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Abstract 

Three-dimensional gait analysis (3D–GA) is commonly used to answer clinical questions of 

the form “which joints and what variables are most affected during when”. When studying 

high-dimensional datasets, traditional dimension reduction methods (e.g. Principal 

Components Analysis) require “data flattening”, which may make ensuing the solutions 

difficult to interpret. The aim of the present study is to present a case study of how multi-

dimensional dimension reduction technique, Parallel Factor 2 (Parafac2), provides a clinically 

interpretable set of solutions to typical biomechanical datasets where different variables are 

collected during walking and running. Three-dimensional kinematic and kinetic data used for 

the present analyses came from two publicly available datasets on walking (n = 33) and 

running (n= 28). For each dataset, a four-dimensional array was constructed as follows: Mode 

A was time normalized cycle points; mode B was the number of participants multiplied by 

the number of speed conditions tested; mode C was the number of joint degrees of freedom, 

and mode D was variable (angle, velocity, moment, power). Five factors for walking and four 

factors for running were extracted which explained 79.23% and 84.64% of their dataset’s 

variance. The factor which explains the greatest variance was swing-phase sagittal plane knee 

kinematics (walking), and kinematics and kinetics (running). Qualitatively, all extracted 

factors increased in magnitude with greater speed in both walking and running. This study is 

a proof of concept that Parafac2 is useful for performing dimension reduction and producing 

clinically interpretable solutions to guide clinical decision making.  
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1. Introduction 
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Three-dimensional gait analysis (3D–GA) is commonly used in clinical biomechanics 

for guiding clinical decision making (Steele et al., 2015). This form of analysis produces 

significant amounts of data which can make clinical utilization challenging. Dimension 

reduction, such as principal components analysis (PCA) (Schwartz and Rozumalski, 2008), is 

commonly applied to biomechanical data to distill complex multivariate biomechanical 

variables into simpler univariate variables. For dimension reduction to generate clinically 

interpretable solutions, it needs to answer clinical questions in the form of “which joints and 

what biomechanical variables are most affected during which phase of a locomotion cycle”.  

Existing dimension reduction methods (e.g. PCA) may not provide interpretable 

clinical answers, as they require “data flattening”. Biomechanics data can have up to four 

dimensions (4D), such as when studying many participants (dimension 1), many time points 

within a movement cycle (dimension 2), many joint degrees of freedom (DOF) (dimension 

3), and many types of biomechanical variables (dimension 4). To process a 4D dataset using 

PCA, the input data must be flattened into 2D (Schwartz and Rozumalski, 2008), which 

confounds the variability of one dimension with another. For example, flattening a 9 x 51 

(angle by time) matrix into a 459 x 1 vector combines inter-angle with inter-time variability, 

which precludes knowing which joint angle is affected at what locomotion phase.  

To retain the underlying dimensional structure of biomechanical data, dimension 

reduction can be performed using techniques such as Parallel Factor Analysis (Parafac) 

(Harshman, 1970; Harshman and Lundy, 1994) and its extension Parafac2 (Harshman, 1972). 

Parafac is a multi-dimensional extension of PCA which makes it possible to extract clinically 

interpretable factors that uniquely differentiate individual and/or group motions across a 

movement cycle and between different joint DOF (Helwig et al., 2012). Parafac2 extends the 

functionality of Parafac to handle biomechanical variables of different units of measure 

(Helwig et al., 2013; Liew et al., 2018).  
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The primary aim of this study is to present a case study demonstrating the potential for 

Parafac2 to provide a clinically interpretable set of solutions to typical biomechanical datasets 

for walking and running. We hypothesized that the factor which contributes to the greatest 

variance accounted for (VAF) in walking will have a significant contribution from the knee 

joint during the swing phase (Boccia et al., 2018); while in running, the VAF will be from the 

knee joint during the stance phase (Saito et al., 2018).  

2. Methods 

2.1. Experimental set up 

Data for the current study came from two publicly available datasets on walking (n = 

42) and running (n = 28) in healthy adults (Fukuchi et al., 2018; Fukuchi et al., 2017). The 

detailed methods of the studies can be found in the primary open source publications 

(Fukuchi et al., 2018; Fukuchi et al., 2017).  

Walking data: Participants performed unshod walking on a dual-belt, force-

instrumented treadmill (300 Hz, FIT; Bertec, Columbus, OH, USA), and motion was 

captured with 12 opto-electronic cameras (150Hz, Raptor-4; Motion Analysis Corporation, 

Santa Rosa, CA, USA) (Fukuchi et al., 2018). Walking occurred over eight controlled speeds: 

40%, 55%, 70%, 85%, 100%, 115%, 130%, 145% of each participant’s self-determined 

dimensionless speed (Froude number). The eight dimensionless speed corresponded to a 

mean (standard deviation [sd]) speed of 0.5 (0.1) m/s, 0.7 (0.1) m/s, 0.9 (0.1) m/s, 1.1 (0.1) 

m/s, 1.2 (0.2) m/s, 1.4 (0.2) m/s, 1.6 (0.2) m/s, 1.8 (0.2) m/s, respectively. Marker trajectories 

and ground reaction force (GRF) were collected for 30s and the data were low passed filtered 

at a matched frequency of 6Hz (4th Order, zero-lag, Butterworth) (Kristianslund et al., 2012).  

Running data: Running assessment was performed using the same opto-electronic 

cameras and force-instrumented treadmill as in walking (Fukuchi et al., 2017). Participants 
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performed shod running across three fixed speeds of 2.5 m/s, 3.5 m/s, and 4.5 m/s (Fukuchi et 

al., 2017). Marker trajectories and GRF were collected for 30s and the data were low passed 

filtered at a matched frequency of 12Hz (4th Order, zero-lag, Butterworth) (Kristianslund et 

al., 2012). 

2.2. Biomechanical processing 

Biomechanical modelling was performed in Visual 3D software version 6.00.33 (C-

motion Inc., Germantown, MD, USA). A force plate threshold of 50N was used to determine 

gait events of initial contact and toe-off. A seven segment lower limb model was created for 

each study (Fukuchi et al., 2018; Fukuchi et al., 2017). The following convention was used as 

the anatomical coordinate system: flexion-extension occurred about the Z-axis, with positive 

pointing laterally to the right; abduction-adduction occurred about the X-axis with positive 

pointing anteriorly; and internal-external rotation occurred about the Y-axis with positive 

pointing superiorly. 

Three-dimensional 3D joint angle, velocity, internal moment, and power, of the right 

ankle, knee, and hip joints. Joint angle was calculated using a Cardan flexion-abduction-

rotation sequence (Cole et al., 1993). Joint velocity and moment were expressed in the 

proximal segment’s reference frame (Schache and Baker, 2007). Joint power was calculated 

by the product of joint moment and velocity. All biomechanical variables were time 

normalized to 101 data points, between two consecutive initial contacts of the right limb. 

Both joint moment and power were normalized to body mass. 

2.3. Parallel factor analysis 

The biomechanical waveform variables for each participant at each speed were 

averaged across all strides for walking and running, such that one participant had one stride 

for each locomotion speed. Parafac2 analysis was performed in R software (v 3.2.5) (R Core 
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Team (2017)), using the “multiway” package (Helwig, 2018). The input data was organized 

into a four dimensions: 1) mode A being time (101 cycle points), 2) mode B being the 

vectorization of participants by speed (number of participants multiplied by number of speed 

conditions), 3) mode C being the nine joint DOFs – three cardinal axes of three joints, and 4) 

mode D being the four biomechanical variables (angle, velocity, moment, power). The 

organization of the data for mode B enables identification of factors common to all 

participants and all locomotion speeds.  

Each variable within mode D was scaled to have a root mean square of one: 
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where l represents each of the four variables within mode D. This allowed each 

biomechanical variables to contribute equally to the Parafac2 solutions (Helwig et al., 2013).  

Mode B weights reflect the instance of each participant at each speed for the extracted 

factors. Mode A (time) was analysed simultaneously with mode D (variables), given that a 

Parafac2 model requires the nesting of mode A within mode D to achieve a least squared 

solution (Helwig et al., 2013). A higher absolute weighting indicates a greater contribution of 

the mode to the factor (Helwig et al., 2013; Helwig et al., 2012). Understanding the 

“mechanical” meaning of the extracted factors were determined by comparing modes C 

(DOF), and A-D (time by variables) weights, to the original biomechanical variables. For 

example, if knee sagittal plane in mode C and joint velocity at 85% stride in modes A-D had 

the highest weights in factor one, then factor one was interpreted to reflect knee flexion-

extension swing phase kinematics. 

An Alternating Least Squares (ALS) algorithm was used to find an optimal solution, 

using 500 random starts with 500 maximum iterations of the ALS algorithm for each start. 
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An orthogonal constraint was applied to Mode C to improve the interpretability of the 

Parafac2 solutions (Helwig et al., 2013). Parafac2 solutions were scaled such that mode B 

weights absorbed the data's scale so that the mode B weights can be used to understand 

differences in locomotive patterns at different speed. Mode A weights absorbed the data's 

sign because the time weights have a meaningful bipolar interpretation (e.g. positive for joint 

flexion). For each gait type, the number of factors extracted was determined when an 

additional factor did not increase the variance accounted for (%VAF) by > 3% (van den 

Hoorn et al., 2015). We plotted the mean with standard deviation of the cohort’s mode B 

weights at each locomotion speed, to provide a description of how each factor varied its 

weightage with speed. 

3. Results 

Nine out of the 42 participants from the walking dataset were excluded from the 

present study. These participants had many simultaneous bilateral foot contacts on the same 

force plate, resulting in an absence of consecutive good foot contact strides which lasted > 

50% of the walking duration. The 50% threshold was determined by the authors to minimize 

manual identification of foot contact events, to increase processing replicability. Summary 

statistics of the demographic characteristics, as well as the original biomechanical waveforms 

can be found in the supplementary material.  

For walking, five factors were extracted which accounted for 79.23% of the VAF 

(Table 1, Figure 1). All factors increase their weightage, but factors 1, 2, and 4 had the 

greatest increase over all walking speeds (Figure 3a). For running, four factors were extracted 

which explained 84.64% of the VAF of the walking dataset (Table 1, Figure 2). All factors 

increase their weightage, but factors 1, 2, and 4 had the greatest increase over the running 
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speeds investigated (Figure 3b). The mechanical interpretations of all extracted factors in 

walking and running can be found in Table 2.  

4. Discussion 

 The aim of the present study was to illustrate how Parafac2 provides a clinically 

interpretable set of solutions to typical multidimensional biomechanics datasets. We found 

that the factor with the largest VAF in walking and running weighted highest for knee 

flexion-extension mechanics during the swing phase, which partially supported our 

hypothesis.  

 Swing-phase knee flexion-extension mechanics reflected the largest variance of 

steady-speed walking and running, suggesting that the motor control system does not exert 

“strong” independent control (resulting in low variability) of the knee during swing. This is 

not surprising given that the energetic cost of leg swing is low, compared to the stance phase 

(Arellano and Kram, 2014; Gottschall and Kram, 2005), and tissue loads are low in the swing 

phase. The large variability of swing-phase knee flexion-extension mechanics may allow 

inter-joint covariation to ensure adequate toe-clearance height (Srivastava et al., 2016). 

Ensuring adequate toe-clearance is essential to enable forward progression, whilst avoiding 

ground obstacles to prevent falls. Previous studies have also reported the importance of knee 

flexion angular velocity (Chou and Draganich, 1998), and knee flexion-extension range of 

motion (Benson et al., 2018) during the swing-phase of walking in determining the risk of 

falling potential. 

If healthy walking behaviour is typified by a high variance explained by swing-phase 

knee biomechanics, which becomes more important at greater walking speeds, than impaired 

walking should be affected on both these features. Children with cerebral palsy have a 

reduced variance explained by the factor with a high contribution from swing-phase knee 
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flexor muscle activity, compared to healthy children (Steele et al., 2015). The experience of 

inadequate swing-phase knee flexion during walking in children with cerebral palsy has been 

termed as “stiff knee gait” (Bohm et al., 2014). Impaired swing-phase knee flexion may be 

magnified with greater walking speed due to muscle spasticity (Van Campenhout et al., 

2014). Adults with stroke have also displayed impaired capacity to fractionate the timing of 

their muscle synergy activations, particularly during the swing phase of walking (Clark et al., 

2010).  

In clinical biomechanics, dimension reduction has been used to develop normative 

databases of healthy and impaired walking behaviour in children (Schwartz and Rozumalski, 

2008). The present paper provides a foundation upon which future studies can develop 

clinically interpretable normative databases of healthy and impaired walking, as well as 

running, behaviours in adults. The principle limitation of the present study was that walking 

and running were performed on a treadmill. Whether the present findings will be replicated 

during overground locomotion is unclear. However, a previous study reported similar muscle 

synergies extracted during running in both overground and treadmill conditions (Oliveira et 

al., 2016).  

5. Conclusion 

 Factors with high weightings from the knee flexor-extensor mechanics during the 

swing phase accounted for the largest variance in normal walking and running, and its 

importance increased at faster locomotion speeds. This study is a proof of concept that 

Parafac2 is useful for performing dimension reduction in high-dimensional biomechanics 

datasets, to produce clinically interpretation solutions.   
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Table 1. Weightings of each degree of freedom (DOF) (mode C) for each extracted factor during walking and running 

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

DOF      

Walking 

Ankle INV/EVE 0.58 -0.38 0.15 0.08 -1.70 

Ankle ABD/ADD 0.16 -0.46 1.46 -0.65 -1.17 

Ankle PF/DF 0.00 0.05 0.89 2.85 -0.04 

Knee ABD/ADD -0.03 0.28 1.18 -0.37 0.12 

Knee IR/ER -0.40 0.13 0.64 -0.18 1.89 

Knee FLEX/EXT 2.91 0.03 0.01 -0.01 0.71 

Hip ABD/ADD 0.00 0.25 2.03 -0.50 0.20 

Hip IR/ER -0.12 0.28 0.38 -0.09 0.50 

Hip FLEX/EXT 0.10 2.90 -0.11 -0.04 -0.58 

 

% VAF 35.07 21.60 13.12 5.63 3.83 

 

Run 

Ankle INV/EVE 0.16 -0.19 0.12 -0.12 - 

Ankle ABD/ADD 0.00 -0.44 0.23 0.47 - 

Ankle PF/DF 0.15 2.70 -0.91 0.63 - 

Knee ABD/ADD 0.01 0.07 0.07 1.09 - 

Knee IR/ER 0.16 0.21 -0.36 0.04 - 

Knee FLEX/EXT 2.74 0.32 1.10 -0.37 - 

Hip ABD/ADD 0.27 -0.42 0.50 2.60 - 

Hip IR/ER -0.01 0.43 0.05 -0.52 - 

Hip FLEX/EXT -1.17 0.98 2.55 -0.18 - 

 

% VAF 52.62 16.21 11.89 3.93 - 

 

Abbreviations: 

INV = inversion; EVE = eversion; ABD = abduction; ADD = adduction; PF = plantarflexion; DF = dorsiflexion; FLEX = flexion; 

EXT = extension; IR = internal rotation; ER = external rotation; % VAF = percentage variance accounted for  
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Table 2. Mechanical interpretation of extracted factors in walking and running 

Factors Mode C (DOF) with high 

weights 

Mode A-D (time-variables) with high 

weights 

Interpretation 

Walk 

1 Knee FLEX/EXT Velocity, angle, power after 65% stride Knee flexion mechanics in swing  

2 Hip FLEX/EXT Power before 25% stride Hip extension power single support 

3 Hip ABD/ADD Moment before 65% stride Hip abduction moment stance 

4 Ankle PF/DF  Power before 65 % stride Ankle plantarflexion power at push-off 

5 Knee IR/ER Angle after 65% stride Knee rotation kinematics in swing 

Run 

1 Knee FLEX/EXT Moment and power before 25%; Angle, 

velocity, power after 65% stride 

Knee extension kinetics early stance; Knee flexion 

mechanics in swing  

2 Ankle PF/DF Power before and after 25% stride Hip extension power single support 

3 Hip FLEX/EXT No dominant biomechanical variables Hip sagittal plane mechanics with a higher contribution 

at stance and end of swing 

4 Hip ABD/ADD Moment before 25% stride Hip abduction moment at single support 

Abbreviations: 

INV = inversion; EVE = eversion; ABD = abduction; ADD = adduction; PF = plantarflexion; DF = dorsiflexion; FLEX = flexion; EXT = extension; IR = 

internal rotation; ER = external rotation; % VAF = percentage variance accounted for 
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