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Abstract— Goal: Working memory (WM) is a memory system 

with a limited capacity that can process and store information 

temporarily in the performing of cognitive tasks. Despite WM is 

known to be influenced by age, the difficulty of tasks and trained 

or not from behavior studies, little is known about their 

relationships from the aspect of the brain functional network. Our 

goal was to explore the factor of aging-related changes of WM 

with brain functional networks.  Methods: In this study, 25 

healthy elderly and 23 healthy young volunteers were recruited 

for electroencephalogram (EEG) recording during the visual WM 

task with four difficulty levels (1-4 backs). In each back, we repeat 

the experiment with four sessions, and we add training sections 

between session one and session two as well as between session two 

and session three. However, we remove any training section 

between session three and session four in order to evaluate the 

impact of forgetting on WM in different age groups. After the 

experiment, we utilized graph theoretical analysis to characterize 

the brain functional network in three frequency bands (alpha, 

beta, and theta). Results: From the well-designed experiment, we 

found that physiological aging influences brain network 

connectivity and makes the functional brain network less 

differentiated. Moreover, there is an inverse relationship between 

alpha activity and WM load for the elderly group, which is absent 

in the young group. At the same time, theta band activity will be 

correlated with behavioral performance for the elderly group 

with WM training between sessions, which is also absent in the 

young group. To further study the influence of difficulty of tasks 

and training on the WM, we distinguish the tasks with quantified 

topological characteristics, and the classification results manifest 

that the training is more effective for the young group. Finally, 

through the establishment of a brain map before and after 

training, we find that the right parietal lobe plays an important 

role in the training of WM for the elderly group whereas the beta 

band plays an important role in WM for both the elderly group 

and the young group. Conclusion: Taken together, our findings 
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clarify the underlying mechanism of WM under different 

frequency bands in terms of physiological aging, the influence of 

training, and task difficulty. Significance: the working memory 

capacities can be uncovered in terms of the combination of 

three-way ANOVA and EEG-based graph theoretical analysis. 

 
Index Terms—Brain functional network, EEG, Working 

memory 

 

I. INTRODUCTION 

LTHOUGH the development of medical and food safety 

has prolonged people’s life spans, aging is still an 

inevitable problem that we should face. Aging is often 

accompanied by neurodegenerative disorders such as 

Alzheimer’s disease, which cannot be cured at present [1]. 

Therefore, a long-period tracking method that can effectively 

differentiate physiological and pathological brain aging is 

essential. Specifically, EEG is a convenient and noninvasive 

method that can characterize neural functioning and be engaged 

in disease diagnosis [2]. By adding more electrodes to the EEG 

device, we can improve the spatial resolution of EEG. Despite 

still showing a less superior spatial resolution compared to 

other neuroimaging techniques such as functional magnetic 

resonance imaging (fMRI), EEG’s high temporal resolution is 

helpful to the task that requires multi-frequency analysis of 

brain activity. 

Working memory (WM) is a cognitive process that can hold 

information temporarily [3, 4]. Such manipulation of stored 

information is very important to the guidance of 

decision-making and behavior [5]. The capacity of WM 

increases gradually in childhood but declines in old age [6-8]. 

Fortunately, cognitive abilities like WM can be improved by 

corresponding training [9]. However, aging-related studies of 

WM tend to focus on the behavioral aspect and the design of 

experimental protocols might be oversimplified, therefore 

cannot sufficiently delineate the phenomenon of aging in the 

brain. For example, Hou et al. proposed an n-back WM task 

with only a 0-back and 2-back paradigm [10]. Although a 

varying experimental protocol can explain the difference of the 

aging changes on WM, the extension of brain aging or the 

influence of a progressive experimental design on brain aging 

cannot be studied under such protocol. Moreover, the effect of 

training on brain aging is also not discussed. Nevertheless, a 
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good experimental design can be beneficial to unravel the 

underlying mechanism of physiological aging in the brain. 

The most prevalent experimental assessment of WM is the 

n-back task, a continuous performance task in cognitive 

neuroscience that can measure WM and its capacity. During the 

task, the participant will receive a sequence of stimuli and they 

are asked to match the current stimulus with the one from n 

steps earlier in the sequence. The combination of n-back tasks 

and brain tracking techniques like EEG and fMRI is commonly 

used to uncover the underlying mechanism of aging from brain 

activity [11-18]. However, EEG-based WM studies often focus 

on the regional properties of the brain as the analysis of EEG 

signals is in the view of the spectral power of different 

frequency bands (alpha, beta, theta, and gamma) or the 

event-related potentials (ERPs). For instance, Dong et al. found 

that WM capacity differences among individuals can be 

reflected by P300 wave, theta event-related synchronization 

(ERS), and alpha event-related desynchronization (ERD) at the 

most challenging level and lowest difficulty level [19]. And 

both P300 analysis and ERS/ERD results focus on the frontal 

and parietal regions of the brain. However, such EEG-based 

WM analysis neglects the global properties of the brain. In 

addition, in each block, n will be a constant and the WM task 

within a block will be more difficult with a higher value of n. 

The difficulty of age-related WM tasks usually does not go 

beyond 2-back and the 0-back paradigm is used for the control 

group [20]. In this study, we aim to find the influence of 

experimental difficulty on the WM performance of people from 

different age groups and thus performed a 4-back paradigm that 

varied n from 1 to 4. Furthermore, to evaluate the effect of 

forgetting on WM in different age groups, we incorporated a 

forgetting protocol between the 3-back and 4-back paradigms. 

Arises from the brain’s anatomical structure and neural 

circuitries, intricate interactions and cross talks of different 

brain regions further contribute to the functional processing of 

cognitive functions. For example, the acquisition of motor 

learning is contributed by the plasticity between the parallel 

fiber (PF) and Purkinje cell whereas the consolidation of motor 

learning may be stored within the plasticity between the PF and 

cerebellar nuclei site [21]. Evidence suggests that memory 

formation may be related to the interregional synchronization 

of neural activity [10, 22]. Therefore, the study of age-related 

WM should adopt a comprehensive approach that exploits the 

advantages of the brain functional connectivity network and the 

high temporal resolution of EEG signals. 

Recently, EEG-based graph theoretical analysis (GTA) for 

functional connectivity networks has attracted many interests. 

In neuroscience, due to the anatomical morphology within the 

brain, GTA can build a model that contains regions of interest 

(nodes) and their connection (edges). As the brain network has 

a special topology organization, GTA can inform us 

characteristics of the brain based on the nodes and edges. For 

example, global efficiency is a feature that measures the overall 

information exchange capability of the network. In our 

previous work, global efficiency is a good property that can tell 

the driving state in most frequency bands (alpha, beta, and theta) 

[23]. Apart from analyzing the mental state of the brain, GTA 

can be also used for the diagnosis of degenerative disease and 

WM training [24, 25]. Although GTA has been applied to the 

age-related n-back WM task, we will use GTA to explore a 

more comprehensive mechanism with a well-designed training 

protocol for subjects of different ages [10]. 

 
Fig. 1. Experimental protocol. 

II. MATERIAL AND METHODOLOGY 

A. Participants 

Twenty-three students (aged 24±1.2) from the National 

University of Singapore and twenty-five older adults (aged 

60±3.1) were recruited. 

All participants were right-handed with normal or corrected 

vision. All the selected participants were interviewed by a brief 

interview to ensure that they met all the inclusion criteria. For 

example, participants who admitted chronic physical or mental 

illness, a history of being diagnosed with a sleep disorder or 

hyperactivity disorder during childhood, or long-term 

medication were excluded. Before the experiment, participants 

were asked to have a full night (> 7 hours) sleep on two nights, 

avoid caffeine or alcohol, and refrain from strenuous exercise 

for 24 hours before the study. All participants signed the 

consent form before the experiment. The experiments were 

approved by the Institutional Review Board of the National 

University of Singapore, written informed consent was 

obtained from all subjects before the experiment and monetary 

compensation was given for their participation. 

B. N-back task 

In this experiment, a spatial n-back task was implemented in 

which a square would be randomly presented on one of four 

positions (up, down, left and right) specified on the screen (Fig. 

1). Participants sit in front of the computer and avoid any 

interference from the external environment to the subject. At 

the beginning of the experiment, 5 pictures appeared on the 

screen in turn, each picture was displayed for 0.5 s, and nothing 

was displayed for an interval of 2.5 s. Each picture displayed a 

square, and there are 4 possible positions of the square. Each 
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time, a random position was displayed. When the fifth screen is 

displayed, the top of the screen will prompt the back task. 

Participants recalled according to the back task. If the fifth 

screen is consistent with the previous back screens, then press 

the yellow button. If it does not match, press the white button. 

The response window last from the onset of the stimulus until 

the presentation of the next stimulus (3 s). Four difficulty levels 

of the task were created (1, 2, 3, 4-back). For each session, there 

were 240 trials. For both the training session and the testing 

session with EEG recording, participants received 1-, 2- ,3-, 

and 4-back levels in this order, with each level presented 60 

trials, resulting in a total 240 trials. In the analysis, only the 

correct trials are selected. There was total four sessions for the 

whole experiment with training or no training between each 

two sessions. In the first three sessions, the time interval 

between two consecutive sessions was set to be 10 days 

whereas the last interval between session 3 and session 4 was 

set to be two weeks. For the training groups, participants 

received n-back task training for each day between sessions. As 

elderly cannot complete the experiment well without training in 

the first session, they only have the results of session 2, 3 and 4. 

In addition, we selected results for analysis from the 

participants who can complete all four phases of the experiment, 

so the final participants are 17 young people and 11 elderly 

people. 

During the task, EEG signals from 64 channels were 

recorded with the ASALab system (ANT B.V., Netherlands) at 

a sampling rate of 256 Hz. EEG activity refers to the mean 

value of two mastoid processes. Two electrodes were placed 

above and below the left eye to record the vertical EOG. The 

recorded EEG signals were re-referenced to the average 

reference. The artifacts caused by eye movement or significant 

muscle activity were removed by independent component 

analysis (ICA). A bandpass filter (0.5~70 Hz) was used for 

antialiasing, and a 50 Hz notch filter was used to remove the 

main interference during the experiment. 

C. Method 

Three typical frequency bands (theta, 4~8 Hz, alpha, 8~12 

Hz, and beta, 12~30 Hz) related to WM were extracted by 

wavelet packet decomposition with the wavelet basis function 

of db4 [26, 27]. Then the brain functional network is 

constructed by phase lag index (PLI) in each frequency band 

for graph theoretical analysis. 

The PLI is computed by 

𝑃𝐿𝐼𝑘,𝑙 = |⟨𝑠𝑖𝑔𝑛[𝑠𝑖𝑛(𝜑𝑘(𝑡) − 𝜑𝑙(𝑡))]⟩| (1) 

where sign stands for signum function and | | indicates absolute 

value function whereas k and l represent different channels. 

PLI values are between 0 and 1. A value of 0 indicates no 

coupling and 1 indicates perfect phase locking. The stronger 

this nonzero phase locking is, the larger PLI values are. During 

the computation of the graph metric, a sparsity threshold was 

applied to the connection matrix. Since there is no definitive 

method to determine the sparsity threshold [28], we followed 

previous studies to utilize a series of thresholds to eliminate the 

bias due to only using one arbitrary threshold [28-30]. A series 

of thresholds ranging from 0.12 to 0.40 with an incremental 

step of 0.01 were used in our study and the metric values were 

obtained by taking the integral of all values corresponding to 

the thresholds. 

The clustering coefficient describes the connection 

centralization of the connection network. The clustering 

coefficient for channel i is defined as: 

𝐶𝑖 =
∑ ∑ 𝑤𝑖𝑘𝑤𝑖𝑙𝑤𝑘𝑙𝑙≠𝑖,𝑙≠𝑘𝑘≠𝑖

∑ ∑ 𝑤𝑖𝑘𝑤𝑖𝑙𝑙≠𝑖,𝑙≠𝑘𝑘≠𝑖

(2) 

where w stands for entries in the connection matrix, which 

was PLI values and i, k, l are channel indices.  

L is the mean of the shortest path length, and is the path with 

the maximum total weight between vertices, as shown in 

follow:  

𝐿 =
1

𝑛
∑

∑ 𝑑𝑖𝑗𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

(3) 

where dij is the shortest path length between nodes i and j. L is a 

major indicator of global integration. The shorter the path 

length, the greater the functional integration intensity and the 

more direct connections between brain regions. 

Eglobal measures the global information transmission ability, 

which is the reciprocal of the shortest path length, as shown in 

follow: 

𝐸𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑛
∑

∑ (𝑑𝑖𝑗)
−1

𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

(4) 

Elocal is a measure to evaluate the efficiency of information 

transmission in a network, as shown in follow: 

𝐸𝑙𝑜𝑐𝑎𝑙 =
1

2
∑

∑ (𝑤𝑖𝑗𝑤𝑖ℎ[𝑑𝑗ℎ(𝑁𝑖)]
−1
)
1/3

𝑗,ℎ∈𝑁,𝑗≠𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁

(5) 

where wij is the connection weight between nodes i and j. 

To quantify the extent to which a network displays 

small-world structure, we define the Small-World Propensity, 

φ, to reflect the deviation of a network’s clustering coefficient, 

Cobs and characteristic path length, Lobs from both lattice (Clatt, 

Llatt) and random (Crand, Lrand) networks constructed with the 

same number of nodes and the same degree distribution: 

𝜑 = 1 − √
𝛥𝑐
2 + 𝛥𝐿

2

2
(6) 

where 

𝛥𝐶 =
𝐶𝑙𝑎𝑡𝑡 − 𝐶𝑜𝑏𝑠
𝐶𝑙𝑎𝑡𝑡 − 𝐶𝑟𝑎𝑛𝑑

(7) 

and 

𝛥𝐿 =
𝐿𝑜𝑏𝑠 − 𝐿𝑟𝑎𝑛𝑑
𝐿𝑙𝑎𝑡𝑡 − 𝐿𝑟𝑎𝑛𝑑

(8) 

The ratios ∆C and ∆L represent the fractional deviation of the 

metric (Cobs or Lobs) from its respective null model (a lattice or 

random network). Because it is occasionally possible for 

real-world networks to display path lengths or clustering 

coefficients that exceed that of a lattice or random network, we 

bound both ∆C and ∆L between 0 and 1. Thus, if ∆C or ∆L>1, we 

set ∆C or ∆L=1 and if ∆C or ∆L<0, we set ∆C or ∆L=0, which 

guarantees that φ is bounded in the range [0, 1]. Networks with 

high small-world characteristics (low ∆C and ∆L) will have a 

value of φ close to 1, while lower values of φ represent larger 
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deviations from the respective null models for clustering and 

path length, and display less small-world structure. 

To quantitatively describe the importance of a node, the most 

effective measurement method is to calculate the betweenness 

centrality. The betweenness centrality Bi of node i is defined as: 

𝐵𝑖 = ∑
𝑛𝑗𝑘(𝑖)

𝑛𝑗𝑘
𝑗,𝑘∈𝑁

(9) 

where njk represents the number of shortest paths between 

nodes j and k; njk(i) represents the number of nodes i in the 

shortest path between nodes j and k. Betweenness centrality 

reflects the role and influence of nodes in the whole network 

and is an important global geometric quantity. 

III. RESULTS 

A. Behavioral analysis 

The results were selected from the participants who 

completed all four phases of the experiment accurately, 

including 17 young participants and 11 elderly. Using ANOVA 

two-factor analysis test, the accuracies of N-back tasks were 

compared (Fig. 2). 

As shown in Fig. 2A, excluding the age factor, task 

ac-curacies across different training sessions and difficulties 

are compared. The figure on the left shows that the accuracy 

comparison among sessions of the elderly group and no 

significant changes between sessions has been observed. 

However, for young participants, although there was no 

obvious significance throughout all sessions of the 1-back task, 

for the 2-back to 4-back difficulty levels, the performance 

during session 1 was significantly different from other sessions 

(training factor, F (3,64) =57.98, p<0.0001). Hence, the n-back 

training produced more obvious effects on the WM 

performance of young people but not the elderly. 

As shown in Fig. 2B, the training factor is neglected, while 

the impact of age and difficulty of tasks on the accuracy was 

compared. In session 2, there was little difference within both 

1-back and 2-back tasks between elderly and young 

participants whereas the differences within 3-back and 4-back 

were significantly different (age factor, F(1,26)=66.59, 

p<0.0001). In session 3 and session 4, there were statistically 

significant difference in 3-back and 4-back between the elderly 

and young people (age factor, session 3: F(1,26)=41.87, 

p<0.0001; session 4: F(1,26)=29.83, p<0.0001). Such results 

suggest that young people can more flexibly adjust to the 

change in the difficulty of the n-back task. On the other hand, as 

the difficulty of tasks increases, the accuracy of the elderly 

group is gradually decreasing. 

As shown in Fig. 2C, the impact of age and train stages on 

task accuracy was compared based on different difficulty levels. 

In the 1-back task, there was no significant difference between 

the elderly and young groups whereas in the 2-back task, a 

significant difference between the two groups was recorded. 

Similarly, in the 3-back and 4-back tasks, there were 

statistically significant differences. (age factor, 2-back: 

F(1,26)=16.30, p=0.0004; 3-back: F(1,26)=73.42, p<0.0001; 

4-back: F(1,26)=104.0, p<0.0001) Such results demonstrate 

that with increasing task difficulty, while the accuracy of 

elderly participants gradually declined, that of young 

participants was not significantly affected. 

 
Fig. 2. Behavioral results with two-way ANOVA analysis. A, difficulty of task factor and training factor to the accuracy of n-back tasks. B, age factor and difficulty 

of task factor to the accuracy of n-back tasks. C, age factor and train factor to the accuracy of n-back tasks. (*: p<0.05, **: p<0.01, ***: p<0.005, ****: p<0.001, ns 
represents no significance) 
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B. Graph theoretical analysis (GTA) 

The brain topological characteristics of the cortical 

functional connectivity network in different WM tasks could be 

reflected in three factors, namely age, training, and task 

difficulty. We used three-factor ANOVA to analyze the effect 

of factors on different frequency bands. The analysis results are 

shown in TABLE I. 

It was observed that there was a three-factor interaction 

between the alpha and beta frequency bands in the clustering 

coefficient, local efficiency, and the alpha frequency band of 

the small-world tendency, hence indicating that these 

characteristics are affected by the interaction of three factors. 

Also, brain topological features were affected by the interaction 

of aging and training stage, except the small-world propensity 

beta band. From a single factor perspective, aging had a great 

influence on the experimental results, with an exception that the 

theta frequency band of global efficiency was not significantly 

affected by age. The training stage had little effect on the local 

efficiency and clustering coefficient theta and beta bands, as 

well as small-world propensity alpha band, probably because of 

the lack of influence on the topological features of these bands 

by learning and memory. The difficulty of task also affected the 

local efficiency, small-world propensity theta and beta 

frequency bands and clustering coefficient theta frequency 

band. 

Fig. 3 shows the influence of training on the brain 

topological characteristics under different frequency bands for 

the elderly group. The characteristic path length increased with 

training (session 2 vs session 3) and decreased without training 

(session 3 vs session 4) for 1 to 3-back especially in beta bands 

(session 2 vs session 3, 1 and 2-back, p<0.001; session 2 vs 

session 3, 3-back, p<0.01; session 3 vs session 4, 1 to 3-back, 

p<0.001). Accordingly, the global efficiency decreased with 

training and increased without training, and the statistical 

difference was significant in theta and beta frequency bands for 

1-3 backs (session 2 vs session 3 and session 3 vs session 4, 

theta frequency band, 2 and 3-back, p<0.001; session 2 vs 

session 3, beta frequency band, 1 and 2-back, p<0.001, 3-back, 

p<0.005; session 3 vs session 4, beta frequency band, 1 to 

3-back, p<0.001). It showed similar trends as in characteristic 

path length for clustering coefficient and local efficiency in 1 to 

3-back. The small-world propensity decreased with training 

and increased without training for all backs. Moreover, in the 

4-back task, the influence of training was less than that of in 

other WM tasks which might be attributed to the overload of 

WM for the elderly. 

In contrast, Fig. 4 shows the influence of training on the 

brain topological characteristics under different frequency 

bands for young people, which was quite different from that of 

the elderly group. For example, the characteristic path length of 

the youth group decreased with training (session 1 vs session 3, 

beta band, 1-back, p<0.001, 3-back, p<0.05) and increased

 
Fig. 3. The graph theoretical analysis under different frequency bands for elderly people with and without training. Each column stands for different properties for 
n-back tasks and each row is the difficulty of the WM task. In each sub-figure, three kinds of frequency bands (theta, alpha, and beta) are used for the comparison. 

The three colors of bars stand for three sessions (cyan: session 2, blue: session 3, and orange: session 4). The elder participants received training of WM tasks 
between session 2 and session 3 whereas no training was conducted between session 3 and session 4. (*: p<0.05, **: p<0.01, ***: p<0.005, ****: p<0.001) 
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without training (session 3 vs session 4, alpha band, 2-back, 

p<0.05, 3-back, p<0.01). And other indexes like clustering 

coefficient and local efficiency had similar trends with and 

without training for the young group. However, the trend for 

global efficiency for the young group was opposite to that of the 

elderly group, which increased with training (session 1 vs 

session 3, beta band, 1 and 4-back, p<0.001, 2-back, p<0.005, 3 

back, p<0.01) and decreased without training (session 3 vs 

session 4, beta band, 1-back, p<0.005, 2 and 4-back, p<0.05). 

The small-world propensity of the young group decreased with 

training and increased without training in which the trend is the 

same as the elderly group. In the young group, the improvement 

of working memory performance was accompanied by an 

improvement of global efficiency as well as a decrease of local 

efficiency, which suggests that a more dispersed network rather 

can promote better working memory performance than a dense 

network. 

Fig. 5 shows the influence of training difficulty on brain 

topological characteristics for both elder and young people in 

session 3. In the comparison of the 1-back and 4-back tasks, the 

local efficiency increased for young people (1-back vs 4-back, 

theta frequency, P<0.05) whereas the characteristics path 

length increased (1-back vs 4-back, alpha frequency, P<0.005) 

and the small-world propensity decreased (1-back vs 4-back, 

beta frequency, P<0.05) with the increasing difficulty of the 

task for elderly people. 

Betweenness centrality refers to the ability of a given node 

that transmits information along the shortest path between node 

pairs in the network. Fig. 6 shows the comparison BC of the 

CP1 node in WM in terms of aging (Fig. 6A) and training (Fig. 

6B) under the alpha band. There are significant differences 

between the elder group and the young group in the completed  

 
Fig. 4. The graph theoretical analysis under different frequency bands for young people with and without training. Each column stands for different properties for 

n-back tasks and each row is the difficulty of the WM task. In each sub-figure, three kinds of frequency bands (theta, alpha, and beta) are used for the comparison. 

The four colors of bars stand for four sessions (cyan: session 1, blue: session 2, earthy yellow: session 3, and orange: session 4). The young participants received 

training of WM tasks between session 1 and session 2 as well as between session 2 and session 3 whereas no training was conducted between session 3 and session 
4. (*: p<0.05, **: p<0.01, ***: p<0.005, ****: p<0.001) 

 
Fig. 5. The influence of training difficulty on brain topological characteristics for both elder (orange) and young (blue) participants. EEG signals with three kinds of 

frequency bands are used for the comparison and the difficulty of the WM task only contains two distinctive stages (1-back and 4-back). (*: p<0.05, **: p<0.01, ***: 
p<0.005, ****: p<0.001) 
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Fig. 6. The comparison of BC of CP1 node in WM in terms of aging and training under the alpha band. A, the influence of aging to BC of CP1 node. The two color 

bars stand for different groups of participants. (aquamarine: elder group, purples: young group). B, the influence of training to BC of CP1 node. The color bars stand 
for different sessions of the WM experiment (cyan: session 1, blue: session 2, earthy yellow: session 3, and orange: session 4). The elder participants received 

training of WM tasks between session 2 and session 3 whereas no training was conducted between session 3 and session 4. The young participants received training 

of WM tasks between session 1 and session 2 as well as between session 2 and session 3 whereas no training was conducted between session 3 and session 4. (*: 
p<0.05, **: p<0.01, ***: p<0.005, ****: p<0.001) C, the influence of training on the BC of the elderly. There are 62 leads in total, and the value of each lead is the 

difference between session 3 and session 2. Yellow represents the lead with an increased value of the BC after training, and blue represents the lead with decreased 

value after training. 
WM task. Interestingly, with the increase of the task difficulty, 

the discrimination decreases in session 3 and session 4 of the 

4-back task. On the other hand, the BC of the CP1 node is also 

influenced by the training process as there is a gradual increase 

of BC with training and a decrease of BC with the distinction 

process for both the elder group and the young group. As a 

result, the decline of WM caused by aging may be related to the 

disconnection of the CP1 node and training may be helpful to 

the recovery of disconnection. We also intuitively show an 

example of the BC for the elderly group that the training 

improves the BC of node CP1 in Fig. 6C. 

To further explain the influence of the difficulty of the task 

on the WM, we used the quantified topological characteristics 

to classify the tasks (TABLE II). The input feature of the 

classifier was graph metric features of each frequency band 

with different numbers for each feature (clustering coefficient: 

62, the characteristic path length: 1, global efficiency: 1, local 

efficiency: 62, small world propensity: 1). If there are three 

frequency bands, then there are 127 * 3 features in total. And 

the random forest was selected as the classifier. We observed 

that if the topological characteristics were used for 

four-category, the accuracy was low for both the young and the 

elderly groups. The highest classification accuracy was in 1, 2, 

3 vs 4-back task which means that 4-back task can be relatively 

easily separated from other tasks. After training, the accuracy in 

the classification of 1 vs 2, 3, 4-back increased, indicating that 

the 1-back task (the simplest task) is easier to distinguish after 

training. However, the accuracy in the classification of 1, 2, 3 

vs 4-back decreased, indicating that the 4-back task (the most 

difficult task) is more difficult to distinguish after training. In 

other words, for all age groups, the difficulty of the 4-back task 

decreased and become close to 1, 2, 3-back tasks. In the second 

case (the classification of 1 vs 2, 3, 4-back), the accuracy of 

young people was higher than that of old people, whereas in the 

fourth case (the classification of 1 vs 2, 3, 4-back), the accuracy 

of young people was lower than that of old people. Such 

findings showed that compared to young people, the 1, 4-back 

for the elderly was still difficult, with the training for young 

people being more effective. 

IV. DISCUSSION 

In this study, we analyzed the variation of the network 

topology in EEG-related WM tasks for both young and elderly 

participants. We conducted multi-channel recording during the 

1 to 4-back WM tasks across four sessions. In addition, we 

added WM training into the period between the 1st session and 

the 2nd session as well as the period between the 2nd session and 

the 3rd session. And during the period between the 3rd session 

and the 4th session, we revoke the training. Therefore, the whole 

experiment comprised the influence of difficulty of the task, 

aging, as well as forgetting on WM in terms of different 

frequency bands, which will be discussed below. 

A. The influence of aging on the WM 

The influence of aging on WM intuitively lies in the degree 

of task completion. For both the elderly group and the young 

group, we experimented with four tasks with four difficulties 

across four sessions. However, without training, the elderly 

group cannot complete the WM task and thus we do not have 

the complete data of session 1 for elderly people. Performance 

of cognitive function has been found to decline with aging in 

various aspects [31, 32]. There is evidence that the decline of 

performance in the WM tasks is related to changes in 

communication between different regions of the brain. Aging 

not only affects functional connectivity within specific 

functional networks but also alters the communication between 

different functional networks [33-35]. In this study, the elderly 

group has a lower clustering coefficient and local efficiency, 

which indicates that with the increase of age, the network 

connectivity decreases, and the functional brain network 
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becomes less differentiated or specific. Previous studies have 

shown that the function of brain regions is dedifferentiated with 

age [36-38]. The decrease of network connectivity in the 

elderly may lead to an over-recruitment of brain regions to 

process the overwhelming incoming information, resulting in a 

decrease in local efficiency. In addition, we observed that the 

characteristic path length of the elderly group was lower than 

that of the young group, which may be attributed to the fact that 

the proportion of long-distance connections decreased with 

aging. High clustering (i.e. high local efficiency) and sparse 

long-range connection in brain networks can achieve the 

minimum metabolic cost. Although the cost of sparse 

long-range connections is higher, the information transmission 

speed can be improved. Despite the global efficiency of the 

elderly group was slightly higher than that of the young group, 

the small-world propensity was lower than that of the young 

group. The reason may be that aging is more obvious in local 

areas of the brain [39]. 

B. The influence of difficulty of tasks on the WM 

In the functional connectivity network of the alpha band, the 

characteristics path length of the 4-back task decreased 

significantly compared with that in the 1-back task for the 

elderly group (Fig. 7), which indicates the decrease of 

functional segregation and local connection density. However, 

the alteration of alpha-band amplitude was not statistically 

significant for the young group. In recent years, many studies 

have shown that the amplitude of alpha activity is negatively 

correlated with the number of cortical resources used to 

perform cognitive tasks [20, 40-42]. Therefore, we speculate 

that the inverse relationship between alpha activity and WM 

load may be related to the weakening of local functional 

clustering in the alpha band in WM tasks. On the other hand, 

with the increasing difficulty of the task, the influence of 

training on the alteration of features was not evident for the 

elderly group. For example, in the 4-back task, the alteration of 

global efficiency and the characteristic path length (beta 

frequency) with training for the elderly group changed less than 

that in the 1,2,3-back tasks (Fig. 4). In contrast, the difficulty of 

a task made less impact on the young group than the elderly 

group (Fig. 5). Such phenomenon may be related to WM 

overload. In other words, if the cognitive requirements of the 

4-back task are too high for the elderly, the decrease of cortical 

resource recruitment during the task may be related to the 

decrease of global efficiency and thus the effective connection 

involves relatively few cortical areas for the task. 

C. The influence of difficulty of tasks on the WM 

In the current study, compared with the young group, the 

EEG metrics in the theta band were significantly influenced by 

training for the elderly group when the WM training was 

included between sessions. In the 2-back or 3-back task, the 

characteristic path length of the theta band and the clustering 

coefficient increased with training for the elderly group 

(session 2 vs session 3). Nevertheless, if the elderly group 

returned to the state of no training and carried out the 

experiment, the EEG metrics in the theta band for both the 

characteristic path length and the clustering coefficient would 

recover to the corresponding state similar to that of before 

training. In contrast, there was no significant change in the 

characteristic path length of the theta band for the young group 

before and after training. At the same time, in the theta band, 

the global efficiency and the local efficiency were inversely 

correlated with and without training. Such alterations mean that 

the training can improve the information processing efficiency 

of local brain regions and thus reduce the overall efficiency of 

information integration for the elderly group. However, for the 

young group, the overall efficiency of information integration 

for WM tasks is improved with training, especially with the 

increase in task difficulty. Such a result is consistent with our 

previous findings [43] that the theta band is enhanced for more 

efficient propagation of information with the increase of task 

difficulty [20]. 

D. The influence of the BC of CP1 nodes on the WM  

The BC is used to describe the importance of key nodes 

which own large numbers of the shortest path for pairs of nodes 

within a network. In this study, we calculate the BC of 62 nodes 

in terms of the aforesaid three factors and hereby find that the 

CP1 node possesses an important role in the WM considering 

the aging factor and the training factor. The CP1 node is located 

at the inferior parietal lobule. The latest work showed that 

repetitive (4-day) transcranial alternating current stimulation 

(tACS) on the scalp of the inferior parietal lobule (9 nodes) with 

non-invasive electrodes can improve the auditory-verbal WM 

of aging people [44]. Their experiment also implies that a 

certain memory function can be improved through the  

modulation of specific brain rhythms in a selective brain region 

[44-46].Therefore, our results demonstrate the existence of 

plasticity of key nodes from the view of graph theoretical and 

such plasticity can be modified by training regardless of aging 

and task difficulty. There remains a question does exist a 

network in a specific area of the brain that supports a certain

TABLE II 
 CLASSIFICATION RESULTS OF WM TASKS WITH THE QUANTIFIED TOPOLOGICAL CHARACTERISTICS 

Group 
Young (Accuracy: %) Elderly (Accuracy: %) 

session 1 session 2 session 3 session 4 session 2 session 3 session 4 

1 vs 2 vs 3 vs 4 40 .71 33.05 30.36 31.43 37.39 32.82 36.65 

1 vs 2, 3, 4 64.07 73.89 74.73 74.45 66.21 68.15 67.78 

1, 2 vs 3, 4 62.99 58.26 56.39 58.03 61.86 60.91 60.84 

1, 2, 3 vs 4 83.04 77.36 74.54 74.96 82.82 81.86 81.72 

1 vs 2 vs 3 vs 4 means that it will be classified into four categories in accordance with 1,2,3,4-back. 1 vs 2,3,4 represents a binary classification in which the 

1-back is a category whereas the rest backs will be in the same category. 1,2 vs 3,4 means 1-back and 2-back tasks will be in the same category whereas 3-back and 

4-back tasks are in the other category. 
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memory function? Maybe the graph theoretical method can be 

potential guidance for clinical applications of ameliorating WM 

in aging adults and can be a method to find the network to 

support a specific memory function. 

We also show the distribution of differences of the clustering 

coefficient between sessions for both the young and elderly 

groups. In the theta band, the clustering coefficients of the 

central and right parietal regions increased significantly with 

training and decreased significantly after revoking training. In 

the alpha and beta bands, the clustering coefficient of the right 

parietal lobe increased significantly after training and 

decreased significantly after revoking training. In conclusion, 

the training and non-training process of the elderly is 

accompanied by a significant change in the clustering 

coefficient of the right parietal lobe (Fig. 7). The results show 

that the right parietal lobe plays an important role in the training 

of WM in the elderly group. It has been proven that the right 

posterior parietal cortex is involved in spatial short-term 

memory [47], and the damage of the right posterior parietal 

cortex leads to the general defect of WM [48]. In addition, right 

parietal lobe dysfunction may be a manifestation of 

Alzheimer's disease [49]. Nonetheless, for the young group, 

there is no obvious alteration of the clustering coefficient in 

different brain regions for the theta band. On the other hand, 

more significant changes occurred in the beta band for both the 

elderly group and the young group. Recent studies also show 

that the beta band plays an important role in WM [50] (Fig. 8). 

Moreover, the active beta band may help to protect the current 

WM content from interference [51]. The change of the beta 

frequency band of young people is significant, which may help 

to carry out WM tasks more smoothly. By comparing the 

distribution of difference of clustering coefficient between the 

young and elderly groups for all sessions, the clustering 

coefficient of the right parietal lobe of the elderly was 

significantly higher than that of the young (Fig. 9). In a study on 

emergency awareness, compared with young people, the 

elderly showed excessive activation of the parietal lobe, which 

proved that the age-related destruction of the parietal lobe was 

enough to weaken consciousness [52]. And as mentioned 

earlier, the initial manifestation of Alzheimer's disease may 

appear in the right parietal lobe. These findings may indicate 

that the right parietal region has a significant impact on the 

working memory of the elderly. Through indepth study of the 

right parietal region, it may provide a new research direction for 

Alzheimer's disease and other diseases. 

 
Fig. 7. The distribution of difference of clustering coefficient between sessions for elderly people. There was training between session 3 and session 2, but there was 
no training between session 4 and session 3. The asterisk represents the channel with a significant difference (P < 0.001). 

 

 
Fig. 8. The distribution of difference of clustering coefficient between sessions for young people. There was training between session 2 and session 1 as well as 

session 3 and session 2, but there was no training between session 4 and session 3, The asterisk represents the channel with significant difference (P < 0.001). 
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Fig. 9. The distribution of difference of clustering coefficient between the young and elderly group for all sessions. The asterisk represents the channel with a 

significant difference (P < 0.001). 

V. CONCLUSION 

In this study, we proposed an experiment of WM in terms of 

the effect of aging, task difficulty, and inclusion of training 

between sessions of the task on performance. Then we used the 

graph-theoretical method to characterize the brain functional 

network in three frequency bands. First of all, we found that 

physiological aging influenced brain network connectivity and 

led to a less differentiated functional brain network. Secondly, 

the interaction of aging and training influenced all the 

topological characteristics over all bands. Thirdly, we observed 

that there is an inverse relationship between alpha band activity 

and WM load whereas topological characteristics in the theta 

band were significantly influenced by WM training for the 

elderly group. Fourthly, training-induced improvement in 

performance was more evident in the young group whereas the 

BC of CP1 for both groups show plastic changes before and 

after training. At the same time, lateralization of beta frequency 

is obvious for the elder group with the extinction effect of 

training. Finally, the right parietal lobe plays an important role 

in the training of WM for the elderly group whereas the beta 

band plays an important role in WM for both the elderly group 

and the young group. Our findings may shed light on the EEG 

frequency-based analysis of WM and may promote the study of 

degenerative disorders from an aspect of the brain functional 

network. 
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