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Summary

This thesis consists of three chapters on econometric methods. In Chapter 1, I investigate the con-
sequences of the simultaneous presence of small sample size, leveraged data, and heteroskedastic
disturbances on the validity of the statistical inference in linear panel data models. I formalise the
panel versions of two jackknife-type estimators and propose a new hybrid estimator. I derive their
asymptotic distributions and analyse their finite sample properties with Monte Carlo simulations.
I find that test statistics obtained with conventional robust standard errors are over-sized, upward
biased, and with less power under heteroskedasticity and with good leveraged data and in small
samples. In Chapter 2, I develop diagnostic methods for panel data to detect three types of anoma-
lous units. I formalise statistical measures for quantifying the degree of leverage and outlyingness
of units, and develop a method to visually detect the type of anomaly and its effect on other units. I
use network analysis tools to show the total and bilateral influence. I then apply my method to four
cross-country data sets used in published articles. Chapter 3 investigates the effect of gender sec-
toral segregation on employment contracts (part-time, permanent, remote work, number of weekly
working hours) and hourly wages for both men and women. We use propensity score matching, the
Kitagawa-Blinder-Oaxaca decomposition and Mincerian wage regressions to analyse the contribu-
tion of observable and unobservable factors on labour outcomes. We find that contractual features
systematically chosen by a specific gender are more common in sectors dominated by that group

and for both genders. Workers employed in female-dominated sectors are on average paid less but



SUMMARY ii
most of the gap is explained by the coefficient effect rather than differences in endowments in both
gender dominated sectors. Women self-select into low-paid jobs where their skills are valued less,

especially in female-dominated sectors.



Introduction

Applied social science researchers often use econometric methods to conduct causal inference
exercises on the phenomenon of interest. They aim to arrive at valid statistical inferences and to
consistently estimate the parameters reflecting the underlying relationship. For example, when
the assumption of homoskedasticity is violated, econometric models that use asymptotic standard
errors produce invalid statistical inferences. This requires the use of robust standard errors (Eicker
(1967), Huber et al. (1967), White (1980), and Arellano (1987)). However, the presence of data
points that exhibit extreme values in the covariates (good leverage points) invalidates statistical
inference with robust standard errors (Long and Ervin, 2000; Hayes and Cai, 2007; MacKinnon,
2013; Bramati and Croux, 2007; Verardi and Croux, 2009).

On the other hand, the main objective of applied social scientists is to consistently es-
timate the causal impact of a treatment on an outcome of interest. This involves constructing
a measure comparing the outcomes of treated and untreated units. However, it is not possible
to identify appropriate counterfactuals with observational data, given the available set of con-
trols. Researchers use different techniques — such as, differences-in-differences (Card, 1992; Card
et al., 1994; Card and Krueger, 2000), synthetic control (Abadie and Gardeazabal, 2003; Abadie
et al., 2010, 2015), matching methods (Abadie and Imbens, 2006), matching and synthetic control
method (MASC) (Kellogg et al., 2021) — to retrieve the causal estimates if certain assumptions

are satisfied. For example, the propensity score matching (PSM) methodology addresses the issue

1l
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of finding a good counterfactual by matching on the propensity score — i.e., on the conditional
probability of receiving the treatment (Rosenbaum and Rubin, 1983).

This thesis consists of three chapters on econometric methods. Chapters 1 and 2 are
technical econometric studies on statistical inference, and Chapter 3 applies econometric tech-
niques to an economic issue. Chapters 1 and 2 study statistical inference in a data structure that
is common in the macroeconomic country-level studies (e.g., Acemoglu et al., 2008; Schularick
and Taylor, 2012; Egert, 2016; Berka et al., 2018, analysed in Chapter 2), and applied experi-
mental and behavioural literature (e.g., Gneezy et al., 2003; Reuben et al., 2017; Saccardo et al.,
2018, mentioned in Chapter 3). The data sets in these studies are characterised by a relatively
small number of cross-sectional units. The presence of heteroskedasticity and good leveraged data
undermines conventional cluster-robust standard errors, leading to the over-rejection of the null
hypothesis (Bramati and Croux, 2007). Chapter 3 performs an empirical exercise in an economic
field — labour market segregation and working conditions — where it is problematic to claim for
causality given self-selection into jobs (Petrongolo, 2004; Bertrand, 2011; Goldin, 2014; Bertrand,
2020; Morchio and Moser, 2021) and reverse causality (Borjas, 1980), making it difficult to disen-
tangle the effect of segregation on employment contracts and wages. This thesis approaches these
issues and proposes methods to address them.

In Chapter 1, I examined the statistical inference performed with conventional robust
standard errors. In particular, I investigated the consequences of the simultaneous presence of
small sample size, good leveraged data, and heteroskedastic disturbances on the validity of the
statistical inference in linear panel data models. I formalised the panel versions of two jackknife-
type estimators and proposed a new hybrid estimator. I derived their asymptotic distributions
and analysed their finite sample properties in terms of proportional bias, rejection probability,
root mean squared error, and adjusted power with Monte Carlo simulations. I found that test

statistics obtained with conventional robust standard errors are over-sized, upward biased, and
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with low power under heteroskedasticity, with good leveraged data and in short panels. Under
homoskedasticity and with good leveraged data, all estimators have good performances, suggesting
that heteroskedasticity correction should be always used.

In Chapter 2, I developed diagnostic methods to detect three types of anomalous units
(i.e., good and bad leverage points, and vertical outliers) in a panel data framework. I formalised
statistical measures for quantifying the degree of leverage and outlyingness of units, and developed
a method to visually detect the type of anomaly and its effect on other units. I first formalised
the notion of the average individual leverage and average normalised residuals used for unit-wise
leverage-residual plots. I proposed two diagnostic measures for the joint and conditional influence
in a panel data setting. Then, I used network analysis tools to show the overall and bilateral
influence exerted by pairs of units. I applied my method to a fictitious sample and to four country-
level data sets used in published articles. I observed that bad and good leverage units have the
largest joint and conditional influence and contribute to enhancing and masking the effects of
even fairly influential units. Conversely, vertical outliers do not contribute in exerting large total
influence.

Chapter 3, joint with Riccardo Leoncini and Mariele Macaluso, investigated the effect of
gender sectoral segregation on employment contracts (part-time, permanent, remote work, number
of weekly working hours) and hourly wages for both men and women. We first compared labour
market outcomes of workers in female-dominated sectors with those in male-dominated sectors
with similar observed socio-demographic and working characteristics using PSM. Then, we anal-
ysed the contribution of observable and unobservable factors in determining the gap in hourly
wages using the Kitagawa-Blinder-Oaxaca decomposition and Mincerian wage regressions. We
found that contractual features that are systematically chosen by a specific gender are more com-
mon in sectors dominated by that group for both genders. Workers employed in female-dominated

sectors are on average paid less. The coefficient effect mainly explains the wage gap between men
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and women in both gender dominated sectors. Finally, we observed that women self-select into
low-paid jobs, especially in female-dominated sectors.

This thesis is related to four strands of the literature. The first chapter created a link
between the cross-sectional (Horn et al., 1975; MacKinnon and White, 1985; Davidson et al., 1993;
Long and Ervin, 2000; Cribari-Neto, 2004; Cribari-Neto et al., 2007; Cribari-Neto and da Silva,
2011) and panel (Arellano, 1987) literature for Heteroskedasticity-Consistent (HC) estimators of
the sampling variance. It supported the evidence that cluster-robust standard errors are downward
biased in the presence of good leveraged data in the sample (Long and Ervin, 2000; Hayes and
Cai, 2007; MacKinnon, 2013; Bramati and Croux, 2007; Verardi and Croux, 2009). In addition,
this study — like Hinkley’s (1977) — recommended the use of HC estimators because they are
less sensitive to atypical cases, by construction. My contribution to the HC literature consisted in
finding that conventional cluster-robust standard errors are always dominated by more conservative
estimators of the variance, especially in short panels, and jackknife-type standard errors should be
used.

Further, the second chapter of this thesis is related to the literature on diagnostic mea-
sures to detect atypical observations in the sample (Cook, 1979; Atkinson, 1985; Chatterjee and
Hadi, 1988; Rousseeuw and Van Zomeren, 1990; Banerjee and Frees, 1997; Martin and Pardo,
2009; Martin, 2015; Pinho et al., 2015; Kim, 2017). More precisely I followed the school that
recommends a local approach (Lawrance, 1995; Poon and Poon, 2001). This chapter extended
Lawrance (1995) by developing diagnostic measures for the joint and conditional effects in panel
data. The cross-sectional Cook’s (1979) distance is an available statistical tool for the detection of
unusual observations but fails to capture multiple anomalous cases because of the masking effect.
By using a local approach, this chapter overcomes the issue faced with Cook-type measures.

In our third chapter, we referred to the matching literature to consistently estimate the

average treatment effect in the absence of the treatment. We implemented matching estimators
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a la Abadie and Imbens (2006) that control for the propensity score eliminating the selection bias
into jobs (Cameron and Trivedi, 2005, pp. 872-873).

Finally, our third study is located in a vast body of research on gender segregation at the
workplace (Petrongolo, 2004; Mumford and Smith, 2008; Bertrand, 2011; Goldin, 2014; Bertrand,
2020; Morchio and Moser, 2021). While the gender discrimination literature has extensively docu-
mented that most of the pay gap comes from differences in human capital and estimated coefficients
between men and women (Mumford and Smith, 2008), a part still remains unexplained and cannot
be ascribed to only observed factors (Booth, 2009). We showed that women are negatively se-
lected in terms of potential earnings such that differences in wage trajectories cannot be attributed
to acquired skills and/or human capital only.

This thesis possesses three main novel elements. In Chapter 1, I proposed the use of
three jackknife-type formulae for standard errors in place of conventional cluster-robust standard
errors in a panel data setting. In Chapter 2, I exploited similarities between my data frame and the
adjacency matrix of a weighted and directed graph. With this, I was able to mobilise network anal-
ysis tools to visually inspect the reciprocal influence exerted by units in the sample in a way that
is more efficient than the traditional 2-way plots. Third, because the unexplained component after
the KBO decomposition of wage differentials still remains unexplored in the gender economics
literature, Chapter 3 delves into the unobservable factors using techniques from the economics of

migration literature (Gould and Moav, 2016; Parey et al., 2017; Borjas et al., 2019).



Chapter 1

Robust Inference in Panel Data Models

Some Effects of Heteroskedasticity and Leveraged Data in Small Samples

1.1 Introduction

When the assumption of homoskedasticity is violated and the disturbances show non-constant vari-
ance (within 7, over #, or both), least squares (LS) estimators are no longer efficient. Consequently,
standard errors based on the incorrect assumption of homoskedastic disturbances lead to mislead-
ing statistical inferences. A common practice is to account for heteroskedasticity with robust stan-
dard errors when estimating the model. The Eicker (1967), Huber et al. (1967), and White’s (1980)
(henceforth, EHW) estimator has become the norm to account for any degree of heteroskedastic-
ity in the cross-sectional environment. In the panel data structure, the Arellano’s (1987) formula,
based on EHW’s estimator, has been widely used!. The presence of data points that exhibit extreme

values in the covariates (referred as good leverage points) makes the EHW estimator systemati-

'We conducted a survey of articles published in the American Economic Review (AER) between 2011 and 2018 that
make use of panel data estimation techniques. We observe that 206 out of 326 selected papers (65%) use linear
least squares (LS) for panel data models — such as, Fixed-Effects (FE), First Differences (FD), Pooled Ordinary
Least Squares (POLS), Linear Probability Model (LPM), Difference-in-Differences (DID), and Treatment Effects
(TE) — as main (primary) estimation technique. Among this subgroup, 193 use cluster-robust standard errors, 15
use bootstrapped standard errors, and the remaining 36 use other types of standard errors. The strong preference for
cluster-robust standard errors in our sample reflects the need to account for within-cluster correlation, heteroskedas-
ticity and serial correlation whereas the choice of other types of standard errors handles other issues in the data
structure. These figures are displayed in Figure C.1.
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cally downward biased leading to liberal statistical inferences” (Long and Ervin, 2000; Godfrey,
2006; Hayes and Cai, 2007; MacKinnon, 2013; Simsek and Orhan, 2016). In addition, the bias
is severe when the cross-sectional sample size is sufficiently small® — i.e., the number of units is
smaller than 250 (MacKinnon and White, 1985; Chesher and Jewitt, 1987; Silva, 2001; Verardi
and Croux, 2009).

In some economic fields, researchers often face a data structure with rather small num-
ber of units, heteroskedasticity, and unusual data points. Such data structure is common in macroe-
conomic country-level analyses, and applied experimental and behavioural studies. Conventional
cluster-robust standard errors are usually used to mainly control for within-group correlation (e.g.,
see replicated studies in Chapter 2) but this correction method is not appropriate because Arellano’s
(1987) standard errors are biased, having the same characteristics of the EHW estimator (Bramati
and Croux, 2007; Verardi and Croux, 2009). While there is much discussion in the cross-sectional
framework, little has been done for panel data*. In this chapter, we investigate the consequences
of the simultaneous presence of small sample size, good leveraged data, and heteroskedastic dis-
turbances on the validity of the statistical inference in linear panel data models.

We formalise panel versions of MacKinnon and White’s (1985) and Davidson et al.’s
(1993) estimators, and propose a new hybrid estimator, PHC®6, that penalises only units with high
leverage in the covariates. We derive the asymptotic distributions of a battery of estimators (i.e.,
Arellano’s (1987), panel versions of MacKinnon and White’s (1985) and Davidson et al.’s (1993),

and PHC®6 estimators), and analyse their finite sample properties with Monte Carlo (MC) simu-

These anomalous cases do not affect the estimation of the least squares coefficients as shown in Figure C.6.

3This bias persists even in large samples.

“To the best of our knowledge, there are only two available studies for panel data. Kezdi (2003) compares the finite
sample properties of a series of estimators of the variance-covariance matrix with an without serial correlation in
the error term in large-N and small-T panels. Hansen (2007) derive the asymptotic properties of the conventional
estimator of the variance-covariance matrix and studies its finite sample behaviour under heteroskedasticity in the
cases where both N, T jointly go to infinity, and where either N or T goes to infinity holding the other dimension
fixed. Extensions of a class of HC-based estimators to linear panel data mode Is has been conducted by Cattaneo
et al. (2018) in high dimensional literature.
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lations. Specifically, we compare the performances of these four types of estimators in terms of
proportional bias, rejection probability (or empirical size), root mean squared error, and adjusted
power. The analysis is conducted across different panel sample sizes and degrees of heteroskedas-
ticity. Units are randomly contaminated with good leverage points. While we treat homoskedastic-
ity as a special case, heteroskedasticity is assumed to be a core component of the correct regression
specification. We focus on small sample sizes for a double reason. First, the cross-sectional HC
literature has extensively discussed the finite sample bias of the EHW estimator and we suspect
that the same bias also affects Arellano’s (1987) estimator. Second, the nature of the research
and/or data availability may force the investigator to deal with a reduced number of observations
in the data set. Furthermore, we are interested in the additional issue posed by the presence of
good leveraged data in this setting because they may be carried over the full history of a unit and,
hence, contribute to exacerbate the effect on the estimates of the variance.

We find that under heteroskedasticity and with good leveraged data test statistics ob-
tained with Arellano’s (1987) standard errors are, as expected, over-sized, upward biased, and
with low power, especially when the panel size is smaller than 2,500 observations. Test statistics
calculated with PHC6 formula mimic the behaviour of those based on jackknife standard errors
in terms of bias, empirical size and adjusted power test, converging to the same rates as the sam-
ple size increases. The panel version of MacKinnon and White’s (1985) estimator shows similar
patterns but with different magnitudes. Under homoskedasticity and with good leveraged data,
all estimators have good performances in terms of proportional bias, rejection probabilities, and
adjusted power, suggesting that the heteroskedasticity correction should be used. A similar result
was found in MacKinnon and White (1985) and Long and Ervin (2000) for cross-sectional models
who claimed that jackknife-type standard errors might enhance inference even with small degrees
of heteroskedasticity.

Despite the remarkable methodological contribution in the cross-sectional HC literature,
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HC-type estimators — such as, HC2 by Horn et al. (1975), HC3 by MacKinnon and White (1985),
HC jk by Davidson et al. (1993), HC4 by Cribari-Neto (2004), HCS by Cribari-Neto et al. (2007),
and HC4m by Cribari-Neto and da Silva (2011) — have not found much application in practice.
However, this should not be a common practice because HC estimators alleviate the effect of
leveraged data being less sensitive to anomalous cases, by construction (Hinkley, 1977). This
study contributes to the HC literature by creating a link between cross-sectional and panel HC
estimators of the sampling variance. We provide the formulae and derive the distribution of a
selected group of variance-covariance estimators to panel data. We document the downward bias of
conventional robust standard errors under certain circumstances and provide alternative solutions
to obtain more reliable statistical inferences. This study provides simulation evidence that these
estimators outperform the conventional cluster-robust standard errors under specific circumstances
and should be used in linear panel data models.

The rest of the chapter is structured as follows. Section 1.2 introduces the static linear
panel data model and its assumptions. Sections 1.3 and 1.4 discuss the asymptotic properties of
the estimators. In Section 1.5, we extend a selected group of HC estimators to panel data and
propose a new estimator. Then, Section 1.7 shows the MC simulation design and discusses the
simulation results. In Section 1.8, we examine the performances of the four estimators in terms
of their proportional bias, empirical size, adjusted power, and mean squared errors. Section 3.5

concludes.

1.2 Model and Assumptions

Consider the static linear panel regression model with one-way error component

Vi =X,B+0i+uy, i€ S ={1,...,Nrandt€ 7 ={1,...,T} (1.1)
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where y;; is the response variable for the cross-sectional unit i at time period ¢; X;; is a k X 1 vector
of time-varying inputs, 3 is a k x 1 vector of parameters of interest; ¢; is the individual-specific
unobserved heterogeneity (or fixed effects); and u;; is a stochastic error component.

Stacking observations for #, model (1.1) at the level of the observation becomes

yi=XiB+a;+u;, foralli=1,... N, (1.2)

where y; is 7 x 1 vector of outcomes; X; is a T X k matrix of time-varying regressors; a; = ¢t is a
T x 1 vector of individual fixed effects, and ¢ is a vector of ones of order 7'; and u; is a T x 1 vector
of one-way error component. The fixed effects o; in Equation (2.1) are removed to consistently
estimating the parameter of interest 3 by applying an appropriate transformation of the original
data, i.e., the time-demeaning or first-differencing procedure, because it might be the case that
E(e|X;) = h(X;). For the rest of the discussion, we focus on the first approach when applied to
Equation (2.1). The time-demeaning data transformation delivers a consistent estimator of 3 even
when the regressor is correlated with the unobserved heterogeneity o, but is less efficient than the
First-Difference (FD) transformation with errors that are not identically distributed.

The estimating equation becomes

yi=X;8+u;, foralli=1,...,N, (1.3)

where §;i = (Ir — T )y;is T x 1; Xy = (Ip — T~ '/)X; is T x k; and w; = (Ir — T~ et/ )u; is
T x 1. Note that (I7 — T~ 'et/)a; = 0 as T~ et/ a; = «;. The within-group estimator is the Pooled
OLS estimator of Equation (1.3).

The model assumptions are as follows

ASM.1 (data-generating process):
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i (independent variables): {X;} is an independent and identically dis-

tributed (iid) sequence of random variables, forall i =1,...,N;

ii (disturbances): {u;} is an independent but not identically distributed

(inid) sequence of random error terms, forall i =1,...,N.

ASM.2 (on the relation of X; and 0;):

1 (strong exogeneity): E(ﬁ,~|il~) =0,foralli=1,...,N;
ii (heteroskedasticity): Xy = N~ Zf-vzl 3); — X, where the matrix of
the heteroskedastic disturbances 3; = E (0} X;) = diag{ o7 } is sym-

metric of dimension 7, finite, positive definite, and diagonal.

The above model assumptions have the following implications. ASM.1.i guarantees
that the sequence of random variables {XZXZ} is iid [PROP 3.3 in White (1984, p.30)]. ASM.1.ii
imposes cross-sectional independence and, together with ASM. 1.i, implies that {X/u,} is an inid
sequence of random vectors [PROP 3.10 in White (1984, p.34)]. Assumption ASM.1 and its impli-
cations remain unaltered after any data transformation.

The strict exogeneity assumption ASM.2.i rules out feedback effects and implies con-
temporaneous exogeneity, i.e., [£ (ﬁ,-, |)~(,) =K (ﬁi, |3E,~,) =0, and is a crucial assumption to prove con-
sistency of the within-group estimator. The projection analog of ASM.2.i is the strong exogeneity
condition, i.e, E(iisiii,) =0& E(i?,v, |ii)=0, for all s € .7 and s # t. Because the exogeneity of the
non-demeaned variables might not be strong enough to guarantee that exogeneity is preserved after
the transformation, i.e., E(X/u;)=0 7 E(f(;ﬁi):o (Cameron and Trivedi, 2005, p.707). Assump-
tion ASM.2.11 allows the conditional error variance to vary across observations and time periods,
and imposes serial uncorrelation over time dimension, ]E(ﬁi,zzs|)N(i) =0 with (¢,5) € 7 and t # 5.

The assumptions for the existence and optimality properties of the estimator of the true

population parameter 3 are

>This occurs because the regressor is correlated with 7! co/u; since it includes the whole history.
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ASM.3 (rank condition): Sy = N~! Zﬁvz | X;X, is a finite symmetric matrix with

full column rank .
ASM.4 (moment conditions):
i IEH)N(:)ZH < oo for )N(f)N(, € Rkxk,
ii supiEHf(gﬁinM < oo for some & > 0, Vi and )Nifﬁi € Rk,
where || - || denotes the Euclidean norm.

ASM.5 (average variance-covariance matrix convergence):
Vy=N"'Y¥, V-V, where V; = E(X/%;X;) and V is a finite positive

definite k X k matrix.

The full column rank condition in ASM.3 implies non-singularity of the matrix Sy and,
hence, no perfect multicollinearity that guarantees the invertibility of the matrix. The limiting
matrix Syy = IE()~(/ i) possesses the properties of Sy by the Weak Law of Large Numbers (WLLN)
[THM 6.6]. Another implication of ASM.3 is that the matrix of regressors ii is full column rank.
Assumption ASM.4 defines the finiteness and boundedness of moments in terms of the Euclidean
norm. Assumption ASM.5 ensures that the average variance-covariance matrix converges to a finite
quantity, satisfying one of the conditions of the Multivariate Central Limit Theorem (MCLT) for
inid processes [THM 6.16 in Hansen (2019, p.189)].

No restrictions are placed on influential points — i.e., high leverage points and outliers®
— possibly allowing for their presence. We consider a framework where the panel is small, that is,
the time period length is smaller than the number of units N such that 7 < N. Under this notation
T is the full set of time information, and the total number of observations in the sample is given by

n = N - T with balanced data sets.

6 Anomalous observations that have extreme values in the covariate are high leverage points whereas outliers are
oints with large residuals (Rousseeuw and Van Zomeren, 1990; Chatterjee and Hadi, 1986). See Chapter 2 for

p g J P

further discussion.
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This set of assumptions and their implications remain valid under any monotonic data
transformation due to the Continuous Mapping Theorem (CMT) [THM 6.19 in Hansen (2019,

p-192)]. Later in this work, we consider the within-group transformation of the data.

1.3 Asymptotic Properties of

Under ASM. 1-ASM. 4.1, the within-group estimator of the true population parameter 3 exists with

N ~ o\l -
form By = (N_l Yy, XfX,) N-'y¥  Xly;, and is consistent, i.e.,

-1
. 1Y < 1Yo
By—B= (NZX;X,-) NZXguiﬁmasN—m. (1.4)
i=1 i=1

The consistency of the within-group estimator under the aforementioned assumptions is a known
result (as reference, see Hansen, 2019, pp. 612-613). By the previously discussed implication of
ASM. 1.i and PROP 3.3 in White (1984, p.30), {iii,} is an iid sequence of random variables with
finite moments given ASM.4. The elements of the sequence satisfy the Weak Law of Large Numbers
(WLLN) [THM 6.6 in Hansen (2019, p.182)] such that Sy EN Sxx < oo. Because both matrices are
invertible by ASM.3, then THM 6.19 [Continuous Mapping Theorem (CMT) in Hansen (2019,
p-192)] yields the result S;,l RS S}}}(.

Now, we show that the second component in (1.4) converges in probability to zero. We
know that the sequence {i;ﬁ,} is inid as an implication of ASM.1 [PROP 3.10 in White (1984,

p-33)]. Then, the Chebyshev inequality is

, (1.5)

~ 2
1 vN 1y
>e| <
82

1 iv,’ ~
Pr - X/-ﬁi
N i=1 l
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where the numerator in (1.5) can be expanded as follows

’ & Y/ 1 ~IY
(1.6)

= —tr{ZZX'ﬁ WX }

1 i ~
— V' X
Ni:l l

By the aforementioned implication of ASM. 1.i1 and under ASM.2.ii the conditional error

variance is

e 0 Vi j
E(Xu/X,|XX;) = (1.7)
X/ZX; Vi=j

Applying the expected value operator to (1.6), and using result (1.7) jointly with the

Law of Iterated Expectations (LIE), the above equality becomes as follows

E

_ ]%tr{;z E(iga,.a;.ij)}

= —tf{ZZE[ X{ﬁiﬁﬁiﬂiiaiﬂ] }

- el efens])
SRR

1 —
= Ntr{VN} — 0, asN — o

1 ﬁ ~
— V' X
Ni:l l

since assumption (ASM.5) implies that tr{ Vy } — tr{V}, which is finite.
As a result, the right-hand side of Equality (1.8) converges in probability to zero. So
does the left-hand side. Inequality (1.5) becomes

1 N
Pr| ||—
szl

Y X,

28) — 0 as N — oo,
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and, hence, N~! Y igﬁi 5o. By THM 6.19 [CMT in Hansen (2019, p.192)] , the result follows
B\N -3 LN S;}( -0 =0, or alternatively BN LN (3. This result holds for any monotonic transformation
of the data.

Under ASM.1-ASM.5, the estimator has the known asymptotic distribution below
VN(By—B) % 4 (0,87, VSgt) asN — coand T fixed. (1.9)

A reference for this result is Hansen (2019, pp. 624-625). The left-hand-side of Equation (1.9) can
be re-written as follows
NGBy -p) - (LY %%, s ¥ X,
Y (N 5 Z) VN 5 o
The sequence of random variables {i:f(,} is iid as implication of ASM.1.i and by PROP
3.3 in White (1984, p.30). With analogous arguments as those used above to prove consistency,
S;,l RS S;QI(. Under assumptions ASM.1 and ASM.2.i and by PROP 3.10 in White (1984, p.33), the
sequence {)Nigﬁ,-} € R* is inid with means E()N(fﬁi) = 0 and variance matrices V; = E()N(QEQN(,-),
by LIE and ASM.2.ii. The limit in probability ASM.5 and assumption ASM.4.ii are the two con-
ditions that satisty the Multivariate Central Limit Theorem (MCLT) for inid processes [THM 6.16
in Hansen (2019, p.189)]. Therefore, N~1/2 YN X/w; & (0, V) as N — co. Slutsky’s Theorem
[THM 6.22.2 in Hansen (2019, p.193)] yields the result v/N(By — 8) % .4 (0,854 VSx ), where
Sxx = E(i;i,) THM 6.19 [Hansen (2019, p.192)] ensures that the above limits hold for any

monotonic transformation of the data, e.g., the within-group transformation.
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1.4 Estimating the Asymptotic Variance

Given the above results under the model assumptions we made, the approximate distribution of the

estimator of 3 for large but finite samples is

Bn~ N (B,N'SxxVSyx). (1.10)

where the limiting matrices Sxyx and V need to be estimated, and so does the average variance-
covariance matrix Vy. While Sxx is estimated by Sy =N -1 Zﬁil i:i, the estimation of the
average variance-covariance matrix needs further discussion. According to White (1980), a com-
putationally feasible practice consists in estimating each expectation, V; = E(i;Eiii), individu-
ally, and a plausible estimator of Vy would be N~! Z?]:l i;ﬁ,ﬁ;ii if the error term were known.
Because it is unobserved, a consistent estimator of the variance-covariance matrix is in practice
N1 Zﬁ.\’: 1 Xfﬁlﬁii,, where ﬁ,- =y;— Xﬁ Define ﬁ,— = u; to simplify the notation.

Using a generalised expression for regression residuals, the variance-covariance ma-
trix can be re-written as follows: Vy = N~ Zﬁvz 1)???,-?;)2,-, where v; = Mi_lﬁl- are the trans-
formed regression residuals with M; being the transformation matrix that differs across estima-
tors of the variance-covariance. When the transformed residuals equalise the residuals from the
regression, V; = Iru;, the variance-covariance matrix takes the familiar “sandwich-like” formula
of Arellano’s (1987) estimator. Other functional forms of the transformed residuals are presented
and discussed in Section 1.5. In addition, the consistency of transformed residuals is proved under
fixed T in Appendix A.3.

The variance-covariance matrix \A7N with transformed residuals is still a consistent esti-
mator of the true variance. Let ii = ?ﬁ;, from White’s (1980) general result and under the above

model assumptions and THM 7.7 in Hansen (2019, p.232), it follows that H‘Aﬁv —VNH %o and,
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hence, N*IZifJ,- —EN” 20, foralli = 1,...,N,as N — o and keeping T fixed.

1.5 Estimators of the Variance for Panel Data

The EHW estimator and the other HC estimators of the variance were originally formalised for
cross-sectional models. In this section, we present the formulae of a battery of HC estimators for
panel data, alongside with Arellano’s (1987) well-known formula. We formalise MacKinnon and
White’s (1985) jackknife-type estimator for panel data, provide a panel version of Davidson et al.’s

(1993) estimator, and propose a new hybrid estimator, PHC6.

1.6 HCk-type Estimators
The well-known formula of Arellano’s (1987) estimator (henceforth, PHCO) is

—

AVar(B), = coSy' ViSy', (1.11)

where co = ’:l;_,l( . %, and \AQOV =N'YN, )N(ﬁﬁ;f(,- with M; = Ir. The finite-sample correction
factor’, cp, ensures that {72, is consistent under ASM.2.ii with fixed T’; the ratio N/(N —1) is a
computational necessary degree-of-freedom correction to control for individual correlation (Stock
and Watson, 2008; Cameron et al., 2011).

The estimator that resembles Davidson et al.’s (1993) HC3 in the panel data framework
(PHC3) is as follows

—

AVar(8); = ¢3Sy Vasy !, (1.12)

7C0mputationally, statistical software, like STATA, use a ﬁnite;sampl@ modification of the conventional (i.e., Arellano’s
(1987)) variance-covariance matrix multiplying N~' ¥, X/u;u/X; by the correction factor ¢ = 2=} - 2~ where
n = N-T for one-way clustering in panel data, otherwise cluster-robust standard error turn out to be downward

biased (Arellano, 1987; Bertrand et al., 2004; Cameron et al., 2011).
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where c; = (N — 1)N~', Vi = LYY X5¥X; with M; = (I7 — H;) and the individual leverage
matrix8, H; = X; (i’ )~() _1)2;, whose diagonal elements h;;; =X, ()~(’ i)_]ii, lie in the (0, 1) interval
but the off-diagonal elements may be negative. Predicted residuals, V;, assign a penalty to LS
residuals based on the degree of leverage making the estimates of the variance less sensitive to
leverage points. This type of standard errors tend to be asymptotically conservative as the number
of covariates is allowed to grow as fast as the sample size, despite being asymptotically valid
(Cattaneo et al., 2018).

The estimator of the jackknife asymptotic variance for panel data models (PHC jk)

adapts MacKinnon and White’s (1985) HC jk estimator and has form

N1\ ifes v ole
:< — )SNI{V?V—[L sy (1.14)

where the Leave-One-Out estimator is B(i) —B3- ()N(’ )NK) - X!y, with M; = (I — H;), B = WA B(i),
and p* = 1%, Zf-vzl i;?i. The jackknifed variance-covariance estimator with fixed effects can be found
in Belotti and Peracchi (2020).

In practice, the jackknife procedure consists in deleting the entire history of each unit
one at a time without replacement. Because the jackknife resamples in such a way to construct
“pseudo-data” on which the estimator of interest is tested, this technique — as well as the bootstrap
— is suitable for the assessment of the variability of an estimate, e.g., the estimation of standard

errors (Efron, 1982; Freedman and Peters, 1984, Chapter 6). The advantages of the jackknife

8The individual leverage matrix is a T x T matrix defined as follows

hin  hiz ... har
hp1t hio ... hoir

H; = ] . . . foralli=1,...,N (1.13)
hirt hira ... hirr

with elements f;;s = X, (X'X) "X, with 1, s = 1,..., T.
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procedure are double: it is an entirely data-driven approach, and it is able to alleviate the impact
of influential units on inference (Cattaneo et al., 2019). The main drawback is that the jackknife
estimator becomes computationally infeasible for sufficiently large number of groups.

PHC3 is a special case of Equation (1.14) when the contribution of the second block
is null as N — oo and fixing T. The two estimators are asymptotically equivalent and coincide in
sufficiently large samples. The derivation of (1.14) involves considerable algebraic manipulations

(see Appendix A.1).

1.6.1 A Hybrid Estimator: PHC6

We propose a hybrid estimator of the variance, PHC6, that nests PHCO and PHC3 estimators using
a threshold criterion from the decision rule of the penalty factor in Cribari-Neto (2004). PHC3
is chosen because Monte Carlo simulations showed that Davidson et al.’s (1993) HC3 possess
the best final sample properties in terms of lower bias, with rejection rates closer to the nominal
one (Long and Ervin, 2000). The threshold criterion is designed to account for the time period in
which each unit has exerted the maximal leverage with respect to the average leverage in the same
period. PHC®6 is designed to deliver standard errors that are higher in magnitude than PHCO with
contaminated observations but the same as PHCO standard errors with no extreme observations in
the sample.

Before presenting the proposed estimator, we clarify beforehand the notation we will be

using. Let the 7" x 1 vector

hit

hiz»
h; = diag(H;) = foralli=1,...,N

hirt
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be the individual leverage vector constructed from the diagonal elements of the individual leverage

matrix H; defined in (1.13), and let the 7 x 1 vector

hi

_ Ezz
htt -

ETT

N=YYN hiy

N=YYN hio

N=YYN hiry

be constructed from the average leverage at time ¢ across units. Then, let hbe a T x 1 vector with

elements (h; expoj), where the expression expoj indicates the element-wise power of j which

is a T x 1 vector of negative ones. The Hadamard (element-wise) product, h; Oh,isaTx1

—1 . ) o )
vector whose elements, hj;h;, , inform on the relative leverage of unit i at time ¢ with respect to

) : —1 . .
the average leverage at time ¢t. Specifically, values of h;;h,,  above one signal that the relative

leverage of unit 7 at time 7 exceeds the average influence at time ¢. Units with values slightly grater

than one cannot automatically be flagged as highly influential because in the absence of influential

units at time ¢, the denominator may be very close to the numerator, by construction and, hence,

. —1. .. o
one cannot be chosen as cut-off value. Conversely, high values of hj;h,, indicate that unit i is

exerting high leverage at time ¢ with respect to the mean influence at time ¢.

The PHCG6 estimator of the variance is defined as follows

—

AVar(B)6 =6 SX,IV?\,SK,I ,

(1.15)

where the variance-covariance matrix is Vf{, = 1%/2?]:1 X!v;v:X;, and the matrix M; has functional
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form
Iy if B < 2
M,; = (1.16)
Ir —H; otherwise
where hf = max{hj1/hi1,....hirr /hrr} is the maximal individual leverage of unit i; and hy, =

N1 Zf]:ihm is the average leverage at time ¢, with h;; being the individual leverage of unit i at
time ¢. The finite sample correction of PHC6 is

NT—1)N . *
ﬁfmﬁﬂ if ht <2

Ce —

NT_l otherwise

According to the cut-off rule, residuals of units with maximal individual relative lever-
age, h; = hish,, 1, are discounted by the penalty matrix M;. Unlike PHC3 that penalises both low
and high leverage points at the same rate, PHC6 discounts at the same discounting rate as PHC3
only if the unit exerts high leverage. When the individual relative leverage does not exceed the
cutoff, no penalty is applied and PHC6 coincides with Arellano’s (1987) estimator. Conversely,
when the average level of leverage exceeds the cut-off value, PHC6 residuals are penalised as in
PHC3. In addition, PHC6 always weights for a final sample correction.

The cut-off is set to be equal to 2 such that no penalty is assigned to fairly influential
units at time #. One is not chosen as a cutoff value because in the absence of anomalous cases,
the denominator %, would be very close to the numerator hj;; for some units with meaningless

individual leverage but above the mean average. This would drive the ratio to exceed one.
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1.7 Monte Carlo Simulation

In this section, we present the MC simulation design which illustrates the behaviour of the four
types of estimators of the variance in finite samples’, when variables are contaminated with anoma-
lous data points. For simplicity, the simulation set up uses synthetic balanced data set and does not
allow for any correlation between the individual-specific fixed effects and the regressor!®. The data
generating process for the Monte Carlo simulation is designed to be closely related to: (i) Godfrey
(20006), Stock and Watson (2008), and MacKinnon (2013) in terms of the form of heteroskedastic-
ity, number of regressors and the calibrated parameters; and (ii) Bramati and Croux (2007) for the
contamination with cell-isolated good leverage points. However, we depart from these settings by
making some modifications to the simulation designs.

The data generating process (DGP) of Monte Carlo simulations is as follows

vie = Bo+ i Bjxitk + & +ui, foralli=1,... Nandt =1,...,T; (1.17)
k=1
X~ A (0,1) for k = {1,2} except contaminated cases (1.18)
xp = f(x1,x) fork = {3,4,5} (1.19)
o;~U(0,1) (1.20)
Uiy = i€+ 0&;_1, &~ N (0,1), uy ~ A (0,07) (1.21)
¥ 71 -1

J J
o =z2(7)| Bo+ Y Bxie; | , withz(y) = |E[ Bo+ Y Bjxir,s (1.22)
=1 =1

where the number of regressors in the model is K =5 and K = J; model parameters are calibrated to

“Monte Carlo simulations provide computational evidence of finite sample properties of an estimator or a test when
applied to fictitious data (Hendry, 1984; Kiviet et al., 2012).
10This design leaves open the possibility to estimate the regression equation consistently and efficiently using the
random effects (RE) estimator. However, our objective is not to analyse RE because its assumptions are unlikely to
be satisfied in practice. Also, we are not focusing on unbalanced datasets, whose discussion is postponed to future
analysis while addressing the issue of attrition in panel data.
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be B =1,fork=1,...,4, and B5 = 0; 6 = 0 because errors are conditionally serially uncorrelated
by assumption as in Stock and Watson (2008); the degree of heteroskedasticity assumes values of
vy ={0,2}, where y = 0 stands for homoskedasticity and y >> 1 for severe heteroskedasticity. The
scaling factor, z(7), is chosen such that the average variance of the error term is equal to one'!.

The contamination of random variables with good leverage points is completely random
over the observations (i.e., cell-isolated anomalous cases). Good leverage points are obtained by
randomly replacing 10% of the values!? of x; with extreme observations drawn from a normal
distribution with mean p,, = 5 and standard deviation oy, = 25. Because x| is contaminated, then
the variables generated from the former are directly affected by this source of contamination. The
remaining random variables — x3,x4, x5 — are either generated from the square or the product of x;
and x; and, hence, follow a )((zvl) and a Gamma distribution, respectively.

The model is estimated including the set of aforementioned time-varying covariates and
individual specific fixed effects, ;. We estimate model (1.17) using fixed effects (FE) by apply-
ing the within-group (or time-demeaning) transformation to simulated data. Then, we estimate
the time-demeaned regression specification using OLS!3. As in Hansen (2007), the DGP for the

simulations involves only random effects (RE) model because with (1.20) we assumed that the

unobserved fixed effect is uncorrelated with the regressors. The model could be estimated more

"'"The error term u;; is intrinsically heteroskedastic but not on average due to the presence of the scaling factor z(y).
The distribution of the random variable W = 3y + 25:1 Bjxi j and W? is provided in Appendix A.5. The algebraic
derivation of the means and variances are shown.

12The degree of contamination could have been set to be even more or less severe according to the relevance the
researcher attributes to the presence of extreme observations in the sample.

13We do not use the FGLS-FE to estimate the estimating Equation (1.17) for three main reasons. First, when the
sample size is not sufficiently large there is an efficiency loss with respect to the FE-OLS estimator. In this analysis,
we are interested in investigating the finite sample properties of the estimator, when N is not very large. Second, the
FGLS-FE procedure requires to drop one of the time periods because the variance matrix is not invertible, leading to
the reduction of the (already small) panel sample size (Cameron and Trivedi, 2005, ch.21.6, p.729). Third, FGLS-FE
relies on the quality of the estimation of the variance and on the knowledge of the form of heteroskedasticity. How-
ever, the form of heteroskedasticity is always unknown from the data and the researcher has to make assumptions
on the relationship between the variance of the disturbances and observables and unknown parameters (Cameron
and Trivedi, 2005, Chapter 21, pp. 720-721, 729). This is unpractical in many areas of application and subjective to
the researcher’s guess. To overcome this limit, an objective criterion that has become a standard practice in applied
works consists in using conventional robust standard errors due to software facilities (Verbeek, 2008).
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efficiently with RE but FE models are commonly used in empirical studies with panel data'4.

Our Monte Carlo simulation involves 10,000 replications. The simulations are run for
a combination of cross-sectional units N = {25,50, 150,500} and time periods T = {2,5,10,20}.
Both cross-sectional units and time periods can be grouped as small (N = {25,50}; T = {2,5}),
moderately small (N = {150}; T = {10}), and moderately large (N = {500}; T = {20}). The

simulation is programmed in STATA16-MP and the main procedure is implemented in MATA.

1.8 Testing the Performance of HC Estimators

We examine the performance of each estimator in terms of proportional bias (PB), rejection prob-
ability (RP, or empirical size), adjusted power test, and root mean squared error (RMSE). Results
are provided for a battery of estimators by a combination of panel units, time periods, and de-
gree of heteroskedasticity, {N,T,y}, where the number of units N varies in an interval from 25
to 500 units, time is fixed at T = {2,5,10,20}, and the parameter that controls for the degree of
heteroskedasticity is y € {0,2}. This design is in accordance with the finite 7 assumption in the
model as time periods are fixed while the number of observations increases.

Good leveraged data and heteroskedasticity make, as expected, test statistics calculated
with conventional robust standard errors over-sized, upward biased, and with low power when the
panel size n < 2,500. The proposed PHC6 mimics the behaviour of PHCjk in terms of PB, RP and

power in all samples. PHC3 shows similar patterns but with different magnitudes.

14Tn future analysis we will re-assess the current version of the Monte Carlo simulation allowing @; to be correlated
with x; to satisfy FE assumptions. Under this simulation design, 3 estimated with FE remains consistent but is less
efficient than 3 estimated with RE.
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1.8.1 Rejection Probability and Probability Bias

RP (i.e., the size of a test) in a Monte Carlo exercise with R runs is the frequency at which a
rejection of the true null hypothesis occurs on average. A test statistics has a good size if rejects
the null hypothesis approximately around the chosen at% of the simulations, when the model is
generated under the assumption that the null hypothesis is actually true.

The steps to obtain the empirical size in a two-sided single coefficient test are as fol-
lows. First, for each combination of {N, T} and each simulation run r = 1,..., R, compute the test
statistics under the true null hypothesis,

(BN,T,r -8% .

T]e,T(ﬂN:Tvr): //\\ Nt(dfrva/z)'
AVar(By 7,r)

Second, set the indicator 1{-} to turn on when the null hypothesis is rejected according to the rule

N T,r(ﬁ) = ]l{‘TA(/),T(BN,T,r)| > taf a/2) )

I

where 77, 4/2) 18 the critical value from a student-t distribution with d f,., degrees of freedom for

a two-sided hypothesis test!'

. Third, count the total number of times a rejection has occurred
and average it out by the number of replications R; the empirical size denotes the percentage of

rejections in the Monte Carlo exercise as

~ 1 & ~
J-[(\)/’T,r(ﬂ) = E ZJJ(\)/,T,}’(IB) = alesl-
r=1

For a two-sided test with ¢ linear restrictions, the coverage probability is computed as follows.

First, for each combination of {N,T} and each simulation run r = 1,...,R, compute the Wald

SWith non-clustered inference df, = (NT — 1) — (N +k — 1) otherwise df, = N — 1.
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statistics under the true null hypothesis, Hy : R3 — r’ =0,

— -1

Wy 7.(B) = NRBy,r, — ) { RAVar(By )R} (RBy.7.r 1) £ 2%(9),

where R is a ¢ X K matrix with ¢ < K, and r’isa q % 1 vector. Second, Mark as one every time a

rejection occurs according to the rule

jz?J,T,r(B) = ]l{WI\(},T,r(B) > cvyag) )

where cv,2 ) is the critical value from a y? distribution with ¢ degrees of freedom for a two-sided

(q
hypothesis test'®. Third, sum the cases when the null hypothesis has been rejected according to the

above rule, and divide the number by the total number of simulation runs. The empirical size for a

joint coefficient test is given by the percentage of rejections in the overall Monte Carlo as follows

I R R
JBaTar(ﬂ) = R_l Z jl(\)/,T,r(/B) = alest'

r=1

In the simulations, we test Hy : ; = 1 against H; : B; # 1 for j = 1 while in a two-sided
joint test we test Hy : B1 = B = B3 = B4 = 1 against H; : atleast one ; # 1, for j =1,...,4. The
closer the rejection probability is to the nominal level of 5%, the better the estimator’s performance
in terms of empirical size (or type I error).

The proportional bias (PB) is a measure of the bias of the estimator of the variance-
covariance matrix computed as PB = 1 — SE (3 i)/ SD( i i), where SE stands for standard error and
SD for standard deviation. Positive (negative) values of PB indicate by how much the standard

error obtained using one of the four formulae presented above underestimates (overestimates) the

16 Alternatively, the F statistic can be computed from the Wald test statistics as Fy) r(,@) =Wy r(,@) /g~ Fy(q,dfy)
under the true null hypothesis, where g are the number of restrictions and degrees of freedom at the numerator, and
df, are the residual degrees of freedom or degrees of freedom at the denominator.
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“true” standard error.

In this section, we comment on the performance of each estimator taking into account
its ability to reject the true null hypothesis at 5% significance level along with its accuracy. Ta-
bles B.1 and B.2 report the results of the Monte Carlo simulations respectively, with and without
heteroskedasticity. Each table compares the PB, RP and RMSE'” of four alternative formulae of
the variance-covariance matrix (i.e., PHCO, PHC3, PHC6 and PHCjk). Results are grouped by
different combinations of sample size N and time length 7. Figures refer to the slope parameter
B1. which is associated with the contaminated variable x;; 1. The t-test statistics are at 5%-level.

Under heteroskedasticity, PHCO standard errors considerably underestimate the “true”
variance (positive PB) on average by at least 30% when n < 2,500. PHC6 mimics the behaviour
of PHCjk in small and large samples, overestimating the true variance (negative PB: min= 1.2%
and max = 12.3%) for n < 300 and slightly underestimating the true variance (positive PB: min=
4.9% and max = 10.6%) in the other cases. For N = {25,50} and all T the PB of PHCjk is larger
in absolute value than PB of PHC6 if the bias is positive, and smaller otherwise. From N > 150
PHCjk and PHC6 produce the same bias but PHC3 produces a smaller bias in absolute value when
the estimators over-estimate the variance.

Test statistics of PHCO are largely over-sized (RP above 0.05) when N = {25,50} and
all T but approach the true o%-size when n > 5,000, despite the high positive PB. The most
conservative estimators always under-reject the null hypothesis (RP below 0.05), and as the cross-
sectional size increases (fixing the time dimension) the RP gradually converges to 5% but their
test statistics still remain slightly under-sized. However, looking at the (positive/negative) distance
from 0.05 PHCO turns out to be more over-sized then he other estimators when n < 750.

In general, a smaller PB in absolute value (signaling a good approximation of the “true”

variance) does not automatically imply that the empirical size is the closest to the actual nominal

I7Results for the RMSE are commented in Section 1.8.2.
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significance level. The “true” standard errors remain under-estimated (over-estimated) if the bias
is positive, despite producing test statistics that reject the null hypothesis with much precision.

Under homoskedasticity, PHCO always underestimates the true variance (especially for
n < 1,500). The PB reduces as the panel size increases but only when n = 10,000 it drops con-
siderably. The other PHC estimators tend to over-estimate the true variance (negative PB) but
the magnitudes are smaller in absolute value than the figures of PHCO. PHC6 has similar bias to
PHCjk while PHC3 is slightly more biased. Test-statistics of PHCO are over-sized (large RP) for
n < 1,500 but show a convergence pattern to 5% as the sample size increases. The test size of
PHC6 and PHCjk is always closest to the true a-size followed by PHC3.

Tables B.3 and B.4 report the Wald test statistics and RP from the joint coefficient test
for the slope coefficients different from zero (i.e., fB; for i = 1,...,4) under heteroskedasticity and
homoskedasticity, respectively. Results for different combinations of {N,T} are displayed. The
nominal level of significance is set at & = 0.05. The closer the value of the rejection rate of the
test statistic is to o = 0.05, the better the estimator’s performance in terms of empirical size.

Under heteroskedasticity and good leveraged data points, the RPs of the four estimators
slowly converge to 5% as the sample size increases with exception of PHC6. PHC6 is outper-
formed by PHCO in terms of RP for n > 2,500. Despite the upward distortion of all test statistics
for N <500 and all 7, PHCO raw sizes are the largest in magnitude among the four estimators in
very small cross-sectional samples. The Wald statistics of the other two conservative estimators
are the lowest in magnitudes for n > 300. Similar patterns are observed under the assumption
of homoskedasticity. PHCO performs as well as the two conservative estimators only for large N

(N > 150 fixing 7).
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1.8.2 RMSE Assessment

An additional evaluation on the quality of the four estimators is done in terms of the RMSE. For
each estimator of the variance, the RMSE is computed as the square root of the average deviation

of the standard error from the standard deviation of the estimated coefficient of ;. In formulae,

RMSE; = ;—ei\/(as(ﬁﬁ,_o(ﬁjw (1.23)
where 6*( [§ i)r is the standard error of ﬁ ; in the rth run of the simulation computed using one of the
HC formulae, and o ( [§ i) 18 the standard deviation of the estimated coefficient f8;. A good quality
estimator has its RMSE close to zero. Because the RMSE and PB are constructed from the same
quantities, 6°(f ;) and c(p i), they are linked one to the other. The larger the proportional bias in
absolute value, the larger the RMSE of the estimator is in magnitude.

Results are presented in Table B.1 and B.2 for different combinations of cross-sectional
units and time length, and under different degrees of heteroskedacity. Under heteroskedasticity,
the RMSE of PHCO estimator is much higher than those of the other three estimators for all com-
binations of N and T. The RMSE of the three conservative estimators gradually converges to zero
in large samples, displaying similar values in small samples. Under homoskedasticity, the RMSE
of all estimators are always very close to zero for different combinations of panel sample size. The

only exception is for n < 100 when PHC6 has the smallest RMSE.

1.8.3 Adjusted Power Test

The power of the test is the average frequency at which the false null hypothesis is rejected in a
simulation. In a two-sided single coefficient test, the adjusted power for the false null hypothesis

is obtained through the steps below. First, for each combination of {N, T} and for each simulation
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run r = 1,...,R, compute the test statistics under the false null hypothesis as
) 1
. 5 (Bynrr—B
TN,T(ﬁN,TJ) = ) ’%t(dfr,aﬂ)'

AVar(,@N’TJ)

Second, the indicator 1{-} turns on every time that the rejection rule holds

JI{’,T,r(IB) = ]l{Tz\lf,T(ﬁN,T,r) < t(o)g/z or T]\},T(ﬁN,T,r) > t(ffa/z}

where t?x /o and t9 «/2 re values lying respectively at the (0e/2)" and (1 — a/2)" percentiles of
TA(} T (BN,T,r)’ and used as critical values'®. The empirical critical values differ due to the asymmet-
ric distribution of the test statistics. Third, count the total number of rejections in the simulation

and divide by the number of runs; the adjusted power of a test is

R
jN7T7r<B) = R_l ZJ]{LT,I‘(B) = 1 - etest-
r=1

Similarly, for a two-sided test with g linear restrictions the adjusted power of a test
is conducted as follows. First, for each combination of {N,T} and for each simulation run r =

1,...,R, compute the Wald statistics under the true null hypothesis, Hy : R3—r! =0,

Wer,(B) = NRBy 7, ') {RAVar(By r )R} (RBx 7, —x') £ 2%(a).

where r! is a ¢ x 1 vector. Second, define the F statistics F1\1,7T7r(§) = W]\1,7T7r(,[/3\) /q under the false
null hypothesis for replication run r, and sample combination {N, T }. The rejection rule is defined

as

Jrr(B)=1{Fy.(8) > FO},

18We cannot use conventional critical values from the t-distribution because size-unadjusted power curves make any
comparison between estimators meaningless.
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where F_ is the value lying at the o quantile of distribution of FA(}’T?r(B\) derived under the true
null hypothesis, and used as empirical critical in the rejection rule. Third, the percentage of rejec-

tions that occur in the Monte Carlo exercise is the adjusted power of a test,

b~ -~ R _~
JN7T7r<ﬂ) = R_l Z j]f{/,T,r(/3> = 1 - etest-
r=1

In the simulations, we test Hy : B; = 1 against H; : B # 001 for j = {1,2} for two-
sided single coefficient tests, where B! is a value taken from a narrow interval around the true f3 I
For two-sided joint tests we test Ho : B1 = B, = B3 = B4 = 1 against H| : at least one f3; # 1, for
j=1,....4.

Figures C.2 and C.3 plot size-adjusted power curves of a battery of HC estimators for
different panel sample sizes and degree of heteroskedasticity for ;. The vertices of all power
curves correspond to the nominal size of the test statistics, @ = 0.05. It is common practice to
adjust the power for the empirical size because the empirical distributions of test statistics may de-
pend on the nature of the specific regressor and, therefore, any comparison across estimators turns
out to be meaningless without size-adjustment. Precisely, in the absence of any size-adjustment
the most liberal estimator would tend to have greater power than the most conservative estimator
because the former is more likely to over-reject the null hypothesis in favour of the alternative,
while the opposite is true for the latter. Unlike the test size, simulation results for the test power
do not differ considerably in terms of the overall pattern, but they do in terms of magnitudes.

Under heteroskedasticity, simulation results show that PHCO does not have as good
power performance as PHC3, PHC jk and PHCG6 in small samples (N = {25,50} and especially
with T = 2). In fact, its rejection probabilities at a given parameter value are lower than those of
the other three estimators. Fixing T and letting N change, the power performance of PHCO does

not improve. Rejection probabilities remain the lowest and slowly converge to one, even when
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the distance from the true value of f increases. Conversely, we do not observe such a remarkable
loss in power when we let T increase and fixing N as the difference with other estimators in the
rejection probabilities at a given parameter value becomes negligible or vanishes completely.

Under the assumption of homoskedasticity, PHCO has better power than PHC3, PHC jk,
and PHC6 with N = 25 for all T. This result is in stark contrast with PHCO poor test size (i.e., RP)
described above due to the usual trade-off between type I and type Il error. When 7' = 2, all power
curves show a lower convergence to one.

Figures C.4 and C.5 show the adjusted power curves for the joint coefficient test. From
the graphs we observe that all power curves are well-behaved under homoskedasticity with re-
jection rates approaching one quite rapidly as the tested parameter values depart from the true
value, and with the increase in the sample size. This cannot be said under heteroskedasticity and,
especially, when the panel sample size is small (small N and small 7") because test statistics of
all estimators have low rejection power, especially PHCO test statistics when N = {25,50} and
T =1{2,5}.

Overall, the four estimators have similar asymptotic behaviour with or without het-
eroskedasticity. This can be explained by the sensitivity of the test of hypothesis to sample size.
In fact, as the sample size increases the probability of rejecting the false null hypothesis (i.e., the
power of the test) increases as well, by construction. The opposite happens to the size of a test

instead.

1.9 Conclusion

In this chapter, we investigated the effects of the simultaneous presence of a small sample size,
heteroskedasticity, and good leveraged data on the validity of conventional statistical inference

in linear panel data models with fixed effects. We documented their detrimental effects on the
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statistical inference calculated with robust standard errors. More conservative estimators of the
sampling variance produce test statistics that have unbiased empirical sizes and higher power under
these circumstance.

We formalised a panel version of MacKinnon and White’s (1985) and Davidson et al.’s
(1993) estimators, and proposed a new hybrid estimator, PHC6. We derived the finite sample
properties and the asymptotic distributions of the discussed HC estimators. With MC simulations
we compared the performances of four types of standard errors, computed with Arellano’s (1987)
and three types of jackknife-like formulae, in terms of empirical size and power. We documented
the downward bias of conventional robust standard errors under specific circumstances, suggesting
alternatives to obtain more reliable statistical inference.

The main findings can be summarised as follows. Under heteroskedasticity, more con-
servative standard errors should be used in the presence of leverage points because their test
statistics possess a low proportional bias, small size distortions, and have higher power. Con-
versely, conventional standard errors and the proposed formula, PHC6, should be preferred with
homoskedasticity because the other conservative estimators excessively under-reject the true null
hypothesis. Under homoskedasticity cluster-robust formulae should always be used. A similar
result was found in MacKinnon and White (1985) and Long and Ervin (2000) for cross-sectional
models. The cross-sectional dimension matters for the finite sample properties of the estimators
but not the size of N relative to 7. However, conventional cluster-robust standard errors remain

upward biased even when their empirical size is correct, and even in larger samples.



Chapter 2

Influence Analysis in Panel Data Models

2.1 Introduction

Econometric techniques based on least squares (LS) are, by construction, extremely sensitive to
the presence of three different types of “anomalous” points. First, vertical outliers (henceforth,
VO) do not follow the general pattern of the rest of the cloud of data. Second, good leverage
points (GL points) exhibit extreme values in the covariates but still lie on the regression line.
Third, bad leverage points (BL points) are a combination of the two. These points are known to
exert a disproportionate influence on the estimates of linear regression models leading to biases in
the regression estimates — on estimated coefficients and/or standard errors (Donald and Maddala,
1993; Bramati and Croux, 2007; Verardi and Croux, 2009), as shown in Figure C.6.

Appropriate tools for the detection of such critical observations serve to identify them
and assess their overall influence on the estimates. Because the case-wise deletion may substan-
tially alter the features of LS analysis, it is a common practice to examine the outlyingness of
deleted cases on the basis of the distance of the observation from the mean of the data relative to
its dispersion (Cook, 1979; Rousseeuw, 1991; Poon and Poon, 2001). Following this idea, a pop-

ular measure for the detection of influential cases is the Cook’s (1979) distance. A main limitation

29
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of this metric is that it fails to detect the simultaneous effect of multiple atypical cases (Atkin-
son, 1985; Chatterjee and Hadi, 1988; Rousseeuw and Van Zomeren, 1990). This phenomenon is
known as the masking effect. Conversely, measures based on a local approach can handle multiple
atypical cases at the same time (Lawrance, 1995; Poon and Poon, 2001).

This chapter formalises statistical measures for quantifing the degree of leverage and
outlyingness of units in a panel data framework. We develop a method to visually detect the type
of anomaly and quantify its joint and conditional effects, when the within group transformation is
applied to the original data points.

We first formalise the notion of the average individual leverage and average normalised
residuals used for unit-wise leverage-residual plots'. We then propose two diagnostic measures for
panel data — based on Lawrance’s (1995) joint and conditional measures — for the evaluation of the
joint and conditional influence of pairs of units on the LS estimates. Then, we use tools from the
network analysis to show the overall and bilateral influence of highly influential units. We finally
apply our influence analysis to four macroeconomic country-level studies published articles in the
American Economic Review. We replicate their main regression results using alternative formulae
of standard errors.

We observe that joint and conditional diagnostic measures are, by construction, better in
the detection of leveraged units. In fact, BL and GL units possess the highest total joint and condi-
tional influence and contribute to enhancing and masking the effects of even fairly influential units.
Conversely, VO do not contribute in exerting large total influence and, hence, in affecting a wider
cloud of units. Whenever we detect GL points in the replicated studies, the statistical inference
conducted with cluster-robust standard errors is over-inflated, leading to invalid conclusions.

The novelty of this research consists in: (i) visually inspecting the overall contribution

At the moment of writing, the STATA command 1vr2plot is available for a cross-sectional evaluation of each case
in the sample. We write its panel counterpart xt1lvr2plot based on the quantities defined in Section 2.4.1.
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of the most influential units in the sample with a network graphical representation; and (ii) using a
“unit-wise” approach instead of a “case-wise” evaluation in the deletion procedure?.

The existing literature on diagnostic measures for the detection of anomalous data points
is somewhat limited for both cross-sectional and panel data models. Cook’s (1979) distance is
still the most popular measure for the detection of individually influential cases. Following Cook
(1979), authors like Banerjee and Frees (1997), Martin and Pardo (2009), Pinho et al. (2015)
and Martin (2015) proposed similar diagnostic measures for other econometric models. However,
the limit of Cook-like measures in detecting the reciprocal influence of groups of observations is
widely documented such that the effect of other cases is hidden (Atkinson, 1985; Chatterjee and
Hadi, 1988; Rousseeuw and Van Zomeren, 1990; Lawrance, 1995; Poon and Poon, 2001; Kim,
2017). This limitation was overcome by Lawrance (1995) who conceptualised two measures for
quantifying the joint and conditional effects of pairs of observations on the estimated parameters
with cross-sectional data. But these two diagnostic measures have never been implemented in
practice®. We contribute to this literature by quantifying statistical metrics for a unit-wise evalua-
tion of the type of anomaly, and formalising two diagnostic measures for the joint and conditional
influence in panel data models with their statistical distribution. In this framework, Cook’s (1979)
distance for panel data is as a special case of the measure for joint influence, when unit i coincides
with j.

The rest of the chapter is structured as follows. We start with the definition of the three
types of anomalous points in a panel data framework in Section 2.2. Then, we introduce the LS
estimators and their distributional results in Section 2.3. We then present diagnostic measures for

panel data and their exact and asymptotic distributions in Section 2.4. We proceed with the visual

%In the “unit-wise” approach, the full history of the unit is dropped. This approach is more appropriate for the panel
data framework for two reasons. First, a single influential case may not compromise the whole time series. Second,
atypical observations may be carried over the full history of a unit so that the time dimension may contribute to
exacerbate the effect of groups of influential observations on the estimates of interest (Bramati and Croux, 2007).

3 At the time of writing, there is no STATA command to calculate these measures with cross-sectional data.
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inspection of the points using the aforementioned tools in Section 2.5. Empirical examples are

provided in Section 2.6. Section 3.5 concludes.

2.2 Influential Units in Longitudinal Data

Longitudinal data are extremely likely to contain units with values of the dependent and/or inde-
pendent variables that follow a different pattern from the main cloud of the data in the response
and/or covariate spaces. Their influence is assessed in terms of how their deletion affects regression
estimates. According to their features, these points can be classified as VO, GL or BL points.

Vertical outliers are atypical points in the response-factor space with large squared nor-
malised residual that follow the opposite trend of the cloud of data points, lying far from the
regression line as if they were generated from a different process (Chatterjee and Hadi, 1986;
Greene, 2012, p.141). Their presence alters the estimated LS intercept (Verardi and Croux, 2009),
undermining the accuracy of the estimator but not its precision. Outliers cannot always be de-
tected from the values of the LS residuals when the effect of an outlying observation is masked by
a nearby observation that exerts a greater influence in attracting the regression fit (Rousseeuw and
Van Zomeren, 1990). Removing bad realisations from the sample may not necessarily be the most
accurate, albeit common, approach to follow without understanding the source of anomaly — e.g.,
a recording error, a different data generating process, or an incorrect specification of the model —
and with the risk of leaving the undetected cases (Rousseeuw, 1991). In fact, it is not unlikely that
in the presence of multiple outliers, an influential case is masked by another case in the sample.
This is an instance of the masking effect.

Leverage points are observations that appear isolated from the rest of the data points
but follow the same trend of the rest of the data (Chatterjee and Hadi, 1986; Greene, 2012, p.140).

Leverage points can be distinguished in “good” or “bad” anomalous observations. The former ex-
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hibit unusually extreme values in the covariates and lie on the predicted regression line enhancing
the precision of the regression fit; the latter possess extreme values in both input and response
direction, lie far from the plane where the bulk of data points are and are not fitted by the regres-
sion model (Rousseeuw, 1991; Bramati and Croux, 2007). While “bad” leveraged data adversely
affect the estimated LS coefficients (both the intercept and the slope), “good” leverage points add
variability in the sample allowing for a better fit of the data (in Figure C.6 the dash line over-
laps the red dotted line) at the cost of a deteriorated statistical inference (Silva, 2001; Verardi and
Croux, 2009). GL points exert higher influence on the statistical significance of a coefficient inflat-
ing the strength of the regression relationship. Then, conventional Heteroskedasticity-Consistent
(HC) standard errors become systematically downward biased, especially in small cross-sectional
samples (MacKinnon and White, 1985; Chesher and Jewitt, 1987).

A visual inspection of the data is unlikely to be trivial in a k-dimensional space of
covariates (Rousseeuw, 1991; Bramati and Croux, 2007). Leverage points are frequently found
with observational data because the values of covariates are not fixed, reflecting the peculiarities
of the dataset (Rousseeuw and Van Zomeren, 1990; Silva, 2001).

Unlike the cross-sectional setting, Bramati and Croux (2007) observe that with lon-
gitudinal data “anomalous” observations may appear either as isolated cases of different units
(cell-concentrated points) or concentrated in the time-series of the same units (block-concentrated
points). A univariate example that illustrates Rousseeuw’s (1991) and Bramati and Croux’s (2007)
classifications is provided in Figure C.6, which depicts three types of “anomalous” observations
that may appear in isolated cells or in blocks. In this explicative example, we use a simulated
data set based on Bramati and Croux’s (2007) design. In all scatter plots, unit 1 identifies “good”
leverage points, unit 2 vertical outliers, and unit 3 “bad” leverage points. From left to right and
from top to bottom, each pair relates the dependent and independent variable in the original data

set, after the within-group transformation, and after the first-differencing. The main difference in
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the detection of anomalous units between cross-sectional and panel data consists in the type of
data transformation used to estimate the longitudinal model. That is, both within-group and first-
differencing transformations alter the original value of the time-series: the former is mean sensitive
to extreme observations as data are centered around each time series whereas the latter is sensitive
to changes in two consecutive years. Therefore, atypical cases should be detected afterwards if not
estimating a Pooled OLS (POLS) model.

From the examples provided in Figure C.6, we can observe that the within-group trans-
formation amplifies the anomaly arising from atypical blocks in the original sample because the
mean is heavily affected by extreme values, by construction. Consequently, the uncontaminated
cases of the time-series become extreme values with opposite sign after the data transformation.
Clearly, the withing-group transformation exacerbates the problems caused by block anomalous
cells because the uncontaminated cases of the times series become vertical outliers themselves
with opposite sign with respect to the original contaminated block. However, this transformation
attenuates the outlyingness of the original data because it is scaled-down, by construction. The
within-group transformation seems to improve the accuracy of the fit with good leverage points,
despite a deterioration in the statistical inference.

With first-differencing, anomalous blocks are reduced to anomalous isolated cells after
the transformation due to the peculiar structure of the data design. In fact, in this sample design
“anomalous” block-concentrated units are generated by contaminating half of the time-series (7' =
5) with extreme subsequent cases. First-differencing can be a solution to minimise the impact of
subsequent block-concentrated atypical observations because, by construction, only the difference
between an atypical and normal value will generate an anomalous case at time ¢. However, this
data transformation generates greater dispersion with not subsequent isolated cells. Without any
panel data transformation, POLS fits a cross-sectional model using original data, whose parameter

estimates are affected by raw individual cells or concentrated blocks of the affected units. This
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results in the worse data fit in the presence of outlying observations.

Overall, it is worth to remark that each data transformation may reduce or magnify the
effects of the presence of anomalous cases on the estimated parameters or the model fit. This
depends on the structure of the data — whether they are concentrated in part of the time series or

isolated cells — and on the properties of each transformation.

2.3 The Estimators

Consider the static linear panel regression model with one-way error component
yi=X;B+a;+u;, foralli=1,... N, 2.1

where y; is 7 x 1 vector of outcomes; X; is a T X k matrix of time-varying regressors; o; = ot 1S
a T x 1 vector of individual fixed effects, and ¢ is a vector of ones of order 7; and w; isa T x 1
vector of one-way error component.

After applying the within-group transformation to model (2.1), the estimating equation
becomes

Vi=X;B+1, foralli=1,...,N, 22)

where i = (Ir — T ')y is Tx 1; Xy = (Ip — T~ 'd)X; is T x k; and w; = (Iy — T~ Lot/ )u is
T x 1. Note that (Ir — T~ 't/ )a; =0 as T~ e oy = «;.

The OLS estimator of (2.2) is the within-group estimator of the true population param-
eter with formula 3 = ( A iﬁi,) - Yy, ig’ﬁi, which is unbiased and asymptotically normally
distributed under conventional assumptions — i.e., linearity, exogeneity, full rank condition, no
serial correlation (see ASM.1-ASM.5 in Chapter 1).

Removing one unit at a time from the sample gives a general measure of the influence
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exerted by that unit on the parameter estimates or in the fit of the model. The within-group estima-

tor without the whole history of unit i is the Leave-One-Out (L10) estimator
~ ~ o —1o RPN
By =B-(XX) XM, 'y (2.3)

where Ml-_l = (Ir —H;)~!" with H; = ii(i’i)_lig, andu; =y; — Xﬁ is the residual term. For-
mula (2.3) is extensively derived in Appendix A.l1 following Banerjee and Frees (1997). The
distribution of B(i) is derived in Appendix A.7.

The deletion of pairs of units {7, j} at a time from the sample captures the influence ex-
erted by that pair on the parameter estimates or in the fit of the model. The within-group estimator

without the full history of units i and j is the Leave-Two-Out (L20) estimator
Bij) =B — (X'X) (XIM; 'H;; + X)) (M; — H;M; 'H;;)~ (H;;M; 'u; +u;) (2.4)

where M; =1; —H; with H;; = f(,—(f(/f()_li’j, and H; = ij(i’i)_lf(’] Note that Hj; = H;. For-

mula (2.4) is derived in Appendix A.6, and the distribution of B(,-’ j) 1s presented in Appendix A.7.

2.3.1 Distributional Results in Panel Data Models

We first establish the asymptotic properties of ﬁ(i) and show its equivalence to B, implying that
the two estimators share the same asymptotic distribution, where B is a consistent estimator of 3

with asymptotic distribution v/N (8 —8) % .4 (0,854 VSy1) as N goes to infinity and T is fixed.
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Applying the Triangle Inequality on Equation (2.3),

SRl )+ X B8l @)

where HB—ﬁH is 0p(1); (N*lfi'fi)‘l = Syx +0,(1) by ASM.3, WLLN and Slutsky’s theorem;

X; and u; are O,(1) because random variables with finite moments by ASM.4 and, therefore,
N[ = 0p (Vs and [[ (1 — ) 71| < VT N |R P (v XX - 10K s o)
because the first term on the right-hand-side, VT, is O(1) without a remainder term, and the second

component is bounded above by 0, (1) random variable. Then, it follows that

B =B+op(1). (2.6)

We now show that the estimators B(i) and B have the same asymptotic distribution. Using the

Reverse Triangle Inequality, we obtain

IVN(B-B)—VN(By - B)|

A igx) ) %
- N \/N L

=o0,(1)

| — )| (]| + X 1B-8]) @D

where the first component is (Syx +0,(1)) as N~ 'X'X & E(X'X) = Sxx > 0 by the Central Limit
Theorem; the second term is , 0,,(N'/7~1/2) = 0,,(1) for r > 2 under ASM.4.i; the third component

is O(1); and the last quantity in parenthesis is O,(1). We can conclude that B(i) and ,@ share the
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has identical limiting distribution in the sense that
VN(Bu —B) = VN(B—B) +op(1). (2.8)

The distance between E(i) and B vanishes as the cross-sectional size grows and, hence, the influ-
ence exerted by unit i is null. Removing one unit does not have an impact on the estimates of
the true value of the parameter as the cross-sectional units increase to infinity while keeping time
fixed. The asymptotic variance of B(,-) converges to the variance of B as

Avar(x/ﬁ(é(i) — B)) = NVar(a(l-)\)N(i) =Vj5 asN —eand T fixed (2.9)

where V 5 = Syy ISy x and

var(By[Xi) = E{ (B¢ - 8) (B - B)|X:} (2.10)
— Var(B/X) + Var(8|X)B(X;)’ + B(X;) Var(8|X) (.11)
+AX)M ' EMAX)) + B(X;) Var(BX)B(X;) (2.12)

where AN(X-) = (N’IX'X) lN’lig and BN(X,-) = AN(ii)Mi’I)z,-. Under the model assumptions
and using THM 6.6 in Hansen (2019, p.182), the matrices Ay (X;) 2> 0 and By(X;) > 0 as N — oo
and T fixed. Full proof is provided in Appendix A.7.

We follow a similar procedure to derive the distribution of B\(,-, j)- Using Triangle In-
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equality,

16~ 811 < 1B @)
)
(I s+ 5 ) 215
|t ) 2.16)
(o -+ ) 21
=0p(1) (2.18)

where the term on the right-hand-side is 0,,(1); (2.14) is Sy x +0,(1) as N — eo and T fixed; (2.15)

is 0,(1) because of N![|X;|| = 0,(N!) for I € {i, j}. [M; || = O(1) by (A.37), and ||H;|| =
N=12|1X | [|[(N1XX) | |NT1/2||X || = 0,,(1); component (2.16) is O, (1) because (Mj—ngMlTlH,-j)_l =
I7 +0p(1) since M; = Iy — N~1/2X;(N7IX'X) "IN ~1/2X!, = Iy + 0, (1); and, (2.17) is Op(1) be-

cause |[u;|| = ||u || + HfilH H(B\—,B)H = 0,(1) by AsM.4. Therefore, we can conclude that

By =B+op(1). (2.19)

We then show that the estimators [/3\0, j) and [/3\ have the same asymptotic distribution. Using Reverse
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Triangle Inequality,

IVN(B-8) = VN (B —B)|

[~ !
g“(—x’x) ‘—X’M_ (2.20)
N
1~~
+H( X) ( 1H,,+X’)H (2.21)
N
H (M; —H,;M; 'H;;) " (2.22)
HH’M U+ (2.23)
:Op

where (2.20) is 0, (1); the overall quantity in (2.21) is 0, (1) because the first component is Sy y +
0,(1) and multiplies a quantity that is O, (1) as in (2.14), noting that N~ 1/ZHX | = 0,(N'/r=1/2)

and, hence, O, (1) with r > 2; (2.22) is O, (1) as in (2.5); (2.23) is O,(1). As a results,

~

VN(Bij)—B) =VN(B~-B) +op(1). (2.24)

We can now derive the joint distribution of B and BQ j)- Using Shwarz Inequality and Triangle

Inequality, we get that

| P 111 R,
18- ﬁl,H<H< XX) ‘NXéM,- 0, (225)
1”’/’V - 1 v/n—1 </
+[( yX'X v (XM TH 4 X (2.26)
H (M; —H,;M; 'H;;) ! (2.27)
‘ H;M; 'G; +1; (2.28)

where the left-hand-side is 0, (1) following the reasoning used in justifying the order of conver-



2.3. THE ESTIMATORS 41

gence of Formulae (2.13)-(2.17). Thus, the difference

~ o~

B—Bj %0 as N — oo with fixed T. (2.29)

The exact finite sample variance of ﬁ ) under the true model assumptions ASM.1-ASM.4 is

Var(8;, X, X;) E{ (Buy—B) By }X,,X}
:E{ (B —B) By —B) f(i} (2.30)
E{ B)D,(.)Dy(. ‘X“X } 2.31)
E{Dl By -8) ~i,~j} (2.32)
+E{D1 )D>(.)Da(.)'D (. ’XX} (2.33)

where B;; ) :B\(i)_Dl(')DZ(-) with Dy (X;) = (}Z/i)_l(f(;M;lHU+f(9) (Mj_Hi‘jMi_lHij)_l’

D, (il,ﬁl,ﬁ) = (ngMi_lﬁi +ﬁj), and 0; = u; — X; (3— ,3). Under the model assumptions,
N‘lig 2, 0 wich drives Di(.) 2, 0 and, therefore, (2.31)=(2.33) are asymptotically zero but
NIE{ (B(i) — ,3) (B(i) — B)/’ii} converges in probability to V 3 due to the only component that
does not vanishes towards zero from result (2.9). As a result, the L20 estimator 6 has the same
limiting distribution as the within-group estimator, 6 The distance between B ) and 6 hence

vanishes as panel units grow and the joint influence exerted by units (i, j) is null.

We derive the joint distribution of B ) and B . Using Shwarz Inequality and Triangle
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Inequality, we obtain

IVN(B(i,;)—B)—VN(B(;,—B)|

1~/~ - 1 v/ n—1a 1 A Y Bt £}
I o S _ ~1 PO
+HW(X§MI. H;; + X)) H(Mj—H;jM,. 'H;)) ’(H;]Mi 1u,~+uj)‘} (2.35)

is 0, (1) by results (2.14)-(2.17). Therefore, B(l-7 j) and B( ;) have identical asymptotic distribution

VN(Bii,jy—B) = VN (B — B) +op(1) (2.36)

which is asymptotically equivalent to B by result (2.8) relatively to unit j. Full proof is provided

in Appendix A.7.

2.4 Diagnostic Measures for Panel Data

The influence of an observation is evaluated on the basis of the magnitude of the change in the
parameter estimates or in the model fit after its deletion. Such a change can be explained by either
the high residual or high leverage of an observation, or both depending of the type of anomaly.
Diagnostic measures that examine the degree of anomaly of the deleted case are constructed on
these two dimensions.

In this section, we formalise statistical quantities for the unit-wise evaluation of the type
of anomaly and degree of their influence. Our influence method is built on a unit-wise evaluation
of the influence exerted by each unit in the sample and not case by case. We first introduce the
notion of average individual leverage and average normalised residual may help the researcher to

understand the complexity of the data (i.e., the type of anomaly) before and after the unit’s deletion.
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To handle multiple atypical cases in a panel framework, we follow Lawrance’s (1995) concepts of
joint and conditional influence. We hence propose two versions of his diagnostic measures for
linear panel data models with fixed effects. These measures quantify the extent of the reciprocal

influence that units exert. We provide the proofs in the context of linear panel data models.

2.4.1 Individual Average Leverage and Residuals

The influence exerted by a unit can be evaluated in terms of its leverage and normalised residual
squared. In a panel data setting, the overall influence exerted by a unit on the covariate and outcome
dimensions needs to take into account of the overall history of the unit. For this purpose, we
introduce the notation for the individual average leverage and the average normalised residual
squared.

For simplicity, assume 7; = T for all i. The individual average leverage measures the

average leverage of unit i over its full history. In formulae,

_ T
hi=T7"Y hy foralli=1,....N (2.37)

t=1

with individual leverage hj; = i;t ()N(’ )N()_lii,. The average normalised residual squared is a mea-
sure of the average outlyingness of unit i over time. In formulae,
1 T
u

z?f-:TZA;‘,,forallizl,...,N (2.38)

t=1

with individual normalised residual squared &}, = (Ui /\/ L ﬁlz)z Plotting h; over u; informs on
the presence and type of anomalous unit in the sample based on their positions on the plane, as

described later in Section 2.5.1
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2.4.2 Joint Influence

Joint influence is measured by deleting the full history of pairs of units i and j from the sample. In

formulae, it is defined as follows
) 3 A e ke P 27\ —1
Cij(B) = (B—B ) Y XX | (8- Biij)) (s°K) ™ = F(vi,va) (2.39)
i=1

where B\ if the within-group estimator of the true population parameter 3; ,@(i7 j) 1s the L20 esti-
mator computed without units i and j in the sample; N is the total number of cross-sectional units
in the sample; v; = K is the total number of regressors including the constant term, and v; is the
number of degrees of freedom at the denominator®; s> = vy ! Zi-vzl ﬁgﬁi is the variance of the fitted
model (i.e., residual MSE) and is consistent for 2. The diagnostic measure follows a F distri-
bution, F(vy,V,), with v; degrees of freedom at the numerator and v, degrees of freedom at the
denominator.

The estimators B(L j)and B share the same asymptotic distribution (proof is provided in
Section A.7.1). That is,

VN(B(ij)—B) = VN(B—B) +0,(1) (2.40)

When j = i, Formula (2.39) collapses to a readapted version of Banerjee and Frees’s

(1997) distance’. That is,
Ci(B) = (B—B) (Z XEXz‘> (B-Bu) (s°K) "' = F(vi,v) (2.41)
i=1

where B\(,-) is the the Leave-One-Out (L10) estimator, B\(i) =B- (X’ i)_ligM;Iﬁi, computed

“The degrees of freedom at the denominator are (NT — N — K) when units are non-clustered and (N — 1) when units
are clustered.

SBanerjee and Frees’s (1997) distance is originally developed for RE models. It can be considered a panel version of
Cook’s (1979) distance.



2.4. DIAGNOSTIC MEASURES FOR PANEL DATA 45

-~

without observations i (derivation in Appendix A.1). C;;(3) measures the influence of unit i on
the FE estimate of 3. Formula (2.41) can be interpreted as the “conventional” Cook’s distance for
panel data. As shown, it is a special case of the more general measure for the deletion of pairs of

units, C; ](B) Using the formula of the L.10 estimator B(i), Equation (2.41) can be rewritten as

1

Ci(B) = Sz—KAﬁMf 'HM; 'g;
1 ~1/2 ~1/2
= M PEM (2.42)

where r; = Mi_l/ 2ﬁl~s’1 are the studentised FE residuals, and Mi_l/ % is the inverse square-root
matrix obtained through spectral decomposition® of M;. We obtain a similar expression to Huh’s
(1993) formula (2). These two diagnostic measures are not test statistics but the knowledge of their
empirical distribution can be used to extrapolate cut-off values to assess the joint and individual
influence of units.

The effect of subject j on the joint influence after the effect of subject i is measured
by the ratio between C;; (ﬁ) and Cii(ﬁ). We refer to this quantity as K;;. Large values of Kj;
(above 1) indicate that unit j has an enhancing effect on B with respect to unit i while small
values, K ; € (0,1), a reducing effect (Lawrance, 1995). This measure is not adequate to compare

individual influences arising before and after the deletion of another subject (Lawrance, 1995). For

this, the notion of conditional influence is needed.

2.4.3 Conditional Influence

Because the notion of joint influence does not provide a comparison of individual influences arising

both before and after the deletion of another subject, the use of a measure that detects the influ-

The spectral decomposition of M; is calculated as follows. Let X and L be respectively the orthogonal matrix with
eigenvectors and the vector with eigenvalues of M;. The spectral decomposition of M; is M, 2 _x diag(L*'/ X',
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ence of unit i after the deletion of unit j becomes more appealing (Lawrance, 1995). Conditional
influence captures the influence of unit i after the removal of unit j from the sample. Exploiting
the concept of conditional influence, the proposed measure for panel data, based on Lawrance’s

(1995) Fomula (4.1), is as follows

~

N ~ ~ o~
) Xﬁ(,-)Xi(j)> (Bii.j)y —Bi)) (s°K) " = F(v1,v2) (2.43)

where B( j) 1s the L1O estimator computed without observations j; and f(,-( j)is a (N—1)x K
matrix of regressors without the jth subject after the within-group transformation of the data. The
value of Cyj (B) is zero for j =i. The diagnostic measure C;) (B) is not a test statistics but
the knowledge of its empirical distribution can be used to extrapolate cut-off values to assess the
conditional influence of units.

A measure for comparing the effect on the distance of unit i before and after the deletion
of unit j is the ratio between the conditional, C;( (,@), and individual, Cii(é), influence. We denote
this ratio as M;(;) and, according to Lawrance (1995), captures the masking or boosting effect of

unit i by unit j. For values of M ; > 1, the individual influence of unit i is masked by unit j while

boosted when M ;) € (0, 1).

2.5 Visual Inspection of Anomalous Points

We simulate a synthetic sample of data points using Bramati and Croux’s (2007) simulation design.

We generate a regression model as follows

vie = Bo+ Bixii + i+ €&, foralli=1,....Nandr=1,...,T (2.44)

xip ~ A (0,1); 0 ~%(0,20); & ~.4(0,1), (2.45)
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where By = 1 and B; = 0. Equation (2.44) is estimated using the within-group approach. We set
N =100 and T = 20.

We contaminate 10% of the total number of units in the sample N with three different
types of anomalous observations: VO, GL and BL. VOs are obtained by adding values drawn from
A(50,1) to the original dependent variable; GL points are generated by replacing the original
value of the regressor with values drawn from .47(10,1); and BL points are created by adding
values from the distribution .4"(50, 1) to the original dependent variable and, then, replacing the
original value of the independent variable with values from .#°(10,1). We distinguish between
block-concentrated and cell-isolated contamination. In block-concentrated anomalous observa-
tions, half of the time series is contaminated whereas random elements are contaminated in cell-
isolated atypical cases.

Because we are interested in the simultaneous influence exerted by multiple atypical
observations in the sample, we provide examples were all possible combinations of VO, GL and
BL points are displayed. For instance, samples that present the following combinations of points:

{BL, GL, VO}, {BL, GL}, {BL, VO}, {GL, VO}, {BL, BL}, {GL, GL}, {VO, VO}.

2.5.1 Leverage-Residual Plots

We plot the individual average leverage, l:z,-, over the average normalised residual squared, u;. The
2-way representation helps the detection of each of the three type of anomalous units that occupy
a specific space in the plane, as explained below.

Figure C.7 compares a leverage-residual plot produced from a case-wise evaluation (left
panel — the conventional “cross-sectional approach”) and from a unit-wise evaluation (right panel —
our “panel approach”) of the observations in the sample. The first three units in Panel A (at the top)

are contaminated with cell-isolated anomalous points whereas in Panel B with block-concentrated
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anomalous units following Bramati and Croux (2007). Unit 1 is designed to be a GL point, unit 2
a VO, and unit 3 a BL point.

The horizontal and vertical red lines are the maximum values of lack of high leverage
and residual, respectively. Points above the horizontal line display high leverage whereas points to
the right of the vertical line have large residuals. VOs are located to the right of the vertical line
and below the horizontal line. GL units (points) are located to the left of the vertical line and above
the horizontal line. BL units (points) are positioned to the right of the vertical line and above the
horizontal line. The main cloud of points to the left of the vertical line and below the horizontal
line constitutes non-influential units (points).

From a visual inspection, we observe that the unit-wise plots already display the average
influence evaluation for unit i (i.e., the individual average influence is plotted against the individual
average normalised residuals squared) whereas the assessment with the case-wise evaluation is
done on the basis of the cloud of points for unit i. Overall, the three unusual units are clearly
visible and identifiable in all types of plots. In the left plots, the visualisation at the intersection
of the two lines is quite confused and it is difficult to evaluate the presence of another potential
influential case. In our proposed representation (to the right), the main cloud of units is confined
to the bottom-left corner of the plane. A potentially problematic unit — that does not lay with the
main bulk of data points, because its influence may be masked by one of the most influential units

— can be detected in the right plot in Panel A.

2.5.2 Network Graphs

In this section, we use network analysis tools to visualise and inspect the overall an bilateral in-

fluence of different units in a way that is more efficient than 2-way graphs (for a comparison, see

-~ -~

Figures C.8 and C.9). The resulting matrix from computing the quantities C;;(3),K;;;,Ci;(8),
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and M) resembles a directed and weighted adjacency matrix from graph theory. In a directed
graph, the effect of unit i on unit j differs from j to i; in a weighted graph, the intensity of the
effect of each unit is different.

Formally, let G be a graph formed by an ordered pair of (V,g), where V = {1,...,N}
is a set of vertices (or nodes) representing the data points involved in a network of relationships,
and g a real-valued N x N adjacency matrix with the g;; entry representing the influence of j and
i. The total number of nodes is fixed and does not exceed the total number of units in the network.
The links show the connection between units, the arrows the direction of the connections, and their
width the intensity level of their connections.

Figures C.9-C.15 show the proposed representation of joint and conditional influence.
Each graph reports two panels: Panel A for a simulated sample with cell-isolated units and Panel
B with block-concentrated units. Each panel displays the enhancing effect to the left and the
masking effect to the right. Graphs on the enhancing effect display the interaction of unit j with
high joint influence (C; ](B\) > 4/N)’ with unit i, whose influence is enhanced by the presence
of the former (as K;; > 1). Graphs on the masking effect show unit j masking the effect of unit i
(when M;(; > 1). The size of the nodes is proportional to the overall joint and conditional influence
of the unit in the enhancing and masking effect graphs, respectively. The colour (from light to dark
blue) of the nodes reflects the degree of the influence of the unit. The darker the node, the more
influential the unit is. The width of the links captures the strength of the connection in enhancing
or masking the effect. The thicker the link, the stronger the connection. In addition, the colours of
the links match with the color of the nodes.

The common patterns from comparing Figures C.9-C.15 can be summarised as follows.

Joint and conditional diagnostic measures are quite helpful in detecting leveraged data units and,

"Bollen and Jackman (1985) set 4/N as cut-off for the Cook’s distance to isolate the influential cases from non-
influential observations.
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in particular, BL units in showing their link with other units. Overall, BL and GL units have the
largest joint and conditional influence and contribute to enhancing and masking the effects of even
fairly influential units. These units (in all their possible combinations) are hence the central nodes
of the network, connecting different clusters of units with large joint influence. BL units display
the highest total joint influence and, therefore, enhance the effect of other (even fairly influential)
units. When another anomalous unit of any kind in the sample, they mask the effect of other units
and its total conditional influence is largest compared to the rest of the units. GL units interact
with the rest of the units in the sample as BL points but with a milder effect, especially in terms of
the masking effect. VO do not mask the effect of any other unit and their total influence is not so
large, by construction. Their bilateral joint influence is enhanced by other anomalous units.

The main difference between cell-isolated and block-concentrated contaminated data
points is that the total influence of the anomalous units is larger in the latter case than former (with

the exception for VO).

2.6 Empirical Examples

In this section, we conduct our influence analysis to four available country-level data sets — specifi-
cally, Acemoglu et al. (2008), Schularick and Taylor (2012), Egert (2016), and Berka et al. (2018).
In each replicated paper, we apply our method to detect potential anomalous units with leverage-
residual plots, and network graphs displaying the total joint and conditional influence and the
direction of the effect. Then, we use PHC-like standard errors — PHCO, PHC3, PHCjk, and PHC6
as defined and tested in Chapter 1 — to document any expected change in the statistical inference
with GL points and heteroskedasticity, and no change with VO and BL points.

Whenever we detect GL units in the replicated studies, statistical inference with con-

ventional cluster-robust standard errors is, as expected, over-inflated with respect to jacknife-based
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standard errors. However, the presence of BL points or VOs does not affect the statistical inference
but the estimated regression coefficients such that cluster-robust standard errors and the hybrid es-
timator proposed in Chapter 1 coincide.

Finally, the choice of empirical examples is restricted to those studies with a small
cross-sectional units given the time span, because it is more likely to have the econometric setting
described in Chapter 1. This type of longitudinal data sets are constructed from time series of large
aggregates (e.g., countries, regions, etc.) that are common in macroeconomic studies, where the

units of observation are generally small.

2.6.1 Example 1: Acemoglu et al. (2008)

Acemoglu et al. (2008) provide evidence for a statistical association between income per capita
and various measures of democracy while controlling for other factors finding no cross-country
correlation between income and democracy. The econometric model they estimate using the FE
approach is

dir = Qdi—1 + Yyi—1 + X1 B+ WU + & + uir, (2.46)

where dj; is the democracy score of country i in period ¢, its lagged value is included as a regressor
to capture persistence in democracy and also potentially mean-reverting dynamics; y;;—1 is the
lagged value of log income per capita; x;;_ are other lagged controls; u, and §; are respectively
the time and country fixed effects; and u;; is the error term.

The replicated analysis uses “Freedom House” data that cover a five and ten-year period
spanning over 1960-2000. Data are available for a maximum of 150 countries. We replicate
columns (2) and (7) of Table 2. Each specification uses a different time length, from five to ten
years. This leads to the loss of the interval of periods corresponding to # — 1 during the estimation

procedure, due to identification and multicollinearity.
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We first proceed with the influence analysis to detect the presence of unusual units
and their influential behaviour. For each of the replicated specification, we plot the average in-
dividual leverage over normalised residual squared in Figure C.16, and then show the total joint
and conditional influence and their effects through a network representation in Figure C.17. The
leverage-residual plot outlines the presence of several vertical outliers in Specification (2), and the
presence of good leverage points and vertical outliers in Specification (7). There are no bad laver-
age units. The visual inspection suggests that the estimation of the intercept may be compromised
in the first model because of VOs while the statistical inference in the second due to the presence
of GL points. Looking at the interaction of the most influential units, the network graphs on the left
show a cloud of units in the center of the network with high total joint influence (e.g., units 5, 56,
110, and 125 in dark blue and with wider size of the nodes) that enhance the effect of many fairly
jointly influential units (in light blue and with smaller size of the node). The graphs on the right
clearly show that the same eight units (i.e., 54, 105, 125, 133, 135, 139, 140, and 150) mask the
effect of some units, which are fairly conditionally influential. The heteroskedasticity test shows
evidence of heteroskedastic disturbances suggesting that HC standard errors are required.

We replicate theit regression results using different formulae of the variance-covariance
matrix to calculate standard errors® in Table B.6. As expected from the influence analysis, the
significance level of the Democracy coefficient do not change in Specification (2) when more
conservative standard errors are used because VOs do not undermine the statistical inference. It is
worth to outline that conventional standard errors are the lowest in magnitude whereas the proposed
PHC6 is slightly smaller than the jackknife-type standard errors. In Specification (7), no coefficient
is significant with all types of standard errors. However, we observe much smaller conventional

standard errors than the other three — which are close in magnitude — suggesting that those three

80riginal standard errors are not reported in Table B.6 because they are calculated using the asymptotic uncorrected
formula of the sampling variance which, by construction, leads to invalid standard errors in the absence of ho-
moskedasticity.
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good leverage points may affect the estimates of the variance.

2.6.2 Example 2: Schularick et al. (2012)

The authors are interested in predicting the event of a financial crisis from a country’s recent history
of credit growth. Annual data for 14 countries is used to estimate the linear probability model with

fixed effects is as follows

5
pir = boi+ Y, bigAlog(loans/P)y—s+X;by + ey, (2.47)
s=1

where L is the lag operator; p;; is an indicator variable equal to 1 if a financial crisis occurred
in country i in year t; CREDIT is the total bank loans deflated by the CPI; x;; contains control
factors. We replicate Specifications (2) and (3) of their Table 3. The coefficients in Equation (2.47)
are estimated using the fixed effects approach for panel data models.

The leverage-residual plots in Figure C.18b display no unusual units, although unit 10
is very close to the threshold for vertical outliers. Figure C.19 displays the connections of the most
jointly influential units that enhance the influence of other units. That is, units 7, 9, 10 have a high
total joint effect and exert a strong enhancing effect toward other depicted units in Specification (2)
while units 8, 9, and 12 in Specification (3). There is no masking effect in the models. The Wald
test for groupwise heteroskedasticity confirms the presence of heteroskedasticity, as expected, be-
cause we estimate a linear probability model with fixed effects — which generates heteroskedastic
disturbances, by construction.

The significance of the regression coefficients in Table B.7 does not vary with the use
of different formulae of the standard errors because no leverage unit has been detected with the
influence analysis. In both specifications, conventional cluster-robust standard errors are always

smaller than the other types of standard errors by 0.01 points whereas PHC6 standard errors either
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coincide or are slightly smaller than PHC3 and PHCjk.

2.6.3 Example 3: Egert (2016)

Egert (2016) investigates the impact of product and labor market regulations, and the quality of
institutions on country-level Multi-Factor Productivity (MFP). They find evidence of a negative
impact of anticompetitive product market regulations on MFP, a positive effect of greater open-
ness and higher innovation intensity stimulated by better institutions, on MFP. The econometric

regression model is as follows

n k

n
Yi=Bo+ Y. BXi+Y, Y 7AX;+ejp, (2.48)
i=1 i=11l=—k

where Y is the level of MFP; Xj;; is a vector of MFP drivers (i.e., innovation intensity, trade
openness, adjusted for country size and a measure of product market regulation) for country j at
time t; k; and k; represent respectively leads and lags. Equation (2.48) is estimated with the FE
approach’. The dataset is an unbalanced panel of 34 OECD countries covering about 30 years
at annual frequency. We replicate Specifications (1)—(3) of Table R1 in the Online Appendix and
calculating four different types of standard errors.

The influence analysis in Figures C.20 and C.21 highlighted the presence of a unit with
possibly high leverage, as well as a bad leverage unit. Figure C.20 plots the average individual
leverage against the average normalised residual squared. In all specifications, unit 23 is a BL
unit whereas units 10, 17, 14, 28, and 30 are classifiable as VOs. Unit 19 is a good leverage
point only in Specification (3) laying slightly below the threshold for high leverage points in the
other models. Figure C.21 shows the network interaction of the most influential units in the three

specifications. Looking at the plots on the left, units that possess a high total joint influence (units

°In the paper, Equation (2.48) is estimated using dynamic OLS.
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10, 12, 14, 17) mainly contribute to enhance the effect of the other units (thicker links). Unit 23
(BL unit) appears only in the graph of Specification (3) whereas unit 19 (GL unit) is displayed only
in Specifications (1) and (3) but is not that influential. No unit masks the effect of other units in
the sample. There is strong evidence of groupwise heteroskedasticity in the data after performing
the Wald test for groupwise heteroskedastcity.

From Table B.8 we observe that conventional standard errors are much smaller than
the other three formulae whereas PHC6 standard errors are either slightly smaller or equal in
magnitude to the two most conservative standard errors. In all three specifications, the level of
significance of the variable Openness size adjusted switches to a less significant level when PHC6,
PHC3 and PHCjk formulae are used. In Specification (3), two more variables, ETCR public owner-
ship and Business expenditure on R&D, lose level of significance with more conservative standard

CITorS.

2.6.4 Example 4: Berka et al. (2018)

Berka et al. (2018) study the relationship between real exchange rate and sectoral productivity in
nine eurozone countries. They find strong correlation between productivity and real exchange rates
among high-income countries with floating nominal exchange rates. The estimating regression
equation is as follows

RER;, = BTFPy + X,y + o; + uj, (2.49)

where RER;; is the log real exchange rate (expenditure-weighted) expressed as EU15 average rela-
tive to country i (an increase is a depreciation) in period ¢; T F Py log of TFP level of traded relative
to nontraded sector in EU12 relative to country 1 at time t; X;; are other covariates; ¢; is the country
fixed effects; and u;, is the error term.

The coefficients in Equation (2.49) are estimated using OLS after the within-group
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transformation. The panel sample is balanced and consisting of 9 countries observed over the
time period 1995-2007. We replicate columns (2a)—(2c) of their Table 4.

The influence analysis from Figure C.20 highlights the absence of good leverage units
and one possible outlying unit with almost twice the average normalised residuals squared (i.e., cut-
off value for vertical outliers). However, network interactions based on the joint and conditional
influences in Figure C.21 identify unit 14 as highly jointly influential. Figure C.22 outlines the
presence of VOs, specifically unit 6 in Specification (2a) and units {3, 8, 9} in Specification (2b).
Figure C.23 shows the network representation of the influential units in the three specification.
Highly jointly influential units (with darker nodes and thicker links) enhance the effect of units
whose total joint effect is weaker (lighter nodes and thinner links). In Specification (2a) the influ-
ence of unit 9 is masked by units 6 and 7, where 7 has high total conditional influence and 6 low
total conditional influence. There is no masking effect in the other models. There is evidence of
heteroskedasticity in the first two specifications but not in the third because the Wald test for group-
wise heteroskedasticity test in fixed effects models fails to reject the null hypothesis of constant
variance.

From Table B.9, regression coefficients in Specifications (2a)—(2b) are insignificant at
all conventional significance levels with all HC formulae of the variance-covariance matrix!.
However, it is worth to highlight that PHCO is always around 0.01 points smaller than the most
conservative estimators whereas PHC6 ranges between 0.001 and 0.06 points smaller. In Specifi-
cation (2c), all regressors are insignificant with the exception of RULCy. The significance of the
variable RULCt drops from 1% to 10% level when PHC3 and PHCjk standard errors are used.
Unlike the first two specifications, PHC6 standard errors coincide with conventional cluster-robust

standard errors suggesting that no unit has a maximal individual relative leverage exceeding the

100riginal period weighted standard errors are omitted from Table B.9 because they do not account for the presence
of heteroskedasticity, by construction.
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cutoff value of 2 (see Section 1.6.1) and jackknife-type formulae may be excessively penalising

the residuals of the outlying units.

2.7 Conclusion

In this chapter, we developed a unit-wise influence analysis for linear panel data models to identify
the type of anomalous unit from their individual, joint and conditional influence. Our contribution
is twofold. We formalised the average leverage and average normalised residuals in a panel data
setting to produce unit-wise leverage-residual plots. Then, we developed two diagnostic measures
for panel data models — based on Lawrance’s (1995) cross-sectional measures — showing their
statistical distributions. As a novelty, the overall an bilateral influence exerted by different units is
displayed through a network graphs.

Overall, we observe that the three types of anomalies can be easily identified in a two-
way leverage-residual plot. Joint and conditional diagnostic measures turn out to be quite helpful
in detecting leveraged units, and showing their connections with other units. Joint and conditional
diagnostic measures are helpful in detecting leveraged data units and, in particular, BL units in
showing their link with other units. In particular, network graphs show that BL and GL units have
the largest joint and conditional influence and contribute to enhancing and masking the effects of
even fairly influential units.

We apply our diagnostic method to four empirical studies to visually detect the presence
of any type of anomaly that can invalidate the LS estimates. Once atypical units are detected, we
documented that any expected change in the statistical inference with GL points and heteroskedas-
ticity, and no change with VO and BL points.

As a concluding remark, the researcher should not proceed with deletion of any anoma-

lous unit from the sample because each anomaly should be handled accordingly. Two possible
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scenarios can be outlined. First, with GL points robust statistical inference should be used!!. Sec-
ond, with VO and BL robust estimator of the median (e.g., M-estimators, S-estimators, etc.) is

available!2.

1n these circumstances, our replicated results showed that cluster-robust standard errors are downward biased, unlike
jackknife-type standard errors. Because predicted residuals attach a greater penalisation to leveraged data (Hinkley,
1977).

I2Robust estimation is not further investigated in this thesis. We do not focus on robust estimation techniques because:
(1) LS estimation techniques are widely used in cross-sectional and panel frameworks; and (ii) we are interested in
analysing the consequences of GL points on the statistical inference and not the effect of BL and VO on the estimated
coefficients. As areference for robust estimators, see: Bramati and Croux (2007), Verardi and Croux (2009), Aquaro
and Cizek (2013), Aquaro and Cizek (2013, 2014).



Chapter 3

Gender Sectoral Segregation and Employment Contracts in UK

3.1 Introduction

Over the past decade, the United Kingdom (UK) has adopted several reforms in support of equal
treatment of workers in the workplace. This process culminated in 2010 with the Equality Act
(EA2010, hereafter) that guarantees equal pay for equal tasks regardless of gender, and sets out
several measures prohibiting discrimination in a whole range of areas, such as employment, ser-
vices and provision of goods'. Although the policies led to a more balanced participation rates,
gender inequality still remains a persistent issue in terms of the disparity of job opportunities in
many occupations and sectors in the UK (Mordaunt, 2019; Kaur, 2020). Women’s participation in
the traditionally “female-dominated” sectors (such as health-care, food and accommodation, and
domestic work) appears to be disproportionately high in the UK (British Council, 2016) like other
countries (Bettio et al., 2009; Olivetti and Petrongolo, 2014, 2016; Gomis et al., 2020).

In light of the recent shock that has mainly hit female-dominated in-person jobs, the

CovID-19 outbreak has caused further disruption to female labour supply — especially for young

The EA2010 and its related extensions (e.g. Regulations 2011 - Specific Duties and Public Authorities) set out several
measures prohibiting discrimination in a whole range of areas, such as employment, services and provision of goods.
In this respect, a woman must not be discriminated with respect to a man in a similar situation (direct discrimination),
or when a particular policy or working practice creates a gender-based disadvantage (indirect discrimination).

59
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women, working mothers, and immigrant women — due to additional unexpected childcare and
housekeeping work (Czymara et al., 2020; Open Society Foundations, 2020; Johnston, 2021).
These facts made Gupta (2020) and Goldin (2022) talk about she-session.

A vast body of research has studied the reason for gender segregation at the work-
place. First, women tend to self-select in low-paid jobs that offer more flexible and family-oriented
contracts (Petrongolo, 2004; Bertrand, 2011; Goldin, 2014; Bertrand, 2020; Morchio and Moser,
2021). Second, they possess a comparative advantage in certain environments in terms of human
capital and productivity (Petrongolo, 2004). Third, their preferences for the characteristics of jobs
differ from men’s (Petrongolo, 2004; Bertrand, 2011; Goldin, 2014; Bertrand, 2020; Morchio and
Moser, 2021) as women prefer less competitive and less risky environments (Gneezy et al., 2003;
Saccardo et al., 2018). Finally, voluntarily or involuntary discrimination (Petrongolo, 2004) and
sexual harassment (Folke and Rickne, 2020) may play a critical role in gender segregation in the
labour market. From another perspective, jobs segregation affects women and men’s choices to
work in some sectors and occupations, thereby distorting labour market participation, wages, and
employment contracts (Mumford and Smith, 2008). As a result, gendered behavioural traits and
social norms turn out to shape the environment they select themselves into, and future wages for
men and women (Reuben et al., 2017).

This study focuses on the role of gender sectoral segregation in labour market outcomes
in the UK. We study the extent to which gender sectoral segregation shapes the type of employment
contract (i.e., part-time, permanent, remote work, number of weekly working hours) and hourly
wages for both men and women. To address this question, we use the Labour Force Survey (LFS)
quarterly data for the period 2005-2020.

Our work first compares labour market outcomes of workers in female-dominated sec-
tors with those in male-dominated sectors with similar observed socio-demographic and work-

ing characteristics using propensity score matching (PSM). Then, we analyse the contribution
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of observable and unobservable factors in determining the gap in hourly wages by means of the
Kitagawa-Blinder-Oaxaca (KBO) decomposition, and predicted and residual wages from Mince-
rian regressions. These counterfactual techniques allow us to address the selection into observable
and unobservable characteristics.

We find that contractual features that are typical of a specific gender (e.g., part-time by
women) are more common in sectors dominated by that group. Also, workers employed in female-
dominated sectors are on average paid less than those in male-dominated sectors. We observe that
the coefficient effect rather than differences in human capital mainly explains the differential wage
between men and women in both gender dominated sectors but there still exists an unexplained
component. Regarding the importance of unobservable factors, we find that women self-select
into low-paid jobs, and at the top of the wage distribution women in female-dominated sectors are
always paid less then other workers for reasons other than observable skills.

Our contribution to the literature on gender sectoral segregation. The past literature has
extensively investigated the measurement and cumulative effects of occupational and job segrega-
tion (Blackburn et al., 1993; Watts, 1992, 1995, 1998; Petrongolo, 2004; Cortes and Pan, 2018;
Folke and Rickne, 2020; Scarborough et al., 2021)? but sectoral segregation has not been fully ad-
dressed. Sectoral segregation happens to be not only a social concern but also an economic issue to
be accounted for as it contributes to explain labour market differentials in terms of wages between
genders (Moir and Smith, 1979; Campos-Soria and Ropero-Garcia, 2016). Most of these stud-
ies typically provide descriptive evidence, and only a limited literature considers job segregation
of women in atypical contracts (e.g., Petrongolo, 2004) without distinguishing the effect across
sectors. We contribute to the existing literature by looking at the consequences of time-varying

gender sectoral segregation on labour market outcomes (i.e., employment contracts and hourly

2Other works provide evidence of the key role of vertical segregation in motivating the additional hurdles that women
face once in employment — such as the access managerial and decision-making positions and jobs in specific sectors
which offer better pays, career opportunities and contractual conditions (Bettio et al., 2009; OECD, 2020; Morchio
and Moser, 2021).
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wages) based on worker’s observable skills and socio-demographics characteristics as well as the
features of their workplace.

The novelty of this research is triple. First, we build two indicators that measure the
degree and gender-type sectoral segregation (i.e., sectoral dominance and sectoral segregation in-
dex) to explain job segregation in terms of differences in employment contracts and differences
in hourly wages. Second, we use PSM to estimate the average effect of gender sectoral segre-
gation on various labour market outcomes matching for socio-demographic characteristics and
workplace features of the worker. Third, we document the importance of both observable and
unobservable factors in determining of the gaps in earnings between men and women in male-
and female-dominated sectors. While part of the documented wage gap comes from differences in
human capital between men and women (Mumford and Smith, 2008), the remainder still remains
unexplained and cannot be ascribed to only observed factors (Booth, 2009). After analysing the
contribution of the human capital and workplace features, we investigate selection into observable
and unobservable factors in determining hourly wages in female- and male-dominated sectors. We
use a methodology taken from the literature of the economics of migration® to calculate individual
potential wages (Gould and Moav, 2016; Borjas et al., 2019) and capture the part of wages that is
uncorrelated to observed skills (Parey et al., 2017)*.

The rest of the chapter is structured as follows. Section 3.2 describes the data and
reports some descriptive analysis. Section 3.3 presents the identification strategies for employment

contracts and wages. Section 3.4 reports the estimated results. Section 3.5 concludes.

31t is necessary to use this approach because survey data usually lack of behavioural variables in the questionnaires
(Booth, 2009). This is the case with the LFS.

“This literature highlights that immigrants could be positively/negatively selected with regard to both observed char-
acteristics (e.g., higher levels of education) but also to unobserved determinants of labour market success (e.g. mo-
tivation, ambition and ability) that can enter into the decision to self-select into migration (Chiswick, 1978, 1986,
1999; Borjas, 1987; Bertoli et al., 2016).
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3.2 Data and Descriptive Statistics

Our analysis is based on the Labour Force Survey (LFS) quarterly data released by the Office
for National Statistics (ONS). It is the most extensive household study in the UK providing a
comprehensive source of data on workers and the labour market. Our final estimation sample
includes the working-age population (aged 16-64) over the fiscal years 2005 and 2020, consisting
of 1,788,945 women and 1,544,280 men. As data are already available for the year 2020 (and the
first quarter of 2021), this timeliness allows us to take into account also recent significant changes
caused by the CovID-19 outbreak. We use the time span going from 2005 to 2020 because the
UK labour market has faced several structural changes that are likely to have affected the gender
segregation across sectors (e.g., EA2010, the economic crisis in 2008, the COVID-19 outbreak,
etc.).

The data include variables on a wide range of: (1) Demographic characteristics (gender,
age, nationality, ethnicity, religion); (ii) socio-economic factors (presence of dependent children,
marital status, education, experience, full/part-time job, remote work, public sector, training oppor-
tunities, sectors and occupations); (iii) geographical information on residence and working region.
We distinguish between UK natives and immigrants (male and female), including both citizens
from the European Economic Area (EEA) and non-EEA. Salary information in the LFS is the
self-reported gross weekly pay for the reference week>. We consider 19 sectors of the economy,
according to the Standard Industrial Classification (UK SIC) at one-digit®.

Tables B.10 and B.11 report the summary statistics of the main variables by gender.

There is prevalence of natives in both male and female samples(above 80%), followed by non-

SWe calculate the real wage based on hourly wages in 2015 prices (see UK ONS) as: real wage = hour
pay/(CPI12015/100).

%Qur analysis uses UK SIC 2007, the current five-digit classification used in identifying business establishments by
type of economic activity. For years before 2008, we used the correspondence between the sections of SIC 2003 and
SIC 2007.
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EEA and EEA. The average age for women (mean=39.85; sd=13.52) is smaller and less sparse
than those for men (mean=40.14; sd=14.26). On average women in the sample are slightly more
educated than men in terms of years of education (for women: mean=13.21; sd=3.05; for men:
mean=13.11; sd= 2.87) but with less experience measured in years (for women: mean=23.74;
sd=13.27; for men: mean=24.30; sd=13.86). Slightly more than half of the women in the sample
are either married or cohabiting whereas exactly half of the men are in a stable relationship. In
addition, 37% of the women have dependent children against only 28% of men. The average
number of hours worked by women per week’ (mean=30.89; sd=13.36) is much smaller than
male’s figures (mean=40.33; sd=13.56). A higher share of women working part-time (43% against
12% for men) affects the average above. A more detailed investigation on the reason for part-time
work among women in Table B.12 shows that 8% of working women could not find a full-time job
whereas 57% chose to work part-time, mainly for family and domestic commitments (about 46%

of women in the sample).

3.2.1 On the Entry Decision

A woman’s working decision is made either fully jointly with her partner or conditional to her
partner’s labour market choices (Goldin, 2006). In the second scenario, women act as a “precau-
tionary earner” to insure the household against the higher risk of unemployment of her partner in
recessions (Ellieroth et al., 2019). A preliminary descriptive analysis focuses on the factors that
drive the decision to enter the labour market, by contrasting men and women. We estimate the
correlations of being in the labour force on a set of socio-demographic, economic and regional
variables by means of a Probit model.

Table B.15 reports the marginal effects of the Probit model by gender. Columns (1)

"Whenever applicable, the number of hours includes usual hours of paid overtime to total usual hours worked in main
job.
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and (3) are the estimates from the full sample (2005-2020) and Columns (2) and (3) from the 2020
sample. With respect to British-natives, European men are more likely to be active unlike European
women (whose signs are negative. In contrast non-European men and women are less likely to be
active, although the magnitudes are higher for women than men, as expected. Women in a long-
term relationship (either married or in a civil relationship) tend to be out of the labour force with
a probability of 3.4 percentage points (p.p.) in the full sample and 4.3 p.p. during COVID-19 in
stark contrast to men’s figures that are positive. The presence of dependent children on average
increases the likelihood of entering the labour market by 6.5 p.p. for men and only 2.3 p.p. for
women over the full period in analysis. During the COVID-19 the magnitudes for women increase
to 4.3 p.p. Overall, figures for women support the empirical evidence of a reduced “child penalty”
on mother’s labour supply over the past decades (Boushey et al., 2005; Goldin, 2006). Compared
to individuals with low education, more educated people are less likely to be in the labour force but
the magnitudes are quite small. In addition, receiving benefits of any kind decreases the probability

to be in the labour force by around 23-25 p.p. for both men and women.

3.2.2 Sectoral Segregation

Sectoral gender segregation arises when there exists a disproportionate share of men and women
within and across sectors with respect to total employment — independently of the nature of the
job allocation (Watts, 1998). We define a sector to be female dominated if the share of women
employed in that sector is higher than the corresponding share of men in that sector; it is male

dominated otherwise. In formulae, sectoral dominance is defined as follows:

Female if WW’: > MV’;
Sectoral Dominance = (3.1)

Male otherwise
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where j is the sector (SIC 1-digit) and 7 is time frame; W}, and M, are respectively the total number
of women and men employed in sector j at time t; W; and M, are respectively the total number of
female and male workers at time 7. Female and male-dominated sectors are listed in Table B.13.
The classification criterion provided in (3.1) to distinguish between male (md) and fe-
male (fd) dominated sectors is used to construct a new measure of gender concentration across
sectors. Based on the proportion of men and women in a specific sector, the Sectoral Segregation
Index (SS7) measures the degree of the disproportion in the distributions of men and women within
and across sectors®. Our index informs on the proportion of women that would have to either leave

or enter each sector not to have segregation. In formulae, the index is as follows:

1

S =5 ),
j€ls

Wi My

WM, forall t and s € {md, fd} (3.2)

where Wj; and M; are respectively, the total number of women and men employed in sector j at
time ¢; W; and M; are respectively, the total number of female and male workers at time ¢. For
female dominated sectors, j € Jr4 (left side of Table B.13); for male dominated sectors, j € Jyq
(right side of Table B.13).

The index ranges between 0 and 1 for each sector; the higher the index, the greater the
gender sectoral segregation. For each time period ¢ we calculate two sectoral indices: SSI/? is
the value of the index for female dominated sectors and SSI"™ for male dominated sectors. The
value of the index remains unchanged when transferring workers between sectors (SIC1) within
each group (male and female) in a given gender dominated sector. Nevertheless, SSI is constructed

to change when the transfer is across groups in a specific gender dominated sector’. Hence, the

80ur index is constructed following the Index of Dissimilarity (ID). The ID is a well-established measure in labour
(Watts, 1998) and education literature (Zoloth, 1976; James and Taeuber, 1985) to study group composition and
quantify the segregation among two groups (such as demographic minority and non-minority groups). Specifically, it
provides information on the proportion of the minority group that would have to be transferred to reach no segregation
(Cortese et al., 1976; Zoloth, 1976; Watts, 1998).

%A similar interpretation is provided by Zoloth (1976) to describe the racial composition of schools within and across
districts.
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index does not inform on the direction of the gender disproportion because it is always positive
by construction, and it is not possible to identify which group drives the unbalance. However,
the classification criterion (3.1) allows us to check whether a sector is unbalanced towards men
or women. The information provided by the SSI can be used to identify sectors with high or
low gender segregation'®. Table B.14 shows high and low segregated sectors according to our
classification.

The densities of SSI”¢ and SS1/¢ are displayed Figures C.25 and C.26 over the entire
period of study (respectively, solid and long-dashed lines) and after EA2010 (respectively, dotted
and short-dashed lines). Looking at the support of the index in Figure C.25, the aggregate gender
segregation in the UK labour market is relatively small in both male and female-dominated sectors.
The maximum index level is 0.174 in female-dominated sectors in both time samples, while for
male-dominated sectors, 0.18 in the full-time sample and 0.173 after 2010. From a visual com-
parison of the two total sample distributions, the bulk of the mass of female-dominated sectors is
around its peak at 0.17. In contrast, the density of male-dominated sectors is spread over more ex-
tensive support and is bimodal at 0.161 and 0.173. When values of the index before the reform are
excluded, there is a shift to the left of the support for male-dominated sectors. This means that sec-
toral gender segregation has reduced after EA2010. However, the distribution in male-dominated
sectors remains bimodal but with a greater density around lower levels of the index (around 0.162)
confirming a reduction in segregation, unlike in female-dominated sectors where higher levels of
segregation are registered (with a peak at around 0.17).

Figure C.26 distinguishes between male and female-dominated sectors with high and
low gender segregation. Among low segregated sectors (left panel), gender segregation appears to

be smaller in male-dominated sectors, although the density around the right peak of its distribution

10Sectors are ranked from the least to the most segregated by gender dominance as follows: a sector is classified as low
gender segregation if it is ranked, on average, below the mean rank; a sector is classified as high gender segregation
if it exceeds the mean rank on average.
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increases after 2010. The index distribution in female-dominated sectors is skewed to the left with
a thick right-tail in the total sample but after 2010, the density around the peak increases. The
distribution shifts slightly to the left, meaning that gender segregation in female sectors decreases
after the reform. Among high segregated sectors (right panel), the distribution of SSI in male-
dominated sectors is skewed to the right in the total sample but evenly distributed after 2010. On
the contrary, gender segregation in female-dominated sectors is, on average, smaller in terms of
magnitudes, but the index’s distribution shifts upwards after EA2010.

The trend highlighted in the graphs presents two plausible scenarios: the UK labour
market may have experienced either a higher inflow of women into male-dominated sectors (in
this case, the Equality Act 2020 had a positive effect) or a higher transition of men into unemploy-
ment. We decompose the overall effect using a shift-share sectoral analysis to shed light on these

scenarios.

3.2.3 Shift-Share Decomposition of Employment

The evolution of labour market outcomes (employment, unemployment and inactivity rates) be-
tween 2005 and 2020 is shown in Figure C.24 by gender. Female employment rate remained stable
at around 55% until 2010. After EA2010, it started a gradual increase until the pandemic outbreak
in 2020, where it settled to the level reached in 2018 (58%). Similarly, the inactivity rate displays
a plateau at about 42% before the reform, showing a decreasing trend after the entry into force
of EA2010. The female unemployment rate is relatively low over the period and quite similar in
percentages to the male ones, unlike the employment and inactivity rates, which are respectively
lower and higher.

To better understand the determinants of the change in male and female employment

shares, we adopt a revised version of Olivetti and Petrongolo’s (2016) shift-share decomposition!!.

"Unlike the original paper that uses the number of worked hours, we use the employment share.
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The growth of female and male employment share is decomposed into two components: a first
component captures the change in the total employment share of the sector (between component);
a second component reflects changes in gender composition within the sector (within component).

The shift-share decomposition is defined as follows:

Js Js
Aesfl = Z (X{tAejt + Z OCthe;t for all s, (3.3)
= =1

J/ N J/

NV NV
Between-sector  Within-sector

- f
f_ By Ey

where Ae;, = By~ Eu

is the difference in the share of female employment between the base

time period 7 and the current time period ; Aej; = E—’t’ — ﬁ’o is the difference in the share of
0
. . f_E| E]]; . . .
total employment in sector j between 7y and t; Ae = E—’[ — E_,O is the difference in the share of
J JIo
. . (el el e iy .
female employment in sector j; a]ft = % and ofj; = (e”(’—zeﬂ) are decomposition weights: the

average share of female employment in sector j and the average share of sector j, respectively. The
reference year is the first available year in the dataset (fyp = 2005); s stands for sectors classified as
female/male dominated according to Equation (3.1).

Figures C.27 displays the shift-share decomposition of female and male employment
(respectively, at the top and bottom). Both graphs show the difference in employment in the com-
parison year with respect to the base year (i.e., the fiscal year 2005) for women (at the top) and
men (at the bottom). The overall change in employment is shown in solid line and its decom-
position into the between and within components respectively, with dashed and dotted lines. The
cross marks the components for female-dominated sectors and the circle the components for male
sectors. In this way, we can investigate which term drives the overall change in employment and
assess the effect of economic downturns and policies on sectors with similar characteristics.

Female composition (within component) in the top graph started to gradually increase

in male-dominated sectors after the EA2010, whereas it suddenly increased in female-dominated
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sectors after the economic crisis in 2008 but then decreased after 2012. As expected, the between
and within components in female-dominated sectors drop in 2020 due to the pandemic outbreak.
In contrast, there was a rapid rise in female employment in male-dominated sectors. Total employ-
ment shares in female-dominated sectors (between component) were almost close to the levels of
the base year until 2008; after that there was a rise in female employment in female-dominated
sectors that was arrested by the COVID—19 outbreak. These results are in line with previous litera-
ture on the theme (Hoynes et al., 2012; Doepke and Tertilt, 2016; Ellieroth et al., 2019; Alon et al.,
2020).

The composition of male employment remained unchanged in female-dominated sec-
tors. As expected, the 2007-2009 crisis hit male-dominated sectors more than female-dominated
sectors. After the EA2020, male composition in male-dominated sectors decreased and remained
stable in female-dominated with respect to 2005. The COVID—19 outbreak did not arrest total male
employment with respect to previous years.

Overall, the shift-share decomposition highlights interesting facts. First, the 2007-

t!2 in female-

2009 crisis harshly hit male-dominated sectors while stimulating female employmen
dominated sectors. On the contrary, the COVID—19 outbreak arrested the overall employment in
both male and female-dominated sectors and led to a reduction in female employment in female-
dominated sectors, in stark contrast to male-dominated sectors. In addition, the Equality Act 2010
did stimulate female employment from the demand side, as we observe a substantial increase in
female composition in male-dominated sectors after 2010. This means that a higher proportion

of women were employed within each male-dominated sector at the expense of decreasing male

employment (the contrast is visible with the bottom graph of Figure C.27).

12Similarly, Ellieroth et al. (2019) finds that married women are more stuck in employment during recessions. There-
fore, their labour supply decisions account for the higher risk of job loss experienced by their husband.
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3.3 Methods

In this section, we present the methods used to evaluate the contribution gender-based segregation
on employment contracts and wages, based on observable and unobservable factors. We first im-
plement a Propensity Score Matching (PSM) method to quantify the average difference in labour
outcomes (i.e., permanent jobs, part-time jobs, working hours, remote work, and hourly wages) in
male- and female-dominated sectors, matching on observable skills and socio-demographic char-
acteristics. Then, we further inspect the differences in hourly wages taking into account worker’s
observable and unobservable characteristics. For this purpose, we first conduct the counterfactual
3-fold KBO decomposition to examine the components that mainly drive the wage gap in sectors
and, then, run a Mincerian wage regressions to explore associations with human capital variables.
As workers may self-select on observable and unobservable characteristics into the labour market,

we show the trajectory of predicted and residual wages from Mincerian regressions.

3.3.1 Differences due to Observable Factors

Because workers may self-select into the labour market based on their observable skills and human
capital, the PSM method accounts for the selection bias matching on observable factors. Techni-
cally, the matching is done on the propensity score — i.e., the conditional treatment given the
covariates, P(D;; = 1|Xj;). Controlling for the propensity score eliminates the selection bias while
controlling for observed factors (Cameron and Trivedi, 2005, pp. 872-873). We implement match-
ing estimators a la Abadie and Imbens (2006) to compare the average differences in labour market
outcomes (i.e., types of employment contracts and wages) in male- and female-dominated sectors

among workers with similar characteristics'?. Working in female-dominated sectors is used as the

13The choice of covariates for the PSM is based on the relevant literature on gender segregation and the model selection
performed by LASSO. The choice among selected covariates from the penalised regressions is reported in Table B.19.



3.3. METHODS 72

treatment status. The underlying assumption is that workers who choose to work in female- and
male-dominated sectors only differ in the endowment of their observed skills and revealed prefer-
ences. We conduct a standard sensitivity analysis to check the common support and the balancing
property of the covariables before and after matching in the treated and non-treated groups. The
included covariates are balanced if the standardised bias after matching is within +5% (Rosen-
baum and Rubin, 1985). If the condition is satisfied, the matching method successfully builds a
meaningful control group.

Further analysis is conducted for differences in wages to investigate whether differences
in human capital or discrimination can explain the pay gap. In doing so, we proceed in two stages.
First, we conduct the KBO decomposition to examine how these differences in hourly earnings are
related to a component accounted for by differences in human capital characteristics and an unex-
plained component. The KBO decomposition (Kitagawa, 1955; Blinder, 1973; Oaxaca, 1973) is
used in the discrimination literature to study outcome gaps between two groups'. The outcome
differential (here, hourly wages) between two groups (male and female workers) is divided into
a part that is explained by observable group differences in productivity and background charac-
teristics (endowment effect) and a residual component that cannot be explained by such observed
differences in the outcome variable (coefficient effect — i.e., discrimination) (Jann et al., 2008).
Specifically, when the endowment effect is negative, female workers possess better predictors (i.e.,
characteristics) than their male counterpart. When the coefficient effect is positive, discrimination
towards women the explain the wage gap.

Then, we use a Mincerian regression to analyse how women’s human capital character-
istics — i.e. years of education, experience and training opportunities — are associated with hourly

wages between sectors and genders. The Mincerian wage regression estimates the correlations of

14The derivation of KBO decomposition can be found in Appendix A.8.
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control variables (including socio-demographic, human-capital and work-related variables'®) on

hourly pay in logarithm using OLS.

3.3.2 Differences due to Self-selection on Observable and Unobservable Fac-
tors

Wage differentials between men and women in male- and female-dominated sectors may also arise
due to worker’s self-selection on observable and unobservable factors. These may eventually affect
trends in observed wages (Bertrand and Hallock, 2001; Blau and Kahn, 2017). In this section,
we show the trajectory of potential and residual wages due to self-selection on observable and
unobservable characteristics. We use a methodology usually adopted in the literature on migration
for selection!® (Gould and Moav, 2016; Parey et al., 2017; Borjas et al., 2019).

Because the literature shows that women tend to self-select into the labour market not
only on observable skills but also on unobservable characteristics — such as, career ambitions,
competitiveness, bargaining power etc. (Gneezy and Rustichini, 2004; Booth, 2009; Bertrand,
2011), it is important to further investigate this aspect. Therefore, we show the distribution of
predicted wages and residual wages from Mincerian regressions, by gender-sectoral dominance
and across genders. The former captures the potential wage of the two groups based on observable
characteristics while the second reflects the part of wages that is uncorrelated with observed skills
and human capital.

These two measures are then used to construct the Cumulative Distribution Functions

(CDF) by gender and sectoral dominance. We then compare the CDFs of predicted and residual

15Socio-demographic variables include: age and its square, nationality, ethnicity, religion, being in a stable rela-
tionship, having dependent children and the interaction of the last two. Human-capital variables are education,
experience and its square, years in education and its square, training offered by current employer. Work-related
variables include the type of occupation. Working region dummies are included. Household income is not provided
and cannot be constructed with the EUL version of the data.

16With survey data it is difficult to proxy the psychological behaviour (Booth, 2009), and the unexplained component
of the KBO decomposition always remains unexplored (Mumford and Smith, 2008).
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wages between men and women. We determine whether the distributions of the predicted wages
and residuals statistically differ among the two groups by performing the Kolmogorov-Smirnov

(K-S) test.

3.4 Results

This section discusses the empirical results of the conducted analysis. With the PSM, we observe
that gender sectoral segregation does contribute to differences in employment contracts and hourly
earnings. In female-dominated sectors workers are paid less, work more part-time and, hence, less
hours, and less remotely compared to workers in male dominated sectors. With the KBO decom-
position, we show that the gap is mainly explained by the coefficient effect rather than differences
in endowments (i.e., human capital). In addition, we find that women are negatively selected at the
top of the wage distribution, unlike men, especially in female-dominated sectors, where they are

paid less for reasons other than their skills.

3.4.1 Differences due to Observable Factors

Tables B.21-B.25 summarise the main results of the PSM!”, where working in a female-dominated
sector is the treatment. The Average Treated Effect on the Treated (ATET) for several types of
employment contracts is as follows: 0.011 for having a permanent job; 0.135 for part-time work;
-0.125 for log hours worked; and -0.044 for remote work. The results suggest that contractual
features that are systematically chosen by a specific gender'® tend to be predominant in sectors
dominated by that dominant group. The ATET for log hourly wage is —0.094, implying that

workers in female-dominated sectors are on average paid 9.4 percentage points (p.p). less than

7The estimates in Table B.20 from a Probit regression are used to calculate the propensity score for the PSM.
8For example, Petrongolo (2004) provides descriptive evidence that European women are more likely to segregate in
atypical jobs (e.g., part-time or temporary jobs)
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those working in male-dominated sectors based on matched observed characteristics. This result is
aligned with Folke and Rickne (2020), who find that female-dominated workplaces are made less
attractive (for men) in terms of both monetary and non-monetary standpoint.

We conduct a sensitivity analysis to check whether the balancing property and common
support of the covariates are satisfied. Figure C.30 and Table B.26 reports the single components of
the covariate imbalance test. Almost all covariates are well balanced — with standardised bias after
matching between +5%. Overall, the matching method effectively built a valid control group. The
chosen matching algorithm imposes a common support such that treatment observations whose
propensity score is greater than the maximum or lower than the minimum propensity score of the
controls are dropped. The number of dropped treated units off support are 16. The number of
untreated and treated units on the support are reported underneath each table.

Then, we look at the association between human capital variabels and hourly wages by
means of the Mincerian earnings regression. Table B.28 reports the estimated coefficients of the
Mincerian wage regression19 for male and female workers, pooling the sectors (columns (1)-(2))
and by gender-dominated sectors (columns (1)-(6)).

Looking at socio-demographic characteristics, age is positively correlated to higher
wages, despite the small magnitudes, and the relationship is quadratic. European (EEA) and
non-European (non-EEA) workers earn on average less than British-Natives in all samples. How-
ever, the reduction in magnitudes is on average higher for EEA than non-EEA, for EEA in male-
dominated sectors but for non-EEA in female dominated sectors. The presence of dependent chil-
dren has a strong negative correlation on women’s wages in all samples while the correlation is
positive for men. The negative correlation is overall attenuated for married women with depen-

dent children (2.0 p.p. in the full sample) with high and significant magnitude in male-dominated

19Usual worked hours per hour and its square are not included in the regression specifications because of possible
endogeneity issues due to reverse causality. In addition, because hourly wages are calculated based on usually
worked hours per week estimates will be downward biased due to the division bias (Borjas, 1980).
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sectors (4.5 p.p.); there is no significant correlation for men.

We now comment on human capital variables. Focusing on educational attainment®’,
having intermediate or high education is positively associated with wages unlike low education;
magnitudes are slightly higher for women than men for high education in all samples. As expected,
more years of education increase wages but with a diminishing effect (the square is negative).
Looking at the estimates for years of education, the optimal number of years in education that
maximises wages for men is approximately 15.8 years (= 0.158/(2 x 0.005)) while for women it
is about 19.5 years (= 0.117/(2 x 0.003)) in the full sample. Consequently, women are required
to have higher education, unlike men who need just a degree to earn their optimal wages. The
difference is driven by female-dominated sectors (17.3 =0.104 /(2 x 0.003) for women and 16.3 =
0.130/(2 x 0.004) for men) because the optimal wage is 16.5 years for both men and women in
male dominated sectors. Potential working experience has significant diminishing returns (the
coefficient of experience is positive and its square negative but very small) and receiving a training
increases the hourly wage, especially in male-dominated sectors.

On the workplace characteristics, the association of women working in public sector
with hourly wages is, on average, 5.6 p.p. higher than those in private sector and the magnitude
is higher than men’s. However, the correlation is negative in male-dominated sectors but positive
in female-dominated sectors both men and women. This suggests that private sector pays more in
male-dominated sectors while the public sector offers better remuneration for female-dominated
sectors. As expected, working part-time is negatively correlated with hourly wages; magnitudes
are higher for men than women suggesting a higher penalty for men. Working in sectors with
low gender sectoral segregation significantly increases the association with wages of male workers

on average by 2.7 p.p. when pooling sectors, by 2.4 p.p. in male-dominated sectors and 5.9

20In the Mincerian regression we included both the categorical variable for education band (low, intermediate, and
high education) and the continuous variable for years of education and its square. The OLS assumption of absence
of perfect multicollinearity is not violated because years of education capture the intensity of the returns of education
within an education band. The information provided by the two variables is hence complementary.



3.4. RESULTS 77

p.p- in female-dominated sectors. Conversely, low gender sectoral segregation does not have
a significant correlation with women’s wages in the pooled sectors sample and male-dominated
sectors but in female-dominated sectors wages are expected to be 3.4 p.p. higher then sectors with
high segregation. Hourly wages in female-dominated sectors are on average lower than in male-
dominated sectors (correlations are 16.3 p.p. for men against 15.8 p.p. for women). These figures
support the claim that female-dominated sectors pay on average less for both men and women,
as per the PSM results. The interaction term between female-dominated sectors and low gender
segregation is positive and significant for women only (as already observed in column (6) for the
coefficient on low gender segregation).

We then decompose the average difference in log wages between men and women based
on the Mincerian regression model to study the labour market compensation in a counterfactual
manner. The evolution of the three components of the KBO decomposition and their sum are
shown in Figures C.28 (full sample) and C.29 (by gender sectoral segregation) over the full period
of study. The dashed line represents the coefficient effect, the long-dashed line the endowment effect
and the dotted line the part of the “unexplained” component of the three-fold decomposition (or
interaction effect). The corresponding shadowed areas display the 95% confidence intervals. The
solid line is the sum of the three effects and reveals their overall contribution. The contribution
of main socio-demographic characteristics, human capital attributes and sectoral indicators are
displayed in Tables B.16, B.17 and B.18.

In Figure C.28, the difference in wages between men and women is on average of 0.2
logarithmic points over time. Most of the gender pay gap (around three fourths) can be explained
by differences in the estimated coefficients between genders. In fact, the coefficient effect on aver-
age quantifies an increase of 0.16 logarithmic points in women’s wages when the male coefficients
are applied to female characteristics. In addition, this component displays a downward trend after

2008. The endowment effect quantifies an expected average increase in women’s wage by around
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0.05 points if they had male predictors levels. Therefore, differences in observed characteristics
account for one fourth of the gap.

When we repeat the exercise by gender sectoral dominance in Figure C.29, the coeffi-
cient effect is still positive but steadily much higher in male-dominated sectors (around 0.2 points
on average overt time) than in female-dominated ones (about 0.13 points on average and decreas-
ing over time). This suggests that women should be paid more than men to prevent any form of
discrimination effect between the two groups. The dynamics of the endowment effect differ in
both male and female-dominated sectors. Specifically, women working in male-dominated sectors
should expect an average decrease in their wage by a small amount if they had men’s predictors
before 2010 and after 2018 but no change in the period within this window (the endowment effect
is slightly positive but close to zero). Conversely, men and women working in female-dominated
sectors are always similar in terms of human capital as the endowment effect is on average around
zero. The unexplained component has a stronger negative contribution in male-dominated sectors
after 2010, capturing all the potential effects of differences in unobserved factors other than human
capital that contribute to shaping the trajectories of wages in these sectors — such as, self-esteem,
ambition, bargaining power, etc. (Booth, 2009). Overall, the coefficient effect prevails over the
other two, despite being partly offset by the negative unexplained effect in male-dominated sec-

tors.

3.4.2 Differences due to Self-selection on Observable and Unobservable Fac-

tors

This section presents empirical evidence on the differences in average hourly wage between men
and women when considering unobservable characteristics of workers. Figures C.31 and C.32

display the Cumulative Distribution Functions (CDF) of the predicted earnings (on the left) and
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residual earnings (on the right) when pooling all sectors and distinguishing male- and female-
dominated sectors, respectively. The solid lines are for men and the dashed lines for women.
From a visual inspection, men are positively selected in terms of earnings potential once
in the labour market because the CDFs for men are to the right of the CDFs of women in the left
graphs. Positive selection on unobserved characteristics implies that wages cannot be attributed
to acquired skills and/or human capital only. That is, men seems to have abilities or qualities that
are valued more than those of women, according to the Mincerian regressions. In addition, the
CDFs for men and women do not cross, which means that there is positive selection over the full
support of predicted earnings. From a comparison of CDFs in Figure C.32, predicted earnings
of women (men) in female-dominated with those of women (men) working in male-dominated
sectors are lower. This result supports Folke and Rickne’s (2020) claim that female-dominated
workplaces are made less attractive for men from a monetary (and non-monetary) viewpoint while
male-dominated sectors offer higher remuneration, despite being less attractive to women.
Focusing on graphs on the right, the CDFs of the residual earnings of women lie to the
right of the CDFs for men for low values of residual hourly earnings whereas to the left for high
values. Because the two CDFs cross at zero, this implies that women are positively selected in
terms of wage residuals at the bottom of the distribution, unlike men who are positively selected at
the top of the distribution. When looking at the graphs by gender-sectoral dominance, we observe
that the CDFs are almost perfectly aligned in male-dominated sectors with the CDF of women to
the right of men’s at the very top of the wage distribution. The distinction between the two curves
is more evident in female-dominated sectors where women self-select into low paid jobs. Overall,
it seems that male and female workers in male-dominated sectors are similar in terms of observed
and unobserved characteristics such that the difference in the trajectory of earnings is residual.
The Kolmogorov—Smirnov (K-S) test checks whether the two data samples come from

the same distribution. The combined K-S test statistic for predicted wage is z; = 0.2067 and for
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residual wage 7; = 0.0333 in the full-time sample, #; = 0.1583 and 7; = 0.0191 in male-dominated
sectors, and t; = 0.1649 and 7; = 0.0357 in female-dominated sectors. All statistics are significant
at 1% level. The null hypothesis of similar distributions is strongly rejected, confirming that the

distributions among men and women differ.

3.5 Conclusion

This work investigated the effects of gender sectoral segregation in the UK labour market by look-
ing at average differences in contracts and wages for male and female workers over the period
2005 and 2020. Despite the national interest of the UK Government in promoting gender equality
for all, evidence suggests that women and men are treated unfairly, especially in female-dominated
sectors. This may potentially influence their choices in joining the labour force, their employment
and career aspirations.

The disparity of opportunities in the labour market seems to be shaped by gender-based
sectoral segregation where gender stereotypes still impact how employers perceive the skills of
men and women. We indeed found that systematic contractual features that are preferred by women
are quite common in female-dominated sectors dominated (even among men). Female-dominated
sectors pay less in economic terms than male-dominated sectors for both men and women. The
coefficient effect explains most of the gap rather than differences in accumulated human capital.
However, women possess unobservable skills and behaviour that contribute to their positive selec-
tion at the bottom of the wage distribution, especially in female-dominated sectors, and make them
less likely to be preferred to men.

This analysis has policy implications. Our findings can provide policy-makers with the
empirical evidence in support of appropriate reforms in favour of vulnerable categories of work-

ers (i.e., women, mothers, and immigrants) and policies designed to sustain long-run economic



3.5. CONCLUSION 81

growth, especially in current times when the UK is facing new challenges (pandemic and the end
of freedom of movement after Brexit). In line with Hyland et al.’s (2020) evidence, the insti-
tutional setting may affect women’s access to the labour force and to entrepreneurial activities.
Since women face more challenges than their male counterparts regarding labour participation,

access to jobs and career opportunities, this gap could potentially widen in the post-pandemic.
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Appendix A

Mathematical Proofs

A.1 Leave-One-Out (L10) Estimator

Following the L10 estimator for RE models in Banerjee and Frees (1997), we derive B(,-) using
Woodbury’s formula (A4+BDC) ! =A=' — A" !'B(D"!+CA'B)"!CA~!, where A=X'X, B =

—X/,C=X,,and D =1.

B

—1
_ - (fci)-li;(h—ii(fci)—lfg) Xl-(fc/fc)‘l) x (i’?—ié’yi-)

=Ir—H;

~1
(X’X _ X;Xl-) (X’Y — X;’yi)
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- (X)X - H) 7 X (X)X,
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I
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- B— (XX)"'X{(Iy - H) ',

=B (XX)"' XM "y, (A1)

93



A.2. DERIVATION OF THE JACKKNIFE ESTIMATOR 94

where M~ ! = (I —H;)~'. Result (A.1) is the L10 estimator for FE in Belotti and Peracchi (2020).

The sample mean of (A.1) is

=

|||
Mz

f()‘l%l ;X;Milﬁi —B- (XX) ', (A.2)

~.

where NZ IZt 1ﬁ Nﬁ ur —NZ 1X’M u; is a k x 1 vector. Therefore, from (A.1)

and (A.2) we get

B(i) -B=p- (i/i)ilifMi_lﬁi B+ (i/i)flﬂ*

— —(X'X) (XM - (XX) ) (A3)

A.2 Derivation of the Jackknife Estimator

Following the procedure in Hansen (2019, pp. 324-326), the jackknife estimator of variance can

be computed as

/\/\ N_l N ~ _ ~ _ !
AVar(B) ;. = —) Bu —B)(Bu—B (A4)
w =" ;( »—8) (8- 8)
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A.3 Proof Consistency of Transformed Residuals

We show that v; = (Ir — H;) ~'u; 2y Q;. We start from

~ -~

V,i—u; = (IT —H;)_lll,' —u;
= ((Ir —H) ' Iy,

~ o~

= ((Ir —H) ' - Ir) (0, - X;(B - B)). (A.9)

Using Shwarz Inequality and Triangle Inequality for vectors and matrices (B.10 and B.13) in

Hansen (2019, p.795), Equation (A.9) can be rewritten as

¥ — il = || (0r —H) ' —17) (0, - X8 - 8)) |

< H(IT—Hi)_l—IT||H(ﬁi—ii(B—B))H (A.10)

Using Woodbury’s formula (A +BDC)™ ' = A~ —A-'B(D~! +CA~!'B)"'CA~! with A =17,

B=X;C= )Nq-, and D = X'X, (Ir —H;)~! can be rewritten as follows

1

(Ir—H) '= (I -X,XX)"'X])) " =Ir + X;(X'X - X[X;) " 'X] (A.11)

and, hence, the first component in (A.10)
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Then, using expression (A.12) in inequality (A.10)

1 ~ -1
X'X — —X’X
N N

(Il + || Xi]]]|3 - B])) (A.13)

[vi—u;| < — ’

=o0,(1)

where the first component of (A.13) is O, (N ~1) under ASM.4.i for r > 2; the second component
involves Sxx 4 0,(1) as N~'X'’X % E(X'X) = Sxx > 0 by the Central Limit Theorem; the last
component is O, (1) because the random variables in parenthesis are O, (1) under ASM.4.i-ii, and
HB ]l 20is 0p(1). Therefore, the overall expression is bounded above by an 0,(1) random

variable. Note that

;- < ||| [|8- 8| (A.14)

because X; is O,(1) by ASM.4.i and Hﬁ—ﬁ” 20, |Ju;—1;]| is 0,(1). Therefore, §; 2 W; as N — oo

and T fixed. Using result in (A.13) and (A.14), we obtain the desired result

Vi:ﬁi+0p(1)£>ﬁi as N — oo and T fixed. (A.15)

Result (A.15) shows that the transformed standard errors V; are a uniformly consistent estimator
for the error term u;. This result guarantees the consistency of any other formula of alternative HC

estimators, such as PHC3 and PHC6. In fact, using Equation (A.15) we can show that

—Vy = Z XviviX Z Xaa/X;

:zlv 3 X (%%~ 0) (% + 0 ) X, (A.16)
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Then,

N ~ ~
HVN VNH< Z||X’ & @)X+ - 2||x;(vi+ai>a;xi\\

< max ||v;—
1<i<N

=op(1)

u,n( 3%+ ) zuxan)
< o |vl—uln( 3RS+ X% Hqu)

(A.17)

where the first term of (A.17) is 0,(1) from result (A.13); the two components in parenthesis are

the sums of random variables with finite means both converging in probability to E(HXHzHﬁ,‘D

by ASM.4 and results (A.14)-(A.15) and, therefore, O,(1). Their product is 0, (1).

The last step left to show is \A7N PV such that \AfN = \AfN +o0,(1) P VasN s ooand T

fixed. Following Hansen (2019, pp.230-232), we start from the definition of conventional robust

variance-covariance matrix

where the first component of Equation (A.18) converges in probability to E(i:EX,)

L)X, (A.18)

=V, by

ASM.2.ii by LIE and ASM.1 with finite limit V under THM 6.16 in Hansen (2019, p.189) for

sequences of inid random variables, provided that ASM.5 and ASM.4.1 hold. The second compo-

nent needs to converge in probability to zero to claim consistency of Vy. Applying matrix norm
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to (A.18), we get

X, (0 — ua)X;

1 N
NZ\

1 & oy
< L% -] (A.19)

ZX’ uu —uu

Note that

—ua, - (B - B8)X, - X,(B- B +X:(B-B)(B-B)X (A.20)

Rearranging last line of Equation (A.20) and using the Triangle Inequality (B.14) and Schwarz

Inequality (B.13), we obtain

%3 - )| + |% |- 8
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[

< 2[1%) il | 8- ] + 1% ]| B - 8] (A21)

Plugging (A.21) in (A.19)
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where the average in the first parenthesis is O,(1) because it is the mean of random variables
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~ ~ 3 1
bounded above by finite quantities, that is, E(HXJPHG,H) < (EHX,W)Z (IE||ﬁ,-H4)Z by evoking
Holder’s Inequality (B.28) in Hansen (2019, p. 796) and under ASM. 1 and ASM.4.1-11; the average
in the second parenthesis is O, (1) as the average of a random variable with finite mean by ASM.4.i;

H B -3 H L)) and, thus, is 0,,(1). It follows that \A7N L v and, therefore, the desired result

Vy=Vnx+o0,(1) = V. (A.23)

A.4 Consistency of PHC6

The proposed estimator, PHC6, of the asymptotic variance-covariance matrix is

—

AVar(8), = c6Sy' V&Sy !, (A.24)

where the variance-covariance matrix is V]6\, = 1%/2?]:1 X'v;v:X;, and the matrix M; has functional

form
Ir ifhy <2
M, = (A.25)
Ir —H; otherwise
where i = max{h,-ll /EH,...,hiTT /ETT} is the maximal individual leverage of unit i; and hy =

N1 Zﬁvzihm is the average leverage at time ¢, with hj; being the individual leverage of unit i at

time ¢. The finite sample correction of PHC6 is

NT—1)N . *
(N(H{w lfhi <2

Ce —

NT_l otherwise
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As N — oo and T is fixed, M = (I7 — H;) because the selection criterion is 2 < co. As argued above,
H; 5 0 as N — o and T fixed because leverage measures are asymptotically negligible (Hansen,
2019, p.249). Therefore, PHC6 collapses to PHC3 that converges to PHCO which is a consistent
estimator of the asymptotic variance (Hansen, 2019, Theorem 7.7, p.232). From White’s (1980)

general result and under the above model assumptions and THM 7.7 in Hansen (2019, p.232), it

follows ¥ =3 +0p,(1) =X as N — coand T fixed such that AVar(§)6 L AVar(3), making PHC6

consistent estimator of the sampling variance.

A.5 Derivation of the Distribution of W

The error term u; is intrinsically heteroskedastic but not on average due to the presence of the
scaling factor z(y). Let W = By + 25:1 Bjxi,j with {x;, j}§:1- When y = 1, the mean and variance

of a random variable W with an unknown distribution are as follows

J J J
EW)=E|B+ ) Bjxit,j] =Bo+ Y. BiE(xi;) =Bo+ Y Bik; (A.26)
Jj=1 j=1 j=1
J J J
Var(W) = Var | fo+ ) Bjxit,j] =Y B} Var(xy;)+2 Y, BiBcCov(xirj,Xirx)
i=1 =1 k=1
J J j#k
J
=Y Bio:, (A27)
j=1

where E (xiz,j) = ;. Var(xi ;) = zej, and Cov(xy j, Xy x) = 0 because the independence assump-
tion guarantees that E(xit, jaxit,k) = E(xit, j)E(xihk). The results are valid under independent and
identically distributed (iid) random variables. By the assumptions of iid and normality of x;,
the random variable W is normally distributed with mean (A.26) and variance (A.27). When the
regressors are drawn from a standard normal distribution, (A.26) and (A.27) reduce to By and

7_1 B}, respectively. Thus, W ~ .4’ <ﬁ0,):§:1 ﬁf) Standardising W, we get % ~ 4 (0,1).
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When y = 2, the mean and variance of W are as follows

, 2
=E (ﬁo + Z ﬁj?@r,j) ]

_ﬁ0+23]21@ X5 +2ﬁ0213, (xir,) +2 Z BjiBeE (xir,j ) E (xi ) (A.28)
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= Y Biog +4B; ZB G4 Y BB (olol tolpl totuy)  (A29)
J=1 jk=1
j#k

where E(x7, ;) = Gfﬁ-ufj, E (xir,j, Xir k) = B (%ir ) B (Xit k) = B by and Var (xij, Xz i) = [E(xit,jaxit,ks)]z_

E (xir, j)zlE(x,-,,ks)2 op,+ 0} /.ka +0? /,ka because of the iid assumption. Any covariance

2
among variables is null because of the assumption of independence. With standardised W, (W;Z“W> ~

w

13-

A.6 Leave-Two-Out (L20) Estimator

Let ,3 ) be the FE estimator without units i and j computed as follows

~

-1
Bij) = <X'X X'X X’X) (X’Y—Xﬁy, X'y]> (A.30)

where X € RNTxk y ¢ RNTx1 X, ¢ RTixk, ij e RTi*k y; e RT*! and y, € R%*!, Combin-

ing the matrices as follows i,-j = [i; iﬂ/ € RUIHT))xk, iij = [if i/]] € R<(THT)), and Vij =
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Vi ¥;]" € RT+T)%1 the standard Woodbury’s formula, (A +BDC)~! = A~ —A~'B(D~! +

_ L 0
C= X,’j, and D = =
0ji Ij

CA~'B)"!CA~!, can be applied where A = X'X, B = —)~(§j,

Lol =1 € RTAT)*(T+T))  whose block diagonal identity matrices I; and I; are respectively
of order 7; x T; and T; x T}, and the off-diagonal block matrices of zeros denoted with subscripts
ij and ji are T; X T; and T x T;, respectively. With balanced panels, the notation simplifies to
T,=T;=T.
Then, Equation (A.30) becomes

—~ ~ o~ ~ ~ _1 ~ o~ o~

/B(w.) = (X’X — X;inj) (X/Y — X;jYij)
TN B < orole ) e ool IS <
((X’X)_ + (X'X) X}, (I,,-—X,,- (X'X) " ng) X (X'X) " > X (X/Y—ng’y“,-j>

-~

=L;—H;;

X) ' XY - (X'X) Xy (XX) 7K1 - Hy) X (XX) XY
N’ N’

=B =B

=B - (X'X) X1, - Hy) ' [(1; — Hyy)yi; — X8 + Hyyij]

—B— (X'X) "X, M, i, (A.31)

— — _ M; -H;; I, -H; —H;
where M;; = (I;; — H;;), with M;; = = and the leverage ma-

—Hj; M, —Hj; I;—H;
o H; Hij il‘(i/i)_lig ii(i/i)_lilj
trixH,-j: =
H, H, X;(X'X)IX] X;(X'X)"'X!,
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Note that Hj;; = H; j- Expanding last block of Equation (A.31) and using the formulae for the

1

inverse of partitioned matrices', we have

</ ——1~ o
XiM;; uij =

_ _ M,’ _Hij u;
- %]
_H:‘j Mj llj

=X X,

r /

<1 Y ! 7 -1 - -1/ =
[XM; '+ (XIM; H,-,~+X})(M,~—H;J.M,. H;)) 1H;].M,. ] u;

[(XIM; '+ X) (M — H M)~ u;

= XM 6+ (XM; TH;; + X5) (M, — H,M; TH;) ™ (HG M6 +)),

provided that M;; and (M; — H},M; 'H;;) are non-singular to be invertible.

Therefore, Equation (A.31) can be rewritten as follows

) 1 M 1y - 1 -l 1y -
] M; '+ M TH (MG - HMG T HG) MG MG THG (M - H M THG) |

(M; —H[,M; 'H;;)"'"H, M, (M, — Hj;M; TH) !

(A.32)

By =B~ (XX) ™" (XM 1+ (XM 'Hy X)) (M, — H)M; ) ™ (MG 6 +4)))

=By — (X'X) " (XiM; "Hy; + X)) (M —HIM; 'Hy) ™ (H)M; ' 4-6)

where ﬁ(,-) =B3- (i’i)_liéMflﬁi.

I'The formula used is

A Bl™' [A'4+A"'B(D-CcA'B)"'cA™! —A~'B(D—CA~'B)”!
C D| —(D—CcA™'B)"!cA™! (D—CA'B)"!

provided that A~ ! exists and (D — CA~!B) is invertible.

(A.33)
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A.7 Distribution of Diagnostic Measures

A.7.1 Joint Influence

For simplicity, consider Equation (2.41) the case when i = j. We first establish the asymptotic

properties of é(i) and show its equivalence to [/3\ in the sense that
VN (B~ B) = VN(B ) +0p(1) (A34)

implying that B(i) and B\ share the same asymptotic distribution. Note that ,[/3\ is a consistent esti-
mator of 3 whose asymptotic distribution is reported in Chapter 1 Formula (1.9). We first show

the consistency of B@. Using formula (A.1), we know that

~

Biy-B=(B-p) - (XX) XM 4

o~ ~ o~

e |~ s
=(B-0)— (XX)” Xj(Ir —H) ' (0, —X;(B-9)) (A.35)
Using Triangle Inequality in Hansen (2019, p.795),

H(B(i) -08)| < H(3—ﬁ>ll

)

=o0p(1)

1< _ _ - A
SIXilllar =) (] + X B-8]) 436

where |8 — 8| is 0p(1); (N"'X'X) ™" = Sy} +0,(1) by ASM.3, WLLN and Slutsky’s theorem;

X; and u; are O,(1) because random variables with finite moments by ASM.4 and, therefore,



A.7. DISTRIBUTION OF DIAGNOSTIC MEASURES 105

N’IHXH =0,(N71); and

[ — 1)~ = [J1r + XXX - XX~ X

< |||+ [P (XX - XiX3) 7| (A37)
1 —1

( X/X— —X/X )
N

is O(1) because the first term on the right-hand-side, VT, is O(1) without a remainder term, and

—\/_+

the second component is bounded above by 0,(1) random variable with a similar argument as in
(A.12). As a result, B(i) is a consistent estimator of the true value of the parameter 3 as B(i) =
B+ o0,(1) from (A.36). Therefore, removing one unit does not have an impact on the estimates of
the true value of the parameter as the cross-sectional units increase to infinity.

We now show that the estimators ﬁ(i) and ﬁ have the same distribution.

~1
VN(B-8) - VN (By - 8) = ({XX) XM G (A39)
1o,=\""1

Using Reverse Triangle Inequality in Hansen (2019, p.795) and Formula (A.39),

IVN(B—8) = VN (B~ B) | < VN|B—Bl|+ VN[ B - 8|

H(ﬁ)

op(1

H) [ (| +[IX:ll|8-8) (a0

where the first component of (A.40) is (S)_(}( +0p(1)) as N~ IX'X % E(X'X) = Sxx > 0 by the
Central Limit Theorem; the second term is ,0,(N'/"~1/2) = 0,,(1) for r > 2 under ASM.4.i; the

third component is O(1) by (A.37); and the last quantity in parenthesis is O,(1). Therefore,
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| VN (B\ —B)—VN (B(,-) —B3)|| is bounded above by a 0,,(1) random variable, and we can conclude

that ﬁ(i) and ﬁ share the same asymptotic distribution as

VN(Bi)—B) = VN(B—B) +o,(1) (A41)

Now, we find the distribution of ﬁ — ﬁ(i). Recall that

BBy = (XX)'XIM 6,

= (X'X) " 'X/(17 - H) " (1~ X;(B - ) (A.42)

Using Shwarz Inequality and Triangle Inequality in Hansen (2019, p.795)

~

188l = | (KR) ™ it — )~ @~ X3 9)|
< W) IV R =1+ - )

—o0,(1) (A.43)

where HB\—,BH 5 0; (N71X'X) b= Syy +0,(1) by ASM.3, WLLN and Slutsky’s theorem; X; and

u; are O, (1) because random variables with finite moments by ASM.4 and, therefore, N~ Hi,H =

O,(N71) for r > 2; and H (Ir —H;)~! || is bounded above by 0,,(1) random variable as in (A.37).
The last steps of the proof lead to the derivation of the exact distribution of Cﬁ(ﬁ). In

Formula (A.41) we showed that ,é\(i) and B follow the same normal asymptotic distribution but we

have not yet defined the asymptotic variance of B(i). We derive the exact variance of B(l-) under



A.7. DISTRIBUTION OF DIAGNOSTIC MEASURES 107

model assumptions ASM.1-ASM.4. Note that

E [ﬁi(g_ g)fpzi] - [(ﬁi ~Xi(B-8))(B- ﬁ)'\f(i]
—E[w(5-8)X] - E[Xi(B-B)(B- 8]
= —iiVar(,@i) (A.44)

E[(B- B = —Var(BX)X; (A45)

where Var(@ |)Z) = (i’ )2)71)2’ Ty X (i’ i) 1 as derived in Chapter 1.4 and since B and the error

term are statistically independent, and

E[6]X;] = E[ (3 - X,(3 - ) (@~ X(8 - 9)) ||
_E [ﬁiﬁi|5§i] _E [ﬁi(ﬁ_ ﬁ)’\il} X —X,E [(3— B)ﬁ”iz}
+XE|(B-B)(8-B)|X|X,

= 5+ X Var (BX) X! (A46)

where X, = E(ﬁiﬁﬂii) by ASM.2.ii. Let A()z,-) = (i’i)_liﬁ and B(ii) = A()Z,-)Mi_li,-. Com-

bining this information, the conditional finite sample variance of B(i) is

Var(B(i) |il) =K

~ AKOM;E{6(8 - 8)'|X, | + AK)M; E{G,8]X; M AX)

1
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= Var(B|X) + Var(8]X)X!M; 'A(X;)’ + A(X;)M; ' X, Var (B|X) (A.47)
+AK)M; ! {Ei + )’ZiVar(BySZ)SZ;] M AKX, (A.48)
= Var(B|X) + Var(8|X)B(X;)' +B(X;) Var(3/X) (A.49)
+AX)M; 'S MA(X)) + B(X;) Var (B]X)B(X)/ (A.50)

where 0; = U; — X; (B — ;8) and using the unbiasedness of 3, the conditional exogeneity of the
disturbances, and Equations (A.44)—(A.45). Under the model assumptions and using THM 6.6

in Hansen (2019, p.182), the matrices Ay (X;) = (N*Ii’X) lN’lig EN S)?}(O and BN(Xi) =

AN()NCi)M.’l)N(i 2,0 as N — o and T fixed. From Result (A.50), the asymptotic variance of

V(B —B) is
AV&I‘(\/N(B(,-) — B)) = NVar(,é\(,-) |)~(,) = Vﬁ (A.51)

where V5 = Sxy XSy, as shown in Chapter 1.4. Therefore, we can conclude that B(i) has identical
limiting distribution as B The distance between ,@(i) and B vanishes as panel units grow and,
hence, the influence exerted by unit i is null.

We follow the same reasoning as above to derive the distribution of 3(,-7 j)- Adding and

subtracting 3 from Formula (A.33),

By —B=(By—B)— (XX) ™' (XM; 'H; + X))

(M, —H;;M; 'H;) ' (H,M; 6 +8)) (A52)

where U; = (u; — X (B\— B)) with [ € {i, j}, and H;; = )N(,-()N(’)N()_IIN(;-. Using Triangle Inequality
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in Hansen (2019, p.795),

1By — Bl < 18w — 8l (A.53)
sy
(—HX M7 1HHHUH+ 1X; H) (A.55)
H (M; —HjM; Hy) (A.56)
(1 | flve ) e | + [y ]) (A.57)

where the term on the right-hand-side of (A.53) is 0,,(1) by result (A.36); (A.54) is Syy +0,(1) as
N —ooand T fixed; (A.55) is O, (1) because of N~![|X; || = 0,(N~") forl € {i, j}, |[M; || = 0(1
by (A.37), and ||Hy;|| = N~'2||X;|||[(N"'X'X) ! ||[N71/2||X;|| = 0,(1); component (A.56) is
Op(1) because (M, —H],M; 'H;;) ™' =87 +0,(1) since M :1T—N*l/zij(N*Ii’i)le*I/zi; -
Ir +o0,(1); and, (A.57) is O,(1) because |[8;|| = ||w]| + || Xu[|||(8 — B)|| = 05(1) by asm.4.
Therefore, ||3; ;) — B|| would be 0,(1) from (A.53) and (A.54) and, hence, By, ;) = B+ 0,(1).
We verify that the estimators 3(; ;) and 3 have the same asymptotic distribution. Adding

and subtracting 3 from the first line of Formula (A.33),

-1
- (NX’X) ﬁ(ngﬂHiﬁx;)

(M — H;M; ) (H MG+ E) (ASS)
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Using Reverse Triangle Inequality in Hansen (2019, p.795) and Formula (A.58),

IVN(B-8) = VN (B -B)|

gH(%i’f()_l ‘—X’M_ (A.59)
+ H (;IN f() ( TTH;; +X’) H (A.60)
H (M; —H,;M; 'H;;) " (A.61)
HH’M U+ (A.62)
—0,(1

where (A.59) s 0, (1) by result (A.40); the overall quantity in (A.60) is 0, (1) because the first com-
ponent is Sy x +0, (1) and multiplies a quantity that is O,(1) as in (A.54), noting that N -1/2 ‘ }X,- H =
O,(N'/7=1/2) and, hence, 0,(1) with r > 2; (A.61) is 0,(1) as in (A.36); (A.62) is O,(1) as

in (A.57). Therefore, [3 y and [3 share the same asymptotic distribution

VN(Biijy—B) = VN(B—-B)+op(1) (A.63)

Last step consists in deriving the joint distribution of B and [/3\(,-7_,-). Rearranging Equation (A.33),

we obtain

B— B(,.7 j) = (X'X) *IX;M;la,
+(X'X) " (XIM; 'H; + X))

(M —H);M; ) (H MG 1+ E) (A6d)



A.7. DISTRIBUTION OF DIAGNOSTIC MEASURES 111

Using Shwarz Inequality and Triangle Inequality in Hansen (2019, p.795)

o) T oy im
18=Binll < H(NX'X> ‘ﬁngi u; (A.65)
1N/N - 1 v/ ng—1 v/
+( XX ~ | XiM; T+ X (A.66)
-1
H (M; —H{M; 'H;)) (A.67)
‘ H/ M, 'u; +u; (A.68)

where the left-hand-side is 0, (1) following the reasoning used in (A.53)-(A.57). Thus, the differ-
ence B— B(,-J) L, 0as N — oo and T fixed.

Noting that B; ;) — 8 = B(;) — 8 — Di(-)Da(.) with Dy (X;) = (X'X) ™ (XIM; 'H; +
}Z;) (M; — HéjMi_lH,-j)fl, D, (il,ﬁl,,@) = (ngMi_lﬁi +1;), the exact finite sample variance of

Bi,j) under the true model assumptions ASM.1-ASM.4 is

Var(8; X, X;) IE{ (B B \X,,X}
—&{ (8- -B)'[%X; } (A.69)
~E{ (B~ BD2()D1 () |Xi X, | (A.70)
E{Dl By -8) N,fj} (A71)
+IE{D1 )D>(.)Da ()i (. ’XX} (A72)

where D{(.) = D (f(l), Dy(.) =Dy (il,ﬁl,ﬂ), and u; = u; — )Zi(ﬁ—,@). Component (A.69) is
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equal (A.49)-(A.50). Component (A.70) is the transpose of (A.71), which is

-~

E [Dl(.)Dz(-) (/3(1') - /3)/

%X

—E[Di()Da()((B-8) - A(fii)Mi_]ﬁ,->l X; X, (AT3)

E[Di()D2() (8- B)’

f(,-,f(,} —E[Dl(.)Dz(.)ﬁgM;lA(ii)’

X, X ,} (A.74)

=01 () {E[ (M7 6+ 5) (B 8) X0 X (AT5)
~ B | (H,M; 65| X X M A (A76)
=D () {H,ME[6(3-8)|X]| +E|5;(8-8)X)] (A77)
—HME (66 X M7 AK) - B |66 X, X M AK) | (A78)

-1

where (A.73) is derived by plugging (A.1) and A(X;) = ()N(’)N() )Nii, in(A.77),E [ﬁl (B\—,B)/‘)N(l} =

—X;Var(B|X) with [ € {i, j} by (A.44); in (A.78), E [ﬁ,—ﬁ;

Xi| = 3+ X, Var (BIX)X] by (A.46)
and E [ﬁ jﬁg‘f{i,i j} =X jVar([/3\|)2) X! because the error term is independent across individuals
by assumption and uncorrelated with the estimated parameter of interest. Focusing on compo-

nent (A.72),

E Dl(.)Dz(.)Dz(.)’Dl(~)"?~<i=7~<j]

— D, (.){E [(H;_,.Mglﬁ,- +1;) (H,M; 5, +ﬁj)"f<i,)~(,-] }Dl ) (A.79)
=Dy () { B M; B [6,5|X,| M;lH;jJrIE[ﬁjﬁ;(ij} (A.80)
+2H,M; 'E [ﬁ,ﬁ; )N(,} }Dl(.)’ (A.81)

where the covariance between H; jMflﬁi and u; is equal to the quanity in (A.81) by the inde-
pendence across individuals (ASM.1) and the mean of residuals being zero. Also, E [ﬁlﬁg ’f(l] =

¥, + X, Var (B\|)~() i? by (A.46), and E [ﬁjﬁg ‘f(i, i]} = ijVar(EDz) i; because the error term is in-
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dependent across individuals by ASM.1 and uncorrelated with the estimated parameter of interest.

Under the model assumptions, N —'f(; P 0 wich drives Di(.)n L)) and, therefore,
(A.69)—(A.72) are asymptotically zero. Then, the variance of N (B(i) — ,6’) converges in proba-
bility to V 3 due to the only component in (A.69) that does not vanishes towards zero. The L20

estimator ,6‘ ) has the same limiting distribution as the within-group estimator, ﬂ

A.7.2 Conditional Influence

Consider and rearranging Equation (2.43) as follows

VN(Biij)—B) —VN(B-B) =
[P O SR
(NX X) {ﬁXiMi u; (A.82)

| R S _ -1 o~
N (XM, 'Hi; +X) (M; — HjM; 'Hy;) ™ (HM; g +-1)) }

and Equation (A.38) with respect to j
3 ~ | e
VN(B(j)=B) = VN(B-B) = - (NX’X) —= XM 'u; (A.83)

such that the difference of (A.82) and (A.38) is as follows

. . 1~ \"!
VN(Bi j)—B)—VN(B)—B) = (NX'X> (A.84)
[ —1= 1 < =l
1

= (XM T -+ X5) (M — HM; ') (HM; lﬁi+ﬁj)} (A.86)
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Then,

IVN(Bij)—B)— VN(B;, - B)||

1=\ ! 1 ~ 1 ~
<[ =X'X —X'M7la — XM, A.87
—H<N ) {‘\/NJJU+H\/N”“ (A-8D)
Hf (XM, 'H;; + X)) ‘H (M; —H,;M; 'H;;) ™ ‘(H;jMi—lﬁ,-ﬁj) } (A.88)

is 0,(1) by Results (A.54)-(A.57) and (A.40). Therefore,
VN(Bij—B) =VN(B() —B) +o,(1) (A.89)

which is asymptotically equivalent to B by Result (A.41) relatively to unit j. Noting that /N (B\ —

B) % (0,85, 5851,
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A.8 Kitagawa-Blinder-Oaxaca Decomposition

The Blinder-Oaxaca decomposition of a generic outcome variable into three components (endow-
ment effect, coefficients effect, and interaction effect) is derived as follows. Consider two groups

(e.g., men and women) and the group-specific linear model
ve = X+ & g€ (MW} (A.90)

where y, is the logarithm of wages; f(g is a k x 1 vector containing the predictors and a constant
term (including female dominance, low segregation, and their interaction, working region, socio-
demographic factors, occupation controls); 3, is a vector of slope parameters and the intercept; &
is the nuisance term. The difference in the mean outcome of the two groups can be expressed as

follows

E(ym) —EGw) = EXum) By — EXw) Bw (A.91)

because E(&;) = 0 and E(3;) = 3,, under classical linear model assumptions. The decomposition

from the viewpoint of women (W) is as follows

E(ym) —E(yw)
= E(Xu) Bu —EXw) Bw
= [E(Xn) —EXw)]'Bw +E(Xu) (Bu — Bw)

= PE()ZM) —E(Xw)]' Bw +£E()~(W)/(,3M — Bw) + [E(Xy) —EXw)]'(Bu — Bw) (A.92)

vV vV vV
endowment effect coefficients effect interaction effect

The endowment effect measures the expected change in women’s mean outcome if they

had men’s predictor levels. The coefficients effect component measures the expected change in
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women’s mean outcome if women had men’s coefficients. The interaction effect captures those

differences in endowments and coefficients that exist simultaneously between the two group.
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Table B.1. Single hypothesis test, heteroskedasticity

(N, T)

PHCO
PHC3
PHC6
PHCjk

PHCO
PHC3
PHC6
PHCjk

PHCO
PHC3
PHC6
PHCjk

PHCO
PHC3
PHC6
PHCjk

Heteroskedasticity (y =2)

PB RP RMSE PB RP RMSE PB RP RMSE PB RP RMSE
(25,2) (50, 2) (150, 2) (500, 2)
0713 0516 0305 0.625 0407 0263 0450 0223 0.147 0316 0.098 0.081
0.083 0.017 0.035 -0.138 0.023 0.058 -0.014 0.029 0005 0.084 0027 0.021
0.042 0020 0018 -0.123 0.025 0052 -0.010 0.030 0.003 0.085 0027 0.022
20.039 0018 0017 -0.119 0.024 0.050 -0.010 0.030 0.003 0.085 0027 0.022
(25,5) (50, 5) (150, 5) (500, 5)
0578 0337 0224 0473 0238 0.160 0338 0.112 0089 0225 0062 0.042
0.121 0.022 0.047 -0.024 0.027 0.008 0.066 0.026 0017 0.099 0033 0.018
0.098 0.023 0.038 -0.024 0.027 0.008 0.069 0.026 0018 0.100 0.033 0.018
0.086 0.023 0.033 -0.010 0.029 0.03 0.069 0.026 0018 0.100 0.033 0.018
(25, 10) (50, 10) (150, 10) (500, 10)
0472 0219 0.024 0395 0.154 0.117 0277 0.079 0.062 0.184 0.052 0.027
0.033 0022 0011 0052 0027 0015 0098 0.029 0022 0.105 0035 0015
0.012 0025 0.004 0061 0029 0018 0.101 0.030 0023 0.106 0.035 0.015
20.006 0.024 0.002 0.063 0029 0019 0.0 0030 0023 0.106 0.035 0.015
(25, 20) (50, 20) (150, 20) (500, 20)
0385 0.138 0.112 0308 0.8 0.075 0211 0.056 0.037 0.131 0.052 0.014
0.029 0.021 0.008 0.076 0.024 0019 0.096 0.031 0017 0.084 0.042 0.009
0.049 0.026 0.014 0.085 0.027 0021 0.099 0.031 0017 0.08 0.042 0.009
0.052 0.025 0015 0.08 0.026 0.021 0.099 0.031 0017 0.085 0.042 0.009

The number of replications is 10,000. The random variable associated with slope parameter By is contaminated
with leverage points and drives heteroskedasticity. PB: Proportional Bias. Positive values indicate by how much
the standard error underestimates the “true” standard error. RP: Rejection Probability of 5%-level t-test on B

(i.e., size of test). RMSE: Root Mean Squared Error.
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Table B.2. Single hypothesis test, homoskedasticity

(N, T)

PHCO
PHC3
PHC6
PHCjk

PHCO
PHC3
PHC6
PHCjk

PHCO
PHC3
PHC6
PHCjk

PHCO
PHC3
PHC6
PHCjk

Homoskedasticity (y = 0)

PB RP RMSE PB RP RMSE PB RP RMSE PB RP RMSE
(25,2) (50,2) (150, 2) (500, 2)
0369 0204 0.043 0348 0.192 0014 0.174 0.116 0.002 0.058 0.067 0.000
0411 0.028 0.048 -0374 0.040 0.015 -0.140 0.049 0.002 -0.049 0.046 0.000
20.328 0.036 0.038 -0.346 0.044 0014 -0.131 0.050 0.002 -0.046 0.046 0.000
20361 0.030 0.042 -0353 0.041 0014 -0.135 0.049 0.002 -0.048 0.046 0.000
(25,5) (50, 5) (150, 5) (500, 5)
0.324 0.160 0.008 0205 0.118 0.002 0.074 0.075 0.000 0.017 0.055 0.000
20310 0.040 0.007 -0.160 0.050 0.002 -0.062 0.047 0.000 -0.027 0.046 0.000
-0.284 0.045 0.007 -0.148 0.052 0.002 -0.059 0.048 0.000 -0.026 0.047 0.000
20273 0.043 0006 -0.146 0.052 0.002 -0.059 0.048 0.000 -0.026 0.047 0.000
(25, 10) (50, 10) (150, 10) (500, 10)
0.197 0.113 0.002 0.125 0095 0.001 0.041 0.066 0.000 0.025 0.057 0.000
20.179 0.043 0.002 -0.071 0.050 0.000 -0.032 0.050 0.000 0.002 0.051 0.000
20.156 0.048 0.002 -0.060 0.053 0.000 -0.028 0.051 0.000 0.003 0051 0.000
20.151 0.047 0.002 -0.059 0.052 0000 -0.028 0.051 0.000 0.003 0051 0.000
(25, 20) (50, 20) (150, 20) (500, 20)
0.114 0.084 0.001 0065 0.068 0.001 0019 0.053 0.000 0008 0.052 0.000
-0.097 0.047 0.001 -0.043 0.048 0.001 -0.020 0.045 0.000 -0.004 0.049 0.000
-0.076 0.053 0.001 -0.033 0.050 0.000 -0.016 0.046 0.000 -0.003 0.049 0.000
-0.074 0.050 0.000 -0.033 0.050 0.000 -0.016 0.046 0.000 -0.003 0.049 0.000

The number of replications is 10,000. The random variable associated with slope parameter B is contaminated
with leverage points and drives heteroskedasticity. PB: Proportional Bias. Positive values indicate by how much the
standard error underestimates the “true” standard error. RP: Rejection Probability of 5%-level t-test on B (i.e.,

size of test). RMSE: Root Mean Squared Error.
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Table B.3. Joint hypothesis test, heteroskedasticity

Heteroskedasticity (y =2)

Wald Stats RP

Wald Stats  RP

Wald Stats  RP

Wald Stats  RP

(N,T) (25,2) (50, 2) (150, 2) (500, 2)
PHCO 3341260.250 0.923 29613.070 0.820 6.124 0.510 1.775 0.210
PHC3 117.439 0.112 9.203 0.150 1.513 0.129 1.105 0.076
PHC6 66.965 0.264 9.947 0.281 2.495 0.223 1.606 0.189
PHCjk 124.333 0.115 9.505 0.154 1.525 0.130 1.107 0.077
(25,5) (50, 5) (150, 5) (500, 5)
PHCO 1293.329 0.768 19.074 0.569 2.138 0.263 1.365 0.115
PHC3 9.351 0.169 1.964 0.140 1.175 0.093 1.081 0.060
PHC6 10.219 0.303 2.872 0.248 1.737 0.197 1.709 0.217
PHCjk 10.377 0.178 2.019 0.145 1.184 0.094 1.084 0.060
(25, 10) (50, 10) (150, 10) (500, 10)
PHCO 16.202 0.568 3.348 0.355 1.540 0.153 1.210 0.076
PHC3 2.157 0.152 1.353 0.110 1.086 0.065 1.053 0.044
PHC6 3.565 0.256 2.107 0.213 1.639 0.191 1.864 0.264
PHCjk 2.317 0.163 1.389 0.113 1.094 0.067 1.055 0.045
(25,20) (50, 20) (150, 20) (500, 20)
PHCO 4.169 0.375 1.972 0.213 1.328 0.098 1.145 0.064
PHC3 1.568 0.119 1.201 0.082 1.077 0.052 1.055 0.046
PHC6 2.438 0.234 1.820 0.202 1.773 0.230 2.311 0.390
PHCjk 1.658 0.130 1.228 0.087 1.085 0.054 1.057 0.046
The number of replications is 10,000. Tested hypothesis Hy : B1 = B = B3 = s = 1. Random

variables associated with slope parameters B and B3 are contaminated with leverage points. All
random variables drive heteroskedasticity. RP: Rejection Probability of 5%-level t-test (i.e., size

of test).
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Table B.4. Joint hypothesis test, homoskedasticity
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Homoskedasticity (y = 0)

Wald Stats RP  Wald Stats RP  Wald Stats RP  Wald Stats  RP

(N,T) (25,2) (50, 2) (150, 2) (500, 2)
PHCO 118.278 0.724 12.974 0.575 2.298 0.298 1.341 0.136
PHC3 1.444 0.103 1.478 0.132 1.235 0.112 1.098 0.082
PHC6 24.939 0.323 10.828 0.427 5.985 0.471 4.638 0.495
PHCjk 1.521 0.109 1.514 0.136 1.244 0.113 1.100 0.083

(25,5) (50, 5) (150, 5) (500, 5)
PHCO 8.066 0.522 2.845 0.340 1.463 0.162 1.144 0.087
PHC3 1.855 0.155 1.399 0.132 1.134 0.086 1.050 0.066
PHC6 10.577 0.470 7.094 0.484 5.191 0.491 5.164 0.661
PHCjk 1.957 0.166 1.431 0.136 1.142 0.088 1.053 0.066

(25, 10) (50, 10) (150, 10) (500, 10)
PHCO 3.252 0.343 1.853 0.216 1.265 0.110 1.075 0.069
PHC3 1.588 0.139 1.286 0.110 1.102 0.078 1.026 0.058
PHC6 8.413 0.492 5.917 0.476 4.834 0.545 6.700 0.845
PHCjk 1.665 0.147 1.313 0.115 1.109 0.079 1.028 0.059

(25, 20) (50, 20) (150, 20) (500, 20)
PHCO 2.104 0.227 1.465 0.143 1.152 0.079 1.055 0.066
PHC3 1.437 0.121 1.196 0.088 1.067 0.060 1.029 0.059
PHC6 6.842 0.234 5.376 0.508 5.584 0.705 10.257 0.986
PHCjk 1.501 0.489 1.221 0.094 1.075 0.062 1.031 0.060

The number of replications is 10,000. Tested hypothesis Hy : B1 = B = B3 = B4 = 1. Random
variables associated with slope parameters B and B3 are contaminated with leverage points.
All random variables drive heteroskedasticity. RP: Rejection Probability of 5%-level t-test (i.e.,

size of test).

Table B.5. List of replicated articles

Change
Article Cit. Table Specification N NT Significance
Acemoglu et al. (2008) 1,834 2 2), (7) 150; 127 945;457 N,N
Schularick et al. (2012) 2,852 2 2), (3) 14 1,272 Y,Y
Egert (2016) 84 3 (1), (D), (1) 34 844 Y.N, Y
Berka et al. (2018) 58 4 (2a), (2b), (2c) 9 117 N,N, Y

Note: The listed papers are published in AER. The number of citations comes from Google Scholar
in date 17 May 2021.


https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=Acemoglu+et+al.+%282008%29+%10Income+and+democracy.%11+American+Economic+Review%2C&btnG=
https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=Schularick%2C+Credit+booms+gone+bust%3A+Monetary+polic+leverage+cycles%2C+and+%3Fnancial+crises%2C+1870-2008.%3F+American+Economic+Review%2C+102%2C+1029&btnG=
https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=%C3%89gert%2C+Bal%C3%A1zs+%282016%29%2C+%10Regulation%2C+institutions%2C+and+productivity%3A+New+macroeconomic+evi-+dence+from+oecd+countries.%11+American+Economic+Review%2C+106%2C+109%1513.&btnG=
https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=Berka%2C+Martin%2C+Michael+B.+Devereux%2C+and+Charles+Engel+%282018%29%2C+%10Real+exchange+rates+and+sectoral+productivity+in+the+eurozone.%11+American+Economic+Review%2C+108%2C+1543%1581.&btnG=
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Table B.6. Replicates of Acemoglu et al.’s (2008) Table 2

Base sample, 1960-2000

Five-year Ten-year
data data
2 (N
Dep. variable: Democracy
Democracy; 1 0.379 -0.025

(0.0467)%#+ (0.0747)
[0.0478] %% [0.0774]
{0.0479 ) {0.0778}
(0.0479) (0.0778)

InGDP;_ 0.010 0.053
(0.0317) (0.0564)
[0.0324] [0.0576]
{0.0325} {0.0579}
(0.0325) (0.0579)
Observations 945 457
Groups 150 127
Time Periods 8 4
Test for groupwise heteroskedasticity
22(N) 5.3e+34 1.5e+11
p-value 0.0000 0.0000

This table replicates Acemoglu et al.’s (2008) Ta-
ble 2. The dependent variable is “freedom house”
used as a measure of democracy. The coefficients
are estimated using OLS in a model with fixed ef-
fects. The number of time series is the maximum
number of periods used in the estimation procedure
once the first t periods have been removed from the
sample due to identification and multicollinearity.
Cluster-robust standard errors (Arellano’s (1987))
are in parenthesis; PHC6 standard errors in brack-
ets;, PHC3 in curly brackets; jackknife standard er-
rors in angle brackets. Original standard errors
(not reported here) use the asymptotic uncorrected
formula. The test for groupwise heteroskedasticity
is a modified Wald test for fixed effect regression
model which tests the null hypothesis of constant
variance of the disturbances against the alternative
of non-constant variance. Significance levels: **%
0.01 **0.05 *0.10.



Table B.7. Replicates of Schularick and Taylor’s (2012) Table 3

2 3)
Dep. variable: Financial Crisis (binary)
Alog(loans/P),_ -0.0273 -0.0489
(0.1285) (0.1051)
[0.1360] [0.1133]
{0.1358} {0.1170}
(0.1358) (0.1170)
Alog(loans/P);_» 0.302 0.302
(0.1153)** (0.0860)***
[0.1235]** [0.0936]***
{0.1232}** {0.0950} ***
(0.1232) % (0.0950) s
Alog(loans/P),_3 0.0478 0.00134
(0.1295) (0.0886)
[0.1390] [0.0913]
{0.1390} {0.1018}
(0.1390) (0.1018)
Alog(loans/P);_4 0.00213 0.0346
(0.0664) (0.0822)
[0.0717] [0.0839]
{0.0714} {0.0923}
(0.0714) (0.0923)
Alog(loans/P),_s 0.0928 0.136
(0.0355)** (0.0317)*%**
[0.0358]** [0.0321]***
{0.0357}** {0.0341 }***
(0.0357)** (0340) ***
Year FE No Yes
Observations 1,272 1,272
Groups 14 14
Test for groupwise heteroskedasticity
2%(N) 23.08 135.32
p-value 0.0590 0.0000

This table replicates Specifications (2) and (3) of Ta-
ble 3 in Schularick and Taylor (2012). The coefficients
are estimated using OLS in a model with fixed effects.
Cluster-robust standard errors (Arellano’s (1987)) are
in parenthesis;, PHC6 standard errors in brackets;
PHC3 in curly brackets; jackknife standard errors in
angle brackets. The test for groupwise heteroskedas-
ticity is a modified Wald test for fixed effect regression
model which tests the null hypothesis of constant vari-
ance of the disturbances against the alternative of non-
constant variance. Significance levels: *** (.01 **
0.05 *0.10.
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Table B.8. Replicates of Egert’s (2016) Table R1

M @) 3)
Dep. variable: Multi-Factor Productivity (MFP)
ETCR overall -0.058
(0.022)**
[0.0252]**
{0.0254} **
(0.0254)**
ETCR entry barriers -0.039
(0.0144)**
[0.01617**
{0.0162}**
(0.0162)**
ETCR public ownership -0.050
(0.0225)**
[0.0273]*
{0.0273}*
(0.0273)*
Openness size adjusted 0.006 0.006 0.007

(0.0028)%*  (0.0027)%*  (0.0025)%**
[0.0032]%  [0.0031]*  [0.0028]%*
{0.0032}*  {0.0031}*  {0.0028}**
(0.0032)*  (0.0031)*  (0.0028)**

Business exp. on R&D 0.048 0.043 0.072
(0.043) (0.0444) (0.0387)*
[0.0499] [0.0500] [0.0451]

{0.0500} {0.0509} {0.0451}
(0.0500) (0.0509) (0.0451)

Human capital 0.167 0.320 0.380
(0.338) (0.3203) (0.3084)
[0.3918] [0.3665] [0.3522]

{0.3930} {0.3684} {0.3526}
(0.3930) (0.3683) (0.3525)
Output gap 0.010 0.010 0.009
(0.0014)**%  (0.0016)***  (0.0012)%**
[0.0016]#**  [0.0018]***  [0.0013]***
{0.0016}**% {0.0018}*** {0.0013}***
(0.0016)***  (0.0018)***  (0.0013)*x*

Time FE No No No
Observations 844 844 844
Groups 34 34 34
Test for groupwise heteroskedasticity

22(N) 2037.36 2693.33 1605.04
p-value 0.0000 0.0000 0.0000

This table replicates baseline regression results in Table RI in Egert’s
(2016) Online Appendix. Cluster-robust standard errors (Arellano’s
(1987)) are in parenthesis; PHCG6 standard errors in brackets; PHC3 in
curly brackets; jackknife standard errors in angle brackets. The test for
groupwise heteroskedasticity is a modified Wald test for fixed effect regres-
sion model which tests the null hypothesis of constant variance of the dis-
turbances against the alternative of non-constant variance. Significance

levels: *%% (.01 **0.05 *0.10.
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Table B.9. Replicates of Berka et al.’s (2018) Table 4

Fixed effects
(2a) (2b) (2¢)
Dep. variable: log real exchange rate
TFP -0.10
(0.1582)
[0.1688]
{0.1691}
(0.1690)
TFPr 0.003 0.18

(0.1254)  (0.1418)
[0.1297]  [0.1418]
{0.1357}  {0.2087}
(0.1357)  (0.2069)
TEPy -0.36 -0.36
(0.2255)  (0.2637)
[0.2331]  [0.2637]
{02377} {03431}
(0.2377)  (0.3405)
RULCy 0.46
(0.1077)%**
[0.1077]#%*

{0.2133}*
(0.2113)*
Observations 117 117 117
Groups 9 9 9
Test for groupwise heteroskedasticity
2%(N) 16520  230.40 10.95
p-value 0.0000 0.0000 0.2792

This table replicates Table 4 in Berka et al. (2018). The
coefficients are estimated using OLS in a model with
fixed effects. Cluster-robust standard errors (Arel-
lano’s (1987)) are in parenthesis;, PHC6 standard er-
rors in brackets; PHC3 in curly brackets; jackknife
standard errors in angle brackets. Original standard
errors, omitted from the table, are calculated using
period weighting (PCSE) and degree-of-freedom cor-
rection. The test for groupwise heteroskedasticity is
a modified Wald test for fixed effect regression model
which tests the null hypothesis of constant variance
of the disturbances against the alternative of non-
constant variance. Significance levels: *** 0.01 **
0.05 *0.10.
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Table B.10. Summary statistics, female sample

Variable

Count

Mean Standard Deviation Minimum Maximum

Demographic characteristics

Women
Natives

EEA

non-EEA

Age

Black

Asian

Other ethnicity
Muslim
Christian
Other religions

Socio-economic factors
In couple

With dependent children
Years of Education
Experience

Training

In labour force
Employed

Part-time work

Public sector
Permanent job

Hours

Weekly hours

Remote work

Benefit

Female dominance
Low segregation

1,788,945
1,788,945
1,788,945
1,788,945
1,788,945
1,788,945
1,788,945
1,788,945
1,788,945
1,788,945
1,788,945

1,788,945
1,788,945
1,768,266
1,637,066
798,713
1,788,945
1,246,572
1,462,879
1,166,118
45,755
1,152,745
1,152,372
1,788,945
1,788,945
1,161,370
1,161,370

0.85
0.05
0.10
39.85
0.03
0.05
0.04
0.04
0.56
0.16

0.51
0.37
13.21
23.74
0.33
0.70
0.94
0.43
0.33
0.73
30.89
332
0.03
0.46
0.69
0.27

0.36
0.22
0.30
13.52
0.16
0.22
0.19
0.19
0.50
0.37

0.50
0.48
3.05
13.27
0.47
0.46
0.24
0.50
0.47
0.44
13.36
0.52
0.17
0.50
0.46
0.45

S OO

—_
@)}
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Notes: If applicable, the number of hours includes usual hours of paid overtime to total usual

hours worked in main job.
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Table B.11. Summary statistics, male sample

Variable

Count

Mean Standard Deviation Minimum Maximum

Demographic characteristics

Men

Natives

EEA

non-EEA

Age

Black

Asian

Other ethnicity
Muslim
Christian
Other religions

Socio-economic factors
In couple

With dependent children
Years of Education
Experience

Training

In labour force
Employed

Part-time work

Public sector
Permanent job

Hours

Remote work

Benefit

Female dominance
Low segregation

1,544,280
1,544,280
1,544,280
1,544,280
1,544,280
1,544,280
1,544,280
1,544,280
1,544,280
1,544,280
1,544,280

1,544,280
1,544,280
1,520,860
1,398,836
829,306
1,544,280
1,218,593
1,325,507
1,118,726
43,059
1,100,480
1,544,280
1,544,280
1,113,792
1,113,792

0.87
0.04
0.09
40.14
0.02
0.05
0.03
0.04
0.52
0.16

0.50
0.28
13.11
24.30
0.32
0.79
0.92
0.12
0.13
0.73
40.33
0.05
0.20
0.35
0.26

0.34
0.21
0.28
14.26
0.15
0.21
0.18
0.19
0.50
0.37

0.50
0.45
2.87
13.86
0.47
0.41
0.27
0.32
0.34
0.44
13.58
0.23
0.40
0.48
0.44

S O O

—_
@)}

eNeleleNoNe]
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Notes: If applicable, the number of hours includes usual hours of paid overtime to total usual

hours worked in main job.

Table B.12. Reason for part-time work, female sample

Percentage (%)

Reason for part-time work

Student or at school
111 or disabled

Could not find full-time job
Did not want full-time job

Total

11.72
2.16

10.43

75.69
100

Among those who did not want full-time job
Looking after children

Looking after incapacitated adult
Some other reason

Total

70.79
3.81

25.41
100
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Table B.13. List of female- and male-dominated sectors

Female dominated sectors Male dominated sectors
G - Distribution A - Agriculture, forestry & fishing
I - Accommodation & food services B - Mining & quarrying
L - Real estate services C - Manufacturing
P - Education D - Electricity, gas & air con supply
Q - Health & social work E - Water supply, sewerage & waste
S - Other service activities F - Construction
T - Households as employers H - Transport & storage

J - Information & communication

K - Financial & insurance services

M - Professional, scientific & technical activities
N - Admin & support services

R - Arts, entertainment & recreation

Notes: Sectors labelled as O - Public admin & defense and U - Extra territorial are re-
moved from the sample because their contracts and wages highly differ from other sectors
for the nature of the job.

Table B.14. List of high and low segregated sectors

High segregated sectors Low segregated sectors
C - Manufacturing A - Agriculture, forestry & fishing
F - Construction B - Mining & quarrying
H - Transport & Storage D - Electricity, gas & air con supply
I - Accommodation & food services E - Water supply, sewerage & waste
J - Information & communication G - Distribution
M - Professional, scientific & technical activities K - Financial & insurance services
P - Education, L - Real estate services
Q - Health & social work N - Admin & support services
S - Other service activities R - Arts, entertainment & recreation

T - Households as employers

Notes: Sectors labelled as O - Public admin & defense and U - Extra territorial are re-
moved from the sample because their contracts and wages highly differ from other sectors
for the nature of the job.
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Table B.15. Probit for in the labour force, marginal effects

Male sample Female sample
2005-2020 2020 2005-2020 2020
)] 2 3) “)
Dep. var: In the Labour Force
EEA 0.026*%**  0.046%**  -0.017*** -0.000
(0.001) (0.007) (0.002) (0.007)
non-EEA -0.007*** 0.007 -0.097***  -0.075%**
(0.001) (0.007) (0.002) (0.007)
In couple 0.038***  0.017***  -0.034%** -(0.043%**
(0.001) (0.003) (0.001) (0.003)
With dep. children 0.065***  0.070%**  0.023***  (.043%**
(0.001) (0.003) (0.001) (0.005)
Middle Education -0.005%*** -0.001 0.012%** 0.000
(0.001) (0.003) (0.001) (0.004)
High Education -0.017%** -0.006 -0.023%**  -0.017***
(0.001) (0.004) (0.001) (0.005)
Benefit -0.239%*%  .(0.253%** (. 256%**  -(.239%**
(0.001) (0.003) (0.001) (0.004)
Time FE Yes Yes Yes Yes
Region Controls Yes Yes Yes Yes
Socio-demographic Controls Yes Yes Yes Yes
Observations 1,381,712 6,1380 1,622,063 73,930

Notes: Data from UK Labour Force Survey (LFS). All models are estimated using a
Probit for binary dependent variables. Marginal effects are reported with their sig-
nificance levels. Robust standard errors in parenthesis. Significance levels: p<0.01
4k p<0.05 ** p<0.1 *



Table B.16. Contribution of individual components of KBO decomposition, pooled sample
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Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Endowments
In(hours) 0,121 -0, 104%8%  -0,159%%*  -0,129%F*  -0.131%**  -0.130%*F*  -0.110%** -0.071%F*  -0.110%** -0.162%** -0.126%** -0.113%** -0,129%%*F -0.087*** -,07]***
(0.013) (0.013) (0.013) (0.013) (0.014) (0.014) (0.013) (0.013) (0.014) (0.014) (0.014) (0.014) (0.015) (0.016) (0.015)
In(hours)? 0.120%#%  0,098*%*F  0.161%**  (.127*%%  0.135%*  (.131%k*  0.108***  0.072%%*F  0.107*%%*  0.167***  0.130%**  0.115%%*  0.135%%*  0.082%**  0.065%**
(0.014) (0.014) (0.015) (0.014) (0.015) (0.015) (0.015) (0.015) (0.016) (0.016) (0.015) (0.015) (0.017) (0.017) (0.017)
EEA -0.000 -0.000 0.000 0.000 0.000 0.000* 0.000 0.000%* 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
non-EEA -0.000%* -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Age 0.011 0.028##*  0.029%* 0.004 0.004 0.002 0.009* 0.001 0.003 0.007 0.005 0.000 0.004 0.003 0.015%
(0.007) (0.008) (0.010) (0.010) (0.003) (0.002) (0.004) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003) (0.002) (0.006)
Age? 0.014 -0.009 0.002 0.024* 0.004 0.006 -0.003 0.006 0.001 -0.001 -0.001 0.002 -0.002 -0.001 -0.005
(0.008) (0.009) 0.011) (0.011) (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.004)
experience 0.011%* 0.011%* 0.010 0.025%* 0.005%* 0.003 0.004 0.008** 0.004 0.004 0.005%* 0.006* 0.003 0.005* -0.002
(0.005) (0.005) (0.006) (0.007) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.002)
Experience? -0.038#%*  -0.035%#* -0.040%** -0.053%F* -0.011%* -0.007 -0.008**  -0.011**  -0.006* -0.008* -0.006* -0.005 -0.003 -0.004 -0.006*
(0.005) (0.006) (0.007) (0.007) (0.003) (0.004) (0.003) (0.004) (0.003) (0.003) (0.003) (0.004) (0.002) (0.003) (0.003)
Midle educ -0.001 -0.001 -0.001 -0.001 -0.001* 0.000 -0.001 -0.002* -0.000 -0.001 -0.001* -0.000 -0.000 -0.001* 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001)
High educ 0.003##*  0.001* 0.002%#%* 0.001 0.002%* 0.002%* 0.001 0.001 0.001 0.001 -0.000 -0.001 -0.001 -0.001 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
years educ 0.010%* 0.002 -0.003 -0.010%* 0.001 0.004 -0.001 -0.012%* -0.006 -0.012%* -0.006  -0.017#% -0.020%%* -0.020%** -0.024%%*
(0.003) (0.004) (0.004) (0.004) (0.004) (0.005) (0.004) (0.005) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.006)
years educ? -0.004 0.001 0.006 0.0127%* 0.002 0.001 0.004 0.012%* 0.007 0.012%* 0.006 0.016%%*  0.019%**  0.018%**  (,021%**
(0.003) (0.003) (0.004) (0.004) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)
Training -0.001##% -0,002%*%*  -0.002%**  -0.001%* -0.001*** -0.001*** -0.001** -0.001***  -0.000*  -0.001***  -0.000 -0.000 -0.000 -0.000 -0.001%*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
In couple -0.000 0.000 0.000 0.000 0.000 0.001%* 0.000 0.000 0.001 0.000 0.000 0.001 0.001* 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
With dep. children 0.0047#*  0,003***  0.004%**  0.002%%* 0.002%**  0.001%*  0.002%** 0.002%*  0.002%* 0.001%#* 0.001%* 0.002%* 0.0027* 0.000
. (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.000)
In couple with dep. children 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 0.001 0.001 0.001°* 0.001* 0.001 0.001 0.001* 0.002*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001)
fml dominated sector 0.051%%%  0.049%%%  0.049%%*  (,050%**  0.047*%**  0.053%**%  0.055%**  0.056%**  0.054%%* 0.060%**  0.049%**  (.,052%*%*  0.054%*F  0.056%FF  0.056%**
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
low segregation 0.000 0.003%#* 0.002%* 0.001 0.001 0.001* 0.000 0.002%* 0.001* 0.000 0.000 -0.000 0.000 0.000 0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
fml dom sector and low segr. ~ -0.000  -0.003***  -0.001 -0.001 -0.001 -0.001°* -0.001 -0.0027##*%  -0.002%* -0.001 -0.000 -0.000 -0.001°%* -0.001* -0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Public -0.014%%*% 0,013+ -0.013%** -0.018** -0.017*** -0.016** -0.018%** -0.016*** -0.015%** -0.013*** -0.010%** -0.008*** -0.006%** -0.007*** -0.013%%*
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Coefficients
In(hours) 1.912%%% - 1.232%#% D 77H¥%  2.654% k% (0. 864%%*  1.598% k% ] 459Kk ] 235%kE (. 764%F  2.611%FF  [.836%*F  1.858%kF 2 J06FHF  2204% kK ] 2748wk
(0.241) (0.229) (0.233) (0.245) (0.229) (0.222) (0.241) (0.245) (0.241) (0.273) (0.271) (0.280) (0.314) (0.307) (0.350)
In(hours)? -1.087#%k (. 789% ik ] 274k ] 4TQ%R% 0.637H %k -0.9T1FkE 0.884% k(796K *  -0.530% k] 447k ] 072%k ] QFHE ] 246% R ] Q5] HE (), 83Tk
(0.123) (0.120) (0.123) (0.130) (0.122) (0.118) (0.128) (0.129) (0.128) (0.143) (0.142) (0.146) (0.163) (0.162) (0.188)
EEA -0.001 0.000 0.000 -0.001 -0.001 -0.000 0.000 -0.000 -0.003* -0.003* -0.004* -0.001 -0.002 -0.002 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
non-EEA 0.000 0.000 -0.000 -0.001 -0.001 -0.004#* -0.003 -0.001 -0.003 -0.002 0.000 -0.001 -0.003 -0.003 0.001
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Age -0.154 0.137 -0.035 0.605 0.435 0.494 -0.029 0.9447#* 0.254 -0.103 0.159 0.960%* -0.295 0.247 0.020
(0.305) (0.289) (0.304) (0.317) (0.345) (0.331) (0.333) (0.340) (0.340) (0.355) (0.339) (0.351) (0.352) (0.363) (0.432)
Age? -0.175 -0.078 0.012 -0.262 -0.043 -0.388* 0.182 -0.434%% -0.085 0.107 0.115 -0.275 0.227 0.150 -0.039
(0.146) (0.141) (0.145) (0.153) (0.170) (0.163) (0.167) (0.168) (0.171) (0.181) (0.175) (0.178) (0.183) (0.188) (0.225)
Experience 0.319%* 0.088 0.130 -0.076 -0.026 0.141 0.093 -0.122 0.065 0.133 -0.082 -0.295% 0.136 -0.123 0.183
(0.117) (0.108) (0.116) (0.120) (0.134) (0.127) (0.125) (0.125) (0.125) (0.128) (0.117) (0.123) (0.120) (0.122) (0.150)
Experience? 0.011 -0.001 -0.047 0.049 -0.069 0.038 -0.126%* 0.070 -0.038 -0.067 -0.044 0.058 -0.107 -0.065 -0.073
(0.049) (0.046) (0.048) (0.050) (0.058) (0.055) (0.056) (0.056) (0.057) (0.060) (0.057) (0.059) (0.060) (0.062) (0.075)
Midle educ 0.014%#* 0.004 0.006 -0.001 -0.001 0.017%* -0.005 -0.006 0.006 0.006 -0.006 -0.003 0.000 -0.009 0.001
(0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007)
High educ 0.015%* 0.001 -0.000 -0.006 -0.007 0.006 -0.017* -0.010 -0.001 0.001 -0.013 -0.022* -0.000 -0.028%#* -0.010
(0.005) (0.006) (0.006) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.010) (0.012)
years educ 0.316 0.341 0.155 0.463* 0.376 0.475% 0.548* 0.362 0.783%* 0.865%* 0.859%* 0.786%* 0.324 0.8997* 0.720%*
(0.198) (0.202) (0.213) (0.223) (0.244) (0.239) (0.252) (0.256) (0.260) (0.278) (0.282) (0.283) (0.295) (0.310) (0.353)
years educ? -0.165 -0.168 -0.076 -0.206* -0.183 -0.207 -0.243%* -0.155 -0.347%% - -0.373%%  -0.378*%*  -0.335*% -0.108 -0.400%* -0.300
(0.090) (0.092) (0.097) (0.103) (0.113) (0.110) (0.117) (0.120) (0.122) (0.131) (0.133) (0.135) (0.140) (0.148) (0.170)
Training 0.010 0.003 0.011%* 0.019%* 0.008 -0.001 0.006* 0.004 0.0077#* 0.002 0.006%* 0.0067%* 0.004 0.0067%* 0.003
(0.005) (0.005) (0.005) (0.006) (0.005) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
In couple 0.0427%#%  0,025%%*F  0.044%%*  (0,036%** 0.018* 0.016* 0.051%%*  0.029%%*  0.040%**  (.048%**  0.042%%*  (,035%**  0.033%%*  (0.025%*  0.04]1%**
(0.007) (0.007) (0.007) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.009)
With dep. children 0.037:##%  (0,043%%k  0.048%#*  (0,043%%F  0.042%%*  (0.034%kF  0.048%**  0.036%F*F  0.043%*F  0.031%*  0.036%**  0.031%FF  0.036%**  0.038%F*  0.027%*
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.009)
In couple with dep. children -0.004 0.001 -0.006 -0.000 -0.005 -0.001 -0.023*##*  -0.001 -0.012 -0.012 -0.009 -0.006 -0.006 -0.013 -0.006
(0.006) (0.006) (0.006) (0.007) (0.007) (0.006) (0.007) (0.007) (0.006) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008)
Works in London 0.003 0.0047* 0.003* 0.002 0.002 0.003* 0.001 0.000 0.004* -0.001 -0.000 -0.001 -0.001 -0.002 -0.002
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)
fml dominated sector -0.019*%  -0.026%*F  -0.027** -0.014  -0.048%%F  -0.029**  -0.023*  -0.025**  -0.024* -0.023%* -0.025%  -0.031%F  -0.029%*  -0.023* -0.029*
(0.009) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.011) (0.012)
Low segregation -0.007 0.013%* 0.004 0.002 0.008 0.014* 0.004 0.010 0.009 0.006 0.002 -0.001 0.018** 0.015* 0.002
(0.005) (0.005) (0.005) (0.005) (0.006) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
fml dom sec and low segr. 0.014%* -0.001 0.004 0.002 0.008 -0.001 -0.002 -0.004 0.005 0.008 0.004 0.010 -0.003 -0.007 -0.001
(0.005) (0.005) (0.005) (0.005) (0.006) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Public -0.012°%%  -0.010%*  -0.014*** -0.016%** -0.013%* 0.009%  -0.017#%% -0.016%** -0.015%* -0.005 -0.011* -0.004 0.001 -0.001 -0.013%*
(0.004) (0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006)
Observations 32,066 33,053 31,683 29,746 26,656 27,577 26,540 26,531 27,039 25,873 24,915 25,819 24,236 23,151 21,378

Notes: Contribution of main socio-demographic characteristics, human capital attributes and sectoral indicators. Significance levels:

pvalue<0.01 **% pvalue<0.05 ** pvalue<0.1 *.
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Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Endowments
In(hours) -0.078**%  -0.044%%  -0.095%** -0.075%**F -0.072%**  -0.038%*  -0.051%%* -0.048*F* -0.054%**  -0.046%*  -0.067F**  -0.040%*  -0.058%**  -0.048%*  -0.044%*
(0.014) 0.014) (0.015) (0.013) (0.013) (0.014) (0.014) (0.014) (0.014) (0.015) (0.014) (0.014) (0.016) (0.017) (0.016)
In(hours)? 0.073%* 0.036* 0.095%#%  0,075%%*  0.074%%* 0.033* 0.046**  0.046**  0.050%**F  0.044**  (0.065%%** 0.038* 0.0567%* 0.043%* 0.034*
(0.016) (0.015) (0.017) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.017) (0.015) (0.015) (0.017) (0.019) (0.017)
EEA -0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
non-EEA -0.002* -0.002* -0.001 -0.001 -0.001* -0.002* -0.001 -0.001 -0.000 -0.002%*  -0.002* -0.000 0.000 -0.000 -0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)
Age -0.001 0.001 0.006 -0.009 -0.004 -0.004 -0.014* 0.002 -0.001 -0.001 0.000 0.001 -0.012 0.000 -0.021%*
(0.002) (0.001) (0.005) (0.006) (0.006) (0.005) (0.007) (0.006) (0.006) (0.006) (0.006) (0.005) (0.007) (0.006) (0.009)
Age? 0.005 0.004 0.008 0.032%* -0.004 -0.009 0.002 -0.014* -0.011 -0.006 -0.010 -0.008 0.000 -0.007 0.006
(0.004) (0.004) (0.008) (0.009) (0.004) (0.005) (0.005) (0.006) (0.006) (0.005) (0.006) (0.005) (0.006) (0.006) (0.006)
Experience -0.001 -0.002 0.002 0.010% -0.009 -0.004 -0.005 -0.012* -0.013*%  -0.018*%*  -0.018*** -0.017**  -0.011*  -0.016%* 0.003
(0.002) (0.002) (0.002) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.005) (0.006) (0.004)
Experience? -0.005 -0.013%*  -0.019%** -0.035%**  0.010* 0.018%* 0.012%%  0.020%**  0.020%**F  0.019%*  0.024%**  0.020%**  0.017**  0.019%%** 0.010*
(0.005) (0.004) (0.005) (0.007) (0.004) (0.005) (0.004) (0.006) (0.005) (0.006) (0.006) (0.006) (0.005) (0.006) (0.005)
Middle educ 0.000 -0.000 -0.000 -0.001 -0.000 0.001 -0.000 -0.000 0.000 -0.001 0.000 -0.000 0.000 -0.000 0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
High educ 0.004%#%  0.006%**  0.007***  0.005%**F  0.005%**  0.004%* 0.004#* 0.003* 0.003%* 0.005%* 0.002* 0.003* 0.001 0.003 0.001
(0.001) (0.001) (0.002) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
Years educ 0.004 -0.006 -0.012 -0.013* -0.004 -0.003 -0.015% -0.014* -0.016%  -0.017**  -0.013*  -0.029%**  -0.026%*  -0.022%*  -0.03]1%**
(0.004) (0.005) (0.006) (0.006) (0.005) (0.007) (0.007) (0.007) (0.006) (0.005) (0.006) (0.008) (0.008) (0.007) (0.009)
Years educ2 0.001 0.009%* 0.015%* 0.014%* 0.006 0.007 0.016%*  0.015%* 0.016%* 0.016%* 0.013* 0.028***  0.025%**  0.020%*  0.029%**
(0.003) (0.004) (0.005) (0.006) (0.004) (0.006) (0.006) (0.006) (0.006) (0.005) (0.006) (0.007) (0.007) (0.006) (0.008)
Training -0.0027%#%  -0,003*** -0.003%** -0.002%** -0.001**  -0.001**  -0.001*  -0.001%** -0.000 -0.001* -0.000 -0.000 -0.000 -0.000 -0.000
(0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
In couple 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
With dep. children 0.004%%  0.007*%*  0.005%*  0.005%%*  0.004*%*  0.003*%*F*  0.003%*  0.004%** 0.002%  0.003%**  0.003%* 0.002%*  0.002%* 0.002%* 0.001
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
In couple with dep. children ~ -0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.001 0.001
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)
Low segr. 0.002 0.001 0.001 0.006%* 0.004 0.003 0.008*%*  (.009%#* 0.005%* 0.006%* 0.002 0.007#%  0.007**  0.011%%*  0.020%**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)
Public -0.018*#*  -0,018*%*F -0.018%** -0,026%%* -0.021%** -0.020%** -0.021%%* -0,022%** -0.019%** -0,017*** -0.014%** -0.013%** -0.010%** -0.012%** -0.017*%**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Coefficients
In(hours) 0.9637#* -0.121 1.120%%%  1,969%#* -0.066 1.544%%% 1,098+ ] 373%** -0.155 0.818* 1.4027%%% 1484+ ] 403%+*  ].332%kk ] 367%*
(0.329) (0.342) (0.323) (0.341) (0.282) (0.313) (0.308) (0.368) (0.295) (0.332) (0.408) (0.395) 0.411) (0.404) (0.476)
In(hours)? -0.546%* -0.035  -0.626%*F*  -1.104%**  -0.041 -0.758#%% 0,602+ **  -0.690%** 0.062 -0.400%  -0.713%%%  -0.760***  -0.697** -0.727%F*  -0.682%*
(0.171) (0.180) (0.173) (0.183) (0.155) (0.167) (0.166) (0.193) (0.159) (0.177) (0.215) (0.206) (0.215) (0.216) (0.257)
EEA 0.001 0.000 0.000 -0.000 -0.002 0.000 -0.001 -0.002 -0.004*  -0.005%* -0.001 0.001 0.000 -0.000 -0.001
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
non-EEA -0.000 0.001 -0.003 -0.002 -0.002 -0.005* -0.005%* -0.000 -0.005 -0.001 0.001 -0.005 -0.006* -0.006 0.000
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Age -0.018 0.749 0.486 0.586 0.321 0.561 -0.063 1.178* 0.530 -0.379 -0.128 0.551 -0.781 0.227 -0.285
(0.419) (0.408) (0.419) (0.419) (0.472) (0.442) (0.429) (0.458) (0.440) (0.471) (0.435) (0.464) (0.464) (0.500) (0.587)
Age? -0.388 -0.340 -0.130 -0.074 0.213 -0.522%* 0.336 -0.590%* -0.194 0.399 0.185 0.054 0.428 0.200 0.210
(0.199) (0.199) (0.197) (0.200) (0.230) (0.218) (0.220) (0.227) (0.225) (0.241) (0.228) (0.236) (0.245) (0.260) (0.304)
Experience 0.458%* -0.058 -0.007 -0.137 0.008 0.193 0.065 -0.125 -0.012 0.160 0.020 -0.260 0.253 -0.101 0.150
(0.165) (0.155) (0.162) (0.162) (0.186) (0.171) (0.162) (0.170) (0.162) (0.174) (0.150) (0.165) (0.158) (0.168) (0.210)
Experience” 0.012 0.039 -0.067 -0.039 -0.234%% 0.050 -0.205%* 0.078 -0.039 -0.190* -0.073 -0.033 -0.148 -0.117 -0.129
(0.069) (0.067) (0.067) (0.068) (0.081) (0.076) (0.076) (0.078) (0.078) (0.082) (0.077) (0.080) (0.082) (0.087) (0.105)
Middle educ 0.018%* 0.008 0.002 -0.004 -0.003 0.018%* -0.014* -0.003 0.001 0.004 -0.001 0.000 0.007 -0.010 -0.003
(0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008) (0.007) (0.008) (0.008) (0.009) (0.010)
High educ 0.0227%%* -0.004 -0.013 -0.012 -0.019 0.006 -0.022% -0.007 -0.005 -0.006 -0.002 -0.013 0.013 -0.022 -0.010
(0.007) (0.008) (0.008) (0.009) (0.010) (0.009) (0.010) (0.010) (0.010) (0.011) (0.011) (0.012) (0.012) (0.013) (0.016)
Years educ 0.651* 0.497 0.159 0.432 0.311 0.088 0.362 -0.066 0.501 0.400 0.731 0.606 0.058 0.786 -0.031
(0.300) (0.314) (0.322) (0.327) (0.363) (0.346) (0.364) (0.367) (0.365) (0.395) (0.395) (0.403) (0.410) (0.449) (0.496)
Years educ2 -0.333* -0.265 -0.115 -0.247 -0.178 -0.072 -0.164 0.035 -0.243 -0.201 -0.363 -0.289 -0.024 -0.397 0.048
(0.138) (0.145) (0.149) (0.153) (0.170) (0.162) (0.171) (0.174) (0.173) (0.188) (0.188) (0.194) (0.197) (0.216) (0.241)
Training 0.021* 0.002 0.011 0.0307%* 0.005 -0.002 0.005 -0.000 0.005 -0.002 0.006* 0.004 0.002 0.006 0.005
(0.008) (0.009) (0.009) (0.009) (0.009) (0.004) (0.004) (0.004) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003)
In couple 0.044%#% 0.031%%  0.051%%* 0.020 0.014 -0.000 0.038**  0.035%%  0.043%**F  0.056%**  0.058%**  0.037** 0.015 0.022 0.044%*
(0.012) (0.012) (0.012) (0.012) (0.013) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.013) (0.014)
With dep. children 0.031* 0.0527%%*%  0.050%#* 0.028* 0.0457%#% 0,042%%* 0,047+ 0.015 0.0407% %% 0.027* 0.037%%  0.045%**  0.039%* 0.033%* 0.015
(0.013) (0.013) (0.013) (0.013) (0.013) (0.012) (0.012) (0.013) (0.012) (0.012) (0.012) (0.013) (0.013) (0.014) (0.014)
In couple with dep. children 0.003 -0.000 -0.010 0.011 -0.009 -0.004 -0.013 0.016 -0.003 -0.008 -0.015 -0.016 -0.006 -0.004 0.007
(0.010) (0.011) (0.010) (0.011) (0.011) (0.010) (0.010) (0.010) (0.009) (0.009) (0.010) (0.010) (0.010) (0.011) (0.011)
Low segr. 0.0227%#%  0.016%* 0.015%* 0.010 0.026%#*  0.018** 0.005 0.010 0.022:%%  0,027*%%  0.014%%  0.019%%*  0.019%** 0.009 0.006
(0.006) (0.006) (0.006) (0.005) (0.006) (0.005) (0.006) (0.005) (0.006) (0.006) (0.005) (0.005) (0.006) (0.006) (0.006)
Public -0.001 -0.002 0.008 -0.006 0.007 0.023#* -0.003 0.006 0.006 0.0277##* 0.010 0.010 0.019%* 0.013 0.004
(0.007) (0.008) (0.008) (0.008) (0.009) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.010)
Observations 15,020 15,308 14,911 14,172 13,246 13,737 13,336 13,313 13,433 12,879 12,468 12,945 12,151 11,563 10,383

Notes: Contribution of main socio-demographic characteristics, human capital attributes and sectoral indicators. Significance levels: pvalue<0.01 ***, pvalue<0.05 **, pvalue<0.1 *.
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Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Endowments
In(hours) -0.164%%% 0, 189% % 0. 213%** 0, 195%FF  -0.221%%*  0.250% k% -0.183%%* 0. 110%**  -0.216%FF -0271%F*  -0.209%** -0.261%FF  -0.216%*F -0, 118*F*  -0.11]1%**
(0.020) (0.020) (0.019) (0.022) (0.025) (0.023) (0.021) (0.024) (0.027) (0.022) (0.025) (0.027) (0.025) (0.023) (0.027)
In(hours)? 0.171%%% 0.193%%#  0.220%%*  (.187%***  0.228%**  (256%**  0.191%%*  (.119%%*  0.222%%k  (285%k*  (.229%%k  (279%k*  (0.24]1%%k (. 117%F*  0.119%%*
(0.022) (0.022) (0.022) (0.024) (0.028) (0.025) (0.024) (0.027) (0.030) (0.024) (0.028) (0.030) (0.028) (0.026) (0.030)
EEA -0.000 0.000 0.000 -0.000 0.000 0.001* 0.001°* 0.003* 0.002%* 0.002* -0.000 0.0027%* 0.001 0.000 0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
non-EEA 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.001 -0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
Age 0.034 0.139%%%  0.093%*  0.100%** 0.015 0.011 0.048* 0.025 0.043%  0.072%**  0.063%* 0.013 0.036* 0.059%* 0.071%*
(0.032) (0.031) (0.032) (0.030) (0.023) (0.018) (0.022) (0.021) (0.020) (0.021) (0.020) (0.016) (0.016) (0.019) (0.026)
Age? -0.022 -0.081%* -0.019 -0.061 0.021 0.005 -0.024 -0.016 -0.038 -0.032 -0.048* -0.003 -0.027 -0.050* -0.031
(0.032) (0.032) (0.033) (0.031) (0.023) (0.018) (0.022) (0.022) (0.020) (0.020) (0.019) (0.016) (0.016) (0.019) (0.025)
Experience 0.072%+ -0.006 0.021 0.011 0.038* 0.0417%* 0.034%* 0.0457%* 0.031% 0.003 0.013 0.039%* 0.021 0.018 -0.003
(0.022) (0.021) (0.022) (0.020) (0.017) (0.014) (0.016) (0.016) (0.015) (0.014) (0.013) (0.013) (0.011) (0.013) (0.017)
Experience? -0.078*#%  -0.055%%  -0.093%**  -0.051%* -0.065%F* -0.046%** -0.049%** -0.044%kF  -0,027*%  -0.038***F  -0.019  -0.037%**  -0.022* -0.019 -0.034*
(0.018) (0.018) (0.019) (0.017) (0.014) (0.011) (0.013) (0.013) (0.011) (0.011) (0.010) (0.010) (0.009) (0.010) (0.014)
Middle educ -0.005%* -0.002 0.001 -0.001 -0.003 -0.003 -0.002 -0.005%* -0.002 -0.000 -0.002 -0.002 -0.002* -0.003* -0.000
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
High educ 0.001 -0.001 -0.000 -0.001 -0.000 -0.001 -0.002 -0.003 -0.003* -0.001 -0.003*  -0.009%**  -0.007**  -0.008** -0.004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002)
Years educ 0.029%* 0.018* 0.016* 0.004 0.018* 0.0227%* 0.014* -0.002 0.010 -0.001 0.005 -0.002 -0.010 -0.025% -0.017%*
(0.008) (0.007) (0.007) (0.007) (0.007) (0.008) (0.007) (0.009) (0.007) (0.009) (0.007) (0.006) (0.006) (0.010) (0.008)
Years educ2 -0.0227%#*  -0.016* -0.012 -0.000 -0.013* -0.018* -0.012 0.002 -0.008 0.000 -0.005 0.001 0.009 0.021°%* 0.014*
(0.007) (0.006) (0.006) (0.006) (0.006) (0.007) (0.006) (0.008) (0.006) (0.008) (0.007) (0.006) (0.006) (0.009) (0.007)
Training 0.002* 0.002 0.002* 0.003%* 0.002* 0.001 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.001)
In couple -0.000 0.001 -0.001 -0.001 0.002 0.002 0.000 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
With dep. children 0.002* 0.001 0.000 0.002* 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.001 -0.000
(0.001) (0.001) (0.000) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.000) (0.001) (0.000) (0.001) (0.001) (0.000)
In couple with dep. children  0.002* 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.005%* 0.002 0.002 0.001 0.002 0.001 0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Low segr. 0.001 0.007#%* 0.004* 0.002 0.002 0.004* 0.000 0.0047%* 0.003* 0.000 -0.001 -0.001 0.002 0.000 -0.004#*
(0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002)
Public -0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.001* 0.001* 0.001* 0.002* -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.001) (0.000)
Coefficients
In(hours) 3.093%%#  3,009%#*  3.336%*F 3 982%H* D 9]k D 002%HF  1.968%FF ] 39FHHE 2 055% Kk 4.865%H*  2.681%FF  3365FHFF  2.906%HF  3,063%** 1.275%
(0.395) (0.358) (0.367) (0.393) (0.430) (0.346) (0.403) (0.389) (0.437) (0.477) (0.415) (0.448) (0.497) (0.482) (0.565)
In(hours)? S1.784% % L] 7940k J] Q8RHE D 160K -1.443%H% 1] 4045 % L1 306%FF  -1.089%FF -1 365K L2 780K -] T14%k% LD 056K -1.923%k% ] TR L] 097
(0.204) (0.192) (0.197) (0.210) (0.227) (0.189) (0.216) (0.212) (0.234) (0.248) (0.225) (0.242) (0.262) (0.256) (0.310)
EEA -0.002 0.000 0.000 -0.001 -0.000 -0.001 0.002 0.003 -0.001 -0.001 -0.007* -0.001 -0.001 -0.003 0.001
(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
non-EEA -0.000 -0.001 0.000 -0.000 -0.000 -0.005* -0.000 -0.004 0.000 -0.005 -0.001 0.002 -0.001 -0.004 0.001
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Age -0.325 -1.068* -0.739 -0.461 0.566 0.292 -0.397 0.349 -0.542 -0.620 -0.308 0.892 -0.224 -0.652 -0.117
(0.515) (0.458) (0.489) (0.542) (0.581) (0.546) (0.564) (0.572) (0.587) (0.588) (0.573) (0.576) (0.587) (0.589) (0.695)
Age? 0.174 0.373 0.179 0.110 -0.332 -0.114 0.224 -0.060 0.371 0.131 0.427 -0.342 0.248 0.544 -0.102
(0.248) (0.223) (0.237) (0.266) (0.290) (0.269) 0.277) (0.282) (0.290) (0.297) (0.291) (0.293) (0.304) (0.305) (0.359)
Experience 0.024 0.348* 0.213 0.160 -0.181 -0.054 0.077 -0.157 0.117 0.223 -0.082 -0.315 -0.002 -0.009 0.211
(0.187) (0.163) (0.176) (0.196) (0.218) (0.201) (0.206) (0.200) (0.213) (0.203) (0.194) (0.194) (0.196) (0.196) (0.234)
Experience? 0.020 -0.047 0.034 0.030 0.170 0.056 -0.023 0.050 -0.084 0.029 -0.085 0.125 -0.060 -0.083 0.010
(0.080) (0.070) (0.075) (0.084) (0.096) (0.087) (0.088) (0.089) (0.093) (0.094) (0.092) (0.091) (0.096) (0.096) (0.114)
Middle educ 0.004 0.004 0.013 0.005 -0.002 0.006 0.000 -0.012 0.004 0.012 -0.013 -0.008 -0.015 -0.015 -0.004
(0.007) (0.007) (0.007) (0.008) (0.009) (0.008) (0.009) (0.009) (0.009) (0.010) (0.010) (0.009) (0.010) (0.010) (0.011)
High educ 0.002 0.014 0.014 0.007 0.001 -0.001 -0.009 -0.018 -0.000 0.020 -0.022 -0.034 -0.027 -0.031 -0.013
(0.009) (0.009) (0.010) (0.011) (0.012) (0.012) (0.013) (0.013) (0.015) (0.015) (0.015) (0.016) (0.017) (0.018) (0.022)
Years educ -0.169 -0.108 -0.040 0.254 0.186 0.616 0.516 0.157 0.721 0.360 0.770 0.885 0.731 0.502 1.203*
(0.316) (0.313) (0.330) (0.357) (0.394) (0.385) (0.403) (0.415) (0.430) (0.449) (0.457) (0.457) (0.481) (0.500) (0.559)
Years educ2 0.073 0.062 0.042 -0.062 -0.059 -0.228 -0.229 -0.057 -0.311 -0.106 -0.321 -0.352 -0.259 -0.169 -0.523
(0.141) (0.141) (0.149) (0.163) (0.179) (0.176) (0.186) (0.193) (0.199) (0.210) (0.215) (0.215) (0.228) (0.238) (0.269)
Training -0.012 -0.011 -0.003 -0.006 -0.009 -0.007 0.002 0.001 0.003 -0.002 0.004 0.003 0.001 0.000 -0.003
(0.007) (0.007) (0.008) (0.008) (0.008) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
With dep. children 0.049%#%  0,037+%*F  0.044%**  0,050%%F  0.045%+*  0.028%*  0.052%%*  0.043%F*  (,052%%* 0.030%* 0.0367%* 0.026%* 0.036%* 0.033%* 0.028*
(0.010) (0.010) (0.010) (0.011) (0.012) (0.011) (0.012) (0.012) (0.012) (0.012) (0.013) (0.013) (0.013) (0.013) (0.014)
In couple with dep. children ~ -0.014 -0.005 -0.006 -0.008 -0.007 -0.002  -0.036***  -0.013 -0.030%* -0.020 -0.011 -0.008 -0.012 -0.014 -0.014
(0.009) (0.008) (0.009) (0.010) (0.010) (0.009) (0.010) (0.010) (0.010) (0.010) (0.011) (0.011) (0.011) (0.012) (0.012)
Low segr. -0.005 0.010%* 0.002 0.002 0.005 0.010* 0.001 0.005 0.007 0.003 0.001 -0.001 0.013%* 0.011%* 0.001
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.004) (0.005) (0.005) (0.004) (0.005) (0.005) (0.005)
Public -0.000 0.002 -0.001 0.001 -0.000 -0.001 -0.002 -0.004 -0.003 -0.003 -0.002 0.001 0.002 0.005%* -0.003
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
(0.333) (0.303) (0.319) (0.339) (0.371) (0.335) (0.356) (0.359) (0.383) (0.401) (0.380) (0.387) (0.409) (0.416) (0.464)
Observations 17,046 17,745 16,772 15,574 13,410 13,840 13,204 13,218 13,606 12,994 12,447 12,874 12,085 11,588 10,995

Notes: Contribution of main socio-demographic characteristics, human capital attributes and sectoral indicators. Significance levels:

pvalue<0.01 ***, pvalue<0.05 **, pvalue<0.1 *.



Table B.19. Selected covariates by LASSO

Dep.var. In_wage Permanent Part-time work In_hrs Remote work Female dom. sector
Lasso Post-est OLS Lasso Post-est OLS Lasso Post-est OLS Lasso Post-est OLS Lasso Post-est OLS  Lasso  Post-est OLS

Selected covariates

female 0.048 0.047 -0.039 -0.040 0.118 0.115

incouple 0.024 0.043 0.008 0.011

kids 0.019 0.019 0.045 0.032

female#incouple

01 0.081 0.081 0.010 0.024 -0.014 -0.011 0.025 0.024 0.002 -0.003 -0.012 -0.017

11 0.111 0.121 -0.108 -0.110

female#kids

01 0.038 0.035 -0.031 -0.028 0.026 0.027

11 0.119 0.123 -0.106 -0.105

10 -0.040 -0.039 -0.012 -0.014

incouple#kids

01 0.023 0.048  0.0440.051 -0.028 -0.030

10 -0.011 -0.014

11 0.021 0.020 0.007 0.009

age 0.010 0.008 -0.015 -0.033 0.038 0.048 -0.000 -0.001

c.age#fc.age 0.000 0.000 -0.000 -0.000 0.000 0.000

group2

EEA -0.020 -0.019 -0.008 -0.020 -0.077 -0.076 0.114 0.112

NEEA -0.035 -0.033 -0.016 -0.029 0.027 0.034 -0.017 -0.018 -0.004 -0.012 0.012 0.035

black -0.052 -0.053 -0.036 -0.044 0.045 0.046

asian -0.051 -0.054 -0.006 -0.017 -0.023 -0.025

other_ethn -0.051 -0.053 -0.043 -0.059 0.028 0.028 -0.019 -0.021 0.037 0.064

muslim -0.070 -0.068 0.093 0.103 -0.113 -0.115 0.063 0.095

crist -0.046 -0.046 -0.007 -0.009

other relig 0.015 0.019 0.013 0.016 -0.020 -0.020

education

intermediate educ ~ 0.051 0.051 -0.023 -0.044 0.010 0.005 -0.022 -0.019 0.004 0.012

higher educ 0.120 0.121 -0.047 -0.075 0.005 0.007 -0.010 -0.027

yrseduc 0.094 0.128 0.001 0.001

yrseduc2 -0.003 -0.004

experience 0.013 0.015 -0.005 -0.000 0.002 -0.002

experience2 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000

trnopp -0.006 -0.006 0.061 0.070 -0.0328 -0.034 0.057 0.058

public -0.037 -0.039 -0.155 -0.166 0.067 0.071 -0.138 -0.138 -0.040 -0.052 0.332 0.350

s0C

Professional O.. 0.050 0.034 -0.087 -0.091 0.006 -0.028

Associate Prof.. -0.164 -0.182 0.018 0.037 -0.108 -0.116 0.032 -0.000 -0.029 -0.037

Administrative. -0.440 -0.467 -0.075 -0.090 0.095 0.105 -0.184 -0.194 -0.004 -0.049 -0.051 -0.062

Skilled Trades.. -0.436 -0.455 0.002 0.000 -0.015 -0.063

Caring, Leisur. -0.568 -0.597 0.169 0.175 -0.214 -0.218 0.307 0.335

Sales And Cust. -0.542 -0.558 0.260 0.264 -0.253 -0.255 -0.0359 -0.082 0.309 0.337

Process, Plant.. -0.534 -0.550 -0.068 -0.095 0.044 0.057 -0.039 -0.088 -0.097 -0.104

Elementary Occ.  -0.592 -0.607 -0.141 -0.182 0.205 0.211 -0.209 -0.211 -0.038 -0.083 0.045 0.057

1. female#soc

Managers, Dire. ~ -0.061 -0.084 0.0437 0.066 -0.115 -0.109 0.0428 0.040 0.006 -0.022

Professional O.. -0.047 -0.054 -0.036 -0.049 0.003 0.011 0.045 0.088

Associate Prof.. -0.029 -0.032 -0.024 -0.036 0.049 0.052

Administrative. 0.039 0.048 0.047 0.054

Skilled Trades.. -0.100 -0.102 0.158 0.176 -0.170 -0.175 0.135 0.227

Caring, Leisur. 0.035 0.048 0.017 0.020 -0.009 -0.009 -0.006 -0.051

Sales And Cust. -0.003 -0.006 0.099 0.102 -0.102 -0.102

Process, Plant.. 0.008 0.013 -0.055 -0.074 -0.087 -0.093 -0.051 -0.111

Elementary Occ. 0.0903 0.136 0.170 0.173 -0.318 -0.319 0.089 0.105

benefit -0.114 -0.114 0.193 0.193 -0.247 -0.247 0.055 0.063

wrkregion2

Rest of Northe. 0.022 0.024 0.006 0.027 -0.022 -0.028 0.043 0.047

South Yorkshire -0.007 -0.012 0.027 0.030

West Yorkshire 0.043 0.046 -0.021 -0.027 0.014 0.018

Rest of Yorks 0.158 0.159 0.007 0.029 -0.009 -0.014 0.029 0.033

East Midlands 0.004 0.006 -0.002 -0.007 0.008 0.010 0.004 0.010

East of England 0.010 0.012 0.004 0.004 -0.015 -0.013

Greater London 0.127 0.128 -0.013 -0.016 0.016 0.018 -0.016 -0.025 -0.020 -0.043

Rest of South -0.003 -0.003 0.014 0.015 -0.006 -0.005

South West -0.074 -0.075 -0.019 -0.036 0.045 0.046 -0.054 -0.052 0.003 0.012 0.017 0.052

West Midland 0.009 0.030 0.025 0.027 0.014 0.018

Rest of West M -0.042 -0.043 -0.026 -0.025

Greater Manche ~ -0.037 -0.038 -0.009 -0.036 -0.012 -0.011 -0.006 -0.018

Merseyside 0.014 0.017 0.000 0.002 0.0139 0.017

Rest of North . -0.017 -0.016 0.007 0.016

Wales -0.083 -0.085 -0.025 -0.025

Scotland -0.069 -0.070 -0.008 -0.017 0.006 0.041

Nothern Ireland -0.110 -0.114 -0.005 -0.018 0.029 0.033 -0.007 -0.023

Outside UK -0.044 -0.059 -0.248 -0.377 0.195 0.209

A(BIC) 13.581 146.395 30.862 8.590 75.061 264.217

Note: The estimated models correspond to those with minimum BIC.
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Table B.20. Probit for female dominance, pooled sample

Coeff. Std. error
Dep. var: Female dominance
Woman 1.024%#%%* 0.045
Woman in couple -0.146%** 0.038
Woman w/t dep. children -0.149%*%* 0.040
In couple -0.059 0.033
Dep. children 0.117%%* 0.040
In couple w/dep. children -0.071 0.042
EEA -0.059 0.033
Non-EEA 0.170%%** 0.032
Age -0.026%#* 0.005
Age sqr. 0.000%** 0.000
Higher educ. -0.042 0.024
Years of educ. 0.052 0.033
Years of educ. sqr. -0.001 0.001
SOC 3. Associate professional and technical occ. -0.482%** 0.042
SOC 4. Admin and secretarial occ. -0.621%** 0.038
SOC 5. Skilled trades -0.035 0.093
SOC 6. Caring, leisure and other service 0.906%** 0.049
SOC 7. Sales and customer service 0.253%%%* 0.045
SOC 8. Process, plant and machine operatives -1.226%** 0.092
SOC 9. Elementary occ. 0.018 0.042
Man in SOC 3 0.345%%%* 0.060
Man in SOC 4 0.484%#%* 0.067
Man in SOC 5 -0.060 0.101
Man in SOC 6 0.286%%*%* 0.086
Man in SOC 7 0.433%%%* 0.065
Man in SOC 8 0.789%%*%* 0.100
Man in SOC 9 0.099 0.053
Region Controls Yes
Observations 25,117

Notes: The estimates are use to calculate the propensity score used in
the PSM. Robust standard errors. Significance levels: pvalue<0.01 **%*

pvalue<0.05 **, pvalue<0.1 *.
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Table B.21. ATT for permanent job

Variable Sample Treated Controls Difference S.E. T-stat

Permanent Unmatched 0.782 0.771 0.011 0.005 2.06
ATT 0.782 0.771 0.011 0.008 1.30

Note: S.E. does not take into account that the propensity score is estimated.
The matching method is single nearest-neighbour; five neighbors are used to
calculate the matched outcome. Common support check: untreated units on

support are 11,641; treated units on support are 13,424, treated units off sup-
port are 16.

Table B.22. ATT for part-time job

Variable Sample Treated Controls Difference S.E. T-stat
Part-time work Unmatched  0.425 0.169 0.256 0.006 45.71
ATT 0.424 0.289 0.135 0.008 17.03

Note: S.E. does not take into account that the propensity score is estimated. The
matching method is single nearest-neighbour; five neighbors are used to calcu-
late the matched outcome. Common support check: untreated units on support are
11,649; treated units on support are 13,444, treated units off support are 16.

Table B.23. ATT for In(hours)

Variable Sample  Treated Controls Difference S.E. T-stat

In(hours) Unmatched 3.288 3.547 -0.259 0.006 -39.96
ATT 3.289 3413 -0.125 0.009 -13.64

Note: S.E. does not take into account that the propensity score is estimated.
The matching method is single nearest-neighbour; five neighbors are used to
calculate the matched outcome. Common support check: untreated units on

support are 11,654, treated units on support are 13,447; treated units off sup-
port are 16.

Table B.24. ATT for remote work

Variable Sample Treated Controls Difference S.E.  T-stat
Remote work Unmatched 0.034 0.071 -0.038 0.003 -13.49
ATT 0.034 0.078 -0.044 0.005 -9.11

Note: S.E. does not take into account that the propensity score is estimated. The
matching method is single nearest-neighbour; five neighbors are used to calcu-
late the matched outcome. Common support check: untreated units on support
are 11,654; treated units on support are 13,447; treated units off support are 16.

Table B.25. ATT for In(wage)

Variable Sample Treated Controls Difference S.E.  T-stat

In(wage) Unmatched 2.211 2.390 -0.180 0.007 -27.35
ATT 2211 2.305 -0.094 0.107 -8.81

Note: S.E. does not take into account that the propensity score is estimated.
The matching method is single nearest-neighbour; five neighbors are used to
calculate the matched outcome. Common support check: untreated units on

support are 11,654, treated units on support are 13,447; treated units off sup-
port are 16.



Table B.26. Covariate imbalance test, single components

Mean Yobias t-test
Variable Treated Control t p>litl
Woman 0.65561 0.65589 -0.1 -0.05 0.961
Woman in couple 0.26749 0.26578 0.4  0.32 0.751
Woman w/t dep. children 0.25455 0.25113 0.9 0.65 0.519
In couple 0.39994 0.39725 0.5 045 0.652
Dep. children 0.34498 0.34072 09 0.74 0461
In couple w/dep. children 0.2173 022093 -09 -0.72 0.472
EEA 0.06923 0.07237 -1.2  -1.00 0.316
Non-EEA 0.09831 0.10218 -1.3 -1.06 0.291
Age 34751  34.191 44  3.65 0.000
Age sqr. 1366.7 13274 4.0 332 0.001
Higher educ. 0.27233 0.28165 -2.1 -1.71 0.088
Years of educ. 13.649 13.681 -1.1 -091 0.365
Years of educ. sqr. 19479 19548 -0.8 -0.67 0.505
SOC 3. Associate professional and technical occ. 0.09006 0.09098 -0.3 -0.26 0.792
SOC 4. Admin and secretarial occ. 0.09697 0.09568 0.4 0.36 0.719
SOC 5. Skilled trades 0.05332 0.05247 03 031 0.756
SOC 6. Caring, leisure and other service 0.18324 0.18267 0.2 0.12  0.905
SOC 7. Sales and customer service 0.15245 0.15272  -0.1 -0.06 0.951
SOC 8. Process, plant and machine operatives 0.03019 0.03043 -0.1 -0.11 0.909
SOC 9. Elementary occ. 0.18896 0.19285 -1.0 -0.81 0.418
Man in SOC 3 0.05585 0.0567 -04 -0.30 0.763
Man in SOC 4 0.08017 0.07896 0.4 037 0.715
Man in SOC 5 0.01101  0.0108 02 0.16 0.869
Man in SOC 6 0.1555 0.15606 -0.2 -0.13 0.898
Man in SOC 7 0.10597 0.10422 0.7 047 0.639
Man in SOC 8 0.00454 0.00491 -04 -0.44 0.657
Man in SOC 9 0.11519 0.1194 -1.5 -1.07 0.283
Rest of Northern region 0.05466 0.05618 -0.7 -0.54 0.587
South Yorkshire 0.04298 0.04518 -1.1 -0.88 0.379
West Yorkshire 0.05444  0.0538 03 023 0817
Rest of York & Humberside 0.05748 0.05357 1.6 1.40 0.161
East Midlands 0.09727 0.09906 -0.6 -0.49 0.623
East of England 0.08314 0.08069 09 0.73 0.463
Greater London 0.08113 0.08574 -1.6 -1.37 0.172
Rest of South East 0.10248 0.10854 -2.0 -1.62 0.105
South West 0.0647 0.06113 1.5 1.21 0.228
West Midlands 0.05577 0.05665 -04 -0.31 0.755
Rest of West Midlands 0.04083 0.03799 1.5 1.20 0.231
Greater Manchester 0.02774 0.02716 0.3 029 0.771
Merseyside 0.04127 0.03791 1.7 1.41 0.158
Rest of North West 0.06083 0.06574 -2.1 -1.65 0.098
Wales 0.03109 0.03109 -0.0 -0.00 1.000
Scotland 0.06031 0.05693 14 1.18  0.239
Nothern Ireland 0.01495 0.01321 1.5 1.21 0.226
Outside UK 0.00074 0.00101 -0.8 -0.74 0.458

Notes: * if variance ratio outside [0.96; 1.04]. When |%bias| < 5, the balancing property is sat-

isfied (Rosenbaum and Rubin, 1985)

Table B.27. Covariate imbalance test

PsR?> LR x> p>yx?> MeanBias Median Bias B

R

90 Var

0.001 51.40 0.237 1.0

0.8

8.7

1.03

0

Note: *if B> 25%, R outside [0.5; 2].
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Table B.28. Mincerian regression results, years 2005-2020

Dep. var.: Log(Wage)

All sectors Male-dominated sectors Female-dominated sectors
Man Women Man Women Man ‘Women
(1) (2) (3 “4) (5) (6)
Socio-demographic variables
Age 0.007***  (0.,005%**  (0.009%***  (.014%** 0.005* -0.000
(0.001) (0.001) (0.002) (0.003) (0.002) (0.001)
Age? 0.000%***  (0.000%*3* 0.000 -0.000 0.000%** 0.000%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
EEA -0.056%**  -0.044%***  -0.062%**  -0.064%**  -(0,038%** -0.020%**
(0.004) (0.004) (0.005) (0.006) (0.007) (0.004)
Non-EEA -0.032%**  _(,017%** -0.009 -0.003 -0.063%** -0.028%**
(0.004) (0.004) (0.006) (0.007) (0.007) (0.005)
In couple 0.064***  (0.015%**  (0.064***  (0.019%**  (0.06]1*** 0.012%**
(0.002) (0.002) (0.003) (0.004) (0.004) (0.003)
With dependent children 0.041%*%*  -0,029%**  (0.042%**  _0,034%**  (.040%** -0.027%%*
(0.004) (0.003) (0.005) (0.005) (0.006) (0.003)
In couple with dep. children  -0.001 0.020%** -0.001 0.045%** -0.007 0.007
(0.004) (0.003) (0.005) (0.006) (0.007) (0.004)
Human capital variables
Intermediate education 0.022%**  (0,021%**  (0.026%**  (0.028***  (.017*** 0.016%**
(0.003) (0.002) (0.004) (0.005) (0.004) (0.003)
High education 0.098***  (0.101%**  (0.105%**  (0.106***  (0.088%** 0.093%**
(0.006) (0.005) (0.007) (0.010) (0.009) (0.006)
Years of education 0.158*** Q. 117***  (0.166%***  (.135%*%*  (,130%*** 0.104%**
(0.003) (0.003) (0.004) (0.006) (0.006) (0.003)
Years of education? -0.005%**  -0.003*** -0.005%**  -0.004%**  -0,004%** -0.003%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Experience 0.015%*%* (0, 013***  (0.017***  (0.016***  (0.013%** 0.01 1 ***
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)
Experience? -0.000%**  -0.000***  -0.000%**  -0.000%**  -0.000%** -0.000%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Training 0.068***  (0.049%**  (,075%*%*  (.073*%*%*  (.051%*** 0.036%**
(0.002) (0.002) (0.003) (0.003) (0.003) (0.002)
Workplace characteristics
Part-time -0.097***%  .0.038*** -(0.103%**  -0.044%**  .(0,099%** -0.037%%*
(0.003) (0.002) (0.005) (0.003) (0.004) (0.002)
Public sector 0.032%**  (,059%**  -0.020%**  -0.038***  (.087*** 0.083%**
(0.003) (0.002) (0.005) (0.006) (0.005) (0.002)
Low gender segregation 0.027%*#* -0.005 0.024 %3 -0.008* 0.059%##* 0.034 %
(0.003) (0.003) (0.003) (0.004) (0.004) (0.003)
Female dominance -0.163*** (), ]158***
(0.003) (0.002)
Female Dominance x 0.006 0.016%***
Low gender segregation (0.005) (0.004)
Working region controls Yes Yes Yes Yes Yes Yes
Other demographic controls Yes Yes Yes Yes Yes Yes
Job controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Observations 218,696 219,173 147,666 76,650 71,030 142,523

Notes: Data from UK Labour Force Survey (LFS). Models (1)-(4) are estimated using OLS. Robust errors are in
parenthesis. Significance levels: pvalue<0.01 *** pvalue<0.05 **, pvalue<0.1 *.
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Figure C.1. Articles in AER using panel data models
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NOTE: The top graph gives a general picture of the choice of econometric techniques for linear panel data
models — grouped in four comprehensive categories: LS, MLE, GMM, NLS — over the period from 2011 to
2018. On the left, the total number of selected articles are displayed for the main analysis by estimation
method while, on the right, for the secondary. The majority of selected studies use linear least squares for
panel data models, and this trend shows some regularities over the eight years in analysis. Despite the
popularity of LS estimation, the choice of other estimation techniques remains limited touching the same
figures in both primary and secondary analyses with the exception of GMM figures that tend to grow in
the secondary plot. The bottom graph provides a detailed picture of the choice of standard errors by year
of publication among articles that use least squares methods for linear panel data. The total number of
eligible articles is displayed by standard error formula on the left for the main analysis while the on the
right for the secondary. A growing number of those uses robust or cluster-robust standard errors in both
main and secondary analyses whereas a decreasing minority makes use of bootstrapped standard errors
or other formulae.
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Figure C.6. Example of anomalous points in panel data

Panel A. Cell-isolated anomalous points
Original Data Within-Group First-Differencing
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Panel B. Block-concentrated anomalous points

Original Data Within-Group First-Differencing
o o o
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—— Fit w/t Anomalous Obs. ——- Fitw/t GL — Fitw/t VO — — Fitw/t BL

Note: GL stands for Good Leverage point; VO for Vertical Outlier; BL for Bad Leverage point.

From left to right: original data; data after the within-group transformation; and data after the first-
differencing. Data is simulated following Bramati and Croux’s (2007) design; here, N=100 and T=20.
In both panels of scatter plots: unit 1 is a “good” leverage point; unit 2 is a vertical outlier; unit 3 is
a “bad” leverage point. In Panel A, the first three units are contaminated at time t = 1 and t = 20; in
Panel B, half of each series for t < 10 is contaminated. In scatter plots, the red dotted line is fitted using
uncontaminated units only; the dashed line using uncontaminated and good leverage points; the dash-
dot line using uncontaminated and bad leverage points; the solid line uncontaminated units and vertical
outliers.
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Figure C.7. Leverage-residual plots

Panel A. Cell-isolated anomalous points

Case-wise Evaluation Unit-wise Evaluation
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Note: GL stands for Good Leverage point; VO for Vertical Outlier; BL for Bad Leverage point.

Panel B. Block-concentrated anomalous points

Case-wise Evaluation Unit-wise Evaluation
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Note: GL stands for Good Leverage point; VO for Vertical Outlier; BL for Bad Leverage point.

Leverage against normalised residual squared plot from assessing each case individually (left)
and from assessing each unit in its whole history (right). Data is simulated following
Bramati and Croux’s (2007) design; here, N=100 and T=20. In both panels of scatter plots: unit I
is a “good” leverage point; unit 2 is a vertical outlier; unit 3 is a “bad” leverage point. In Panel
A, the first three units are contaminated at time t = 1 and t = 20; in Panel B, half of each series
fort <10 is contaminated. The horizontal and vertical red lines are the means for leverage and for
the normalized residual squared, respectively. Those points above the horizontal line display high
leverage whereas points to the right of the vertical line have large residuals. Those points with both
high leverage and large squared residuals are “bad” leverage points.



Figure C.8. Influence analysis with 2-way graphs (BL, GL, VO)

(a) Cell-isolated units

Influence Analysis with BL, GL, VO
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(b) Block-centered

Influence Analysis, Block-centered anomalies
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NOTE: Data is simulated following Bramati and Croux’s (2007) design; here, N=100 and T=20. In
both panels of scatter plots: unit 1 is a “good” leverage point; unit 2 is a vertical outlier; unit 3 is a
“bad” leverage point. In Panel (a), the first three units are contaminated at time t = 1 and t = 20, in
Panel (b), half of each series fort < 10 is contaminated. The solid red lines display the cutoff values
c1 = F(k,N —k,0.5) and co = 4/N (in the left graphs) and ¢ > 1 (in the right graphs).
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Figure C.9. Influence analysis with network graphs (BL, GL, VO)

Panel A. Cell-isolated anomalous units, all.

85

920

Enhancing effect Masking effect

Panel B. Block—centered anomalous units, all.

39

; <

2!

05/ N\

Enhancing effect Masking effect

NOTE: Unit I (in red) is a “good” leverage point; unit 2 (in orange) is a vertical outlier; unit 3 (in
green) is a “bad” leverage point. ENHANCING EFFECT: Units whose effect is enhanced by unit j or
enhance the effect of unit i and their joint influence exceeds the cut-off of 4/N. MASKING EFFECT:
Units whose effect is masked by unit j or masks the effect of unit i based on the conditional influence.
The size (from small to large) and colour (from light to dark blue) of the nodes reflect the degree of
the total joint and conditional influence of unit i. The width of the links reflects the strength if the
enhancing and masking effects; their colours match with the color of the nodes.
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Figure C.10. Influence analysis with network graphs (two GL)

Panel A. Cell-isolated anomalous units, two GL.

Enhancing effect Masking effect

Panel B. Block—centered anomalous units, two GL.
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NN \\\
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LR

12

Enhancing effect Masking effect

NOTE: Unit 1 (in red) and unit 2 (in orange) are “good” leverage points. ENHANCING EFFECT:
Units whose effect is enhanced by unit j or enhance the effect of unit i and their joint influence
exceeds the cut-off of 4/N. MASKING EFFECT: Units whose effect is masked by unit j or masks the
effect of unit i based on the conditional influence. The size (from small to large) and colour (from
light to dark blue) of the nodes reflect the degree of the total joint and conditional influence of unit i.
The width of the links reflects the strength if the enhancing and masking effects; their colours match
with the color of the nodes.
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Figure C.11. Influence analysis with network graphs (two BL)

Panel A. Cell-isolated anomalous units, two BL.

Enhancing effect Masking effect

Panel B. Block—centered anomalous units, two BL.

Enhancing effect Masking effect

NOTE: Unit 1 (in red) and unit 2 (in orange) are “bad” leverage points. ENHANCING EFFECT:
Units whose effect is enhanced by unit j or enhance the effect of unit i and their joint influence
exceeds the cut-off of 4/N. MASKING EFFECT: Units whose effect is masked by unit j or masks the
effect of unit i based on the conditional influence. The size (from small to large) and colour (from
light to dark blue) of the nodes reflect the degree of the total joint and conditional influence of unit i.
The width of the links reflects the strength if the enhancing and masking effects; their colours match
with the color of the nodes.



Figure C.12. Influence analysis with network graphs (two VO)

Panel A. Cell-isolated anomalous units, two VO.

43 42 100/7‘ 94
/ ////1 ///7 30
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31 33 68

Enhancing effect Masking effect

Panel B. Block—centered anomalous units, two VO

Enhancing effect Masking effect

NOTE: Unit 1 (in red) and unit 2 (in orange) are vertical outliers. ENHANCING EFFECT: Units
whose effect is enhanced by unit j or enhance the effect of unit i and their joint influence exceeds the
cut-off of 4/N. MASKING EFFECT: Units whose effect is masked by unit j or masks the effect of unit
i based on the conditional influence. The size (from small to large) and colour (from light to dark
blue) of the nodes reflect the degree of the total joint and conditional influence of unit i. The width
of the links reflects the strength if the enhancing and masking effects; their colours match with the

color of the nodes.
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Figure C.13. Influence analysis with network graphs (BL, GL)

Panel A. Cell-isolated anomalous units, BL and GL

R
hasl)

),
a

Enhancing effect Masking effect

Panel B. Block—centered anomalous units, BL and GL

Enhancing effect Masking effect

NOTE: Unit 1 (in red) is a “bad” leverage point and unit 2 (in orange) a “good” leverage point.
ENHANCING EFFECT: Units whose effect is enhanced by unit j or enhance the effect of unit i and
their joint influence exceeds the cut-off of 4/N. MASKING EFFECT: Units whose effect is masked by
unit j or masks the effect of unit i based on the conditional influence. The size (from small to large)
and colour (from light to dark blue) of the nodes reflect the degree of the total joint and conditional
influence of unit i. The width of the links reflects the strength if the enhancing and masking effects;
their colours match with the color of the nodes.
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Figure C.14. Influence analysis with network graphs (BL, VO)

Panel A. Cell-isolated anomalous units, BL and VO.

86

2

Enhancing effect Masking effect

Panel B. Block—centered anomalous units, BL and VO.

Enhancing effect Masking effect

NOTE: Unit I (in red) is a “bad” leverage point and unit 2 (in orange) a vertical outlier. ENHANC-
ING EFFECT: Units whose effect is enhanced by unit j or enhance the effect of unit i and their joint
influence exceeds the cut-off of 4/N. MASKING EFFECT: Units whose effect is masked by unit j or
masks the effect of unit i based on the conditional influence. The size (from small to large) and colour
(from light to dark blue) of the nodes reflect the degree of the total joint and conditional influence of
unit i. The width of the links reflects the strength if the enhancing and masking effects, their colours
match with the color of the nodes.



Figure C.15. Influence analysis with network graphs (GL, VO)

Panel A. Cell-isolated anomalous units, VO and GL

Enhancing effect Masking effect

Panel B. Block—centered anomalous units, VO and GL.

153

Enhancing effect Masking effect

NOTE: Unit 1 (in red) is a vertical outlier and unit 2 (in orange) a “good” leverage point. ENHANC-
ING EFFECT: Units whose effect is enhanced by unit j or enhance the effect of unit i and their joint
influence exceeds the cut-off of 4/N. MASKING EFFECT: Units whose effect is masked by unit j or
masks the effect of unit i based on the conditional influence. The size (from small to large) and colour
(from light to dark blue) of the nodes reflect the degree of the total joint and conditional influence of
unit i. The width of the links reflects the strength if the enhancing and masking effects, their colours
match with the color of the nodes.



Figure C.16. Leverage-Residual plot for Acemoglu et al. (2008)
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Figure C.17. Influence analysis in Acemoglu et al.’s (2008)
Model (2)

Enhancing effect Masking effect
Model (7)
30
109
107 g A 82 80
151

124

10

125

106

Enhancing effect Masking effect

NOTE: Unit 5 is Angola; 54 is East Timor; 56 is Egypt; 105 is Lesotho; 125 is Monzambique; 133
is Nigeria; 135 is Oman; 139 is Panama; 140 is Papal States; 150 is Russia.



Figure C.18. Leverage-Residual plot for Schularick and Taylor (2012)
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Figure C.19. Influence analysis in Schularick and Taylor’s (2012)
Model (2)

Enhancing effect Masking effect

Model (3)

Enhancing effect Masking effect

NOTE: Unit 10 is Japan.



Figure C.20. Leverage-Residual plot for Egert (2016)
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Figure C.21. Influence analysis in Egert’s (2016)

Model (1)

Enhancing effect Masking effect
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NOTE: Unit 10 is Spain; unit 14 is Great Britain; unit 17 is Ireland; unit 19 is Israel; unit 23 is Luxemburg;

unit 28 is Poland; unit 34 is United States.
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Figure C.22. Leverage-Residual plot for Berka et al. (2018)
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Figure C.23. Influence analysis in Berka et al.’s (2018)

Model (2a)

Enhancing effect Masking effect

Model (2b)

Enhancing effect Masking effect

Model (2c)
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NOTE: Unit 3 is Czech Republic; unit 6 is France; unit 7 is Germany, unit 8 is Hungary; unit 9 is Ireland;
unit 15 is United Kingdom.
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Figure C.24. Labour market outcomes by gender

Male sample

Employment rate Unemployment rate

Female sample

80

604

40+

Percentages (%)

204

= |nactivity Rate

Recession

162



Figure C.25. Distribution of gender sectoral segregation index, by sectoral dominance
Kernel Density Estimate
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Figure C.26. Distribution of gender sectoral segregation index, by sectoral dominance and degree of seg-

regation
Kernel Density Estimate
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Figure C.27. Shift-share decomposition of employment, by gender

(a) Female sample
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(b) Male sample
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Note: The graphs display the shift-share decomposition of female and male employment (respec-
tively, at the top and bottom). Both graphs show the difference in employment in the comparison
year with respect to the base year (i.e., the fiscal year 2005) for women (at the top) and men (at
the bottom). The overall change in employment is shown in solid line and its decomposition into
the between and within components respectively, with dashed and dotted lines. The cross marks
the components for female-dominated sectors and the circle the components for male sectors. The
between component (BTW) captures the change due to changes in the sectoral structure of the econ-
omy, the within component (WTHN) reflects changes in female composition within sectors.



165

Figure C.28. 3-fold KBO decomposition

3-fold KOB Decomposition by gender
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ESTIMATION NOTE: Both models for women and men are estimated using the Mincerian regression equa-
tion (with OLS). The shaded areas is the 95% confidence intervals.

Figure C.29. 3-fold KBO decomposition, by gender sectoral dominance

3-fold KBO Decomposition by gender and segregation
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ESTIMATION NOTE. Both models for women and men are estimated using the Mincerian regression equa-
tion (with OLS). The degree of gender segregation is not included because it is highly correlated with the
grouping variable of gender sectoral dominance. The shaded areas are the 95% confidence intervals.



Figure C.30. Covariate imbalance test, single components
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Note: The included covariates are balanced if the standardised bias after matching is
within £5% (Rosenbaum and Rubin, 1985). If the condition is satisfied, the matching
method successfully builds a valid control group.

Figure C.31. CDFs of predicted earnings and residuals, all sectors

Full sample
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Note: Predicted earnings are a precise measure of individual earnings potential (Gould
and Moav, 2016; Borjas et al., 2019), and the residuals from a Mincerian regression to
capture the part of earnings that is uncorrelated to observed skills (Parey et al., 2017).
Predicted earnings and the residuals from a Mincerian regression are calculated after
estimating the coefficients of the Mincerian wage regression, reported in Table B.28.
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Figure C.32. CDFs of predicted earnings and residuals, by gender sectoral dominance
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Note: Predicted earnings are a precise measure of individual earnings potential (Gould
and Moav, 2016; Borjas et al., 2019), and the residuals from a Mincerian regression to
capture the part of earnings that is uncorrelated to observed skills (Parey et al., 2017).
Predicted earnings and the residuals from a Mincerian regression are calculated after
estimating the coefficients of the Mincerian wage regression, reported in Table B.28.
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