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Abstract— Since Electroencephalogram (EEG) is resis-
tant to camouflage, it has been a reliable data source
for objective emotion recognition. EEG is naturally multi-
rhythm and multi-channel, based on which we can extract
multiple features for further processing. In EEG-based emo-
tion recognition, it is important to investigate whether there
exist some common features shared by different emotional
states, and the specific features associated with each emo-
tional state. However, such fundamental problem is ignored
by most of the existing studies. To this end, we propose
a Joint label-Common and label-Specific Features Explo-
ration (JCSFE) model for semi-supervised cross-session
EEG emotion recognition in this paper. To be specific,
JCSFE imposes the �2,1-norm on the projection matrix to
explore the label-common EEG features and simultaneously
the �1-norm is used to explore the label-specific EEG fea-
tures. Besides, a graph regularization term is introduced to
enforce the data local invariance property, i.e., similar EEG
samples are encouraged to have the same emotional state.
Results obtained from the SEED-IV and SEED-V emotional
data sets experimentally demonstrate that JCSFE not only
achieves superior emotion recognition performance in com-
parison with the state-of-the-artmodels but also provides us
with a quantitative method to identify the label-common and
label-specific EEG features in emotion recognition.
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I. INTRODUCTION

EMOTION refer to people’s psychological reactions to
external stimuli or their own stimuli accompanied by

physiological reactions [1]. Emotions have an important
impact on the establishment and maintenance of interper-
sonal relationships [2], cognition [3], decision-making [4], and
other interactive activities. Many mental disorders are closely
related to emotions [5]; therefore, identifying the emotional
state of people with emotional expression disorders is helpful
to their treatment and healthcare. In past decades, emotion
recognition has been attracting increasing attention from both
academia and industry [6]. Compared with the traditional
data modalities such as facial expressions, text, and speech,
EEG can offer us more reliable emotion recognition results
because it is originated from the neural activities of our
central nervous system and is not easily camouflaged [7]. With
the development of weak signal acquisition equipments and
processing techniques, EEG has been widely used in multiple
scenarios such as drowsiness estimation [8], rehabilitation
engineering [9], and disease diagnosis [10]. In the present
work, we put the emphasis on EEG emotion recognition [11].

Current studies in EEG emotion recognition mainly focused
on two aspects. One is the feature extraction methods to
characterize the statistics, frequency, and nonlinear charac-
teristics of EEG data [12], [13]. Generally, the popular
EEG features for emotion recognition are extracted from the
time-, frequency-, time-frequency and spatial domains. The
other focus is the feature transformation and recognition mod-
els [14]. Roughly, we can categorize these existing models into
linear, kernel-based and neural networks-based nonlinear ones.
They improved emotion recognition performance by diverse
motivations such as enhancing the model robustness [15],
distinguishing the different discriminative abilities of fea-
tures [16], and minimizing the inter-subject variabilities [17].
Instead of using the handcrafted EEG features, sometimes raw
EEG data is fed into deep learning models to simultaneously
obtain the data representations and emotion recognition results.
That is, the feature learning and classification are unified
together to achieve the end-to-end EEG decoding [18].
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The multi-channel and multi-rhythm properties of EEG
provide us with abundant spatial and frequency information,
based on which the extracted features are used for emotional
state estimation. Based on the consensus that different EEG
frequency bands and channels correlate differently to mental
states [8], [19], different dimensions of a certain feature type
(e.g., power spectra density or differential entropy) should
also correlate differently to different types of emotional states.
In pattern recognition, different features have different dis-
criminative abilities in classifying the emotional states. Then,
a fundamental problem in EEG emotion recognition is whether
there exist some common features that are discriminative for
all the involved emotional states. Accordingly, we also want to
investigate whether there exist label-specific features that are
discriminative only to a specific emotional state. However, this
problem has not been fully studied yet within the community
of EEG emotion recognition.

In this paper, we propose a new Joint label-Common and
label-Specific Features Exploration (JCSFE) model for cross-
session EEG emotion recognition, which is implemented based
on the semi-supervised regression. Specifically, we impose the
�2,1-norm on the regression projection matrix to explore the
label-common features by achieving row-sparsity; simultane-
ously, the �1-norm is used to explore the label-specific features
due to its isotropic property. Moreover, a graph regularizer
is incorporated into JCSFE by enforcing the local invariance
property of data. As a summary, the present work consists of
the following contributions.

• We propose a new emotion recognition model by joint
label-common and label-specific EEG features explo-
ration, which are respectively achieved by imposing the
�2,1-norm and �1-norm on the projection matrix in the
semi-supervised regression.

• As the secondary contribution, JCSFE incorporates the
graph regularizer to enforce the local invariance property
of data. Besides, an efficient optimization algorithm is
proposed to optimize the JCSFE model objective whose
convergence and complexity are analyzed.

• On the emotion recognition performance, JCSFE not only
obtains improved accuracy but also provides us with
quantitative measurement of the EEG spatial-frequency
activation patterns for emotion recognition from two
perspectives, i.e., each feature in terms of all emotional
states and each emotional state in terms of all features.

We organize the rest of this paper as follows. Section II
introduces the JCSFE model formulation and optimization.
Comparative studies are conducted and the results are analyzed
in section III. Discussions to clarify the connections as well
as differences between JCSFE and some related models are
provided in section IV. Section V concludes this paper and
describes the potential future work.

II. METHOD

A. Problem Definition

In this paper, matrices are denoted by blodface uppercase
letters and vectors are written as bolaface lowercase letters.
For matrix M ∈ R

n×m , its (i, j)-th element is mij . Its i -th

Fig. 1. An example to illustrate the two different types of features.

row, j -th column are respectively denoted as mi , m j . The
boldface 1m represents an all-one column vector whose length
is m. The �1-norm of vector v ∈ R

n is defined as ‖v‖1 =∑n
i=1 |vi |. The �2,1-norm of M is ‖M‖2,1 = ∑n

i=1 ‖mi‖2 =∑n
i=1

√∑m
j=1 m2

i j .
Generally, in semi-supervised EEG emotion recognition,

we are often given an EEG data set X = [Xl,Xu ] ∈ R
d×n ,

where Xl ∈ R
d×l is the labeled subset and Xu ∈ R

d×u is
the unlabeled subset. Accordingly, Yl ∈ R

l×c is the emotional
state indicator matrix of these labeled samples. Here, d is the
sample dimensionality, c is the number of emotional states, l
and u are respectively the numbers of labeled and unlabeled
samples (i.e., n = l + u). The i |li=1-th row of Yl , yi ∈ R

1×c,
encodes the label information of sample xi ∈ R

d as

yi j =
{

1, if xi corresponds to the j -th state;
0, otherwise.

(1)

By defining Yu ∈ R
u×c as the indicator matrix of the unlabeled

EEG data and Y = [Yl; Yu] ∈ R
n×c, our aim is to estimate

Yu as accurately as possible given X and Yl .
Below we use an example to illustrate the label-common

and label-specific features in pattern classification. Suppose
that we have a data matrix which contains two instances X =
[x1, x2] with five dimensional feature space {f1, f2, f3, f4, f5}.
The corresponding label vectors are Y = [y1; y2]. The two
elements in each label vector represents the probability of the
corresponding instance belonging to the two classes, respec-
tively. By fitting (X,Y) by a projection matrix W, we obtain
one possible solution of W shown in Fig. 1. Through the
non-zero values of the two columns of W, i.e., w1 and w2,
we know the specific features of each class. Specifically, w1 =
[1, 1, 1, 0, 0]T means that features f1, f2, f3 determines the
first class, while w2 = [0, 0, 1, 1, 1]T indicates that features
f3, f4, f5 determines the second class. f3 is the common feature
for both classes.

B. JCSFE Model Formulation

In Fig. 2, we show the the overall framework of applying
JCSFE into semi-supervised EEG emotion recognition task.
The second stage is the JCSFE-based model learning, which
is implemented under a semi-supervised regression framework
due to its simplicity and effectiveness. The three components
in JCSFE consist of the label-common and label-specific
features mining, the consideration of data local invariance
property by graph regularizer.
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Fig. 2. The overall framework of semi-supervised EEG emotion recognition by JCSFE.

Given a centered data matrix X and the label indicator
matrix Yl , semi-supervised regression can be expressed by

min
W,Yu

‖XT W − Y‖2
2 + C(W),

s.t . Y = [Yl; Yu],Yu ≥ 0,Yu1c = 1u, (2)

where C(W) defines some constraints on W to be described.
The non-negative and row-normalization constraints make Yu

essentially define the probabilities of a certain EEG sample
to different emotional states, based on which we can directly
determine the emotional state of each unlabeled EEG sample.
For example, if the j |uj=1-th row of the learned Yu is [0.12,
0.78, 0.04, 0.06], we accordingly annotate the emotional state
of this sample as the second one.

On the label-common EEG features, they have common
discriminative ability for all emotional states. Based on the
feature selection (ranking) theory [20], [21], for the i |di=1-th
feature, we can use the normalized �2-norm of the i -th row of
W (i.e., θi ) to measure the extent of a feature to be a label-
common one. Mathematically, a larger value of θi represents
that the i -th feature is more discriminative in classifying the
emotional states. To this end, we impose the �2,1-norm on
W to achieve the label-common features exploration, which
essentially enforces it to be row-sparse. Besides the label-
common features, we consider that each emotional state might
be additionally determined by several specific features of its
own. Therefore, we use the �1-norm regularization to select
label-specific features, which enforces the projection matrix
W to be element-wisely sparse. Currently, we achieve the
following objective function

min
W,Yu

‖XT W − Y‖2
2 + α‖W‖1 + β‖W‖2,1,

s.t . Y = [Yl; Yu],Yu ≥ 0,Yu1c = 1u. (3)

Denote W � [w1,w2, · · · ,wc] ∈ R
d×c in which w j is its

j -th column. The coefficient vector w j is expressed as w j =
[w1 j , w2 j , . . . , wd j ]T , where wi j expresses the discrimination
of the i -th feature in terms of the j -th emotional state. That
is, wi j �= 0 means that the i -th feature is discriminative for
recognizing the j -th emotional state. Then it is considered
as a label-specific feature of the j -th emotional state. On the
contrary, wi j = 0 means that it is useless for recognizing the
j -th emotional state. In objective function (3), non-negative
regularization parameters α and β are used to balance these
impacts of the three terms, which respectively control the

element-sparsity and row-sparsity of the projection matrix W
in exploring the label-common and label-specific features.

Besides the label-common and label-specific features explo-
ration, we additionally take the data connections into con-
sideration which is inspired by the consensus that learning
performance can be greatly improved if the data manifold
is explored and utilized. Specifically, a k-nearest neighbor
(KNN) graph is adopted to measure the pairwise correlations
between EEG samples. Correspondingly, a similarity matrix
S ∈ R

n×n is built in which si j characterizes the similarity
between samples xi and x j . For simplicity, the ‘0-1’ weighting
scheme is used in this paper, based on which we define

si j =
{

1, xi ∈ N (x j ) or x j ∈ N (xi );

0, otherwise;
(4)

where N (xi ) contains the k-nearest neighbors of sample
xi based on the Euclidean distance metric. The data local
invariance property asks that if two samples xi and x j are
similar in original data space, their representations in projected
space should be also similar. This can be achieved by

min
W

n∑
i, j=1

si j

∥∥∥WT xi − Wx j

∥∥∥2

2
= Tr(WT XLXT W), (5)

where the Laplacian matrix L can be calculated by D−S. D is a
diagonal matrix, whose i -th diagonal element dii is

∑n
j=1 si j .

By incorporating (5) into (3) as a regularizer, we finally
achieve the JCSFE objective function as

min
W,Yu

‖XT W − Y‖2
2 + α‖W‖1 + β‖W‖2,1 +

γTr(FT LF) , s.t . Y = [Yl; Yu],Yu ≥ 0,Yu1c = 1u, (6)

where γ is a newly introduced regularization parameter. F �
XT W is an intermediate variable to simplify the notations.
Once the variables in objective function (6) are fitted by
given EEG data, we can directly obtain the emotional state
information of unlabeled samples by Yu . Moreover, based on
the learned W, we can explore the label-common and label-
specific features by the form of analyzing the respective EEG
spatial-frequency patterns in emotion recognition.

C. JCSFE Model Optimization

On the two variables W and Yu in the JCSFE objective
function, we propose to optimize them in alternating manner.
That is, we update one variable by fixing the other.
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� Yu-step. When W is fixed, objective function (6) degen-
erates to

min
Yu

‖XT W − Y‖2
2, s.t . Yu ≥ 0,Yu1c = 1u, (7)

where Y = [Yl; Yu]. The above problem can be decoupled for
each i ∈ {l + 1, l + 2, · · · , l + u}; therefore, we can optimize
Yu in the row-wise manner. That is, for the i -th subproblem,
we need to solve

min
yi

‖xT
i W − yi‖2

2, s.t . yi ≥ 0, yi 1c = 1, (8)

which is an Euclidean projection with a simplex con-
straint [22]. It can be optimized by the Lagrange multiplier
method together with the Karush-Kuhn-Tucker (KKT) condi-
tion. Detailed derivations can be found in the supplementary
material.

� W-step. Though objective function (6) is convex, it is
not smooth due to the existence of the �2,1-norm and the
�1-norm regularization terms. Therefore, we first relax ‖W‖2,1
as Tr(WT AW) to simplify the derivations [20], where A ∈
R

d×d is a diagonal matrix. The i -th diagonal value of A is
aii = 1

2‖wi‖2
, where wi is the i -th row vector of W. Then,

we employ the accelerated proximal gradient (APG) method
to deal with the �1-norm regularizer. The derivation to the
updating rule of W is provided in the supplementary material.

The pseudo-code of the optimization procedure to JCSFE
objective function is provided in Algorithm 1. Notation S
is a soft-shrinkage operator to solve the �1-norm regularized
problem which is defined as

Sε[x] =

⎧⎪⎨
⎪⎩

x − ε, if x > ε,

x + ε, if x < −ε,
0, otherwise,

(9)

where ε usually has a small positive value.

D. Complexity and Convergence Analysis

We analyze the time complexity of Algorithm 1 below.
In the initialization step, the complexity of initializing W is
O(nd2 + d3 + ndc + d2c). The complexity of calculating the
sample similarity matrix by k-nearest neighbor is O(n2d).
Furthermore, the complexity of initializing L f is O(d3).
In the main loop, the time cost is primarily dominated by
calculating the gradient of f (W), which can be measured by
O(nd2 + d2c + ndc + n2d). When updating Yu , it occupies
the complexity of O(uc). Considering the usual case of semi-
supervised EEG emotion recognition is n ≈ u > d � c,
we conclude that the overall complexity of optimizing JCSFE
model objective function by Algorithm 1 is O(tn2d), where t
is the number of iterations.

On the convergence property of JCSFE, we provide the
analysis below. When row-wisely updating the label indicator
matrix Yu by the Lagrange multiplier method, the involved
multipliers are analytically determined, leading to its analytical
solution. When updating the projection matrix W, the APG
method is used whose convergence property has been exten-
sively studied [23]. Therefore, we declare that the convergence
of Algorithm 1 can be guaranteed.

Algorithm 1 The Optimization of JCSFE Objective Function

Input: Labeled EEG samples Xl ∈ R
d×l and the correspond-

ing label indicator matrix Yl ∈ R
l×c, unlabeled EEG

samples Xu ∈ R
d×u , model parameters α, β and γ ;

Output: The estimated label indicator matrix Yu ∈ R
u×c.

1: Initialize t = 1, Yu = 1
c 1c1T

c , b(0) = b(1) = 1, and W(0) =
W(1) = (XXT + 0.1 ∗ I)−1XY;

2: Calculate the diagonal matrix A;
3: Calculate the similarity matrix S via (4);

4: Calculate L f =
√

3(‖XXT ‖2
2 + ‖γXLXT ‖2

2 + ‖βA‖2
2);

5: while not converged do
6: W(t) = W(t) + b(t−1)−1

b(t)
(W(t) − W(t−1));

7: G(t) = W(t) − 1
L f

∇ f (W(t)), where f (W) = ‖XT W −
Y‖2

2 + γTr(FT LF)+ βTr(WT AW);
8: W(t+1) = Sε[G(t)], where ε = α

L f
;

9: b(t+1) = 1+
√

4(bt )2+1
2 ;

10: Update the diagonal matrix A(t+1) by aii = 1
2‖wi‖2

;
11: Update the Lipschitz constant L f ;
12: Update Yu by solving (8) for each i |l+u

l+1;
13: end while

Fig. 3. Illustration of label-common and label-specific patterns.

E. Label-Common and Label-Specific Features
Exploration

This section illustrates how to quantitatively measure a
certain feature to be a common one in terms of all the
emotional states, and a specific one to each of the emotional
states, by the learned JCSFE model.

As shown in Fig. 3, each row of the projection matrix
characterizes the discriminative ability of the corresponding
feature in classifying all the involved emotional states. We use
θi as the quantitative importance measure of the i -th feature
to be a label-common one. However, θi |di=1 is not explicitly
learned by JCSFE, and only the �2,1-norm was used to enforce
the row-sparsity of the projection matrix. Inspired by the
underlying rationality of the �2,1-norm based feature auto-
weighting [24], for each feature dimension, we propose to
use the normalized �2-norm of the corresponding row of
the projection matrix to serve as its quantitative importance.
Specifically, the importance of the i -th EEG feature (i.e.,
θi |di=1) can be calculated by

θi = ‖wi‖2∑d
j=1 ‖w j ‖2

, (10)

where wi is the i -th row of W and ‖wi‖2 is the �2-norm of
wi . Obviously, θi s satisfy the non-negative and normalization
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constraints, i.e., θi |di=1 ≥ 0 and
∑d

i=1 θi = 1. The larger
value of θi , the i -th EEG feature is considered to be more
discriminative in distinguishing the emotional states. In other
words, it should be regarded more as a label-common feature.

Intuitively, the �2,1-norm based label-common feature
exploration process is completed by investigating the elements
of the projection matrix along the horizontal direction. Some-
what differently, the �1-norm pursues the isotropic sparsity
of the projection matrix by shrinking its elements in order to
identify features which might be specific to a certain emotional
state. Since the emotional label indicator matrix is arranged
by one-hot encoding, the quantitative importance measure
of a feature to be a label-specific one can be obtained by
investigating the elements in each column of the projection
matrix, which is along the vertical direction, as depicted by
Fig. 3. For example, the feature importance descriptor θi |di=1
to identify the j -th emotional state can be calculated as the
normalized �1-norm of each element in the j -th column;
namely,

θi = |wi j |
‖w j‖1

= |wi j |∑d
i=1 |wi j |

, (11)

where | · | is the absolute value operator. Essentially, equa-
tions (10) and (11) are equivalent because each row has only
one element in this label-specific case.

III. EXPERIMENTS

A. Data Description

Two benchmark emotional EEG data set, SEED-IV and
SEED-V, are used in the following experiments. We first
describe the main properties of the SEED-IV data set and then
point out the differences in SEED-V.

In SEED-IV, EEG data was collected from 15 subjects
when they were watching the movie clips. 72 movie clips
were carefully selected to evoke the four discrete emotional
states, i.e., sad, fear, happy and neutral. In each of the three
sessions, each subject was asked to watch 24 movie clips,
among which six clips correspond to one emotional state. The
EEG acquisition devices include the ESI Neuroscan system
and a 62-electrode cap in compliance with the international
10-20 placement. When raw EEG data was recorded with a
sampling frequency of 1000 Hz, it was first down-sampled
to 200 Hz and then band-pass filtered to 1-50 Hz. In the
following experiments, we use the differential entropy features
which were extracted from five frequency bands, i.e., Delta
(1-3 Hz), Theta (4-7 Hz), Alpha (8-13 Hz), Beta (14-30 Hz)
and Gamma (31-50 Hz). The sample vector was formed by
concatenating the 62 values corresponding to each of the
five frequency bands, leading to its dimensionality 310. There
respectively have 851, 832 and 822 EEG samples in the three
sessions.

SEED-V is also a video-evoked emotional EEG data set,
which consists of five different types of emotional states.
Specifically, SEED-V data set has one more state, disgust,
in comparison with SEED-IV. 20 subjects participated the data
collection experiments and the EEG data from 16 subjects
was made public. In each session, three of the total 15 trials

correspond to one emotional state. There are 681, 541 and
601 samples in the three sessions, respectively.

B. Experimental Setup

In the following experiments, we compare JCSFE with the
several semi-supervised learning models including

• Semi-supervised Support Vector Machine (ssSVM) with
linear kernel.

• Rescaled Linear Square Regression (RLSR) [21], which
explicitly defines a feature importance descriptor in semi-
supervised regression to characterize the different contri-
butions of features in classification.

• Semi-supervised Linear Square Regression (ssLSR) and
graph regularized ssLSR (LSRG). ssLSR is modified
from RLSR, which has no feature auto-weighting ability.
LSRG introduces a graph regularization into ssLSR.

• Semi-supervised Feature Selection with Redundancy
Minimization (SFSRM) [25], which penalizes the redun-
dancy in feature selection by enforcing the strongly
correlated features to be far apart in feature ranking.

• Robust Discriminative Sparse Regression (RDSR) [26],
in which the �2,1-norm based sparse regression is used
to enhance the robustness and the projection matrix is
enforced to be row sparse for feature selection.

• Semi-supervised Structured Manifold Learning (SSML)
[27], which proposes to learn a structured graph to exploit
the submanifold of both labeled and unlabeled data to
solve the multimodality problem that samples in some
classes lie in several separated clusters.

• Sparse Discriminative Semi-Supervised Feature Selection
(SDSSFS) [28], which improves RLSR by introducing the
label dragging technique to maximize the margin between
different classes.

In terms of parameter setting, the relevant parameters in
each model are uniformly tuned from the candidate values
{2−10, 2−9, · · · , 210}. The initialization of Yu in Algorithm 1
means that each sample has the same probability to all
the emotional states. On the experimental paradigm, the
subject-dependent cross-session EEG emotion recognition is
employed. Since each subject has three different sessions in
both SEED-IV and SEED-V, for each subject we consider
only the three cross-session emotion recognition tasks in
chronological order, i.e., session1-session2, session1-session3,
and session2-session3. Taking the ‘session1-session2’ task as
an example, EEG samples from the first session serve as the
labeled ones but those from the second session are unlabeled.
Accordingly, we should estimate the emotional states of these
unlabeled EEG samples as accurately as possible.

C. Results and Analysis

In Tables I and II, we present the recognition accuracies of
these compared models, where the bold number indicates the
best result of that case. s1, s2, · · · , are the indices of subjects.
These results provide us with the following insights.

• Obviously, JCSFE obtained the best performance among
the nine compared models on average. The average accuracies
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TABLE I
EMOTION RECOGNITION RESULTS (%) ON THE SEED-IV DATA SET

of JCSFE in the three cross-session recognition tasks of
SEED-IV are 80.78%, 78.55%, and 83.89%, which respec-
tively outperform the runner-up model by 6.57%, 5.97% and
5.78%. Similarly, the average accuracies of JCSFE on the
SEED-V data set are 81.90%, 81.65% and 81.33%, which also
have 2%-5% improvements in comparison with the second-
best one. According to the obtained results, we generally
conclude that jointly exploring the label-common and label-
specific EEG features is beneficial for improving the emotion
recognition accuracy. Additionally, the local invariance prop-
erty of data is also useful in JCSFE.

• The performance of ssSVM is generally worse than that of
the remaining models. To be specific, its average accuracies
on the SEED-IV data set are 57.06%, 58.08%, 63.77% and
they are 62.04%, 58.94% and 62.29% on the SEED-V data
set. From our point of view, the linear kernel in ssSVM is
not effective enough in capturing the essence of emotional
information in EEG. Similarly, the performance of SFSRM is
also not satisfactory. First, SFSRM performs semi-supervised
feature selection by considering the �2,1-norm based label-
common features only. Second, the label indicator matrix in
SFSRM is real-valued which cannot explicitly characterize the
label information and therefore cannot effectively guide the
feature selection process.

• As stated in the experimental setting, RLSR takes the
adaptive feature weighting into account while ssLSR does not.
Such only difference made RLSR obtain superior performance
to ssLSR. Taking SEED-IV as an example, we believe that
the improvements of 2.62%, 2.47%, and 3.01% achieved
by RLSR are brought from the adaptive learning of the
different contributions of different EEG feature dimensions

to emotion recognition. Therefore, RLSR is endowed the
ability to automatically identify the discriminative features
while suppress the redundant and noisy features. Besides, due
to the introduction of graph regularization, LSRG generally
outperforms ssLSR in terms of the average performance.

• For the three recently proposed models, RDSR, SDSSFS
and SSML, they have generally shown good performance
in emotion recognition. For example, RDSR improves the
performance by 1.39%, 1.20% and 0.86% in the three tasks of
SEED-IV, in comparison with RLSR. In RLSR, direct mapping
between the data matrix and the label indicator matrix is built
by a row-sparse projection matrix. While in RDSR, it addi-
tionally takes the local label consistency into consideration to
constrain the projection matrix. Similarly, by taking RLSR as
a baseline method, SSDSFS additionally includes the label-
dragging strategy to maximize the margin between classes,
leading to superior performance. As for SSML, the graph
learning technique is used to more effectively characterize the
underlying connections of samples.

In addition, we rearranged the emotion recognition accu-
racies in the form of confusion matrix. In Fig. 4, we show
the confusion matrices of JCSFE on the two data sets, from
which we easily obtain the average recognition accuracy on
each state. Taking SEED-IV for example, JCSFE acts the best
recognition accuracy, 82.33%, on the neutral state. There are
only 7.58%, 4.1% and 6% neutral EEG samples which are
incorrectly recognized as sad, fear and happy, respectively.

Moreover, we performed the Friedman test on the emotion
recognition results to perform the statistical analysis among the
compared models. The null hypothesis is that all these models
share the same performance in emotion recognition. If such
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TABLE II
EMOTION RECOGNITION RESULTS (%) ON THE SEED-V DATA SET

Fig. 4. The accuracies (%) of JCSFE represented by confusion matrices.

hypothesis is rejected, we use the Nemenyi post-hoc test to
tell whether two among all the nine models have significantly
different performance. In this work, we have nine models
and 45 cases in SEED-IV (i.e., K=9, N=45). We rank the
accuracies in each case in descending order and then mark
the highest one as 1, and the lowest one as 9. In case of
tiers, the related models share the average rank. Therefore,
the average ranks of ssSVM, ssLSR, RLSR, LSRG, SFSRM,
RDSR, SDSSFS, SSML, and JCSFE are 8.00, 5.94, 4.67, 5.17,
6.42, 4.60, 3.92, 4.57, and 1.69, respectively, as shown in
Fig. 5a). The length of these vertical bars is termed as the

critical distance, which is calculated as CD = qα
√

K (K+1)
6N ,

where qα is the critical value in Tukey distribution (qα is
3.102 when K = 9). We set the significance level as 0.05.
Since the average ranks of JCSFE and SDSSFS are 1.69 and
3.92, their difference 2.23 is larger than the CD value 1.7909.
Therefore, we conclude that there exists significant difference
between their results. Intuitively, there is no overlap between
the red and the purple bars in Fig. 5a). For SEED-V, the CD

Fig. 5. The statistical analysis of the compared models on the two data
sets.

value is 1.7341 since K = 9 and N = 48; Accordingly,
we have the statistical analysis results in Fig. 5b).
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Fig. 6. The correspondence between feature dimensions and EEG
frequency bands (channels) [29].

Fig. 7. The analysis of EEG frequency patterns on the two data sets.

D. Label-Common EEG Spatial-Frequency Patterns

In section II-E, we explained how to quantitatively measure
a feature to be a label-common one. In this section, we first
show the correspondence between an EEG feature dimension
and its frequency bands (channels), based on which we then
investigate the label-common EEG spatial-frequency patterns
in cross-session emotion recognition. Consider that θi is
importance descriptor to define the contribution of the i -th
feature in classifying all the involved emotional states and
we are given an EEG data set with p frequency bands and
q channels. According to the correspondence between EEG
frequency bands and feature dimensions [29], the importance
of the i |p

i=1-th frequency band can be calculated by

ω(i) = θ(i−1)×q+1 + θ(i−1)×q+2 + · · · + θi×q . (12)

For the j |qj=1-th channel, its importance can be measured by

ψ(i) = θ j + θ j+q + · · · + θ j+(p−1)×q. (13)

In both SEED-IV and SEED-V, we have five frequency bands
and 62 EEG channels. Therefore, by respectively setting p to
5 and q to 62 in both rules (12) and (13), we automatically
identify the critical EEG frequency bands and channels in
classifying the emotional states, as illustrated in Fig. 6.

In Fig. 7, bar charts are used to show the importance of
different EEG frequency bands on the SEED-IV and SEED-V
data sets, and the corresponding values are marked on the top
of bars. It can be seen that the Gamma frequency band holds
the largest value; that is, the Gamma band generates more
discriminative features than the others on average, which is
undoubtedly identified as the most critical frequency band in
EEG emotion recognition.

Similarly, according to equation (13), it is easy to obtain the
quantitative importance measure of different EEG channels.
To more intuitively present the importance of different brain
regions rather than listing the contributions of all the EEG
channels, we use the brain topology to show how the EEG

Fig. 8. The analysis of EEG spatial patterns on the two data sets.

channel importance values distribute on the scalp in Fig. 8,
from which we find that the spatial patterns of both data
sets are generally consistent. Based on the obtained results,
we roughly conclude that the four regions of the prefrontal,
the left/right temporal, and the (central) parietal lobes exhibit
to be more correlated to emotion recognition. The above EEG
spatial-frequency activation patterns identification results are
generally consistent with some existing studies [19], [29], [30].

E. Label-Specific EEG Spatial-Frequency Patterns

Based on the normalized �1-norm label-specific fea-
ture exploration described in section II-E, below we ana-
lyze the specific EEG activation patterns associated with each
of the emotional states, according to the established rules
in the above subsection. Taking the SEED-IV data set for
example, we respectively annotated the four emotional states
of sad, fear, happy and neutral as the first, second, third
and fourth classes. By using the one-hot encoding, the label
indicator vector of these four emotional states are [1, 0, 0, 0],
[0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1], respectively. Therefore,
the four columns of the projection matrix can be viewed as
the feature importance descriptor respectively corresponding
to these four emotional states to some extent.

Then, according to equations (12) and (13), the spatial-
frequency activation patterns associated with each emotional
state are achieved, as shown in Fig. 9. From the obtained
results, we find that though some common patterns are shared
across different emotional states, their activation patterns are
not exactly the same and there have some respective unique
patterns. For example, we find the activated occipital region
is common for all especially the fear and happy states in
Fig. 9; however, they have differently distributed importance
values of frequency bands. Generally, the importance values
of frequency bands distribute similarly across the sad, fear
and neutral states, which all have the Gamma band as the
most important one. However, the average contributions of
the Theta and Gamma bands look similar on the happy state.
Similarly, the label-specific EEG spatial-frequency patterns on
the SEED-V data set are provided in Fig. 10. Based on the
above analysis, we generally conclude that it is insufficient to
emphasize the label-common EEG features only in emotion
recognition and it is beneficial to additionally take the label-
specific features into consideration.

IV. DISCUSSION

This section discusses the connections and differences
between JCSFE and some existing models such as the
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Fig. 9. Spatial-frequency patterns of each emotional state in SEED-IV.

LLSF [31], JLCLS [32], LFCMLL [33], and CLML [34]. The
main common ground among these models is the utilization
of the �2,1-norm and the �1-norm to respectively learn label-
common and label-specific features. From this point of view,
our JCSFE model formulation is inspired by the existing ones.
On the model optimization, most of these models use the APG
method to solve the model objective functions.

The differences between JCSFE and the above mentioned
models consist at least the following three aspects.

• JCSFE is a semi-supervised model by utilizing both
labeled and unlabeled EEG samples in model learning, which
is more effective in capturing the underlying data proper-
ties [35]. Moreover, jointly estimating the emotional states
of unlabeled EEG samples and optimizing the remaining
model variables can better guide the discriminative feature
exploration.

• JCSFE is particularly designed for EEG emotion recogni-
tion. In the above experiments, we not only obtained improved
emotion recognition performance by JCSFE, but also investi-
gated the EEG spatial-frequency patterns from two aspects,
i.e., each feature in terms of all the emotional states and
each emotional state in terms of all the features. However, the

Fig. 10. Spatial-frequency patterns of each emotional state in SEED-V.

other models focused only on evaluating their performance on
benchmark data sets by standard metrics (e.g., accuracy) but
paid less investigation on the problem itself.

• In the present work, the video-evoked EEG emotion
recognition is a single-label pattern classification problem and
each sample should be uniquely categorized into a specific
emotional state. Therefore, we did not take the label correla-
tions into consideration, which is different from these multi-
label or label distribution learning models.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new model term JCSFE
for semi-supervised cross-session EEG emotion recognition,
which jointly explores the label-common and label-specific
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EEG features by respectively introducing the �2,1-norm and
the �1-norm based regularization terms. Moreover, a similarity
graph was used to characterize the data manifold based on
which the local invariance property of data was preserved.
Comparative studies were performed on two emotional EEG
data sets and the results demonstrated that 1) JCSFE obtained
improved emotion recognition performance in comparison
with the state-of-the-arts, 2) the EEG spatial-frequency pat-
terns in emotion recognition were extensively analyzed from
two aspects, i.e., the patterns across all the emotional states
and those associated with each emotional state. It is worth
mentioning that the analysis of EEG spatial-frequency patterns
in this work is completely data-driven. Though there exist
consistencies between our results and some existing studies
to some extent, further research from both cognitive neuro-
science and information science is still necessary to validate
whether they are related to the neural mechanism of affective
information processing.

In the present work, we consider the cross-session emotion
recognition only, which is much easier than the cross-subject
setting due to the existence of inter-subject variabilities. As our
future work, we will consider extending the current JCSFE
model in dealing with cross-subject EEG emotion recogni-
tion. That is, possible transfer learning strategies will be
improved and integrated into JCSFE to suppress the inter-
subject variabilities.
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