b) In this scenario, a high False Negative Rate (FNR) in the first stage which would have been

detrimental to network security is addressed by classifier 2. FNR is defined in Equation 5.2

Figure 5.8 shows an illustration for option 2

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 95

100Gb/s

Classifier 2

TCAM

SDN Controller
(Classifier 1)

60Gb/s

40Gb/s

5Gb/s

35Gb/s

Reduced packet stream

OpenFlow statistics Control
signal

Good
Malicious

35Gb/s
Good traffic allowed through

1) If all Ps are sent to classifier 2 and all Ns
allowed through

a) In this case, a high FP in the the first stage
means unnecessary overload on classifier
2. which will impact n network efficiency.

b) Also in this scenario, a high FN in the first
stage will be highly detrimental to network
security because substantial attack traffic
will be allowed through to network.

2) If all Ns are sent to classifier 2
and all Ps are dropped

a) In this case, a high FP in the first
stage means loss of information
as substantial good traffic will be
dropped.

b) In this scenario, a high FN in the
first stage which would have been
detrimental to network security is
addressed by classifier 2.

2)

All classified benign flows

Classifier 2 handles FN flows which would
be detrimental to network security if
allowed through

All classified
attack flows A high FPR results in loss of packets

Figure 5.8: Sending all Classified Benign Flows to 2nd Stage Classifer

5.6 Hierarchical Intrusion Detection Results

Results from the previous sections were based on the CICIDS2017 dataset. In this section, detailed

(more comprehensive) intrusion detection results based on the 2018 version of the dataset is

presented. The reason for this is to further validate the hypothesis with a different and slightly

more recent dataset. This section will emphasis on the timely detection of malicious packets using

limited flow features based on the flow monitoring limitations of OpenFlow as explained in Section

3.4.4. This depicts/simulates the operation of the first stage of the hierarchical solution. The mean

flow duration of the different attack types as profiled in the dataset will be a key parameter for

the analysis of the first stage. As expected, the results will be different for the different attack

types.

The second stage intrusion detection of the hierarchical solution occurs at the edge of the SDN

topology. The intrusion detection model remains the Decision Tree Classifier from the previous

stage. The possible need for a different kind of detection model for this stage is recognised and

will be considered in future work.

Experimentation and results in this section cover the first and second stage operations. In other

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 96

to evaluate the advantage of the hierarchical approach, a non-hierarchical intrusion detection

procedure is experimented and the results are presented and compared with results from the

hierarchical approach. The results will be presented according to the different attack types which

corresponds to specific dates as generated by the authors of the dataset. The results will be

presented in terms of the detection parameters (recall, ecdf, predict rate, the confusion matrix.

The mode of presentation of the results will be similar for the different attack types. However,

the actual trend of results may differ with attack type and the resulting analysis may also differ.

The following derived metrics have been formulated to enhance the analysis of the hierarchical

solution:

Detection Cutoff which is the recall value that is considered adequate given the response

from the specific experiment. This is calculated as the maximum recall value at less than 10% of

the average attack flow duration. It can also be the case that a maximum recall value is reached

at a lower sub-flow time in which case it is selected. This ensures that the detection is carried out

when at most 10% of the mean attack flow-duration has expired.

Flow Duration Cutoff which is the flow duration at the the detection cutoff.

Flow Duration Cutoff Ratio which is the percentage of the average attack duration which

the flow duration cutoff represents.

Attack Flows Completed which is the percentage of the completed attack flows at the

detection or flow duration cutoff.

The above represents an aggressive intrusion detection cut-off so that detection occurs early

in the attack flows, but clearly, better recall/precision results might achieved if a higher (less-

aggressive) cut-off was chosen.

5.6.1 SSH BruteForce

The key time-based statistics for the ssh bruteforce attack dataset is given below:

BRUTE WED14TH data mean flow duration: 14.41s

BRUTE WED14TH attack traffic mean flow duration: 0.12s

From the above statistics, it is seen that the average attack duration for this profile is 0.12029s

while the maximum attack duration is 0.5676s.

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 97

0.0

0.2

0.4

0.6

0.8

1.0

eC
DF

 P
(t<

X)

10 2 10 1 100 101 102

time X (s)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

eCDF Benign
eCDF Attack
Recall
Precision

Figure 5.9: 1st Stage Detection for BruteForce Attack

Table 5.1: Derived Detection Metrics for SSH/FTP BruteForce

BRUTE WED14TH
Detection Cuttoff (Recall) 0
Flow Duration Cuttoff (s) 0.012
Average Attack Duration (s) 0.12
Attack Flows Completed (%) 68
Flow Duration Cuttoff Percent (%) 10

Table 5.1 shows the key derived metrics from the first stage intrusion detection for the SSH

brute-force attack. The metrics show a generally poor detection response on this attack type. The

metrics are calculated as follows:

Average Attack Duration (AAD) = 0.12029s

10% of AAD = 0.012s

At 10% of AAD, Recall = 0

Hence Detection Cutoff = 0

Therefore Flow Duration Cutoff (assuming Detection Cutoff at 10% of AAD) = 0.012s.

With approximately 68% Attack Flows Completed at Detection Cutoff of 0 indicates minimal

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 98

protection by the hierarchical solution. Analysis from the graph (Figure 5.9) and the calculations

above, suggest very short duration attack traffic with the classifier unable to classify flows at these

low subflow durations. Hence, the hierarchical solution will provide very little or no protection for

the SSH brute-force attack at these low subflow times. A closer look at the graph will reveal that

there is an increase in precision beyond 0.05s while recall remains closer to 0. This may give a

false impression of high accuracy with the tendency to contradict the results. The fact that recall

is closer to 0 but not exactly 0 suggests that there have been a few positive predictions all or most

of which would have been correct. This accounts for the high precision at these low recall points.

This further validates why precision is not considered as critical as recall as stated in Section 4.3.

These results are mostly inadequate for timely attack detection, hence, further work needs to be

done to improve the Detection Cutoff for this attack type.

Further consideration of the potential of this solution is seen where all the predicted benign

traffic is forwarded to the second stage detection module. As seen from Figure 5.10, results

from this experimentation shows that there is reduction in false negative predictions when using

a hierarchical intrusion detection approach. Figure 5.10 shows a graphical comparison of the

false negative predictions across all the traffic subflows. After the first stage, all benign flows are

switched or filtered to the second stage for further classification. It should be noted that the results

from the second stage shown, is a combined result from the first and second stage as explained in

Section 3.4.5. This explains why the same number of flows reflect on both results from first and

second stage (114841 in this case).

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 99

0

1

2

3

4

5

6

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Wed14th Brute-Force Attack
Total No of Attack Flows in Test Data = 114,841

Non-Hier Stage 1 Stage 1+2

n = 114841
Predicted No

(BENIGN)

Predicted Yes

(BruteForce)

Actual No

(BENIGN)

2191649

TN

9

FP

Actual Yes

(DDoS)

5

FN

114836

TP

Non-Hier (Subflow = 0.5s BruteForce)

n = 114841
Predicted No

(BENIGN)

Predicted Yes

(BruteForce)

Actual No

(BENIGN)

2191623

TN

35

FP

Actual Yes

(DDoS)

0

FN

114841

TP

1st Stage (Subflow = 0.5s BruteForce)

n = 114841
Predicted No

(BENIGN)

Predicted Yes

BruteForce

Actual No

(BENIGN)

2191616

TN

42

FP

Actual Yes

(DDoS)

0

FN

114841

TP

2nd Stage (Subflow = 0.5s BruteForce)

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 2026940.219 30617718.3 2062184.26

0.025 2181114.298 29228123.02 2245632.006

0.05 2223984.753 28793250.87 2077644.294

0.1 3168068.974 21527118.7 2073494.021

0.3 1979533.42 28973045.93 2307686.321

0.5 1795079.622 31793082.08 2041451.289

0.7 1959804.205 34178386.01 2297304.423

1 2132728.301 33312365.13 2097507.398

1.5 1942973.042 33287883.47 2309690.15

2 1994588.675 33197300 2155496.69

30 1975000.741 30537886 2368445.685

60 1979400.571 30354965.88 2151168.121

120 1960617.242 31116322.4 2187333.925

WED14TH BRUTEFORCE

(No of Attack Flows = 114841)

Prediction Rate (Effort)

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 1 0 0

0.025 2 0 0

0.05 0 4 0

0.1 0 0 0

0.3 3 3 0

0.5 5 0 0

0.7 3 1 0

1 3 1 0

1.5 4 1 0

2 3 1 0

30 0 1 0

60 0 1 0

120 1 1 1

FALSE NEGATIVES

(No of Attack Flows = 114841)

WED14TH BRUTEFORCE

Figure 5.10: Hierarchical Intrusion Detection Results for SSH/FTP BruteForce Attack

As can be seen from Figure 5.10 and Table 5.2, the intrusion detection at the second stage has

significantly eliminated the false negative flows seen from the non-hierarchical approach and from

the first stage of the hierarchical process. This has the effect of protecting the network better. The

confusion matrices for the 0.5s subflow is shown in Figure 5.11 as an example. The advantage is in

two fold; the first is the improvement in detection as against using only a one stage detection at the

central controller, the second is the reduction in effort as against using a non-hierarchical detection

at the edge. The down side of this solution is the increase in false positives as seen in Table 5.2.

However, it can be argued that an increase in the false positive rate bears no direct significant

security risk to the network, however, it would block some legitimate users. A very interesting

outcome in Table 5.2 is that the False Negatives are small and have significantly reduced at the

output of the 2nd stage. For example at subflow 0.7 the 1st stage misses 1 flow and passes this to

the second stage where this flow is then detected correctly. Generally, the results show that the

hierarchical approach significantly improves the result compared to the Non-hierarchical result.

This appears a strange result on first-site as both are using the full-features and the same machine

learning algorithm. However, there is a key difference between the approaches and that is that in

the hierarchical case the results are the process of two models: the first works on the open-flow

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 100

data and captures most of the attack flows; then only the few attack flows (and benign) that are

not detected by the first stage are then passed to the second stage which has been trained to spot

these particular flows i.e., the second stage model has been specifically trained to detect the attack

flows that get through the first stage. Consequently, by using two models the system is better

trained to deal with variability in the attack flows. Conversely, because all the detected benign

traffic is sent to the second stage, any false positives in the first stage are blocked and not sent to

the second stage, this means the final outcome from the second stage, in terms of false positives,

can never be better than the first stage and, as we see, is slightly worse than the non-hierarchical

approach This is because in this case the system has two opportunities to inject false positives i.e.

in the first and second stages. This shows a weakness in passing just one category of traffic to the

second stage, Chapter 5 will investigate a solution to this.

Table 5.2: Hierarchical Intrusion Detection Results for SSH Brute-Force

WED14TH BRUTEFORCE WED14TH BRUTEFORCE
(No of Attack Flows = 114841) (No of Attack Flows = 114841)

FALSE NEGATIVES FALSE POSITIVES
Subflow Non-Hier 1st St. 2nd St. Subflow Non-Hier 1st St. 2nd St.
0.0125 1 0 0 0.0125 2 35 37
0.025 2 0 0 0.025 3 37 38
0.05 0 4 0 0.05 5 36 41
0.1 0 0 0 0.1 1 37 38
0.3 3 3 0 0.3 6 49 53
0.5 5 0 0 0.5 9 35 42
0.7 3 1 0 0.7 7 36 41
1 3 1 0 1 1 25 26
1.5 4 1 0 1.5 8 26 32
2 3 1 0 2 7 26 31
30 0 1 0 30 3 26 27
60 0 1 0 60 7 32 37
120 1 1 1 120 4 33 35

0

1

2

3

4

5

6

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Wed14th Bruteforce Attack
Total No of Attack Flows in Test Data = 114,841

Non-Hier Stage 1 Stage 2

n = 114841
Predicted No

(BENIGN)

Predicted Yes

(BruteForce)

Actual No

(BENIGN)

2191649

TN

9

FP

Actual Yes

(DDoS)

5

FN

114836

TP

Non-Hier (Subflow = 0.5s BruteForce)

n = 114841
Predicted No

(BENIGN)

Predicted Yes

(BruteForce)

Actual No

(BENIGN)

2191623

TN

35

FP

Actual Yes

(DDoS)

0

FN

114841

TP

1st Stage (Subflow = 0.5s BruteForce)

n = 114841
Predicted No

(BENIGN)

Predicted Yes

BruteForce

Actual No

(BENIGN)

2191616

TN

42

FP

Actual Yes

(DDoS)

0

FN

114841

TP

2nd Stage (Subflow = 0.5s BruteForce)

Figure 5.11: Sample Confusion Matrix for BruteForce Detection

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 101

5.6.2 Denial of Service (DoS)

The key time-based statistics for the DoS attack dataset is given below:

Dosfri16 data mean flow duration: 15.52s

Dosfri16 attack traffic mean flow duration: 46.51s

0.0

0.2

0.4

0.6

0.8

1.0

eC
DF

 P
(t<

X)

10 2 10 1 100 101 102

time X (s)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

eCDF Benign
eCDF Attack
Recall_DoS-Hulk
Precision_DoS-Hulk

Figure 5.12: 1st Stage Detection for DoS Attack

Table 5.3: Derived Detection Metrics for DoS Attack

DOS FRI16TH
Detection Cuttoff (Recall) 0.9998
Flow Duration Cuttoff (s) 1.8
Average Attack Duration (s) 46.5
Attack Flows Completed (%) 55
Flow Duration Cuttoff Percent (%) 3.87

Table 5.3 shows the key derived metrics from the first stage intrusion detection for the DoS

attack. The metrics are calculated as follows:

Average Attack Duration (AAD) = 46.5s

10% of AAD = 4.65s

Maximum recall value at less than 10% of AAD occurs at approximately 1.8s and gives a recall

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 102

Table 5.4: Hierarchical Intrusion Detection Results for Denial of Service (DoS) Attack

FRI16TH DOS FRI16TH DOS
(No of Attack Flows = 78416) (No of Attack Flows = 78416)

FALSE NEGATIVES FALSE POSITIVES
Subflow Non-Hier 1st St. 2nd St. Subflow Non-Hier 1st St. 2nd St.
0.0125 11 1357 9 0.0125 1178 2400 3577
0.025 17 1360 11 0.025 1176 2402 3577
0.05 12 2365 8 0.05 1178 64 1239
0.1 10 1352 8 0.1 1181 80 1260
0.3 16 1340 7 0.3 1179 51 1229
0.5 16 1332 3 0.5 1185 56 1241
0.7 14 1329 2 0.7 1181 43 1224
1 17 1291 5 1 1153 44 1197
1.5 41 111 30 1.5 55 40 95
2 49 109 29 2 60 39 99
10 4 19 3 10 15 49 64
30 5 12 3 30 7 60 66
60 6 23 3 60 6 77 83
120 6 45 2 120 15 88 103

value of 99.98%

Hence Detection Cutoff = 99.98%

Flow Duration Cutoff = 1.8s

Flow Duration Cutoff Percent = 3.87% and

Attack Flows completed = 55%

The metrics show good detection response for this attack type which indicates that the hierarchical

solution provides reasonable protection for DOS attack. This represents real-time or at least near

real-time attack detection. With such early detection, there is sufficient time within the lifespan of

the flow for further investigation of the traffic with the second stage classifier. The results as seen

from Figure 5.12 shows appreciable response even at points lower than the Detection Cutoff. For

instance, there is still reasonable protection as low as 0.3s which gives a recall of about 91.17%.

It is also seen that at much lower sub-flows (less than 0.3s) with much lower recall values, the

precision values are reasonably high. The reason for this has already been explained in Section

5.6.1.

Despite the relatively high Detection Cutoff, passing the benign flows to the second stage de-

tection module at the edge results in further detection of attack traffic which hitherto had not been

detected. This process reflects as a reduction in the false negative classifications or a reduction in

FNR. From Table 5.4 and given the flow duration cutoff of 1.8s (using an approximate 2s subflow),

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 103

there is a 40.81% reduction in false negatives as against using a non-hierarchical approach. Also,

considering a subflow of 0.3s (which gave reasonable detection as mentioned earlier), there is a

56.2% reduction in false negatives as against using a non-hierarchical approach. In addition, al-

though the focus of the hierarchical solution is to compare with with a non-hierarchical approach,

it is seen that there is an approximately 99.4% improvement in false negative from the first stage.

The hierarchical intrusion detection solution therefore shows lots of promise with this attack type.

Once again Table 5.4 shows an increase in false positives on the second stage. This is for the

reason commented on in Section 5.6.1. The positive flows are only seen here because the results

from the first and second stages were combined as described in Section 3.4.5 and are presented

mainly for the purpose of analysis.

0

500

1000

1500

2000

2500

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Friday 16th DoS Attack
Total No of Attack Flows in Test Data = 78416

Non-Hier Stage 1 Stage 1+2

n = 78416
Predicted No

(BENIGN)

Predicted Yes

(DoS)

Actual No

(BENIGN)

2144637

TN

1185

FP

Actual Yes

(DDoS)

16

FN

78400

TP

Non-Hier (Subflow = 0.5s DoS)

n = 78416
Predicted No

(BENIGN)

Predicted Yes

(DoS)

Actual No

(BENIGN)

2145766

TN

56

FP

Actual Yes

(DDoS)

1332

FN

77084

TP

1st Stage (Subflow = 0.5s DoS)

n = 78416
Predicted No

(BENIGN)

Predicted Yes

DoS

Actual No

(BENIGN)

2144581

TN

1241

FP

Actual Yes

(DDoS)

3

FN

78413

TP

2nd Stage (Subflow = 0.5s DoS)

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 11 1357 9

0.025 17 1360 11

0.05 12 2365 8

0.1 10 1352 8

0.3 16 1340 7

0.5 16 1332 3

0.7 14 1329 2

1 17 1291 5

1.5 41 111 30

2 49 109 29

10 4 19 3

30 5 12 3

60 6 23 3

120 6 45 2

(No of Attack Flows = 114841)

FALSE NEGATIVES

FRI16TH DOS

Figure 5.13: Hierarchical Intrusion Detection Results for DoS Attack

0

500

1000

1500

2000

2500

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Friday 16th DoS Attack
Total No of Attack Flows in Test Data = 78,416

Non-Hier Stage 1 Stage 2

n = 78416
Predicted No

(BENIGN)

Predicted Yes

(DoS)

Actual No

(BENIGN)

2144637

TN

1185

FP

Actual Yes

(DDoS)

16

FN

78400

TP

Non-Hier (Subflow = 0.5s DoS)

n = 78416
Predicted No

(BENIGN)

Predicted Yes

(DoS)

Actual No

(BENIGN)

2145766

TN

56

FP

Actual Yes

(DDoS)

1332

FN

77084

TP

1st Stage (Subflow = 0.5s DoS)

n = 78416
Predicted No

(BENIGN)

Predicted Yes

DoS

Actual No

(BENIGN)

2144581

TN

1241

FP

Actual Yes

(DDoS)

3

FN

78413

TP

2nd Stage (Subflow = 0.5s DoS)

Figure 5.14: Sample Confusion Matrix for DoS Attack Detection

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 104

5.6.3 Distributed Denial of Service (DDoS)

The key time-based statistics for the DDoS attack dataset is given below:

Ddostue20 data mean flow duration: 15.02s

Ddostue20 attack traffic mean flow duration: 23.41s

0.0

0.2

0.4

0.6

0.8

1.0

eC
DF

 P
(t<

X)

10 2 10 1 100 101 102

time X (s)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

eCDF Benign
eCDF Attack
Recall_DDoS-LOIC
Precision_DDoS-LOIC

Figure 5.15: 1st Stage Detection for DDoS-LOIC Attack

Table 5.5: Derived Detection Metrics for DDoS Attack

DDOS TUE20TH
Detection Cuttoff (Recall) 0.998
Flow Duration Cuttoff 2s
Average Attack Duration 23.4s
Attack Flows Completed 3%
Flow Duration Cuttoff Percent 8.54%

Similar to DoS attack, the first stage detection metrics for DDoS also returns good response.

Calculation of the first stage metrics are as follows:

Average Attack Duration (AAD) = 23.41s

10% of AAD = 2.34s

Maximum recall value at less than 10% of AAD occurs at approximately 2s and gives a recall

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 105

value of 0.998.

Hence,

Detection Cutoff = 0.998

Flow Duration Cutoff = 2s

Flow Duration Cutoff Percent = 8.54% and

Attack Flows Completed = 3%.

As seen in Table 5.5, these results represent a good response and suggests good protection as

offered by the hierarchical solution. This is an improvement on the DoS response which returned

a 55% attack flows completed at Detection Cutoff. This represents an even greater potential

for the hierarchical solution with this attack type. The combination of an 8.54% flow duration

cutoff percent and a 3% attack flows completed represents a near real-time attack detection and

supports further investigation using the hierarchical model. Results as seen from Figure 5.15 shows

reasonable precision across the sub-flows. As seen from Table 5.6, at the detection cutoff of 2s,

there is a 95.4% reduction in false negatives compared to using a non-hierarchical approach. There

is also a similar reduction across all the sub-flow times. However, in the case of DDoS, there is

no significant increase in the false positive rate. This suggests that the cost in terms of increased

false positives is lower for DDoS attack when using the hierarchical solution.

One interesting feature that appears for the first time in Figure 5.15, but will appear in

later graphs, is that the trend for the machine learning is not monotonically increasing with the

increase in sub-flow time. At first sight this may appear strange: it would seem that the more

information you have the better the response would be, and in general terms this is true. However,

it is important to remember that packet flows are highly non-linear in nature and that there is a

complex inter-play between precision and recall with the machine-learning being retrained for each

sub-flow. Consequently, each result at each sub-flow is a unique model and subject to the nature

of the traffic flow features present in a subflow. If there had been more computation time available

it would have been good to run these multiple times on multiple splits (cross-validation) and show

mean curves with error bars, however, the results of each of these experiments represented several

days of processing time. This is not surprising since the data sets represent about 6 hours of

packets which had to be first processed for each of the sub-flow time to create flow data and then

had to be put through the experimental process described earlier for each sub-flow. Consequently,

the general trend of these results are important rather than the specific small-changes at each

sub-flow time.

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 106

Table 5.6: Hierarchical Intrusion Detection Results for Distributed Denial of Service (DDoS)
Attack

TUE20TH DDOS TUE20TH DDOS
(No of Attack Flows = 104481) (No of Attack Flows = 104481)

FALSE NEGATIVES FALSE POSITIVES
Subflow Non-Hier 1st St. 2nd St. Subflow Non-Hier 1st St. 2nd St.
0.0125 10444 658 589 0.0125 10731 11909 11926
0.025 10399 621 578 0.025 10750 11896 11920
0.05 10341 601 561 0.05 10738 11907 11931
0.1 10358 590 547 0.1 10739 11906 11940
0.3 10533 584 541 0.3 10687 11911 11921
0.5 10297 578 543 0.5 10692 11905 11917
0.7 10466 590 546 0.7 10671 11910 11916
1 10528 572 537 1 10624 11906 11922
1.5 11928 596 544 1.5 10327 11896 11916
2 11913 585 546 2 10357 11923 11932
10 11748 594 538 10 10168 11904 11911
30 11462 590 536 30 9825 11912 11920
60 11398 570 533 60 9729 11908 11913
120 11437 576 532 120 9689 11906 11913

0

2000

4000

6000

8000

10000

12000

14000

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Tuesday 20th DDoS Attack
Total No of Attack Flows in Test Data = 104481

Non-Hier Stage 1 Stage 1+2

n = 104481
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2413967

TN

10692

FP

Actual Yes

(DDoS)

10297

FN

94184

TP

Non-Hier (Subflow = 0.5s DDoS)

n = 104481
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2412754

TN

11905

FP

Actual Yes

(DDoS)

578

FN

103903

TP

1st Stage (Subflow = 0.5s DDoS)

n = 104481
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2412742

TN

11917

FP

Actual Yes

(DDoS)

543

FN

103938

TP

2nd Stage (Subflow = 0.5s DDoS)

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 10444 658 589

0.025 10399 621 578

0.05 10341 601 561

0.1 10358 590 547

0.3 10533 584 541

0.5 10297 578 543

0.7 10466 590 546

1 10528 572 537

1.5 11928 596 544

2 11913 585 546

10 11748 594 538

30 11462 590 536

60 11398 570 533

120 11437 576 532

(No of Attack Flows = 104481)

FALSE NEGATIVES

TUE20TH DDOS

Figure 5.16: Hierarchical Intrusion Detection Results for DDoS Attack

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 107

0

2000

4000

6000

8000

10000

12000

14000

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Tuesday 20th DDoS Attack
Total No of Attack Flows in Test Data = 78,416

Non-Hier Stage 1 Stage 2

n = 104481
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2413967

TN

10692

FP

Actual Yes

(DDoS)

10297

FN

94184

TP

Non-Hier (Subflow = 0.5s DDoS)

n = 104481
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2412754

TN

11905

FP

Actual Yes

(DDoS)

578

FN

103903

TP

1st Stage (Subflow = 0.5s DDoS)

n = 104481
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2412742

TN

11917

FP

Actual Yes

(DDoS)

543

FN

103938

TP

2nd Stage (Subflow = 0.5s DDoS)

Figure 5.17: Sample Confusion Matrix for DDoS Attack Detection

In continuation for the DDoS attack results, the DDoSHOIC attack is presented next. From the

CICIDS2018 dataset, the DDoSHOIC attack profile was created on a different day, Wednesday

the 21st, hence the intrusion detection experiments are carried out separately and the results

presented here separately.

The key time-based statistics for the DDoSHOIC attack dataset is given below:

Ddoshoicwed21 data mean flow duration: 13.69s

Ddoshoicwed21 attack traffic mean flow duration: 0.239s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

eC
DF

 P
(t<

X)

10 2 10 1 100 101 102

time X (s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

eCDF Benign
eCDF Attack
Recall_DDoS-HOIC
Precision_DDoS-HOIC

Figure 5.18: 1st Stage Detection for DDoSHOIC Attack

The derived metrics for DDoSHOIC attack are calculated thus:

Average Attack Duration (AAD) = 0.239s

10% of AAD = 0.0239s

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 108

Table 5.7: Derived Detection Metrics for DDoSHOIC Attack

DDOS WED21ST
Detection Cuttoff (Recall) 0.574
Flow Duration Cuttoff 0.0239s
Average Attack Duration 0.239s
Attack Flows Completed 57.39%
Flow Duration Cuttoff Percent 10.00%

Maximum recall at less than or equal to 10% of AAD occurs at approximately 0.0239 and gives a

value of 0.574. Hence the other derived hierarchical metrics are shown in Table 5.7. Interestingly,

the mean attack duration for DDoSHOIC is much lower than the DDoSLOIC. This is because the

of the HOIC tool which possesses greater firepower and is capable of launching DDoS attacks at

a greater rate. This makes the DDoSHOIC more difficult to detect as seen from the results of

the derived metrics. 10% of mean attack duration (0.023s) only gives a 0.574 detection cutoff and

57.3% attack flows completed. This provides little room for the hierarchical approach. However,

further investigation using the hierarchical model as shown in Table 5.8 shows that a flow duration

cutoff of 0.0239s gives an approximately 99.9% reduction in false negatives as against using a non-

hierarchical solution. However, there is the relative advantage of an insignificant increase in FPR

at the second stage Figure 5.18 has a very interesting characteristic as the eCDF for the attack

traffic very closely follows the curve for the recall. At first site this may appear anomalous;

however, it is clear in this case that the machine learning result is dependent upon receiving most

of the traffic (information) in a flow for this attack type and, when it has most of the flow, it

is highly successful in detecting the attack packets (high recall). For example, when the flow

time limit of, approximately, 0.04s is used, then only 70% of the flows are complete, and as flows

need to be complete to be detected, the recall is also 0.7. This is the first case where the two

results track so closely, but it can be seen in some earlier cases the trends are similar, and some

later results will also show a similar trend. This is an important result as it shows that for some

attacks, detection is only successful when most of the flow has completed. In these cases, while

detection may be successful (assuming a long-enough window) it suggests that mitigating purely

on the flow information will not be possible as the attack will be complete before any blocking

from the detection could take place. Consequently, for these types of attacks other techniques,

such as source identification and correlation maybe required so that previous attacks can be added

to a block-list to stop future attacks.

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 109

Table 5.8: Hierarchical Intrusion Detection Results for Distributed Denial of Service (DDoS)
Attack

WED21st DDOSHOIC WED21st DDOSHOIC
(No of Attack Flows = 387476) (No of Attack Flows = 387476)

FALSE NEGATIVES FALSE POSITIVES
Subflow Non-Hier 1st St. 2nd St. Subflow Non-Hier 1st St. 2nd St.
0.0125 25432 985 17 0.0125 42819 70494 71117
0.025 31989 1007 25 0.025 41455 71409 71910
0.05 36449 1179 38 0.05 40203 71409 71747
0.1 40879 23394 91 0.1 39491 42396 46785
0.3 44171 1217 59 0.3 38744 46316 46689
0.5 44028 991 21 0.5 38621 46315 46638
0.7 44003 992 20 0.7 38591 46288 46613
1 44055 983 11 1 38609 46264 46597
1.5 44184 975 12 1.5 38653 46275 46598
2 43907 949 7 2 38631 46274 46591
10 44156 74 9 10 38301 46366 46374
30 44097 59 9 30 38250 46373 46381
60 44179 75 16 60 38348 46370 46379
120 43886 66 7 120 38337 46361 46377

0

10000

20000

30000

40000

50000

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Wednesday 21st DDoS-HOIC Attack
Total No of Attack Flows in Test Data = 387476

Non-Hier Stage 1 Stage 1+2

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 25432 985 17

0.025 31989 1007 25

0.05 36449 1179 38

0.1 40879 23394 91

0.3 44171 1217 59

0.5 44028 991 21

0.7 44003 992 20

1 44055 983 11

1.5 44184 975 12

2 43907 949 7

10 44156 74 9

30 44097 59 9

60 44179 75 16

120 43886 66 7

WED21st DDODHOIC

(No of Attack Flows = 387476)

FALSE NEGATIVES

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 42819 70494 71117

0.025 41455 71409 71910

0.05 40203 71409 71747

0.1 39491 42396 46785

0.3 38744 46316 46689

0.5 38621 46315 46638

0.7 38591 46288 46613

1 38609 46264 46597

1.5 38653 46275 46598

2 38631 46274 46591

10 38301 46366 46374

30 38250 46373 46381

60 38348 46370 46379

120 38337 46361 46377

WED21st DDODHOIC

(No of Attack Flows = 387476)

FALSE POSITIVES

n = 387476
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2403726

TN

38621

FP

Actual Yes

(DDoS)

44028

FN

343448

TP

Non-Hier (Subflow = 0.5s DDoS)

n = 387476
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2396032

TN

46315

FP

Actual Yes

(DDoS)

991

FN

386485

TP

1st Stage (Subflow = 0.5s DDoS)

n = 387476
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2395709

TN

46638

FP

Actual Yes

(DDoS)

21

FN

387455

TP

2nd Stage (Subflow = 0.5s DDoS)

Figure 5.19: Hierarchical Intrusion Detection Results for DDoS Attack

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 110

0

10000

20000

30000

40000

50000

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Wednesday 21st DDoSHoic Attack
Total No of Attack Flows in Test Data = 387476

Non-Hier Stage 1 Stage 2

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 25432 985 17

0.025 31989 1007 25

0.05 36449 1179 38

0.1 40879 23394 91

0.3 44171 1217 59

0.5 44028 991 21

0.7 44003 992 20

1 44055 983 11

1.5 44184 975 12

2 43907 949 7

10 44156 74 9

30 44097 59 9

60 44179 75 16

120 43886 66 7

WED21st DDODHOIC

(No of Attack Flows = 387476)

FALSE NEGATIVES

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 42819 70494 71117

0.025 41455 71409 71910

0.05 40203 71409 71747

0.1 39491 42396 46785

0.3 38744 46316 46689

0.5 38621 46315 46638

0.7 38591 46288 46613

1 38609 46264 46597

1.5 38653 46275 46598

2 38631 46274 46591

10 38301 46366 46374

30 38250 46373 46381

60 38348 46370 46379

120 38337 46361 46377

WED21st DDODHOIC

(No of Attack Flows = 387476)

FALSE POSITIVES

n = 387476
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2403726

TN

38621

FP

Actual Yes

(DDoS)

44028

FN

343448

TP

Non-Hier (Subflow = 0.5s DDoS)

n = 387476
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2396032

TN

46315

FP

Actual Yes

(DDoS)

991

FN

386485

TP

1st Stage (Subflow = 0.5s DDoS)

n = 387476
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2395709

TN

46638

FP

Actual Yes

(DDoS)

21

FN

387455

TP

2nd Stage (Subflow = 0.5s DDoS)

Figure 5.20: Sample Confusion Matrix for DDoS Attack Detection

5.6.4 Web Attack

Just like the DDoS attack in Section 5.6.3, the Web attack is presented in two results based on

different forms of Web attack.

The key time-based statistics for the Web attack brute-force is given below:

Webthu22 data mean flow duration: 21.11s

Webthu22 attack traffic mean flow duration: 33.16s

0.0

0.2

0.4

0.6

0.8

1.0

eC
DF

 P
(t<

X)

10 2 10 1 100 101 102

time X (s)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

eCDF Benign
eCDF Attack
Recall_BruteForce-Web
Recall_SQL-Injection
Precision_BruteForce-Web
Precision_SQL-Injection

Figure 5.21: 1st Stage Detection for Web Attack (Thus 22nd)

The derived metrics for the Web attack brute-force detection is given in Table 5.9 and calculated

thus:

Average Attack Duration (AAD) = 33.16s

10% of AAD = 3.316s

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 111

Table 5.9: Derived Detection Metrics for Web Attack (Thus 22)

BRUTEFORCE-WEB THU22ND SQL-INJECTION-WEB THU22ND
Detection Cuttoff (Recall) 0.21 Detection Cuttoff (Recall) 0.44
Flow Duration Cuttoff (s) 3.31 Flow Duration Cuttoff (s) 3.31
Average Attack Duration (s) 33.16 Average Attack Duration (s) 33.16
Attack Flows Completed (%) 19 Attack Flows Completed (%) 19
Flow Duration Cuttoff Percent (%) 10 Flow Duration Cuttoff Percent (%) 10

Maximum recall value at less than or equal to 10% of AAD occurs at 3.31s and gives a recall value

of 0.21. Hence, the other derived metrics are as shown in Table 5.9.

Similar results are obtained for Web attack Sql-injection but with a slightly better Detection Cutoff

of 0.44. Both classes of Web attack however, do not return sufficient Detection Cutoff required

to achieve sufficient protection from the hierarchical solution. Although both attacks return a

good Attack Flows Detected value (19%) and Flow Duration Cutoff Percent of 10%. However,

going forward to investigate the hierarchical performance at a sub-flow time of 2s shows a 33.3%

reduction in false negatives and a 57.14% increase in false positives as seen in Table 5.10. This

shows that despite the relatively poor detection response from the derived metrics of the first stage,

the hierarchical solution still shows some promise for the Web attack types investigated here. It

is notable that these category of attacks have poorer performance than the others, in particular

the SQL-Injection. There is a fundamental reason for this: the attacks previously shown have

traffic patterns that are unique to their type of attack, for example DoS attacks. However, SQL-

Injection is fundamentally an application layer attack. With the increasing use of encryption, it is

not possible for most traffic (soon probably all) to have content inspected at the network switch

layer. Consider specifically an SQL-Injection attack, a specially crafted SQL-injection may have

no feature in its packet flow to distinguish it from a benign packet to the same server. However,

in the case of automated SQL-Injections it may be possible to determine some information from

the general flow if there are general patterns for that particular attack. We can see that this is the

case in Fig. 5.21 where there is reasonable recall (low FN) showing that the attacks can be found,

however, at the cost of poor precision (high FP), and that almost all the flow has to be observed

before good recall is observed.

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 112

0

5

10

15

20

25

30

35

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Thursday 22nd Web Attack Attack
Total No of Attack Flows in Test Data = 82

Non-Hier Stage 1 Stage 1+ 2

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 7 29 4

0.025 7 5 5

0.05 10 6 5

0.1 6 8 5

0.3 6 7 3

0.5 4 8 3

0.7 4 8 3

1 4 7 3

1.5 3 10 3

2 6 10 4

10 6 11 3

30 7 10 6

60 7 10 6

120 7 8 5

(No of Attack Flows = 82)

THUR22nd WEB

FALSE NEGATIVES

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 7 2 9

0.025 9 8 17

0.05 9 9 18

0.1 10 14 20

0.3 7 11 18

0.5 8 12 20

0.7 6 14 20

1 7 13 19

1.5 8 10 18

2 14 8 22

10 5 9 14

30 7 8 14

60 5 3 8

120 6 6 11

FALSE POSITIVES

THUR22nd WEB

(No of Attack Flows = 82)

n = 82
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2535276

TN

8

FP

Actual Yes

(DDoS)

4

FN

78

TP

Non-Hier (Subflow = 0.5s Web Attack)

n = 82
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2535272

TN

12

FP

Actual Yes

(DDoS)

8

FN

74

TP

1st Stage (Subflow = 0.5s Web Attack)

n = 82
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2535264

TN

20

FP

Actual Yes

(DDoS)

3

FN

79

TP

2nd Stage (Subflow = 0.5s Web Attack)

Figure 5.22: Hierarchical Intrusion Detection Results for Web Attack (Thur 22nd)

Table 5.10: Table showing Hierarchical Intrusion Detection Results for Web Attack (Thur 22)

THUR22nd WEB THUR22nd WEB
(No of Attack Flows = 82) (No of Attack Flows = 82)

FALSE NEGATIVES FALSE POSITIVES
Subflow Non-Hier 1st St. 2nd St. Subflow Non-Hier 1st St. 2nd St.
0.0125 7 29 4 0.0125 7 2 9
0.025 7 5 5 0.025 9 8 17
0.05 10 6 5 0.05 9 9 18
0.1 6 8 5 0.1 10 14 20
0.3 6 7 3 0.3 7 11 18
0.5 4 8 3 0.5 8 12 20
0.7 4 8 3 0.7 6 14 20
1 4 7 3 1 7 13 19
1.5 3 10 3 1.5 8 10 18
2 6 10 4 2 14 8 22
10 6 11 3 10 5 9 14
30 7 10 6 30 7 8 14
60 7 10 6 60 5 3 8
120 7 8 5 120 6 6 11

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 113

0

5

10

15

20

25

30

35

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Thursday 22nd Web Attack Attack
Total No of Attack Flows in Test Data = 82

Non-Hier Stage 1 Stage 2

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 7 29 4

0.025 7 5 5

0.05 10 6 5

0.1 6 8 5

0.3 6 7 3

0.5 4 8 3

0.7 4 8 3

1 4 7 3

1.5 3 10 3

2 6 10 4

10 6 11 3

30 7 10 6

60 7 10 6

120 7 8 5

(No of Attack Flows = 82)

THUR22nd WEB

FALSE NEGATIVES

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 7 2 9

0.025 9 8 17

0.05 9 9 18

0.1 10 14 20

0.3 7 11 18

0.5 8 12 20

0.7 6 14 20

1 7 13 19

1.5 8 10 18

2 14 8 22

10 5 9 14

30 7 8 14

60 5 3 8

120 6 6 11

FALSE POSITIVES

THUR22nd WEB

(No of Attack Flows = 82)

n = 82
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2535276

TN

8

FP

Actual Yes

(DDoS)

4

FN

78

TP

Non-Hier (Subflow = 0.5s Web Attack)

n = 82
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2535272

TN

12

FP

Actual Yes

(DDoS)

8

FN

74

TP

1st Stage (Subflow = 0.5s Web Attack)

n = 82
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2535264

TN

20

FP

Actual Yes

(DDoS)

3

FN

79

TP

2nd Stage (Subflow = 0.5s Web Attack)

Figure 5.23: Sample Confusion Matrix for Web Attack Detection

The next results for the Web attacks present Web brute-force and Brute-force XSS. The results

for Web brute-force are ignored because they follow much the same pattern as the Web brute-force

results presented earlier. The derived metrics for the Brute-force XSS are also quite similar with

the other Web attacks exception for the Detection Cutoff which gives a much poorer value of

0.012%. The poor Detection Cutoff offers little protection from the hierarchical solution despite

the relatively good Attack flows Completed value of 18%. The derived metrics are shown in

Table 5.11. However, investigating the hierarchical solution at 0.0125s cutoff gives an 18.18%

reduction in false negatives as against a non-hierarchical approach. The same consideration for

false positives gives a 20% increase in false positives. The slight increase in false positive shows a

less likely impact on overall network performance.

0.0

0.2

0.4

0.6

0.8

1.0

eC
DF

 P
(t<

X)

10 2 10 1 100 101 102

time X (s)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

eCDF Benign
eCDF Attack
Recall_BruteForce-Web
Recall_BruteForce-XSS
Precision_BruteForce-Web
Precision_BruteForce-XSS

Figure 5.24: 1st Stage Detection for Web Attack

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 114

Table 5.11: Derived Detection Metrics for Web Attack (Fri 23)

WEB FRI23RD
Detection Cuttoff (Recall) 0.44
Flow Duration Cuttoff 9s
Average Attack Duration 35.08
Attack Flows Completed 41.00%
Flow Duration Cuttoff Percent 25.65%

0

5

10

15

20

25

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Friday 23rd Web Attack
Total No of Attack Flows in Test Data = 84

Non-Hier Stage 1 Stage 1+2

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 11 20 9

0.025 11 8 7

0.05 11 11 8

0.1 7 10 6

0.3 10 10 6

0.5 9 10 5

0.7 8 10 5

1 13 11 9

1.5 10 10 9

2 9 9 7

10 6 13 5

30 4 13 4

60 6 13 5

120 5 15 5

FRI23rd WEB

(No of Attack Flows = 84)

FALSE NEGATIVES

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 5 2 6

0.025 5 3 7

0.05 5 4 8

0.1 6 8 13

0.3 2 4 5

0.5 5 6 10

0.7 7 7 13

1 3 5 7

1.5 7 10 16

2 9 12 20

10 13 14 26

30 9 6 14

60 9 10 18

120 10 9 18

FRI23rd WEB

(No of Attack Flows = 84)

FALSE POSITIVES

n = 84
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2438269

TN

5

FP

Actual Yes

(DDoS)

9

FN

75

TP

Non-Hier (Subflow = 0.5s Web Attack)

n = 84
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2438268

TN

6

FP

Actual Yes

(DDoS)

10

FN

74

TP

1st Stage (Subflow = 0.5s Web Attack)

n = 84
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2438264

TN

10

FP

Actual Yes

(DDoS)

5

FN

79

TP

2nd Stage (Subflow = 0.5s Web Attack)

Figure 5.25: Hierarchical Intrusion Detection Results for Web Attack (Fri 23)

0

5

10

15

20

25

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Friday 23rd Web Attack
Total No of Attack Flows in Test Data = 84

Non-Hier Stage 1 Stage 2

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 11 20 9

0.025 11 8 7

0.05 11 11 8

0.1 7 10 6

0.3 10 10 6

0.5 9 10 5

0.7 8 10 5

1 13 11 9

1.5 10 10 9

2 9 9 7

10 6 13 5

30 4 13 4

60 6 13 5

120 5 15 5

FRI23rd WEB

(No of Attack Flows = 84)

FALSE NEGATIVES

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 5 2 6

0.025 5 3 7

0.05 5 4 8

0.1 6 8 13

0.3 2 4 5

0.5 5 6 10

0.7 7 7 13

1 3 5 7

1.5 7 10 16

2 9 12 20

10 13 14 26

30 9 6 14

60 9 10 18

120 10 9 18

FRI23rd WEB

(No of Attack Flows = 84)

FALSE POSITIVES

n = 84
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2438269

TN

5

FP

Actual Yes

(DDoS)

9

FN

75

TP

Non-Hier (Subflow = 0.5s Web Attack)

n = 84
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2438268

TN

6

FP

Actual Yes

(DDoS)

10

FN

74

TP

1st Stage (Subflow = 0.5s Web Attack)

n = 84
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2438264

TN

10

FP

Actual Yes

(DDoS)

5

FN

79

TP

2nd Stage (Subflow = 0.5s Web Attack)

Figure 5.26: Sample Confusion Matrix for Web Attack Detection

5.6.5 Infiltration Attack

The key flow duration-based statistics for the Infiltration attack dataset is given below:

Infiltrationwed28 data mean flow duration: 4.76s

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 115

Table 5.12: Table showing Hierarchical Intrusion Detection Results for Web Attack

FRI23rd WEB FRI23rd WEB
(No of Attack Flows = 84) (No of Attack Flows = 84)

FALSE NEGATIVES FALSE POSITIVES
Subflow Non-Hier 1st St. 2nd St. Subflow Non-Hier 1st St. 2nd St.
0.0125 11 20 9 0.0125 5 2 6
0.025 11 8 7 0.025 5 3 7
0.05 11 11 8 0.05 5 4 8
0.1 7 10 6 0.1 6 8 13
0.3 10 10 6 0.3 2 4 5
0.5 9 10 5 0.5 5 6 10
0.7 8 10 5 0.7 7 7 13
1 13 11 9 1 3 5 7
1.5 10 10 9 1.5 7 10 16
2 9 9 7 2 9 12 20
10 6 13 5 10 13 14 26
30 4 13 4 30 9 6 14
60 6 13 5 60 9 10 18
120 5 15 5 120 10 9 18

Infiltrationwed28 attack traffic mean flow duration: 63.21s

The derived metrics are calculated as shown in previous examples and shown in Table 5.13. It is

seen that flow duration cutoff is 0.5s which is an impressive 0.79% of the average attack duration.

This is well within the threshold for the hierarchical solution. The attack flows completed is also

an impressive 9% which satisfies the criteria for the hierarchical model. However, the detection

cutoff of 0.35 offers very little protection. Interestingly with this attack type and with further

investigation using the hierarchical model, there is a 0% reduction in false negatives at the flow

duration cutoff of 0.5s as seen from Table 5.14. At this Cutoff, there is also no change in false

positives which suggests negligible overall impact on network performance. As noted earlier,

the machine learning performance shown in Fig. 5.27 is highly non-linear and does not increase

monotonically with flow duration. For achieving both good recall and precision it would be

required to wait until all the flow completes, again, as commented earlier, allowing detection but

not mitigation.

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 116

0.0

0.2

0.4

0.6

0.8

1.0

eC
DF

 P
(t<

X)

10 2 10 1 100 101 102

time X (s)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

eCDF Benign
eCDF Attack
Recall_Infiltration
Precision_Infiltration

Figure 5.27: 1st Stage Detection for Infiltration Attack

Table 5.13: Derived Detection Metrics for Infiltration Attack

INFILTRATION WED28TH
Detection Cuttoff (Recall) 0.35
Flow Duration Cuttoff 0.5s
Average Attack Duration 63.2s
Attack Flows Completed 9.00%
Flow Duration Cuttoff Percent 0.79%

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 117

0
2
4
6
8

10
12
14
16
18

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Wednesday 28th Infiltration Attack
Total No of Attack Flows in Test Data = 84

Non-Hier Stage 1 Stage 1+2

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 7 6 6

0.025 7 10 7

0.05 10 10 10

0.1 12 10 10

0.3 10 9 9

0.5 11 11 11

0.7 7 8 7

1 7 8 7

1.5 8 8 8

2 7 8 7

10 8 8 6

30 13 11 8

60 14 15 13

120 15 16 13

(No of Attack Flows = 23)

FALSE NEGATIVES

WED28TH INFILTRATION

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 3 0 3

0.025 1 0 1

0.05 1 1 2

0.1 0 0 0

0.3 1 0 1

0.5 0 0 0

0.7 0 0 0

1 1 0 1

1.5 2 0 2

2 1 0 1

10 0 0 0

30 4 3 7

60 1 3 4

120 1 1 2

(No of Attack Flows = 23)

FALSE POSITIVES

WED28TH INFILTRATION

n = 23
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2777570

TN

0

FP

Actual Yes

(DDoS)

11

FN

12

TP

Non-Hier (Subflow = 0.5s Infiltration)

n = 23
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2777570

TN

0

FP

Actual Yes

(DDoS)

11

FN

12

TP

1st Stage (Subflow = 0.5s Infiltration)

n = 23
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2777570

TN

0

FP

Actual Yes

(DDoS)

511

FN

12

TP

2nd Stage (Subflow = 0.5s Infiltration)

Figure 5.28: Hierarchical Intrusion Detection Results for Infiltration Attack

Table 5.14: Table showing Hierarchical Intrusion Detection Results for Infiltration Attack

WED28TH INFILTRATION WED28TH INFILTRATION
(No of Attack Flows = 23) (No of Attack Flows = 23)

FALSE NEGATIVES FALSE POSITIVES
Subflow Non-Hier 1st St. 2nd St. Subflow Non-Hier 1st St. 2nd St.
0.0125 7 6 6 0.0125 3 0 3
0.025 7 10 7 0.025 1 0 1
0.05 10 10 10 0.05 1 1 2
0.1 12 10 10 0.1 0 0 0
0.3 10 9 9 0.3 1 0 1
0.5 11 11 11 0.5 0 0 0
0.7 7 8 7 0.7 0 0 0
1 7 8 7 1 1 0 1
1.5 8 8 8 1.5 2 0 2
2 7 8 7 2 1 0 1
10 8 8 6 10 0 0 0
30 13 11 8 30 4 3 7
60 14 15 13 60 1 3 4
120 15 16 13 120 1 1 2

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 118

0
2
4
6
8

10
12
14
16
18

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Wednesday 28th Infiltration Attack
Total No of Attack Flows in Test Data = 84

Non-Hier Stage 1 Stage 2

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 7 6 6

0.025 7 10 7

0.05 10 10 10

0.1 12 10 10

0.3 10 9 9

0.5 11 11 11

0.7 7 8 7

1 7 8 7

1.5 8 8 8

2 7 8 7

10 8 8 6

30 13 11 8

60 14 15 13

120 15 16 13

(No of Attack Flows = 23)

FALSE NEGATIVES

WED28TH INFILTRATION

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 3 0 3

0.025 1 0 1

0.05 1 1 2

0.1 0 0 0

0.3 1 0 1

0.5 0 0 0

0.7 0 0 0

1 1 0 1

1.5 2 0 2

2 1 0 1

10 0 0 0

30 4 3 7

60 1 3 4

120 1 1 2

(No of Attack Flows = 23)

FALSE POSITIVES

WED28TH INFILTRATION

n = 23
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2777570

TN

0

FP

Actual Yes

(DDoS)

11

FN

12

TP

Non-Hier (Subflow = 0.5s Infiltration)

n = 23
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2777570

TN

0

FP

Actual Yes

(DDoS)

11

FN

12

TP

1st Stage (Subflow = 0.5s Infiltration)

n = 23
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2777570

TN

0

FP

Actual Yes

(DDoS)

511

FN

12

TP

2nd Stage (Subflow = 0.5s Infiltration)

Figure 5.29: Sample Confusion Matrix for Infiltration Attack Detection

5.6.6 BoT Attack

Due to the very low Average Attack Duration (0.0154s) of the BoT attack traffic, the derived

hierarchical metrics would be unreliable at this very low flow duration times. Based on the limits

of this experiment, it is impossible to analyse the first stage derived metrics for the BoT attack.

However, given the high recall at values close to the mean flow duration suggests possible significant

good response. Further investigation into the hierarchical solution gives an average reduction of

52.39% in false negatives across all the sub-flow times. The same analysis on the false positives give

a 213% average increase across all sub-flow times which suggests a significant impact on network

operations.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

eC
DF

 P
(t<

X)

10 2 10 1 100 101 102

time X (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

eCDF Benign
eCDF Attack
Recall_Bot
Precision_Bot

Figure 5.30: 1st Stage Detection for BoT Attack

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 119

Table 5.15: Table showing Hierarchical Intrusion Detection Results for BoT Attack

FRI2nd BOT FRI2nd BOT
(No of Attack Flows = 57052) (No of Attack Flows = 57052)

FALSE NEGATIVES FALSE POSITIVES
Subflow Non-Hier 1st St. 2nd St. Subflow Non-Hier 1st St. 2nd St.
0.0125 14 380 11 0.0125 19 4 21
0.025 11 383 11 0.025 13 26 39
0.05 7 175 4 0.05 6 7 12
0.1 8 40 7 0.1 4 10 14
0.3 4 32 1 0.3 4 4 8
0.5 5 32 1 0.5 10 4 14
0.7 5 36 5 0.7 4 4 8
1 7 36 3 1 4 6 10
1.5 6 36 2 1.5 3 5 8
2 5 38 2 2 1 11 12
10 7 34 1 10 5 6 10
30 4 37 4 30 10 5 15
60 12 45 6 60 5 17 22
120 8 41 6 120 5 14 19

0
50

100
150
200
250
300
350
400
450

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Friday 2nd BoT Attack
Total No of Attack Flows in Test Data = 57052

Non-Hier Stage 1 Stage 1+2

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 14 380 11

0.025 11 383 11

0.05 7 175 4

0.1 8 40 7

0.3 4 32 1

0.5 5 32 1

0.7 5 36 5

1 7 36 3

1.5 6 36 2

2 5 38 2

10 7 34 1

30 4 37 4

60 12 45 6

120 8 41 6

FRI2nd BOT

(No of Attack Flows = 57052)

FALSE NEGATIVES

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 19 4 21

0.025 13 26 39

0.05 6 7 12

0.1 4 10 14

0.3 4 4 8

0.5 10 4 14

0.7 4 4 8

1 4 6 10

1.5 3 5 8

2 1 11 12

10 5 6 10

30 10 5 15

60 5 17 22

120 5 14 19

FRI2nd BOT

(No of Attack Flows = 57052)

FALSE POSITIVES

n = 57052
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2512796

TN

10

FP

Actual Yes

(DDoS)

5

FN

57047

TP

Non-Hier (Subflow = 0.5s Infiltration)

n = 57052
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2512802

TN

4

FP

Actual Yes

(DDoS)

32

FN

57020

TP

1st Stage (Subflow = 0.5s Infiltration)

n = 57052
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2512792

TN

14

FP

Actual Yes

(DDoS)

1

FN

57051

TP

2nd Stage (Subflow = 0.5s Infiltration)

Figure 5.31: Hierarchical Intrusion Detection Results for BoT Attack

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 120

0
50

100
150
200
250
300
350
400
450

N
o

 o
f

Fa
ls

e
 N

e
ga

ti
ve

s

Sub Flows (s)

Friday 2nd BoT Attack
Total No of Attack Flows in Test Data = 57052

Non-Hier Stage 1 Stage 2

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 14 380 11

0.025 11 383 11

0.05 7 175 4

0.1 8 40 7

0.3 4 32 1

0.5 5 32 1

0.7 5 36 5

1 7 36 3

1.5 6 36 2

2 5 38 2

10 7 34 1

30 4 37 4

60 12 45 6

120 8 41 6

FRI2nd BOT

(No of Attack Flows = 57052)

FALSE NEGATIVES

Subflow Non-Hier 1st Stage 2nd Stage

0.0125 19 4 21

0.025 13 26 39

0.05 6 7 12

0.1 4 10 14

0.3 4 4 8

0.5 10 4 14

0.7 4 4 8

1 4 6 10

1.5 3 5 8

2 1 11 12

10 5 6 10

30 10 5 15

60 5 17 22

120 5 14 19

FRI2nd BOT

(No of Attack Flows = 57052)

FALSE POSITIVES

n = 57052
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2512796

TN

10

FP

Actual Yes

(DDoS)

5

FN

57047

TP

Non-Hier (Subflow = 0.5s Infiltration)

n = 57052
Predicted No

(BENIGN)

Predicted Yes

(DDoS)

Actual No

(BENIGN)

2512802

TN

4

FP

Actual Yes

(DDoS)

32

FN

57020

TP

1st Stage (Subflow = 0.5s Infiltration)

n = 57052
Predicted No

(BENIGN)

Predicted Yes

DDoS

Actual No

(BENIGN)

2512792

TN

14

FP

Actual Yes

(DDoS)

1

FN

57051

TP

2nd Stage (Subflow = 0.5s Infiltration)

Figure 5.32: Sample Confusion Matrix for BoT Attack Detection

5.7 Summary of Results

The security solution presented in this work comes with a unique mode of operation and unique

performance metrics. These performance metrics which are defined in Section 5.6 and results

of which are summarised in Table 5.16. The table also represents a summary of the results

presented in this chapter. The table can be analysed in three categories based on the unique

metrics of evaluation: 1) real-time implication which comprises of the detection cutoff (recall),

flow duration cutoff percent and attack flows completed percent; 2) accuracy implication which

comprises of detection cutoff, attack flows completed percent and reduced false negative rate

(FNR); 3) cost implication which comprises of increased false positive rate (FPR). The cost

implication is considered in terms of how much worse this solution would cause other network

performance parameters (outside of security) to be. Based on the limitations of this work, the

cost is evaluated in terms of increase in FPR which may result in loss of information due to benign

packets being dropped.

Based on the different metrics considered, it is seen that the proposed hierarchical SDN solution

adapts more suitably to the DoS and DDoS attacks. The other attacks also show good potential

but with detection times after a relatively larger proportion of the flows have completed. For the

Brute Force attacks a much less aggressive cut-off is required, for example Figure 5.9 shows that

nearly all the attack flows would need to be completed to achieve good recall. Other attacks still

show potential despite poor suitability, for example in terms of better FN as against using just a

single stage and as against using a traditional non-hierarchical approach.

A key point to note in the trend of the overall results is that, across all the attack types, there

is a lower lower number of FNs at the end of the second stage when compared to the first stage and

when compared to the non-hierarchical implementation. Analysis in Sections 4.3 and 5.5 clearly

shows that a low FN output is desirable. This shows that the proposed hierarchical solution has

the potential to provide higher recall than the traditional non-hierarchical approach. Crucially

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 121

Table 5.16: Summary Table for Hierarchical Detection Results Using Chosen, Agressive, Flow
Cut-Off Criteria (Detection at or less than 10% mean flow duration)

Attack Type
Detection

Cuttoff (Recall)
Flow Duration
Cuttoff (%)

Attack Flows
Completed (%)

Reduced
FNR

Increased
FPR

Overall
Suitability

BRUTE WED14TH 0 10 68 Good High Poor
DOS FRI16TH 0.9998 3.87 55 Moderate Low Moderate
DDOS TUE20TH 0.998 8.54 3 High Low High
DDOS WED21ST 0.574 10 57.39 High Low Moderate
WEB THU22ND 0.21 10 19 Low Low Poor
WEB FRI23RD 0.44 25.65 41 Low Low Poor
INFIL WED28TH 0.35 0.75 9 Low Low Poor
BOT FRI2ND N/A N/A N/A Moderate Low Inconclusive

also, the sequence of results show that using only the first stage classifier may not be enough to

offer adequate protection to the network. Another interesting trend of results is the comparison

between number of FNs across the non-hierarchical and the first stage. It is seen that some results

show a sharp drop in the number of FNs from the non-hier to first stage whereas some others

show a sharp rise in the nunber of FNs. Specifically, the DDoS attacks (LOIC and HOIC) show a

sharp drop in FNs from non-hier to first stage while the DoS and BoT attacks show a sharp rise in

FNs within the same comparison. Also, there is an interesting trend between the FNs across the

first and the second stages. In this case, the trend is only downwards from the first to the second

stage. This means that there is consistently higher recall when using the hierarchical approach

as compared to using only the first stage. This is in addition to a consistently higher accuracy

(lower FNs) when using the hierarchical solution as compared to when using the non-hierarchical

approach, which is actually one of the main benefits of this solution.

Note that, further work would need to be done to adapt the hierarchical solution to more attack

types. Practical deployment would require a choice between attacks detected, sub-flow duration

and acceptable recall/precision for a given attack.

5.8 Summary

In this chapter, a novel hierarchical machine learning based security solution in SDN has been

developed. The solution showed additional attack detection accuracy compared to a conventional

non-hierarchical approach. This is demonstrated by way of a reduction in false negative rate upon

deployment of the hierarchical solution as explained in Section 5.6.1. In addition, the hierarchical

solution supports real time or near real-time detection in some attacks. This is the first work to

use a hierarchical machine-learning solution to achieve real-time attack detection in SDN.

CHAPTER 5. HIERARCHICAL DETECTION WITH CATEGORICAL CLASS. 122

Work done in this chapter also created unique performance parameters to evaluate and analyse

the hierarchical solution. These unique evaluation metrics can be adopted in future studies in the

area of real time attack detection in next generation networks.

Also, this is the first work that has shown how different attack types respond to sub-flow

classification and also how different attack types respond to a change in flow monitoring approach.

This is also the first work to introduce a sub-flow generator in the flow-meter design based on the

IPFIX standard. The IPFIX standard does not provide for a sub-flow generator. This is necessary

to implement real-time machine learning based security in networks as seen demonstrated for SDN

in this work. Hence, this is the first work to use historic data to recreate a real-time scenario to

test the effectiveness of using machine learning algorithms to detect specific attack types in SDN

security.

This chapter did find instances where the hierarchical approach used in this chapter had poorer

performance than the non-hierarchical approach in terms of false positives (lower precision). This

was caused by only sending traffic classified as benign to the second stage (blocking all classified

as attack). The next chapter will provide a solutions to this issue.

Chapter 6

Improving Intrusion Detection

Efficiency Through Probabilistic

Classification

6.1 Introduction

Work done in this Chapter highlights the savings in effort at the edge of the network. In a

regular network topology, the anomaly detection or intrusion detection system at the edge would

be designed to process all packets passing through it in order to make security decisions. This

would result in extensive workload for the edge forwarding and security devices. One of the major

goals of this work is to improve the efficiency of the intrusion detection process. In the work done

in Chapter 5, all classified benign flows or traffic is switched to the second stage classifier. In this

chapter, a probabilistic approach is used where the classification probability is used to send only

traffic with prediction probability lower than a certain threshold. This further reduces the volume

of traffic being processed at the second stage classifier. The final results shown at the second stage

is the combination of the first and second stage results. The final results is compared with results

from the non-hierarchical approach.

123

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 124

Prediction = Attack Prediction = Benign Prediction = Attack

Prediction = Attack Prediction = Attack Prediction = Benign

Prediction = Attack Prediction = Attack Prediction = Benign

Predictions: 6 Attacks, 3 Benign

Pr(Attack) =
6

9
=

2

3

Pr(Benign) =
3

9
=

1

3

Predictions: 6 Attacks, 3 Benign

Pr(Attack) =
6

9
= 0.666

Pr(Benign) =
3

9
= 0.333

Classification (Flow X) = [0.333, 0.666]

Tree 1 Tree 3Tree 2

Tree 4 Tree 5 Tree 6

Tree 7 Tree 8 Tree 9

Classification of Flow X

Figure 6.1: Simplified Illustration of Random Forest Probabilities

6.2 Why Random Forest Classifier

The main reason why Random Forest Classifier is used in this chapter is because the Decision

Tree Classifier is not intrinsically a probabilistic model. On the Random Forest Classifier, for each

traffic flow, each tree predicts a class. The algorithm then calculates different probabilities for

each class for that particular flow. The output probabilities for each flow are the fractions of total

numbers of trees which predicted a specific class. A simplified illustartion of how Random Forest

Classifier calculates its probabilities is shown in Figure 6.1. All calculated class probabilities for

each flow sum up to 1. Obviously, the class with the highest probability is the predicted class.

Each flow therefore has different probabilities for each class. This concept of different probabilities

for each flow is one of the main techniques used in this chapter.

6.3 Probability Threshold Analysis

The concept of classification probability is utilised to control the volume of traffic forwarded to

the second stage classifier. The overall idea is to limit the volume of packets to be processed by

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 125

the edge classifier while maintaining a similar overall attack detection accuracy.

High probability attack traffic in the context of benign classifications is equivalent to low

probability benign classification. Hence the lower the probability of benign classification, the

higher the possibility of an attack flow. Therefore, only benign traffic below the threshold is sent

to the second stage classifier. Accordingly, all benign traffic higher than the given threshold is

allowed through to the network.

With regards to attack traffic, the higher the probability of attack traffic, the higher the

possibility of an attack. Consequently, all attack traffic with classification probabilities higher than

the threshold is dropped. As with the benign classifications, all traffic with positive classification

probabilities lower than the threshold are sent to the second stage classifier. This is illustrated in

Figure 6.2. Hence, a threshold is chosen such that all traffic with classification probability below

the threshold is sent to the second stage classifier.

Table 6.2 shows a table of analysis to work out what the threshold should be. Table 6.2 shows

the percentiles of volumes of flows according to classification probability. The table shows the

classification probabilities for DoS and DDoS. For DoS, the result shows that up to 99% of the

flows are predicted with certainty while the value for DDoS is 95.4%. Hence, a threshold value

slightly lower than certainty (probability = 1) should be chosen, for example, the value of 0.999

has been used as a suggested threshold for the examples shown here. The results shown in Table

6.2 represent values at the flow duration cutoff (calculated in Chapter 5) of both attack types (1.8s

and 2s respectively). In practice, the threshold value may need to be optimised as an extensive

engineering exercise on real data and would depend on the machine learning algorithm, the traffic

or attack type and the system application amongst other factors. This has not been done primarily

due to limitation in computational resources and amount of time that this would require. The

Table 6.1 summarises the application of classification probability to the hierarchical SDN security

solution.

6.4 Malicious Packet Detection Efficiency based on The

Probabilistic Approach

The probability approach has resulted in a significant reduction in traffic to the second stage

classifier. This reduction is in varying proportions with respect to different attack types and

across different sub-flow times. This is mainly responsible for the increase in prediction rate at

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 126

ML
Train

1st Stage
Model

F(i)OF F(i)OF-train

EXPERIMENTAL DESIGN

No

Split

F(i)OF-test

FOF

ML
Train

2nd

Stage
Model

F(i)CF

F(i)CF-train
Split

F(i)CF-test

Classification
= Benign

Translate
to full

features

Yes

Drop
packets

Final
classification
output

Combine
classification

results

Combination bc only the n predictions
were sent to the 2nd stage and the overall
final results will have to be presented in
terms of the overall p and n predictions.

Sub-flow
Generator

Flow Meter

IP Packets

Proba Analysis

Probability
< Threshold

Yes

No

Allow
through to
network

1st Stage
results

F(i)Sub-flow
Generator

Flow Meter

Split

Figure 6.2: Experimental Design based on Probabilistic Method

Table 6.1: Classification Probability Operation for Hierarchical SDN Security Solution

Classification
Probability

Description Action

Benign < Threshold Less likely benign. Possibly a False Negative Send to Stage 2

Benign > Threshold Most likely benign Allow packets through

Attack < Threshold Possibly a False Positive Send to Stage 2

Attack > Threshold Most likely an attack Drop packets

the edge when compared to using a non-hierarchical system. The remainder of this section will

present the results of the probabilistic approach in more detail. The results are presented in a

three graph format. The first graph shows the percentage of total traffic sent to the second stage

classifier as a result of the implementing the probability method. The second graph compares the

prediction rates between implementing a traditional non-hierarchical approach and the hierarchical

solution developed so far. The third graph compares the overall detection accuracy between the

traditional non-hierarchical approach and the hierarchical solution. This overall detection accuracy

is combination of the classification results from the first and the second stages. This process has

been explained in Chapter 5. In terms of the prediction rate, this is calculated as the number of

flows processed by a single core Intel Xeon CPU (E5-2680 v4) operating at 2.40 GHz and with

32 GBytes of RAM.

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 127

Table 6.2: Traffic Classification Probabilities, Basic Statistics and Probability by Traffic Percentiles

DOS FRI16TH DDOS TUE20TH
Classification Probability Classification Probability
mean 0.9999 mean 0.9997
std 0.00147 std 0.001844
min 0.52 min 0.513
0% 0.52 0% 0.513
0.1% 0.9877 0.1% 0.9952
0.2% 0.9878 1.0% 0.9952
0.3% 0.9878 2.0% 0.9952
0.4% 0.9878 3.0% 0.9954
0.5% 0.9991 4.0% 0.9954
1.0% 1 4.5% 0.9954
10% 1 4.6% 1
50% 1 50% 1
max 1 max 1

6.4.1 Brute-Force Attack

For the Brute-Force attack as shown in Figure 6.3, less than 1% of total traffic is sent to the second

stage across all the sub-flow times. This results in an increase in prediction rate by approximately

a factor of 1000. This represents a significant savings in CPU resources. As a result of the reduced

traffic to the second stage classifier, it might have been expected that the detection accuracy

of the hierarchical solution should drop by some significant fraction. However, the Brute-Force

attack shows a marginal increase in detection accuracy as shown in the figure. This is because

the detection accuracy shown is a combination of results from stages one and two. The marginal

increase in overall detection accuracy demonstrates additional potential of this solution with this

attack type. To present these results in further perspective regarding the hierarchical solution;

for a flow duration cutoff of 0.012s (calculated in Section 5.6.1), there is a approximately 1000

times increase in prediction rate and a marginal improvement in detection accuracy. It is difficult

to determine the reason for the increase in accuracy for the hierarchical model; however, it may

be attributed to the fact that there are now two machine learning models, with the second stage

highly tuned to filter out just the much smaller number of flows that fail accurate detection in the

first stage.

6.4.2 DoS Attack

For the DoS attack as shown in Figure 6.4, less than 2% of total traffic is sent to the second

stage across all sub-flows. Early stages of flow show about 1.75% of traffic below the probability

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 128

10 2 10 1 100 101 102

Flow Duration x (seconds)

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

%
 o

f T
ra

ffi
c

be
lo

w
th

re
sh

ol
d

BruteForce Prob

(a) Percentage of traffic below threshold for 2nd stage

10 2 10 1 100 101 102

Flow Duration x (seconds)

106

107

108

109

Pr
ed

ic
tio

nR
at

e

BruteForce Non-Hier
BruteForce Hier

(b) Prediction Rate in flows per second

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1

1.00001

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

BruteForce (Wed14th)

Non-Hier Hier

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DoS Fri16th)

Non-Hier Hier

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DDoS-HOIC (Wed21st)

Non-Hier Hier

0.875

0.88

0.885

0.89

0.895

0.9

0.905

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DDoS (Tue20th)

Non-Hier Hier

(c) Detection Accuracy

Figure 6.3: Efficiency Results for BruteForce

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 129

10 2 10 1 100 101 102

Flow Duration x (seconds)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

%
 o

f T
ra

ffi
c

be
lo

w
th

re
sh

ol
d

DoS Prob

(a) Percentage of traffic below threshold for 2nd stage

10 2 10 1 100 101 102

Flow Duration x (seconds)

106

107

108

109

Pr
ed

ic
tio

nR
at

e

DoS Non-Hier
DoS Hier

(b) Prediction Rate in flows per second

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1

1.00001

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

BruteForce (Wed14th)

Non-Hier Hier

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DoS (Fri16th)

Non-Hier Hier

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DDoS-HOIC (Wed21st)

Non-Hier Hier

0.875

0.88

0.885

0.89

0.895

0.9

0.905

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DDoS (Tue20th)

Non-Hier Hier

(c) Detection Accuracy

Figure 6.4: Efficiency Results for DoS

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 130

0

10

20

30

40

50

60

Fa
ls

e
 N

e
ga

ti
ve

s

Sub-flows

DoS (Fri16th)

Non-Hier Hier

Figure 6.5: Reduction in False Negatives using Hierarchical Solution without Probability Option

threshold. This results in approximately 100 times increase in prediction rate at the early stages

of the flow duration. There is a gradual decrease in percentage of traffic sent to the second stage

as sub-flow times increase. At latter sub-flow times, there is slightly less than 1000 times increase

in prediction rate. Based on the hierarchical solution, for a flow duration cutoff of 1.8s (approx

2s) (calculated in Section 5.6.2), 0.4% of traffic is sent to the second stage classifier with close

to 1000 times increase in prediction rate. Interestingly, there is a marginal reduction in overall

accuracy of the hierarchical solution upon implementing the probabilistic option. However, results

from Section 5.6.2 show an overall reduction in number of false negatives upon implementing the

hierarchical solution which clearly indicated an increase in overall accuracy. The relevant portion

of the result from Section 5.6.2 is shown in Figure 6.5.

However, the marginal decrease in overall detection accuracy shown in Figure 6.4 may be

further investigated by optimising the probability threshold value. This has not been done in

this work due to limitation in computation resources as mentioned in Section 6.3. Despite the

slight reduction in overall accuracy, the probabilistic option of the hierarchical solution still shows

significant potential in efficient malicious packet detection in SDN networks.

6.4.3 DDoS Attack

The DDoS-LOIC attack shows a reduction in traffic of between 8 to 10% across the sub-flows. This

results in approximately 10 times increase in prediction rate across sub-flow times. This results

as shown in Figure 6.6 shows that there is no significant change in overall detection accuracy.

Reference to the hierarchical solution, the flow duration cutoff of 2s gives the approximate re-

sponses already stated. The DDoS-HOIC results shown in Figure 6.7 show the same trend except

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 131

for percentage of traffic sent to stage two which is as high as 26% for lower sub-flow times and

approximately 15% at higher sub-flow times. For flow duration cutoff of 0.0239s (as calculated in

Section 5.6.3), approximately 23% of traffic is sent to stage two. The DDoS-HOIC was the most

challenging of the attack types to be investigated. The fact that as much as 26% of the traffic had

to be sent to the second stage reflects the fact that the first stage classifier was less certain on the

classification and required greater power from the second stage classifier. Looking into the attack

for the DDoS-HOIC [132], the reason for this is that DDoS-HOIC has the capability to change its

behaviour on each request through “fuzzing” whereby the attack parameters are changed a little

on each request. Consequently, it is harder to distinguish the attack or benign classification from

only the OpenFlow features exposed at the first stage.

6.4.4 Web Attack

The two types of web attacks shown in Figures 6.8 and 6.9 give very similar results. For both

attack traffic, less than 1% of the traffic is sent to the second stage classifier, resulting in 1000

speed up in prediction rate. Also there is negligible difference in overall system accuracy. The

flow duration cutoff of both attacks give return the average responses stated already.

6.4.5 Infiltration Attack

The infiltration attack shows a similar trend with less than 1% of total traffic sent to classifier

2 across all sub-flows. This results in approximately 1000 times increase in prediction rate with

an insignificant change in overall detection accuracy. Results for the infiltration attack is shown

Figure 6.10. The flow duration cutoff of 0.5s is well within the approximate range of response

stated.

6.4.6 BoT Attack

The probabilistic results for BoT attack as seen in Figure 6.11 shows a significant reduction in

traffic with approximately between 0.1% to 1.2% of the traffic sent to the second stage across

all sub-flow times. Similarly, this results in approximately 1000 times increase in prediction rate

across all sub-flow times with a negligible change in overall detection accuracy. For this attack, as

seen in Section 5.6.6, the flow duration cutoff is unavailable, but results here show strong potential

with the probabilistic approach.

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 132

10 2 10 1 100 101 102

Flow Duration x (seconds)

9.0

9.2

9.4

9.6

9.8

%
 o

f T
ra

ffi
c

be
lo

w
th

re
sh

ol
d

DDoS-LOIC Prob

(a) Percentage of traffic below threshold for 2nd stage

10 2 10 1 100 101 102

Flow Duration x (seconds)

106

107

Pr
ed

ic
tio

nR
at

e

DDoS Non-Hier
DDoS Hier

(b) Prediction Rate in flows per second

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1

1.00001

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

BruteForce (Wed14th)

Non-Hier Hier

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DoS (Fri16th)

Non-Hier Hier

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DDoS-HOIC (Wed21st)

Non-Hier Hier

0.875

0.88

0.885

0.89

0.895

0.9

0.905

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DDoS (Tue20th)

Non-Hier Hier

(c) Detection Accuracy

Figure 6.6: Detection Efficiency Results for DDoS-HoIC

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 133

10 2 10 1 100 101 102

Flow Duration x (seconds)

16

18

20

22

24

26

%
 o

f T
ra

ffi
c

be
lo

w
th

re
sh

ol
d

DDoS-HOIC Prob

(a) Percentage of traffic below threshold for 2nd stage

10 2 10 1 100 101 102

Flow Duration x (seconds)

106

107

Pr
ed

ic
tio

nR
at

e

DDoS Non-Hier
DDoS Hier

(b) Prediction Rate in flows per second

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1

1.00001

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

BruteForce (Wed14th)

Non-Hier Hier

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DoS (Fri16th)

Non-Hier Hier

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DDoS-HOIC (Wed21st)

Non-Hier Hier

0.875

0.88

0.885

0.89

0.895

0.9

0.905

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

DDoS (Tue20th)

Non-Hier Hier

(c) Detection Efficiency Results for DDoS

Figure 6.7: Detection Efficiency Results for DDoS-HOIC

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 134

10 2 10 1 100 101 102

Flow Duration x (seconds)

0.005

0.010

0.015

0.020

0.025

%
 o

f T
ra

ffi
c

be
lo

w
th

re
sh

ol
d

Web-Thu22nd Prob

(a) Percentage of traffic below threshold for 2nd stage

10 2 10 1 100 101 102

Flow Duration x (seconds)

106

107

108

109

Pr
ed

ic
tio

nR
at

e

Web Non-Hier
Web Hier

(b) Prediction Rate in flows per second

0

0.2

0.4

0.6

0.8

1

1.2

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Web Attack (Thu22nd)

Non-Hier Hier

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
D

e
te

ct
io

n
 A

cc
u

ra
cy

Sub-flows

Web Attack2 (Fri23rd)

Non-Hier 2nd Stage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Infiltration Attack (Wed28th)

Non-Hier 2nd Stage

0.99965

0.9997

0.99975

0.9998

0.99985

0.9999

0.99995

1

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

BoT (fri2nd)

Non-Hier 2nd Stage

(c) Detection Accuracy

Figure 6.8: Detection Efficiency Results for WEB Attack

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 135

10 2 10 1 100 101 102

Flow Duration x (seconds)

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

%
 o

f T
ra

ffi
c

be
lo

w
th

re
sh

ol
d

Web-Fri23rd Prob

(a) Percentage of traffic below threshold for 2nd stage

10 2 10 1 100 101 102

Flow Duration x (seconds)

106

107

108

109

Pr
ed

ic
tio

nR
at

e

Web2 Non-Hier
Web2 Hier

(b) Prediction Rate in flows per second

0

0.2

0.4

0.6

0.8

1

1.2

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Web Attack (Thu22nd)

Non-Hier Hier

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Web Attack2 (Fri23rd)

Non-Hier 2nd Stage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Infiltration Attack (Wed28th)

Non-Hier 2nd Stage

0.99965

0.9997

0.99975

0.9998

0.99985

0.9999

0.99995

1

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

BoT (fri2nd)

Non-Hier 2nd Stage

(c) Detection Accuracy

Figure 6.9: Detection Efficiency Results for WEB Attack

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 136

10 2 10 1 100 101 102

Flow Duration x (seconds)

0.003

0.004

0.005

0.006

0.007

0.008

0.009

%
 o

f T
ra

ffi
c

be
lo

w
th

re
sh

ol
d

Infiltration Prob

(a) Percentage of traffic below threshold for 2nd stage

10 2 10 1 100 101 102

Flow Duration x (seconds)

106

107

108

109

Pr
ed

ic
tio

nR
at

e

Infiltration Non-Hier
Infiltration Hier

(b) Prediction Rate in flows per second

0

0.2

0.4

0.6

0.8

1

1.2

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Web Attack (Thu22nd)

Non-Hier Hier

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Web Attack2 (Fri23rd)

Non-Hier 2nd Stage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Infiltration Attack (Wed28th)

Non-Hier 2nd Stage

0.99965

0.9997

0.99975

0.9998

0.99985

0.9999

0.99995

1
D

e
te

ct
io

n
 A

cc
u

ra
cy

Sub-flows

BoT (fri2nd)

Non-Hier 2nd Stage

(c) Detection Accuracy

Figure 6.10: Detection Efficiency Results for Infiltration Attack

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 137

10 2 10 1 100 101 102

Flow Duration x (seconds)

0.2

0.4

0.6

0.8

1.0

1.2

%
 o

f T
ra

ffi
c

be
lo

w
th

re
sh

ol
d

BoT Prob

(a) Percentage of traffic below threshold for 2nd stage

10 2 10 1 100 101 102

Flow Duration x (seconds)

106

107

108

109

Pr
ed

ic
tio

nR
at

e

BoT Non-Hier
BoT Hier

(b) Prediction Rate in flows per second

0

0.2

0.4

0.6

0.8

1

1.2

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Web Attack (Thu22nd)

Non-Hier Hier

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Web Attack2 (Fri23rd)

Non-Hier 2nd Stage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

Infiltration Attack (Wed28th)

Non-Hier 2nd Stage

0.99965

0.9997

0.99975

0.9998

0.99985

0.9999

0.99995

1

D
e

te
ct

io
n

 A
cc

u
ra

cy

Sub-flows

BoT (fri2nd)

Non-Hier 2nd Stage

(c) Detection Accuracy

Figure 6.11: Detection Efficiency Results for BoT Attack

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 138

6.5 Summary of Results for Probabilistic Classification

Table 6.3 gives a condensed presentation of the results obtained in this chapter. The summary

table shows overall performance across all sub-flow times. System performance specific to flow

duration cutoff of the hierarchical model has been discussed in the chapter. As noted from the

DDoS WED21ST data (DDoS HOIC attack), the results depend on the attack type and it is

important that the system is tuned as new attacks become known.

Table 6.3: Efficiency of Hierarchical Solution with Probabilistic Method

Attack Type
Approximate
% of Traffic
to Edge

Approximate
Increase in
Prediction

Rate

Approximate
Change in Overall

Acuraccy

BRUTE WED14TH <1 1000 Marginal increase
DOS FRI16TH <2 100-1000 Marginal decrease
DDOS TUE20TH <10 10 Insignificant
DDOS WED21ST 15-26 <10 Insignificant
WEB THU22ND <1 1000 Insignificant
WEB FRI23RD <1 1000 Insignificant
INFILTRATION WED28TH <1 1000 Insignificant
BOT FRI2ND <1.2 1000 Insignificant

In addition, some results show a marginal increase in detection accuracy when implementing

the hierarchical solution. This is rather unexpected given that the second stage classifier pro-

cesses significantly fewer number of packets which means less information available to the machine

learning algorithm. One result which shows this marginal increase is the Brute-Force attack as

seen in the table. For big data, high volume communications characterised by modern network

applications and services, these marginal difference may be significant. This shows potential for

improvement with further investigation and research into the hierarchical SDN security solution.

One result which shows relative decrease in detection accuracy is the DoS attack shown in Figure

6.4 and also seen in Table 6.3. In reality, this is to be expected since the second stage classi-

fier only deals with a significantly fewer number of packets for traffic classification. However, as

explained in Section 6.4, the categorical classification done in Chapter 5 indicates an increase in

accuracy for DoS attack. It is important to note that in Chapter 5, there is consistent improve-

ment in accuracy from the non-hierarchical implementation to the hierarchical implementation.

Whereas, in the probabilistic classification carried out in this chapter, there has been no significant

change in accuracy except for Bruet-Force and DoS which showed marginal increase and decrease

CHAPTER 6. IMPROVING EFFICIENCY BY PROBABILISTIC CLASSIFICATION 139

respectively.

6.6 Chapter Summary

The main contribution of this chapter is to demonstrate the improvement in efficiency between

traditional non-hierarchical intrusion detection methods and the hierarchical SDN solution. The

efficiency has been demonstrated in terms of attack prediction rate and overall attack detection

accuracy.

The results in this chapter show an overall reduction in traffic to the edge, when implementing

the hierarchical solution, which results in increased prediction rate at the edge. This indicates

that there is a significant reduction in effort at the edge of the network. Despite the significant

reduction in effort, the hierarchical solution gives similar detection accuracy as the traditional

non-hierarchical approach. In this regard, the results emphasise the difference in accuracy and

not necessarily the level of accuracy. Work done and results obtained in this chapter demonstrate

a significant reduction in time and effort required to obtain reasonable attack detection in SDN.

Without the hierarchical solution, every packet will be processed by the intrusion detection system

(IDS). With the hierarchical solution, only a portion of the packets are processed at the edge. Also,

implementing only the first stage is not sufficient in terms of overall accuracy.

Chapter 7

Conclusion and Analysis

7.1 Analysis and Limitations

The goal of the work done in this thesis is aimed at answering the research question as stated

in Chapter 1: given the computationally intensive nature of machine learning based IDS, can we

leverage on the SDN architecture to provide an efficient malicious packet detection solution at the

edge of the network? Chapter 4 provided supporting evidence that a hierarchical design might

provide a solution although it only focused on what could be achieved in a single classifier. In

particular Figure 4.36 showed that there is potential for reducing the traffic volume at an edge

classifier, although the overall system had not yet been investigated. Consequently, in Chapter 5,

the operation of the proposed hierarchical solution is first presented. Table 5.16 showed a summary

of the results. Given a variety of different evaluation metrics it is seen that the hierarchical solution

shows good potential for DoS and DDoS attacks. Other attacks show good performance in some

metrics but not in some others. For example, the infiltration attack shows good flow duration cutoff

percent and attack flows completed, but returns a poor detection cutoff. Chapter 6 demonstrated

more concrete evidence regarding the savings in traffic volume processed at the edge. Table 6.3

showed the hierarchical solution demonstrates a reduction in traffic to the edge by approximately

74-90% for DDoS attacks while the other attacks show a reduction of over 98% of traffic.

Generally, both SDN security and machine learning based IDS are still considered to be growing

areas of research. There are lots of challenges with integrating machine learning into network

security. However, we believe that SDN provides a unique platform to introduce machine learning

into network security. This work has demonstrated this conviction using a novel approach: a

140

CHAPTER 7. CONCLUSION AND ANALYSIS 141

lightweight machine learning classifier at the controller combined with an edge classifier that

would have to deal with much reduced intrusion detection activities. This potentially frees up

resources on the server for other network services and applications. This is because in practice,

the edge classifier is most likely to be a server blade which may incorporate several other network

based services as is common with network function virtualisation at the edge [133] [134].

Work done in this thesis represents significant improvement compared to previous works in

machine-learning based network security. Previous works as discussed in Sections 2.10 and 5.2

have not considered the sub-flow approach to machine learning based traffic classification with

respect to network security. For example, works such as [1] [99] [92] [97] [14] [98] [127] [128] [129]

[100] [130] [131] and many more have investigated machine learning based network security but

they all share this limitation. Most of these works have utilised popular datasets like the KDD99

and the CICIDS2017 datasets but none of these works have re-engineered the datasets in order

to utilise a sub-flow approach. Work done in this thesis has utilised a sub-flow approach which is

an improvement to previous works and is a better reflection of realistic scenarios. For example,

if the whole flow is considered, as is the case with all works seen by this author, then there is no

opportunity for detecting the attack before it is finished; this is vital if detection is to be used

for protection. This work has investigated the likely detection time for the range of attacks, for

some it can be detected before the flow is complete, for example DDoS LOIC can be successfully

detected within typically 3% of the flows completed, whereas this increases to 68% for Brute Force

attacks if an aggressive flow-cut off criteria is used (see Table 5.16). Alternatively, very good

results are achieved if the flows are allowed to fully complete i.e., without using a sub-flow cut-off

for detection as implicitly assumed by previous works. In addition, other works do not consider

the processor intensive nature of machine learning methods and their proposed solutions would

require the detection models to process every packet or flow in the dataset. However, work done

in this thesis has addressed this limitation and has demonstrated a more efficient approach to

machine learning based network security.

In a practical deployment of this solution, it is believed that the detection accuracy at the

controller (first stage) would be poorer than the results suggest due to the fact that the traffic

and attacks would have greater variation than in the dataset that was used. This makes the

intervention of the edge classifier more critical. This work has demonstrated that working in

tandem with the central classifier (1st stage classifier), the edge classifier can be made to work

more efficiently when compared to a flat traditional architecture.

CHAPTER 7. CONCLUSION AND ANALYSIS 142

As expected, there are limitations to this work due to constraints in experimental procedures.

Some of the limitations include the need to optimise the detection probability threshold and

other model parameters. The fact that this has to be done with respect to different attack

types and for each sub-flow point would require a more extensive engineering process for practical

deployment than is available within this study. In practice also, the feature selection process at

the edge would have to be optimised to suit the particular traffic and attacks. In addition, the

hierarchical solution which is based on a supervised learning approach would have the limitation of

its inability to reliably detect unknown attacks. In addition, the quality of the dataset contributes

to the experimental limitation of this work. In reality, very high quality (maybe real world)

IDS datasets are very difficult to obtain. Also, the re-engineering process carried out on the

dataset in this work is bound to create some slight modifications to the original data. In a real

deployment, a combination of different detection mechanisms maybe required to effectively deal

with the complex nature of cyber attacks in modern networks. Consequently, the limitations of

this work as mentioned, are being suggested as items of future work.

7.2 Future Work

In consequent of the limitations discussed in Section 7.1, the following areas are suggested as

possible future work:

• Procedures and understanding from this work can be applied to hybrid intrusion detection

systems since hybrid detection systems combine advantages of both methods. For example by

combining the supervised techniques with an unsupervised approach with the latter working

to detect anomalies that are potential “uknownn” attacks. Additionally, the approach could

be combined with existing rule based approaches [135] [136]. As with these papers, these

techniques could be implemented in a similar hierarchical approach.

• Investigate the overall network performance of the hierarchical solution as regards other

areas outside of security. For example exploring latency, throughput, quality of service and

any other parameters that may be affected by the addition of additional processing at the

edge.

• This work has considered a generic enterprise network. There would be differences if it was

deployed in other types of network. For example, an IoT network might have very little

processing at the edge such that it might not be feasible to carry out much processing, but

CHAPTER 7. CONCLUSION AND ANALYSIS 143

on the other hand the data rate is also lower at the edge in such a network. It would be

interesting to look at optimising the design of the hierarchy to suit such a network.

• As stated in Chapter 1, this work does not investigate machine learning iteself, but rather

the application of machine learning. Although a number of models where explored in Chap-

ter 4, an important body of work would be to look at optimising the machine learning itself,

for example by exploring further models and optimising the parameters of the models that

were used in this work. An interesting approach would be to make use of federated learn-

ing [137] which is a recent approach to distributed machine learning. Indeed this thesis can

be classified as using federating learning. However, it would be useful to go further than

suggested in this thesis by jointly optimising the machine learning based upon both edge

and central classifiers. The thesis optimises the edge classifier based upon the output of the

central classifier, but maybe the central classifier could be optimised based upon the edge

classifier and achieve truly federated learning? Furthermore, coordinated attacks across a

number of edge points could be detected through a combination of edge intelligence and

using correlation approaches in a central classifier.

• Investigate the regular update of detection models to suit the changing nature of the attacks

that approach a given network. This may require techniques such as reinforcement learning

and using human input and general network monitoring to prompt such systems to retrain.

• Investigate the impact or adaptability of this work towards the recently developed networking

concept of intelligent multi-edge computing (or intelligent edge environment) [138] [139].

This is the idea that services are going to move to the edge of the network by default.

It should be noted that this concept does not invalidate work done in this thesis. As a

matter of fact, this concept of multi edge computing makes the work done in this thesis even

more relevant. This is because moving more services to the edge places more demand on

edge resources, hence an efficient edge intrusion detection system as proposed in this work

becomes more relevant. Hence, as future work, the solution presented in this thesis will look

to be integrated in the incoming intelligent edge environment.

• There is a possibility that some of the concepts introduced in this work can be built into the

SDN architecture in the future (or influences the next generation of SDN). This is more so

because SDN is still very much in the infant stages of its development and it is believed that

there will be significant developments and improvements in SDN technology with increasing

CHAPTER 7. CONCLUSION AND ANALYSIS 144

research over time. For example, it may be possible to build hardware that can be better

suitable to this solution or possibly come up with additional fields in the SDN flow table to

assist in the implementation of this solution.

• Also as future work, analytical models to look at different attacks based upon this work can

be developed.

In conclusion this work has introduced a novel hierarchical machine learning approach that can

be optimised across different sub-flow durations and drastically reduce the processing required at

an edge classifier. This is important to bring realistic machine learning based intrusion detection

to practical networks.

Appendices

145

Appendix A

Feature Selection Using Mean

Decrease Accuracy

Table A.1: First 6 Features for BOTNET

Mean Decrease Accuracy
BOTNET

Feature Importance
1 Flow Duration 1.8635
2 Bwd IAT Std 1.6302
3 Bwd IAT Min 0.6158
4 Fwd Packets/s 0.46
5 Init Win bytes forward 0.3783
6 Init Win bytes backward 0.2791

accuracy = 0.9718

146

APPENDIX A. FEATURE SELECTION USING MEAN DECREASE ACCURACY 147

Table A.2: First 6 Features for Portscan

Mean Decrease Accuracy
PORTSCAN

Feature Importance
1 Flow Bytes/s 0.2839
2 Total Length of Fwd Packets 0.1788
3 Fwd Packet Length Max 0.1721
4 ACK Flag Count 0.1652
5 Subflow Fwd Bytes 0.1472
6 Packet Length Mean 0.1043

accuracy = 0.9998

Table A.3: First 6 Features for Patator

Mean Decrease Accuracy
PATATOR

Feature Importance
1 Bwd Header Length 1.4608
2 Max Packet Length 0.5846
3 Fwd IAT Min 0.2784
4 Init Win bytes forward 0.2645
5 Packet Length Std 0.1987
6 Packet Length Variance 0.1985

accuracy = 0.9967

Appendix B

Procedures for IP Packet

Processing

Flow Match Procedure

X

X

X

X

X

PCAP CSV

Flow Match

Label Match

1) Recreate Flows from Pcap

2) Match Pcap Flows to CSV

3) Match Labels from CSV to Pcap

4) Extract subflows based on timing

5) Determine what portion of traffic flow is required to get reasonable

anomaly detection

(1)

(4)

(3)

(2)

Recreate IP flows

Figure B.1: Reverse Engineering of IP Packets

Sample Flow Statistics From Pcap

saddr:192.168.10.50, daddr:192.168.10.3, pfwd:20 prev:10 bfwd:5070 brev:1240

mbfwd:253 mbrev:124 mflen:455 fiatt:64.569859 fiats:0.000000 biatt:64.569515

biats:8.026636 biatmin:0.000003 fldur:129.139374 inwinf:7540 inwinb:2078 tpkts:30

tbytes:6310

saddr:192.168.10.50, daddr:192.168.10.3, pfwd:20 prev:10 bfwd:5070 brev:3680

mbfwd:253 mbrev:368 mflen:455 fiatt:64.569694 fiats:0.000000 biatt:64.569386

biats:8.026619 biatmin:0.000004 fldur:129.139080 inwinf:20238 inwinb:2078 tpkts:30

tbytes:8750

Figure B.2: Sample Flow Statistics from PCAP

148

149

APPENDIX C. LIST OF RE-ENGINEERED FLOW FEATURES 150

Appendix C

List of Re-Engineered Flow

Features

s/n Flow Feature Description

1 Flow ID ('FlowID')
A five-tuple flow identifier comprising of source and destination IP, source and

destination port numbers, and protocol

2 Source IP Address ('SourceIP') Source IP address of the flow

3 Destination IP Address ('DestinationIP') Destination IP address of the flow

4 Source Port Number ('SrcPort') Source port number of the flow

5 Destination Port Number ('DstPort') Destination port number of the flow

6 Time Stamp ('Timestamp') The instant in time the first packet of flow was captured

7 Total Forward Packet ('FwdPkts') Total number of packets in the forward flow direction

8 Total Backward Packet ('BwdPkts') Total number of packets in the backward flow direction

9 Flow Duration ('FlowDur') Duration of the flow in seconds

10 Forward Packet Length Mean ('FwdPktLenMean') Mean packet size (in bytes) in forward direction

11 Backward Packet Length Mean ('BwdPktLenMean') Mean packet size (in bytes) in backward direction

12 Forward Packet Length Standard ('FwdPktLenStd') Standard deviation of packet size in the forward direction

13 Backward Packet Length Standard ('BwdPktLenStd') Standard deviation of packet size in the backward direction

14 Forward Packet Length Minimum ('FwdPktLenMin') Minimum packet size (in bytes) in the forward direction

15 Backward Packet Length Minimum ('BwdPktLenMin') Minimum packet size (in bytes) in the backward direction

16 Forward Packet Length Maximum ('FwdPktLenMax') Maximum packet size (in bytes) in the forward direction

17 Backward Packet Length Maximum ('BwdPktLenMax') Maximum packet size (in bytes) in the backward direction

18 Forward Packet Length Total 'FwdPktLenTot', Total packet size (in bytes) in the forward direction

19 Backward Packet Length Total ('BwdPktLenTot') Total packet size (in bytes) in the backward direction

20 Forward Inter Arrival Time Mean('FwdIATMean') Mean time between two packets in forward direction of flow

21 Backward Inter Arrival Time Mean ('BwdIATMean') Mean time between two packets in backward direction of flow

22 Forward Inter Arrival Time Standard ('FwdIATStd') Standard deviation of time between two packets in forward direction of flow

23 Backward Inter Arrival Time Standard ('BwdIATStd') Standard deviation of time between two packets in backward direction of flow

24 Forward Inter Arrival Time Minimum ('FwdIATMin') Minimum time between two packets in forward direction of flow

25 Backward Inter Arrival Time Minimum ('BwdIATMin') Minimum time between two packets in backward direction of flow

26 Forward Inter Arrival Time Maximum ('FwdIATMax') Maximum time between two packets in forward direction of flow

27 Backward Inter Arrival Time Maximum ('BwdIATMax') Maximum time between two packets in backward direction of flow

28 Forward Inter Arrival Time Total ('FwdIATTot') Total time between two packets in forward direction of flow

29 Backward Inter Arrival Time Total ('BwdIATTot') Total time between two packets in backward direction of flow

30 Flow Bytes Per second ('FlowBytes/s') Number of bytes per second per flow

31 Flow Packets Per Second ('FlowPkts/s') Number of packets per second per flow

32 Forward Initial Window Byte ('FwdInitWin') Initial window byte size in the forward direction

33 Backward Initial Window Byte ('BwdInitWin') Initial window byte size in the backward direction

34 Forward Packets Per Second ('FwdPkts/s') Number of packets per second in the forward direction

35 Backward Packets Per Second ('BwdPkts/s') Number of packets per second in the backward direction

36 Packet Length Minimum ('PktLenMin') Minimum packet size (in bytes) in flow

37 Packet Length Maximum ('PktLenMax') Maximum packet size (in bytes) in flow

38 Packet Length Mean ('PktLenMean') Mean packet size (in bytes) in flow

39 Packet Length Variance ('PktLenVar') Packet length variance in flow

40 Packet Length Total ('PktLenTot') Total packet length (in bytes) in flow

41 Packet Length Standard ('PktLenStd') Standard deviation of packet lentgth in flow

42 Flow Inter Arrival Time Mean ('FlowIatMean') Mean time between two packets in flow

43 Flow Inter Arrival Time Variance ('FlowIatVar') Variance time between two packets in flow

44 Flow Inter Arrival Time Standard ('FlowIatStd') Standard deviation time between two packets in a flow

45 Flow Inter Arrival Time Minimum ('FlowIatMin') Minimum time between two packets in a flow

46 Flow Inter Arrival Time Maximum ('FlowIatMax') Maximum time between two packets in a flow

47 Label ('Label') The class or state of the flow either benign or malicious

Figure C.1: CICIDS2017 Dataset Re-Engineered Traffic Flow Features

Appendix D

Sanity Check Results for

Re-engineered Data

110

38 48

266

72

214

BOT DDOS PSCAN PATATOR WEBATTACK DOS

No of Fragmented Pkts

Figure D.1: Fragmented Packets in CICIDS2017 Dataset

151

APPENDIX D. SANITY CHECK RESULTS FOR RE-ENGINEERED DATA 152

BOT DDOS PSCAN PATATOR WEB DOS

Unique Flows from Csv 101,977 86,421 229,683 211,628 89867 226768

No of Flows from Code 101,958 86,256 230,106 211,624 89,820 226690

0

50,000

100,000

150,000

200,000

250,000

Unique Flows from Csv No of Flows from Code

Figure D.2: Unique Flows from Csv vs Total Flows from Code

Appendix E

ECDC Curves for Re-Engineered

Data 2017

10 4 10 2 100 102 104

Flow Duration for Patator traffic x (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P(
t>

x)

Benign
FTP-Patator
SSH-Patator

Figure E.1: eCDC Curve for Patator Traffic

153

APPENDIX E. ECDC CURVES FOR RE-ENGINEERED DATA 2017 154

10 5 10 3 10 1 101 103

Flow Duration for DDoS traffic x (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P(
t>

x)

Benign
DDoS

Figure E.2: eCDC Curve for Ddos Traffic

10 5 10 3 10 1 101 103

Flow Duration for Bot traffic x (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P(
t>

x)

Benign
Bot

Figure E.3: eCDC Curve for Bot Traffic

APPENDIX E. ECDC CURVES FOR RE-ENGINEERED DATA 2017 155

10 5 10 3 10 1 101 103

Flow Duration for Pscan traffic x (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P(
t>

x)

Benign
Pscan

Figure E.4: eCDC Curve for Pscan Traffic

10 4 10 2 100 102 104

Flow Duration for WebAttack traffic x (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P(
t>

x)

Benign
WebAttack-BruteForce
WebAttack-xss

Figure E.5: eCDC Curve for WebAttack Traffic

Appendix F

Machine Learning with Scikit

Learn

The intrusion detection module of this work is based on a Machine Learning model. The Machine

Learning procedures of this work is implemented using the Scikit Learn library in Python. The

problem is a classification problem. Figure F.1 gives a sample output of the Machine Learning

process in Scikit Learn illustrating the relevant classification metrics as used in this work. Figure

F.2 gives further variations of the output as used in this work. The train and predict times

representing the anomaly detection module execution time are also extracted from this process

and used in the analysis provided in subsequent Chapters.

Figure F.1: Machine Learning Output Parameters using Scikit Learn

156

APPENDIX F. MACHINE LEARNING WITH SCIKIT LEARN 157

Figure F.2: Extended Machine Learning Output using Scikit Learn

Bibliography

[1] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion de-

tection dataset and intrusion traffic characterization,” in Proceedings of the 4th International

Conference on Information Systems Security and Privacy, no. Cic, 2018, pp. 108–116.

[2] M. Rahouti, K. Xiong, Y. Xin, S. K. Jagatheesaperumal, M. Ayyash, and M. Shaheed, “Sdn

security review: Threat taxonomy, implications, and open challenges,” IEEE Access, vol. 10,

pp. 45 820–45 854, 2022.

[3] P. D. Kreutz, M.V. Ramos, “Software-defined networking : A comprehensive survey,” Pro-

ceedings of the IEEE, vol. 103, no. 1, 2015.

[4] ONF, “Openflow switch specification,” https://opennetworking.org/wp-

content/uploads/2014/10/openflow-switch-v1.5.1.pdf, March 2015.

[5] A. Markoborodov, Y. Skobtsova, and D. Volkanov, “Representation of the openflow switch

flow table,” in 2020 International Scientific and Technical Conference Modern Computer

Network Technologies (MoNeTeC), 2020, pp. 1–7.

[6] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed investigation and anal-

ysis of using machine learning techniques for intrusion detection,” IEEE Communications

Surveys Tutorials, vol. 21, no. 1, pp. 686–728, 2019.

[7] S. Prathibha, J. Bino, M. T. Ahammed, C. Das, S. R. Oion, S. Ghosh, and M. Afroj,

“Detection methods for software defined networking intrusions (sdn),” in 2022 International

Conference on Advances in Computing, Communication and Applied Informatics (ACCAI),

2022, pp. 1–6.

158

BIBLIOGRAPHY 159

[8] M. U. Farooq, M. Rashid, F. Azam, Y. Rasheed, M. W. Anwar, and Z. Shahid, “A model-

driven framework for the prevention of dos attacks in software defined networking (sdn),”

in 2021 IEEE International Systems Conference (SysCon), 2021, pp. 1–7.

[9] B. Daneshmand and T. A. Le, “Software-defined networking: A new approach to fifth gen-

eration networks – security issues and challenges ahead,” in 2022 Thirteenth International

Conference on Ubiquitous and Future Networks (ICUFN), 2022, pp. 307–313.

[10] L. Fawcett, S. Scott-Hayward, M. Broadbent, A. Wright, and N. Race, “Tennison: A dis-

tributed SDN framework for scalable network security,” IEEE Journal on Selected Areas in

Communications, vol. 36, no. 12, pp. 2805–2818, 2018.

[11] L. Gil, “Stop layer 7 DDoS attacks with multilayered security,”

https://blogs.oracle.com/cloud-infrastructure/post/stop-layer-7-ddos-attacks-with-

multilayered-security, March 2019.

[12] M. Wang, W. Fu, X. He, S. Hao, and X. Wu, “A survey on large-scale machine learning,”

IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 2020.

[13] E. Dinc, M. Vondra, and C. Cavdar, “Total cost of ownership optimization for direct air-

to-ground communication networks,” IEEE Transactions on Vehicular Technology, vol. 70,

no. 10, pp. 10 157–10 172, 2021.

[14] S. Gangadhar and J. P. Sterbenz, “Machine learning aided traffic tolerance to improve

resilience for software defined networks,” Proceedings of 2017 9th International Workshop

on Resilient Networks Design and Modeling, RNDM 2017, pp. 1–7, 2017.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[16] H. Suryotrisongko and Y. Musashi, “Review of cybersecurity research topics, taxonomy

and challenges: Interdisciplinary perspective,” in 2019 IEEE 12th Conference on Service-

Oriented Computing and Applications (SOCA), 2019, pp. 162–167.

[17] O. Durmus, A. Varol, and N. Varol, “Infrastructure requirements for cybersecurity,” in 2019

1st International Informatics and Software Engineering Conference (UBMYK), 2019, pp.

1–5.

BIBLIOGRAPHY 160

[18] S. S. Tirumala, M. R. Valluri, and G. Babu, “A survey on cybersecurity awareness con-

cerns, practices and conceptual measures,” in 2019 International Conference on Computer

Communication and Informatics (ICCCI), 2019, pp. 1–6.

[19] “Weekly threat report 1st april 2022,” https://www.ncsc.gov.uk/report/

weekly-threat-report-1st-april-2022#section 1, accessed: 2022-05-30.

[20] “Cisco got hit. . . and immediately took control of the story,” https://www.databreaches.

net/cisco-got-hit-and-immediately-took-control-of-the-story/, accessed: 2022-05-30.

[21] “Cisco event response: Corporate network security incident,” https://tools.cisco.com/

security/center/resources/corp network security incident, accessed: 2022-05-30.

[22] “Finland’s parliament hit with cyberattack following us move to ad-

mit the country to nato,” https://thehill.com/policy/technology/

3595917-finlands-parliament-hit-with-cyberattack-following-us-move-to-admit-the-country-to-nato/,

accessed: 2022-08-20.

[23] Cisco, “Enterprise networking, security, and automation v7.0,”

https://contenthub.netacad.com/ensa?lng=en, Feb. 2020.

[24] W. Zhang, Q. Yang, and Y. Geng, “A survey of anomaly detection methods in networks,”

in 2009 International Symposium on Computer Network and Multimedia Technology, 2009,

pp. 1–3.

[25] Y. K. Vani and Krishnamurthy, “Survey anomaly detection in network using big data an-

alytics,” in 2017 International Conference on Energy, Communication, Data Analytics and

Soft Computing (ICECDS), 2017, pp. 3366–3369.

[26] M. FRUSTACI, P. PACE, G. ALOI, and G. FORTINO, “Evaluating critical security issues

of the IoT world: Present and future challenges,” IEEE Internet of Things Journal, vol.

4662, no. c, 2017.

[27] A. A. Baybulatov and V. G. Promyslov, “Cybersecurity assessment using delay from backlog

bound calculation,” in 2020 IEEE 14th International Conference on Application of Infor-

mation and Communication Technologies (AICT), 2020, pp. 1–6.

https://www.ncsc.gov.uk/report/weekly-threat-report-1st-april-2022#section_1
https://www.ncsc.gov.uk/report/weekly-threat-report-1st-april-2022#section_1
https://www.databreaches.net/cisco-got-hit-and-immediately-took-control-of-the-story/
https://www.databreaches.net/cisco-got-hit-and-immediately-took-control-of-the-story/
https://tools.cisco.com/security/center/resources/corp_network_security_incident
https://tools.cisco.com/security/center/resources/corp_network_security_incident
https://thehill.com/policy/technology/3595917-finlands-parliament-hit-with-cyberattack-following-us-move-to-admit-the-country-to-nato/
https://thehill.com/policy/technology/3595917-finlands-parliament-hit-with-cyberattack-following-us-move-to-admit-the-country-to-nato/

BIBLIOGRAPHY 161

[28] S. V. Thakare and D. V. Gore, “Comparative study of CIA and revised-CIA algorithm,” in

2014 Fourth International Conference on Communication Systems and Network Technolo-

gies, 2014, pp. 713–718.

[29] A. Punia, D. Gupta, and S. Jaiswal, “A perspective on available security techniques in iot,”

in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information

& Communication Technology (RTEICT), 2017, pp. 1553–1559.

[30] J. Luxemburk, K. Hynek, and T. Čejka, “Detection of https brute-force attacks with packet-

level feature set,” in 2021 IEEE 11th Annual Computing and Communication Workshop and

Conference (CCWC), 2021, pp. 0114–0122.

[31] M. M. Raikar and S. M. Meena, “Ssh brute force attack mitigation in internet of things

(IoT) network : An edge device security measure,” in 2021 2nd International Conference on

Secure Cyber Computing and Communications (ICSCCC), 2021, pp. 72–77.

[32] A. S. Hussainy, M. A. Khalifa, A. Elsayed, A. Hussien, and M. A. Razek, “Deep learning

toward preventing web attacks,” in 2022 5th International Conference on Computing and

Informatics (ICCI), 2022, pp. 280–285.

[33] D. M. Brandão Lent, M. P. Novaes, L. F. Carvalho, J. Lloret, J. J. P. C. Rodrigues, and M. L.

Proença, “A gated recurrent unit deep learning model to detect and mitigate distributed

denial of service and portscan attacks,” IEEE Access, vol. 10, pp. 73 229–73 242, 2022.

[34] M. Korczynski, L. Janowski, and A. Duda, “An accurate sampling scheme for detecting SYN

flooding attacks and portscans,” in 2011 IEEE International Conference on Communications

(ICC), 2011, pp. 1–5.

[35] R. Rivest, “The MD5 Message-Digest Algorithm,” Internet Requests for Comments, MIT

Laboratory for Computer Science and RSA Data Security, Inc, RFC 1654, April 1992.

[Online]. Available: https://www.ietf.org/rfc/rfc1321.txt

[36] D. Eastlake and T. Hansen, “US Secure Hash Algorithms (SHA and SHA-based HMAC

and HKDF),” Internet Requests for Comments, Internet Engineering Task Force (IETF),

RFC 1654, April 1992. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc6234

[37] M. Firdhous and N. A. Hussien, “Data security implementations in cloud computing: A

critical review,” in 2018 3rd International Conference on Information Technology Research

(ICITR), 2018, pp. 1–5.

https://www.ietf.org/rfc/rfc1321.txt
https://datatracker.ietf.org/doc/html/rfc6234

BIBLIOGRAPHY 162

[38] M. Ren, Y. Tian, S. Kong, D. Zhou, and D. Li, “An detection algorithm for ARP man-in-

the-middle attack based on data packet forwarding behavior characteristics,” in 2020 IEEE

5th Information Technology and Mechatronics Engineering Conference (ITOEC), 2020, pp.

1599–1604.

[39] A. Borkar, A. Donode, and A. Kumari, “A survey on intrusion detection system (ids) and in-

ternal intrusion detection and protection system (IIDPS),” in 2017 International Conference

on Inventive Computing and Informatics (ICICI), 2017, pp. 949–953.

[40] A. Sharma and A. Bhasin, “Critical investigation of denial of service and distributed denial

of service models and tools,” in 2018 International Conference on Advances in Computing,

Communication Control and Networking (ICACCCN), 2018, pp. 546–550.

[41] V. Zlomislić, K. Fertalj, and V. Sruk, “Denial of service attacks: An overview,” in 2014 9th

Iberian Conference on Information Systems and Technologies (CISTI), June 2014, pp. 1–6.

[42] S. Alzahrani and L. Hong, “Detection of distributed denial of service (DDoS) attacks using

artificial intelligence on cloud,” in 2018 IEEE World Congress on Services (SERVICES),

July 2018, pp. 35–36.

[43] F. Hussain, S. G. Abbas, I. M. Pires, S. Tanveer, U. U. Fayyaz, N. M. Garcia, G. A. Shah,

and F. Shahzad, “A two-fold machine learning approach to prevent and detect IoT botnet

attacks,” IEEE Access, vol. 9, pp. 163 412–163 430, 2021.

[44] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in DDoS attacks: Trends

and challenges,” IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2242–2270,

Fourthquarter 2015.

[45] A. Aljuhani, “Machine learning approaches for combating distributed denial of service at-

tacks in modern networking environments,” IEEE Access, vol. 9, pp. 42 236–42 264, 2021.

[46] R. Vishwakarma and A. K. Jain, “A honeypot with machine learning based detection frame-

work for defending IoT based botnet DDoS attacks,” in 2019 3rd International Conference

on Trends in Electronics and Informatics (ICOEI), 2019, pp. 1019–1024.

[47] Y. Soupionis and T. Benoist, “Cyber-physical testbed — the impact of cyber attacks and the

human factor,” in 2015 10th International Conference for Internet Technology and Secured

Transactions (ICITST), 2015, pp. 326–331.

BIBLIOGRAPHY 163

[48] A. Patcha and J.-M. Park, “An overview of anomaly detection techniques: Existing solutions

and latest technological trends,” Computer Networks, vol. 51, no. 12, pp. 3448–3470, 2007.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/S138912860700062X

[49] S. Niksefat, P. Kaghazgaran, and B. Sadeghiyan, “Privacy issues in intrusion detection

systems: A taxonomy, survey and future directions,” Computer Science Review, vol. 25,

pp. 69–78, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S1574013716301204

[50] T. Girdler and V. G. Vassilakis, “Implementing an intrusion detection and prevention

system using software-defined networking: Defending against ARP spoofing attacks and

blacklisted mac addresses,” Computers & Electrical Engineering, vol. 90, p. 106990, 2021.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045790621000203

[51] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey of machine

learning techniques applied to software defined networking (SDN): Research issues and chal-

lenges,” IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp. 393–430, 2019.

[52] M. Nadeem, A. Arshad, S. Riaz, S. S. Band, and A. Mosavi, “Intercept the cloud network

from brute force and DDoS attacks via intrusion detection and prevention system,” IEEE

Access, vol. 9, pp. 152 300–152 309, 2021.

[53] O. M. Surakhi, A. M. Garćıa, M. Jamoos, and M. Y. Alkhanafseh, “A comprehensive survey

for machine learning and deep learning applications for detecting intrusion detection,” in

2021 22nd International Arab Conference on Information Technology (ACIT), 2021, pp.

1–13.

[54] O. Lifandali and N. Abghour, “Deep learning methods applied to intrusion detection: Survey,

taxonomy and challenges,” in 2021 International Conference on Decision Aid Sciences and

Application (DASA), 2021, pp. 1035–1044.

[55] M. Nobakht, V. Sivaraman, and R. Boreli, “A host-based intrusion detection and mitigation

framework for smart home IoT using openflow,” in 2016 11th International Conference on

Availability, Reliability and Security (ARES), 2016, pp. 147–156.

[56] D. Kwon, H. Kim, J. Kim, S. Suh, I. Kim, and K. J. Kim, “A survey of deep learning-based

network anomaly detection,” Cluster Computing, vol. 22, pp. 949–961, 2017.

https://www.sciencedirect.com/science/article/pii/S138912860700062X
https://www.sciencedirect.com/science/article/pii/S1574013716301204
https://www.sciencedirect.com/science/article/pii/S1574013716301204
https://www.sciencedirect.com/science/article/pii/S0045790621000203

BIBLIOGRAPHY 164

[57] J. Ashraf and S. Latif, “Handling intrusion and DDoS attacks in software defined networks

using machine learning techniques,” in 2014 National Software Engineering Conference,

2014, pp. 55–60.

[58] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly detection techniques,”

J. Netw. Comput. Appl., vol. 60, pp. 19–31, 2016.

[59] M. E. Villa-Pérez, M. A. Álvarez Carmona, O. Loyola-González, M. A. Medina-Pérez,

J. C. Velazco-Rossell, and K.-K. R. Choo, “Semi-supervised anomaly detection algorithms:

A comparative summary and future research directions,” Knowledge-Based Systems, vol.

218, p. 106878, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0950705121001416

[60] IETF, “Specification of the IP Flow Information Export (IPFIX) Protocol for

the Exchange of Flow Information,” Internet Requests for Comments, Internet

Engineering Task Force, RFC 1654, September 2013. [Online]. Available: https:

//datatracker.ietf.org/doc/html/rfc7011#page-7

[61] ——, “Information Model for IP Flow Information Export,” Internet Requests for

Comments, Internet Engineering Task Force, RFC, January 2008. [Online]. Available:

https://www.rfc-editor.org/rfc/rfc5102.html#page-78

[62] “Multicast ping protocol,” https://datatracker.ietf.org/doc/rfc6450/, accessed: 2021-01-30.

[63] A. B. James Broad, “Traceroute command,” https://www.sciencedirect.com/topics/

computer-science/traceroute-command, accessed: 2022-02-23.

[64] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A. Pras, “Flow

monitoring explained: From packet capture to data analysis with netflow and IPFIX,” IEEE

Communications Surveys Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[65] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A. Pras, “Flow

monitoring explained: From packet capture to data analysis with netflow and IPFIX,” IEEE

Communications Surveys Tutorials, vol. 16, no. 4, pp. 2037–2064, Fourthquarter 2014.

[66] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller, “An overview of

IP flow-based intrusion detection,” IEEE Communications Surveys Tutorials, vol. 12, no. 3,

pp. 343–356, Third 2010.

https://www.sciencedirect.com/science/article/pii/S0950705121001416
https://www.sciencedirect.com/science/article/pii/S0950705121001416
https://datatracker.ietf.org/doc/html/rfc7011#page-7
https://datatracker.ietf.org/doc/html/rfc7011#page-7
https://www.rfc-editor.org/rfc/rfc5102.html#page-78
https://datatracker.ietf.org/doc/rfc6450/
https://www.sciencedirect.com/topics/computer-science/traceroute-command
https://www.sciencedirect.com/topics/computer-science/traceroute-command

BIBLIOGRAPHY 165

[67] IETF, “Requirements for IP Flow Information Export (IPFIX),” Internet Requests for

Comments, Internet Engineering Task Force, RFC, October 2004. [Online]. Available:

https://www.rfc-editor.org/rfc/rfc3917.html

[68] R. Hofstede, V. Bartoš, A. Sperotto, and A. Pras, “Towards real-time intrusion detection

for netflow and IPFIX,” in Proceedings of the 9th International Conference on Network and

Service Management (CNSM 2013), 2013, pp. 227–234.

[69] B. Trammell and E. Boschi, “An introduction to ip flow information export (IPFIX),” IEEE

Communications Magazine, vol. 49, no. 4, pp. 89–95, 2011.

[70] IETF, “Architecture for IP Flow Information Export,” Internet Requests for Comments,

Internet Engineering Task Force, RFC, March 2009. [Online]. Available: https:

//www.rfc-editor.org/rfc/rfc5470.html

[71] ——, “Evaluation of Candidate Protocols for IP Flow Information Export (IPFIX),”

Internet Requests for Comments, Internet Engineering Task Force, RFC, October 2004.

[Online]. Available: https://www.rfc-editor.org/rfc/rfc3955.html

[72] Cisco, “Netflow version 9,” https://www.cisco.com/c/en/us/products/ios-nx-os-

software/netflow-version-9/index.html, May 2013.

[73] “What’s software-defined networking (SDN)? - sdxcentral.”

[Online]. Available: https://www.sdxcentral.com/sdn/definitions/

what-the-definition-of-software-defined-networking-sdn/

[74] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking: State

of the art and research challenges,” Computer Networks, vol. 72, pp. 74–98, 2014. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S1389128614002588

[75] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, and H. L. Owen, “Advancing

software-defined networks: A survey,” IEEE Access, vol. 5, pp. 25 487–25 526, 2017.

[76] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-defined network-

ing,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 27–51, 2015.

[77] A. Prakash and R. Priyadarshini, “An intelligent software defined network controller for

preventing distributed denial of service attack,” 2018 Second International Conference on

https://www.rfc-editor.org/rfc/rfc3917.html
https://www.rfc-editor.org/rfc/rfc5470.html
https://www.rfc-editor.org/rfc/rfc5470.html
https://www.rfc-editor.org/rfc/rfc3955.html
https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sciencedirect.com/science/article/pii/S1389128614002588

BIBLIOGRAPHY 166

Inventive Communication and Computational Technologies (ICICCT), no. Icicct, pp. 585–

589, 2018.

[78] A. Abubakar and B. Pranggono, “Machine learning based intrusion detection system for

software defined networks,” Proceedings - 2017 7th International Conference on Emerging

Security Technologies, EST 2017, pp. 138–143, 2017.

[79] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “Openflow: Enabling innovation in campus networks,” Com-

puter Communication Review, vol. 38, pp. 69–74, 04 2008.

[80] X. You, Y. Feng, and K. Sakurai, “Packet in message based ddos attack detection in SDN

network using openflow,” in 2017 Fifth International Symposium on Computing and Net-

working (CANDAR), 2017, pp. 522–528.

[81] ONF, “OpenFlow Switch Specification, version 1.5.1.” [Online]. Available: https:

//opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[82] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in software defined

networks,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 623–654, 2016.

[83] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software defined networks:

A survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2317–2346, 2015.

[Online]. Available: http://ieeexplore.ieee.org/document/7226783/

[84] S. Shi, J. Li, H. Wu, Y. Ren, and J. Zhi, “Efm: An edge-computing-oriented forwarding

mechanism for information-centric networks,” in 2020 3rd International Conference on Hot

Information-Centric Networking (HotICN), 2020, pp. 154–159.

[85] SecurityInfoWatch.com, “A brief history of machine learning in cyberse-

curity,” https://www.securityinfowatch.com/cybersecurity/article/21114214/

a-brief-history-of-machine-learning-in-cybersecurity, accessed: 2022-05-09.

[86] M. Kiran and A. Chhabra, “Understanding flows in high-speed scientific networks: A

netflow data study,” Future Generation Computer Systems, vol. 94, pp. 72–79, 2019.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167739X18302322

[87] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-Solano, and

O. Caicedo Rendon, “A comprehensive survey on machine learning for networking: Evolu-

https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://ieeexplore.ieee.org/document/7226783/
https://www.securityinfowatch.com/cybersecurity/article/21114214/a-brief-history-of-machine-learning-in-cybersecurity
https://www.securityinfowatch.com/cybersecurity/article/21114214/a-brief-history-of-machine-learning-in-cybersecurity
https://www.sciencedirect.com/science/article/pii/S0167739X18302322

BIBLIOGRAPHY 167

tion, applications and research opportunities,” Journal of Internet Services and Applications,

vol. 9, 05 2018.

[88] “Internet assigned numbers authority. IANA,” https://www.iana.org/.

[89] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions in traffic classifica-

tion,” IEEE Network, vol. 26, no. 1, pp. 35–40, 2012.

[90] Z.-H. Zhou, Machine Learning. Springer Singapore, 2021. [Online]. Available:

https://doi.org/10.1007%2F978-981-15-1967-3

[91] M. Kubat, Ambitions and Goals of Machine Learning. Cham: Springer International

Publishing, 2021, pp. 1–15. [Online]. Available: https://doi.org/10.1007/978-3-030-81935-4

1

[92] G. Kim, S. Lee, and S. Kim, “A novel hybrid intrusion detection method integrating

anomaly detection with misuse detection,” Expert Systems with Applications, vol. 41, no. 4,

Part 2, pp. 1690–1700, 2014. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0957417413006878

[93] R. Vrána and J. Kořenek, “Efficient acceleration of decision tree algorithms for encrypted

network traffic analysis,” in 2021 24th International Symposium on Design and Diagnostics

of Electronic Circuits & Systems (DDECS), 2021, pp. 115–118.

[94] S. Lakshminarasimman, S. Ruswin, and K. Sundarakantham, “Detecting DDoS attacks using

decision tree algorithm,” in 2017 Fourth International Conference on Signal Processing,

Communication and Networking (ICSCN), 2017, pp. 1–6.

[95] B. Prashant, “Random forest classifier tutorial,” https://www.kaggle.com/code/

prashant111/random-forest-classifier-tutorial/notebook, accessed: 2021-10-30.

[96] ——, “A practical guide to implementing a random for-

est classifier in python,” https://towardsdatascience.com/

a-practical-guide-to-implementing-a-random-forest-classifier-in-python-979988d8a263,

accessed: 2021-11-25.

[97] S. Nanda, F. Zafari, C. Decusatis, E. Wedaa, and B. Yang, “Predicting network attack

patterns in SDN using machine learning approach,” 2016 IEEE Conference on Network

Function Virtualization and Software Defined Networks, NFV-SDN 2016, pp. 167–172, 2017.

https://doi.org/10.1007%2F978-981-15-1967-3
https://doi.org/10.1007/978-3-030-81935-4_1
https://doi.org/10.1007/978-3-030-81935-4_1
https://www.sciencedirect.com/science/article/pii/S0957417413006878
https://www.sciencedirect.com/science/article/pii/S0957417413006878
https://www.kaggle.com/code/prashant111/random-forest-classifier-tutorial/notebook
https://www.kaggle.com/code/prashant111/random-forest-classifier-tutorial/notebook
https://towardsdatascience.com/a-practical-guide-to-implementing-a-random-forest-classifier-in-python-979988d8a263
https://towardsdatascience.com/a-practical-guide-to-implementing-a-random-forest-classifier-in-python-979988d8a263

BIBLIOGRAPHY 168

[98] C. Song, Y. Park, K. Golani, Y. Kim, K. Bhatt, and K. Goswami, “Machine-learning based

threat-aware system in software defined networks,” in 2017 26th International Conference

on Computer Communication and Networks (ICCCN), 2017, pp. 1–9.

[99] N. Bakhareva, A. Shukhman, A. Matveev, P. Polezhaev, Y. Ushakov, and L. Legashev, “At-

tack detection in enterprise networks by machine learning methods,” in 2019 International

Russian Automation Conference (RusAutoCon), 2019, pp. 1–6.

[100] L. Barki, A. Shidling, N. Meti, D. G. Narayan, and M. M. Mulla, “Detection of distributed

denial of service attacks in software defined networks,” in 2016 International Conference on

Advances in Computing, Communications and Informatics (ICACCI), 2016, pp. 2576–2581.

[101] R. U. Rasool, U. Ashraf, K. Ahmed, H. Wang, W. Rafique, and Z. Anwar, “Cyberpulse: A

machine learning based link flooding attack mitigation system for software defined networks,”

IEEE Access, vol. 7, pp. 34 885–34 899, 2019.

[102] C. Brown, A. Cowperthwaite, A. Hijazi, and A. Somayaji, “Analysis of the 1999

darpa/lincoln laboratory ids evaluation data with netadhict,” in 2009 IEEE Symposium

on Computational Intelligence for Security and Defense Applications, 2009, pp. 1–7.

[103] J. O. Nehinbe, “A simple method for improving intrusion detections in corporate networks,”

in Information Security and Digital Forensics, D. Weerasinghe, Ed. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, pp. 111–122.

[104] M. Xie and J. Hu, “Evaluating host-based anomaly detection systems: A preliminary analysis

of ADFA-LD,” in 2013 6th International Congress on Image and Signal Processing (CISP),

vol. 03, 2013, pp. 1711–1716.

[105] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards a reliable intrusion

detection benchmark dataset benchmark dataset,” Software Networking, no. July, 2017.

[106] “Intrusion detection evaluation dataset (CIC-IDS2017),” https://www.unb.ca/cic/datasets/

ids-2017.html, accessed: 2018-05-30.

[107] “CSE-CIC-IDS2018 on AWS,” https://www.unb.ca/cic/datasets/ids-2018.html, accessed:

2020-09-30.

[108] K. S. Bhosale, M. Nenova, and G. Iliev, “The distributed denial of service attacks (DDoS)

prevention mechanisms on application layer,” in 2017 13th International Conference on

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2018.html

BIBLIOGRAPHY 169

Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), Oct 2017,

pp. 136–139.

[109] M. Vidhya, “Efficient classification of portscan attacks using support vector machine,” in

2013 International Conference on Green High Performance Computing (ICGHPC), March

2013, pp. 1–5.

[110] P. A. Sonewar and S. D. Thosar, “Detection of SQL injection and XSS attacks in three tier

web applications,” in 2016 International Conference on Computing Communication Control

and automation (ICCUBEA), Aug 2016, pp. 1–4.

[111] “A gentle introduction to vector space models,” https://machinelearningmastery.com/

a-gentle-introduction-to-vector-space-models/, accessed: 2021-04-26.

[112] F. Bornemann, Eigenvalue Problems. Cham: Springer International Publishing, 2018, pp.

75–97. [Online]. Available: https://doi.org/10.1007/978-3-319-74222-9 5

[113] “PCAP capture file format,” https://tools.ietf.org/id/draft-gharris-opsawg-pcap-00.html,

accessed: 2019-09-30.

[114] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020. [Online]. Available:

https://doi.org/10.5281/zenodo.3509134

[115] Wes McKinney, “Data Structures for Statistical Computing in Python,” in Proceedings of

the 9th Python in Science Conference, Stéfan van der Walt and Jarrod Millman, Eds., 2010,

pp. 56 – 61.

[116] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,

E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van

Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant,

K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array

programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online].

Available: https://doi.org/10.1038/s41586-020-2649-2

[117] scikit-learn.org, “sklearn.preprocessing.OrdinalEncode.” [Online]. Available: https://

scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html

[118] A. H. Lashkari, “cicflowmeter.”

https://machinelearningmastery.com/a-gentle-introduction-to-vector-space-models/
https://machinelearningmastery.com/a-gentle-introduction-to-vector-space-models/
https://doi.org/10.1007/978-3-319-74222-9_5
https://tools.ietf.org/id/draft-gharris-opsawg-pcap-00.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1038/s41586-020-2649-2
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html

BIBLIOGRAPHY 170

[119] Canadian Institute for Cybersecurity, “Applications — research — canadian institute for

cybersecurity — UNB.” [Online]. Available: https://www.unb.ca/cic/research/applications.

html

[120] N. Spolaˆ, E. Alvares, M. Carolina, and H. Diana, “A comparison of multi-label

feature selection methods using the problem a comparison of multi-label feature selection

methods using the problem transformation approach,” Electronic Notes in Theoretical

Computer Science, vol. 292, no. May 2014, pp. 135–151, 2013. [Online]. Available:

http://dx.doi.org/10.1016/j.entcs.2013.02.010

[121] S. Sheen and R. Rajesh, “Network intrusion detection using feature selection and decision

tree classifier,” in TENCON 2008 - 2008 IEEE Region 10 Conference, Nov 2008, pp. 1–4.

[122] “Selecting good features – part III: random forests — diving into data.” [Online]. Available:

https://blog.datadive.net/selecting-good-features-part-iii-random-forests/

[123] H. Han, X. Guo, and H. Yu, “Variable selection using mean decrease accuracy and mean

decrease gini based on random forest,” Proceedings of the IEEE International Conference

on Software Engineering and Service Sciences, ICSESS, pp. 219–224, 2017.

[124] S. Seetharaman, “Openflow/sdn tutorial OFC/NFOEC,” in OFC/NFOEC, 2012, pp. 1–52.

[125] Z. Cheng, C. Chen, X. Qiu, and H. Xie, “An improved KNN classification algorithm

based on sampling,” in Proceedings of the Advances in Materials, Machinery, Electrical

Engineering (AMMEE 2017). Atlantis Press, 2017/06, pp. 220–225. [Online]. Available:

https://doi.org/10.2991/ammee-17.2017.45

[126] A. Luque, M. Mazzoleni, A. Carrasco, and A. Ferramosca, “Visualizing classification results:

Confusion star and confusion gear,” IEEE Access, vol. 10, pp. 1659–1677, 2022.

[127] M. Subramanian, K. S. Vadivel, and S. R, “Performance evaluation of deep learning models

in detection of distributed denial of service attacks,” in 2021 5th International Conference

on Electronics, Communication and Aerospace Technology (ICECA), 2021, pp. 652–658.

[128] W. Al-gethami and A. Aljuhani, “Detection of http attacks using machine learning,” in 2022

2nd International Conference on Computing and Information Technology (ICCIT), 2022, pp.

344–348.

https://www.unb.ca/cic/research/applications.html
https://www.unb.ca/cic/research/applications.html
http://dx.doi.org/10.1016/j.entcs.2013.02.010
https://blog.datadive.net/selecting-good-features-part-iii-random-forests/
https://doi.org/10.2991/ammee-17.2017.45

BIBLIOGRAPHY 171

[129] P. Xiao, W. Qu, H. Qi, Y. Xu, and Z. Li, “An efficient elephant flow detection with cost-

sensitive in SDN,” in 2015 1st International Conference on Industrial Networks and Intelli-

gent Systems (INISCom), 2015, pp. 24–28.

[130] B. Kumar Joshi, N. Joshi, and M. Chandra Joshi, “Early detection of distributed denial of

service attack in era of software-defined network,” in 2018 Eleventh International Conference

on Contemporary Computing (IC3), 2018, pp. 1–3.

[131] K. Sudar, M. Beulah, P. Deepalakshmi, P. Nagaraj, and P. Chinnasamy, “Detection of

distributed denial of service attacks in SDN using machine learning techniques,” in 2021

International Conference on Computer Communication and Informatics (ICCCI), 2021, pp.

1–5.

[132] S. Black and Y. Kim, “An overview on detection and prevention of application layer DDoS

attacks,” in 2022 IEEE 12th Annual Computing and Communication Workshop and Con-

ference (CCWC), 2022, pp. 0791–0800.

[133] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, “Network

function virtualization: State-of-the-art and research challenges,” IEEE Communications

Surveys & Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[134] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, “Network functions virtualization: The

long road to commercial deployments,” IEEE Access, vol. 7, pp. 60 439–60 464, 2019.

[135] S. Jin, Y. Jiang, and J. Peng, “Intrusion detection system enhanced by hierarchical bidirec-

tional fuzzy rule interpolation,” in 2018 IEEE International Conference on Systems, Man,

and Cybernetics (SMC), 2018, pp. 6–10.

[136] Z. S. Malek, B. Trivedi, and A. Shah, “User behavior pattern -signature based intrusion

detection,” in 2020 Fourth World Conference on Smart Trends in Systems, Security and

Sustainability (WorldS4), 2020, pp. 549–552.

[137] R. Yu and P. Li, “Toward resource-efficient federated learning in mobile edge computing,”

IEEE Network, vol. 35, no. 1, pp. 148–155, 2021.

[138] P. Hu and W. Chen, “Software-defined edge computing (sdec): Principles, open

system architecture and challenges,” in 2019 IEEE SmartWorld, Ubiquitous Intelli-

gence Computing, Advanced Trusted Computing, Scalable Computing Communications,

BIBLIOGRAPHY 172

Cloud Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019, pp. 8–16.

[139] Y. Wang, M. Tang, S. Zhou, G. Tan, Z. Zhang, and J. Zhan, “Performance analysis of

heterogeneous mobile edge computing networks with multi-core server,” in 2020 IEEE 20th

International Conference on Communication Technology (ICCT), 2020, pp. 1540–1545.

	Introduction
	Problem Statement
	Proposed 2-Stage Hierarchical Machine Learning Based SDN Security Solution
	Research Methodology
	Research Scope, Outline and Contributions
	Thesis outline

	Background
	Introduction
	Network Security Concepts
	The Network Security Model

	Intrusion Detection Systems
	Signature-based IDS
	Anomaly-based IDS

	What is an IP Flow?
	IP Flow Record
	Flow Duration

	Flow Monitoring and Export
	IP Flow Monitoring for Network Security
	Internet Protocol Flow Information eXport(IPFIX)
	Netflow

	An Overview of SDN
	SDN Architecture
	OpenFlow
	OpenFlow Switch
	Flow Entry
	SDN Security

	Network Edge
	Machine Learning Techniques for Network Security
	Classification and Regression Tree (CART)/Decision Tree Classifier
	Gini Index
	Random Forest classifier

	Machine Learning Based Network Security
	Summary

	Methodology
	Introduction
	Intrusion Detection Datasets
	Dataset Analysis
	Attack Profiles

	Data Pre-processing
	Feature Selection

	Experimental Framework
	IP Packet Processing
	Subflow Times
	Maximum Flow Duration
	Feature Extraction
	Experimental Design

	Summary

	Intrusion Detection Model Design
	Introduction
	Model Evaluation
	Model Evaluation Results for DDoS
	Model Evaluation Results for BOTNET
	Model Evaluation Results for Portscan

	Model Implementation Performance
	Model Implementation Performance for DDoS
	Model Implementation Performance for BOTNET
	Model Implementation Performance for Portscan
	Model Implementation Performance for Patator

	The Single Model Problem
	Classifier Design Scenarios
	Scenario 1 - Single Multiclass Classifier
	Scenario 2 - Merged Multiple Binary Classifier
	Scenario 3 - Isolated Multiple Binary Classifier

	Design Scenario Analysis
	Design Scenario Analysis Based on Recall Metric
	Design Scenario Analysis Based on F1 Score Metric

	Simplified Emulation of Hierarchical Intrusion Detection Solution
	Summary

	Hierarchical Detection with Categorical Class.
	Introduction
	Limitations of Machine Learning Based IDS Research
	Sub-Flow Enabled Real Time Intrusion Detection
	Sub-Flow IP Traffic Classification
	Traffic Classification Based on Different Flow Monitoring Methods

	Sub-Flow Based Hierarchical Intrusion Detection Solution
	Classification Metrics Based on Hierarchical Solution
	Hierarchical Intrusion Detection Results
	SSH BruteForce
	Denial of Service (DoS)
	Distributed Denial of Service (DDoS)
	Web Attack
	Infiltration Attack
	BoT Attack

	Summary of Results
	Summary

	Improving efficiency by probabilistic classification
	Introduction
	Why Random Forest Classifier
	Probability Threshold Analysis
	Malicious Packet Detection Efficiency based on The Probabilistic Approach
	Brute-Force Attack
	DoS Attack
	DDoS Attack
	Web Attack
	Infiltration Attack
	BoT Attack

	Summary of Results for Probabilistic Classification
	Chapter Summary

	Conclusion and Analysis
	Analysis and Limitations
	Future Work

	Appendices
	Feature Selection Using Mean Decrease Accuracy
	Procedures for IP Packet Processing
	List of Re-Engineered Flow Features
	Sanity Check Results for Re-engineered Data
	ECDC Curves for Re-Engineered Data 2017
	Machine Learning with Scikit Learn

