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Abstract—We show that a typical neural network, which
ignores any covariate/feature re-balancing, can be as effective as
any explicit counterfactual method. We adopt the architecture
of TARNet—a simple neural network with two heads (one for
treatment, one for control) which is trained with a relatively
high batch size. Combined with ensemble methods, this produces
competitive results in four counterfactual inference benchmarks:
IHDP, NEWS, JOBS, and TWINS. Our results indicate that rel-
atively simple methods might be good enough for counterfactual
prediction, with quality constraints coming from hyperparameter
tuning. Our analysis indicates that the reason behind the observed
phenomenon might be “grokking”, a recently developed theory.

I. INTRODUCTION

Counterfactual inference from observational data is a funda-
mental problem in data analysis [1, 2, 3]. Observational data
are often readily available in large quantities [4], as opposed to
data collected through thoroughly-designed randomised-trial
experiments, which are time consuming and/or impossible
to perform. For instance, consider a study on the effects
of drink-driving, where getting people to drink and drive
(to form a treatment group) might be seen as unethical.
Collecting observational data on drink-driving is, however, a
much simpler endeavour, as the data could, for example, come
from existing historic records. It is thus, extremely important
to have easy-to-use algorithms for the observational setting.
Beyond this clear-cut use-case, it has also been postulated that
counterfactual inference is fundamental to the way we do data
science and to the out-of-distribution generalisational abilities
of modern classifiers [5]. If our models somehow manage
to learn the invariances of the world, they should be able
to generalise much better in the standard supervised-learning
setup, as distributional changes will not impact the quality of
our estimators.

Modern work in counterfactual inference using neural net-
works builds upon a series of methods that attempt to perform
feature (in the standard machine learning terminology) rebal-
ancing [6]. This creates a host of mechanisms (some of them
inspired by traditional counterfactual inference, some new)
that aim at tackling the problem.

In this paper, we follow a very simple approach to perform
counterfactual inference, inspired by traditional neural network
training regimes. We trained a simple neural network to learn
from the data using a single hidden layer of tanh neurons. We
also combined multiple of these networks in classic ensembles
(namely, bagging and boosting) and measured their ability
to learn counterfactual effects directly. Lastly, we explored
the influence of adding propensity scores as an additional
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input feature to the neural network for each of these variants
and performed hyperparemeter optimisation. We show that
even without any explicit feature rebalancing, neural networks
(when using the right hyperparameters) can still competitive
with respect to more advanced methods specific to counterfac-
tual inference. We hypothesise that the phenomenon observed
is similar to recently observed instances of rapid improvement
after excessive training, called “grokking” [7].

The rest of this paper is organised as follows: we discuss
the necessary background in Section II. We present our own
method, which we call Simple TARNet (STARNet), in Sec-
tion III. This is followed by a presentation of the results in
Section IV. Section V closes the paper with a brief discussion
of promising avenues that remain open for future work.

II. BACKGROUND

We start by introducing the potential outcomes framework,
which can be broken down into the following components:
a set of allowed observations X , a binary set of treatments
t ∈ {0, 1}, and a set of possible outcomes Y . As an example,
an observation, x ∈ X , could include the attributes describ-
ing a person; the treatment values could represent {smoker,
non-smoker}; and the outcome could represent the additional
life expectancy in years, such as Y = [5, 10]. We call Yt(x) the
potential outcome of treatment t on the individual described
by x [8, 9].

The fundamental problem of counterfactual inference is that
it is not possible to simultaneously observe the outcomes for
both the treatment and the control for each example: if one is
a smoker (known as the factual outcome), there is no way of
knowing what would have happened if they had never smoked
(referred to as the counterfactual outcome). We could only pos-
tulate this through a series of assumptions, namely ignorability,
stable unit treatment value, and common support [1, 8]. These
properties effectively declare that the backdoor criterion [1]
is true in the case we are examining. When these assumptions
hold, one can define the Individualised Treatment Effect (ITE)
as:

ITE(x) = Y1(x)− Y0(x) (1)

Due to the inability to simultaneously know both Y0(x) and
Y1(x) (unless they are obtained from simulations), it is not
usually possible to calculate the ITE directly from the data.
Most often, a regressor is used to try and approximate the
function ŷt(x) ≈ Yt(x), for all x and t. The regressor is then
used to “fill in” the missing elements. Depending on how one
goes into finding this approximate estimation of counterfactual
values, we have T-learners (for two separate regressors), S-
learners (for a single regressor with some special properties)
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Fig. 1: STARNet architecture. Note that this is simply a
TARNet, with the addition of batch normalisation (BN) in all
layers, i.e., add-ons to make convergence easier.

and X-estimators (which perform some kind of meta-learning
on T-learners) [10].

Another important measure is the Average Treatment Effect
(ATE), which captures the average effect of an intervention
on the entire population. This quantity is defined as:

ATE(X ) = Ex∼p(x) [ITE(x)] (2)

where p(x) is the distribution of x values in X—this can be
calculated empirically by averaging the individual treatment
effects. Notable and popular methods for estimating the effects
of interventions from observational data include propensity
score methods [11] and domain adaptation [6]:

1) Propensity score methods: The propensity score is the
probability that an individual gets assigned to the treatment
group, given their observable feature set. Propensity score
methods are quite often seen as central to counterfactual
inference [11, 12]. One such method, from which we draw
inspiration in this work, is termed covariate adjustment [13].
This simply means that the propensity score is calculated and
added as an extra input feature to the estimator. Vansteelandt
and Daniel [14] proved that such a linear regressor will behave
identically to an ordinary linear regressor trained using a
propensity-weighted cost function.

2) Domain Adaptation: It was recently understood that the
problem of counterfactual inference could be seen through the
lens of domain adaptation [6]. Domain adaptation methods
align the control and treatment distributions in the feature
space, so as to stop the estimator from being able to make
predictions based on features other than the treatment. This can
lead to an improved estimation of ŷt(x). In a sense, this is very
close to using a propensity-weighted cost function. Literature
in this topic introduced the Treatment-Agnostic Representation
Network (TARNet) neural architecture [15], which is highly
reminiscent of relevant reinforcement learning efforts, with
each action/treatment approximated by its own linear layer.
We discuss this further in Section III, as part of our own
modifications.

III. METHODOLOGY

A. STARNet

The core substrate for our experiments is a simple neural
network with a single hidden layer of tanh units in an S-
learner setup, which we present in Fig. 1. The hidden layer is
coupled with a batch-normalisation layer. The network has two
heads: one for the control outcome and one for the treatment
outcome. We call our counterfactual neural network “Simple
TARNet architecture” (STARNet).

Let D denote a given dataset. For each individual i ∈ D,
there is a set of observations describing the individual, xi, a
parameter, ti ∈ {0, 1}, detailing whether the treatment was
given to the individual, and the observed outcome, Yti(xi).
This list of data for each individual may have been obtained by
passive observation of an existing database, i.e., not obtained
under the idealised controlled experimental conditions one
would normally require for counterfactual analysis.

The system was trained by minimising a Mean-Squared
Error (MSE) loss function with respect to the weight vector
w of the neural network:

L(D, w) =
1

|C|+ |T |

(∑
i∈C

(Y0(xi)− ŷ0(xi))
2

+
∑
i∈T

(Y1(xi)− ŷ1(xi))
2

)
,

(3)

where C is the subset of individuals who are in the control
group (i.e., those who received no treatment), T is the subset
of individuals in the treatment group, and C ∪ T = D. ŷ0(xi)
denotes the left-head output of the network (corresponding
to its estimate for the effect of no treatment) and ŷ1(xi)
denotes the right-head output of the network (corresponding
to the estimate for the effect of the treatment). Y0(xi) and
Y1(xi) represent the corresponding ground-truth effects of
non-treatment or treatment on individual i respectively. During
training, (3) is intended for use with balanced mini-batches,
such that an equal number of individuals from C and from T
are selected. We note that this has an implicit effect of inserting
a coefficient |C|/|T | in front of the second summation in (3).

To test this, we also implement a modified version of
STARNet that includes propensity scores calculated for each
dataset. This modified architecture is shown in Fig. 2, where
P̂ (t = 0|x) and P̂ (t = 1|x) represent the neural network’s
estimates of the probability that a particular individual is in the
treatment/control group respectively, based only on the input
features x. These two probabilities are fed as an extra input to
the final double-headed layer, as shown in Fig. 2, to potentially
enhance the overall network’s ability to estimate ŷ0 and ŷ1.
The loss function used for propensity score calculation is the
simple cross entropy,

Lprop(D,w) = − 1

|D|
∑
i∈D

(
(1− ti) log

(
P̂ (ti = 0|xi)

)
+ ti log

(
P̂ (ti = 1|xi)

))
,

(4)
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ŷ0

Dense softmax layer with BN

P̂ (t|x)

Dense tanh layer with BN

Dense linear layer with BN

ŷ1

Fig. 2: STARNet architecture with propensity scores.

which is added to (3), where ti ∈ {0, 1} is the true label for
whether the individual has been treated or not.

B. Training details

We trained the network using mini-batches of size 1024
sampled with replacement from the training set. Each mini-
batch was chosen to include an equal number of treatment
and control samples, namely 512 samples with ti = 0, and
512 samples with ti = 1. If there were less than 512 samples
in either group, we used all samples—this did somewhat
remove the balancing effect, but not severely enough to impact
performance. We pre-processed all features (and outputs, in the
regression benchmarks) from the datasets to be in the range
[−1, 1] and used one-hot encoding for categorical features.

Each layer of STARNet used L2 regularisation with a
coefficient of 0.001 and varied the number of neurons in the
hidden layer, N = 20, 21, 22, . . . , 26, in our experiments. We
also tested the case where there is no hidden layer, in which
case our setup becomes two separate linear estimators (i.e., a
T-learner)—one for treatment and one for control. We refer to
this case as “Linear” in Section IV.

C. Benchmarks

We evaluate the performance of STARNet and its variants
on the four most widely used benchmarks in counterfactual in-
ference, namely: Infant Health Development Program (IHDP),
NEWS, JOBS, and TWINS. In this section, we give a short
overview of each of them.

1) IHDP dataset: The Infant Health Development Program
dataset was collected to investigate the effect of high-quality
home visits and childcare on the future cognitive test score of a
child [16]. We used the semi-simulated dataset from [17]. The
dataset contains 25 features, including measurements about the
child and the mother, and behavioural information about the

pregnancy. The sizes of the treatment and control groups are
139 and 608 respectively. The outcome is the cognitive test
score for the child. More details of the IHDP dataset can be
found in [6, 15, 17].

2) JOBS dataset: The JOBS benchmark [18] is a com-
bination of Lalonde’s experimental data from the National
Supported Work Program (NSWP) [19] and an observational
study from the Panel Study of Income Dynamics (PSID) [20].
The experimental study from the NSWP is comprised of
297 participants who received training (the treatment group)
and 425 control subjects that did not. The PSID observa-
tional comparison group contains an additional 2490 control
individuals. The outcome in this dataset is the employment
status (employed or unemployed) of each individual. We used
the 8-feature set of [20], which contains information such as
education, previous salary, and age.

3) NEWS dataset: The NEWS benchmark [6] is a simu-
lated dataset in which the outcome to predict is the opinion of
a customer exposed to news items for different topics either
on a mobile (control group) or a desktop device (treatment
group).

4) TWINS dataset: This benchmark is based on the register
of twin births in the US between 1989–1991 [21, 22]. Of
interest are twin pairs of same sex weighing less than 2 kg
each. In this setting, the treatment variable represents whether
a given twin is the heavier amongst the twin pair, and the
outcome is the mortality of each twin within their first year
of life, which is known from the birth register. This can be
seen as having access to the outcomes of both treatment and
control.

D. Performance Metrics

In order to measure the performance of STARNet, and
compare it with other competitive efforts, in this section we
present the metrics commonly used in counterfactual inference
problems.

1) Average Treatment Effect (ATE): We define the error in
the average treatment effect, ATEε, as

ATEε =
1

|D|

∣∣∣∣∑
i∈D

(ŷ1(xi)− ŷ0(xi))

−
∑
i∈D

(Y1(xi)− Y0(xi))

∣∣∣∣ (5)

Note that usually only one of the Yt outcomes is available
(the factual, which can be either treatment or control), mak-
ing the calculation of ATEε impossible—unless, as in most
benchmark scenarios, the datasets are simulated.

2) Precision in Estimating Heterogeneous Treatment Effect
(PEHE): PEHE measures the quality of the counterfactual
predictions of a model and its ability to reproduce the ground
truth [17]. We measure the error in the Precision in Estimating
Heterogeneous Treatment Effect (PEHEε) as:



PEHEε =

(
1

|D|
∑
i∈D

(
[ŷ1(xi)− ŷ0(xi)]

− [Y1(xi)− Y0(xi)]
)2)1/2

(6)

3) Average Treatment on Treated (ATT): For the JOBS
dataset, since the treated individuals are part of the randomised
control subset of the dataset (denoted as Dr), while C is the
control group, the true Average Treatment on Treated (ATT)
can be computed. The ATT is defined by:

ATT =
1

|T |
∑
i∈T

Y1(xi)−
1

|C ∩ Dr|
∑

i∈C∩Dr

Y0(xi) (7)

while the error term, ATTε, is defined as:

ATTε =

∣∣∣∣∣ATT− 1

|T |
∑
i∈T

(ŷ1(xi)− ŷ0(xi))

∣∣∣∣∣ (8)

4) Policy Risk (Prisk): The absence of (all) ground truth for
the JOBS dataset prevents us from using ATEε and PEHEε

for evaluation. Instead, we use the policy risk, Prisk, proposed
by [15]. This quantity measures the average loss in value when
a treatment is carried out according to the policy implied by
an ITE estimator. Let

Ωy(x) =

{
1 if y1(x)− y0(x) > λ

0 otherwise,

where λ is a real parameter which can be tuned, but 0 is a
sensible default. The policy risk is defined by:

Prisk(Ωy) = 1−
(
E[Y1|Ωy(x) = 1] ∗ p(Ωy(x) = 1)

+ E[Y0|Ωy(x) = 0] ∗ p(Ωy(x) = 0)

)
(9)

We calculate the policy risk from the randomised control
subset of the data for λ = 0.

5) Counterfactual AUC: In binary outcome settings, pro-
vided one has access to the counterfactual truths, we can
measure the Area under the Receiving Operating Curve
(AUC) [23]. This is to be measured on the counterfactual
samples of the test set (i.e., for any user we have data for
treatment, we would measure the control case and vice versa).

IV. RESULTS

A. Benchmarks

We performed our experiments using the setup described in
Section III-B for each of the datasets, varying only the size of
the hidden layer of the STARNet architecture. The networks
were trained for 20,000 iterations in all cases. The validation
sets were merged with the training set, and were not used
to stop training (or anything else; see following subsections
on validation information and selecting hyperparameters). We
also created a bagging STARNet and a boosting STARNet
(with the help of the bagging and AdaBoost implementations

in scikit-learn [24] respectively) using ensembles of 10 (for
IHDP and NEWS) or 50 (for JOBS for and TWINS) STARNet
estimators1.

Fig. 3 shows the results of each of the STARNet variants on
the four benchmarks, as a function of the size of the hidden
layer. In Table I, we compare STARNet to other competitive
methods (with the corresponding reference from which the
results were extracted). For each of the STARNet variants we
specify N , the number of neurons in the hidden layer for
which we obtained the lowest ATEε, PEHEε or ATT, or
the highest AUC. For each dataset, we have highlighted the
best-performing algorithm.

In the IHDP dataset, we obtained the best performance for
bagging STARNet with N = 1, both in terms of PEHEε

(see Fig. 3a) and ATEε (reported in Table I). Increasing the
size of the hidden layer decreases performance (i.e., higher
PEHEε) for the ensemble variants of STARNet. Our method
easily outperforms the previous competitive results, provided
the right number of neurons is set. In Fig. 3c, we can observe
the performance of STARNet on the NEWS benchmark. In
this case, we observe the opposite pattern than for IHDP:
increasing N improves the performance of our models. Our
best result in terms of ATEε is obtained for boosting STARNet
with N = 64, but it should be noted that all the ensemble
variants are capable of beating the competitive results previ-
ously reported, and the single-estimator methods (STARNet
with and without propensity scores) remain on a par with
them (see Table I). Our best result in terms of predicting
individual outcomes, measured by PEHEε, is obtained for
bagging STARNet with propensity scores and N = 64, with
PEHEε = 1.65 ± 0.06 (almost 1/4 of the PEHEε for linear
STARNet), also beating the previous competitive method,
BNN-2-2 [6], which stands at PEHEε = 2.0± 0.1.

If we now compare our results with our selection of
methods, we beat a previous top performer (CEVAE [22])
in terms of ATT with bagging STARNet with propensity
scores for N = 16 (see Table I). In terms of the quality of
individual predictions however, the best result is obtained for
boosting STARNet with propensity scores and N = 64, with
Prisk = 0.12± 0.01.

Following the pattern of the JOBS benchmark, the results
for the TWINS dataset are reported in terms of the AUC
in Fig. 3d (note that, in this case, higher is better, as op-
posed to the previous metrics). For the ensemble variants of
STARNet, performance is stable or increasing for N > 8.
In contrast, for the single estimator STARNet, performance
drops with increasing N . Our best result in terms of the
AUC is AUC = 0.73 ± 0.00, obtained for the linear case,
bagging STARNet with N = 1 (both of them with and without
propensity scores), and boosting STARNet with propensity
scores, but it remains below the the strong baseline from [22],
as highlighted in Table I. If we look at the average performance
over the population, measured by ATEε, the best performers

1These numbers were chosen purely on the basis of training time con-
straints.
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Fig. 3: Results of STARNet for all datasets, for different hidden layer sizes. (a) Error in the PEHE for predicting the cognitive
test score for the children in the IHDP dataset (lower is better); (b) Policy risk for predicting the employment status of the
participants of the JOBS dataset (lower is better); (c) Error in the PEHE for predicting readers’ experience in the NEWS
dataset (lower is better); (d) Area under the curve for predicting the mortality of the unobserved twin in the TWINS dataset
(higher is better). Shaded areas represent the standard deviation around the mean.

are the two versions of boosting STARNet, which outperform
the results from [22].

Finally, if we compare the versions of STARNet that use
propensity scores vs. the “standard” STARNet versions, it
is clear from the subplots in Fig. 3 that adding propensity
scores does not always result in significant performance im-
provements, and one needs to discover when this addition is
beneficial. Overall, smaller networks tend to perform better.
Without any special “counterfactual” alignment, STARNet is
able to uncover the counterfactual structure, provided the
correct hyperparameters (in this case, N ) are found. We
explore hyperparameter exploration in Sections IV-C–IV-D.

B. Grokking

Recent literature has demonstrated counter-intuitive obser-
vations can occur during neural-network training [7]: networks
seem to forgo the traditional dynamics when it comes to

overfitting. The “traditional” neural network wisdom was that
in order to prevent overfitting, one must train on their data
for as long as the validation dataset performance is not
dropping. Modern research points towards a direction where,
following an initial short-lived drop, validation performance
picks up again after more training [28]. In the extreme,
following a long period of overfitting, the network suddenly
improves its performance rapidly; this phenomenon is known
as “grokking” [7]. In Fig. 4 we show the Out-Of-Bag (OOB)
R2 estimates on the training set and smoothed PEHEε and
ATEε on the test set as STARNet was training on the IHDP
benchmark, starting at training iteration 8,000. The OOB
score approximates leave-one-out cross-validation [29] and,
combined with bagging/boosting, can be a very efficient way
of dealing with small datasets.

Even though R2 (on both the training and the test sets) has



IHDP JOBS NEWS TWINS
Method ATEε PEHEε ATT Prisk ATEε PEHEε ATEε AUC
OLS – – – – 0.2 ± 0.0 3.3 ± 0.2 – –
D ROBUST 0.2 ± 0.0 5.7 ± 0.3 – – 0.2 ± 0.0 3.3 ± 0.2 – –
[6]

BART – 2.3 ± 0.1 0.08 ± 0.03 0.25 ± 0.0 0.2 ± 0.0 3.2 ± 0.2 – –[25] [15] [6]

R Forest – 6.6 ± 0.3 0.09 ± 0.04 0.28 ± 0.0 – 17.39 ± 1.24 – –
[25] [15] [26]

C Forest – 3.8 ± 0.2 0.07 ± 0.03 0.20 ± 0.02 – 17.59 ± 1.63 – –
[25] [15] [26]

BNN-2-2 0.3 ± 0.0 1.6 ± 0.1 – 0.24 ± 0.02 0.3 ± 0.0 2.0 ± 0.1 – –
[6]
TARNet 0.28 ± 0.01 0.95 ± 0.0 – 0.21 ± 0.01 – 17.17 ± 1.25 – –
[15] [26]
CFR-WASS 0.27± 0.01 0.76 ± 0.0 – 0.21 ± 0.01 – 16.93 ± 1.12 – –
[15] [26]
SITE [27] – 0.66 ± 0.11 – 0.22 ± 0.01 – – – –
GANITE – 2.4 ± 0.4 – 0.14 ± 0.01 – 18.2 ± 1.66 – –
[25] [26]
CEVAE [22] – – 0.03 ± 0.01 0.26 ± 0.0 – – 0.03 ± 0.00 0.82 ± 0.0
Linear 0.29 ± 0.02 2.33 ± 0.11 0.07 ± 0.00 0.24 ± 0.00 0.24 ± 0.03 6.62 ± 0.27 0.04 ± 0.00 0.73 ± 0.00

STARNet 0.13 ± 0.01 0.36 ± 0.01 0.07 ± 0.02 0.23 ± 0.02 0.20 ± 0.03 2.06 ± 0.06 0.04 ± 0.01 0.73 ± 0.01
(N = 1) (N = 1) (N = 1) (N = 32) (N = 16) (N = 64) (N = 4) (N = 1)

Bagging STARNet 0.10 ± 0.00 0.34 ± 0.01 0.03 ± 0.01 0.20 ± 0.01 0.16 ± 0.02 1.70 ± 0.06 0.03 ± 0.00 0.73 ± 0.00
(N = 1) (N = 2) (N = 16) (N = 32) (N = 64) (N = 64) (N = 2) (N = 1)

Boosting STARNet 0.12 ± 0.00 0.40 ± 0.01 0.06 ± 0.00 0.15 ± 0.02 0.15 ± 0.01 1.82 ± 0.06 0.01 ± 0.00 0.72 ± 0.00
(N = 1) (N = 1) (N = 2) (N = 8) (N = 64) (N = 64) (N = 8) (N = 64)

Linear with propensity 0.29 ± 0.02 2.33 ± 0.11 0.06 ± 0.00 0.24 ± 0.00 0.29 ± 0.03 6.57 ± 0.27 0.04 ± 0.00 0.73 ± 0.00
STARNet 0.18 ± 0.01 0.83 ± 0.05 0.08 ± 0.02 0.23 ± 0.02 0.21 ± 0.03 2.16 ± 0.07 0.03 ± 0.01 0.73 ± 0.01
with propensity (N = 1) (N = 1) (N = 16) (N = 32) (N = 16) (N = 64) (N = 2) (N = 1)
Bagging STARNet 0.14 ± 0.01 0.54 ± 0.02 0.02 ± 0.00 0.20 ± 0.01 0.16 ± 0.02 1.65 ± 0.06 0.02 ± 0.00 0.73 ± 0.00
with propensity (N = 4) (N = 4) (N = 16) (N = 64) (N = 32) (N = 64) (N = 2) (N = 1)
Boosting STARNet 0.14 ± 0.01 0.60 ± 0.04 0.07 ± 0.00 0.12 ± 0.01 0.16 ± 0.02 1.79 ± 0.07 0.01 ± 0.00 0.71 ± 0.00
with propensity (N = 1) (N = 1) (N = 2) (N = 64) (N = 16) (N = 64) (N = 32) (N = 64)
Bagging STARNet 0.12 ± 0.00 0.50 ± 0.01 0.07 ± 0.00 0.22 ± 0.01 0.16 ± 0.02 1.70 ± 0.06 0.03 ± 0.00 0.73 ± 0.00
with naive validation (N = 2) (N = 2) (N = 64) (N = 2)
Boosting STARNet 0.17 ± 0.01 1.17 ± 0.02 0.06 ± 0.00 0.23 ± 0.03 0.15 ± 0.01 1.82 ± 0.06 0.05 ± 0.00 0.72 ± 0.00
with naive validation (N = 64) (N = 2) (N = 64) (N = 64)
Bagging STARNet 0.14 ± 0.01 0.54 ± 0.02 0.09 ± 0.00 0.30 ± 0.01 0.16 ± 0.02 1.65 ± 0.06 0.02 ± 0.00 0.73 ± 0.00
with propensity and naive validation (N = 4) (N = 2) (N = 64) (N = 2)
Boosting STARNet 0.14 ± 0.00 0.62 ± 0.01 0.09 ± 0.01 0.19 ± 0.06 0.18 ± 0.02 1.79 ± 0.07 0.05 ± 0.00 0.71 ± 0.00
with propensity and naive validation (N = 4) (N = 2) (N = 64) (N = 64)

TABLE I: State-of-the-art results for each dataset, and results from STARNet and its variants. All values are reported as mean
± standard deviation. Values for methods other than our own are extracted from the referenced sources.
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Fig. 4: Progress of ATEε, PEHEε, and R2 on the test set for
an IHDP realisation as a function of the number of iterations.

almost reached its maximum within the first 8,000 iterations,
the error in the PEHE keeps decreasing, with an initial rapid

drop and constant improvement afterwards. This marked drop
in PEHEε seems similar to a “smooth” version of grokking.
The network, following extensive training, reaches a stage
where counterfactual performance is achieved.

C. Validation Errors

We have not done hyperparameter tuning in our case, but
one way to choose hyperparameters would be to use OOB R2

estimates for each realisation and evaluate the test set on the
model with the highest OOB score. Unfortunately, the number
of ensemble networks required is high, which, combined with
the very high number of epochs, would result in prohibitively
long training times. We recorded the validation scores on
the data that the network was not training on for a specific
ensemble, which we call “naive validation”, as a proxy.

Fig. 5 shows that the validation score changes markedly
with the number of neurons, and that all errors as a function
of N for each dataset, are closely correlated with their
corresponding test scores (see Fig. 3). We are able to reach
competitive results when using OOB scores to select the best
model (see the bottom part of Table I for the rows that have
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Fig. 6: Error in the PEHE vs. OOB R2 score for realisations 8
and 9 of the IHDP benchmark, represented in different colours.
The insets zoom into the top 10% of results separately for each
realisation. Pearson correlation coefficients are also reported
for each realisation and for the top 10% of results (in the
insets).

“naive validation” on them), but they are clearly worse than
the best possible scores.

D. Hyperparameter exploration

So far we have seen (in Sections IV-B and IV-C) that
we need to train for as long as we can on datasets that
will not overfit, and this seems to uncover the counterfactual
effects. However, there is a large number of hyperparameters
that we have ignored so far to tune for, and we expect to
see gains if we do. To confirm this, we tested for differ-
ent numbers of hidden layers (3, 2, 1) of (2, 4, 8, 16, 32, 64)
neurons of type (tanh, elu) and L2 regularisation strengths

of (0.1, 0.01, 0.001) as well as adding propensity scores
(True, False). We trained 100 neural networks in a bagging
setup in order to obtain accurate OOB estimates.

We show the aggregate results in Fig. 6 for two different
realisations of the IHDP benchmark, where we have also
included the Pearson correlation coefficient r between OOB
scores and error in PEHE on the test set for two different
realisations. Although there is a very strong (and very sig-
nificant) correlation when all hyperparameters are taken into
account (r = −0.9), this is not strictly the case for the top
10% models sorted by their OOB scores (shown in the insets,
with r = −0.4 and r = −0.64 for the two realisations). This
indicates that we need strong regressors (i.e., we need to be
able to predict irrespective of establishing any counterfactual
relationship). In the top 10% architectures, this is not the case
anymore, and reversals do happen. That is, (very) high R2

values do not always correlate with similarly ranked PEHEε
scores on the test set. Overall, it seems that using a smooth
activation function (tanh) combined with a small network size
tends to produce better results, provided the OOB R2 score is
high enough.

V. DISCUSSION AND CONCLUSION

We have shown that simple neural networks can do coun-
terfactual inference, if the right hyperparameter regime is
discovered. The first thing to note is that we have not done
an extensive study on hyperparameter tuning — we have just
showcased that models of high quality exist and uncovered
some links between OOB scores and counterfactual perfor-
mance. There are methods for discovering hyperparameters in
counterfactual inference (e.g. as in [30]), and using them to
find the correct number of layers/neurons remains work for
the future. Considering that in a real-world setting there will
be no access to the counterfactual outcome (hence making
it hard to compare different hyperparameters), based on our
experimental setup and results we postulate that the best model
is that which contains as few neurons as possible in the hidden
layer, trained with as many iterations as possible, in a bagging
setup that allows one to more or less tune the number of
neurons via OOB score validation. Note, however, that this is
just a hint, and further work is needed in this area to confirm
our initial results. In the future, we will focus on extensive
hyperparameter tuning. We suspect that once a proper tuning
framework is developed, the counterfactual inference problem
might collapse into a straightforward representation learning
problem, albeit one where “grokking” comes into play.
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