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Abstract 

Incidents such as the 2018 shut down of Gatwick Airport due to a small Unmanned Aerial 

System (UAS) airfield incursion, have shown that we don’t have routine and consistent 

detection and classification methods in place to recognise unwanted signals in an airspace. 

Today, incidents of this nature are taking place around the world regularly. The first stage in 

mitigating a threat is to know whether a threat is present. This thesis focuses on the detection 

and classification of Global Navigation Satellite Systems (GNSS) jamming radio frequency 

(RF) signal types and small commercially available UAS RF signals using machine learning 

for early warning systems. RF signals can be computationally heavy and sometimes sensitive 

to collect. With neural networks requiring a lot of information to train from scratch, the thesis 

explores the use of transfer learning from the object detection field to lessen this burden by 

using graphical representations of the signal in the frequency and time domain. The thesis 

shows that utilising the benefits of transfer learning with both supervised and unsupervised 

learning and graphical signal representations, can provide high accuracy detection and 

classification, down to the fidelity of whether a small UAS is flying or stationary. By treating 

the classification of RF signals as an image classification problem, this thesis has shown that 

transfer learning through CNN feature extraction reduces the need for large datasets while 

still providing high accuracy results. CNN feature extraction and transfer learning was also 

shown to improve accuracy as a precursor to unsupervised learning but at a cost of time, 

while raw images provided a good overall solution for timely clustering. Lastly the thesis has 

shown that the implementation of machine learning models using a raspberry pi and software 

defined radio (SDR) provides a viable option for low cost early warning systems.  
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Glossary 

Term Definition 

Unmanned Aerial 

System (UAS)  

Otherwise known as a ‘drone’. An uncrewed aircraft or ship 

(and associated equipment) guided by remote control or 

onboard computers. [1] 

Radio Frequency (RF) “Electromagnetic wave frequencies that lie in the range 

extending from below 3 kilohertz to about 300 gigahertz and 

that include the frequencies used for communications signals 

(as for radio and television broadcasting and cell-phone and 

satellite transmissions) or radar signals”. [2] 

Software Defined 

Radio (SDR) 

“A radio in which some or all the physical layer functions are 

software defined”. [3] 

Global Navigation 

Satellite System 

(GNSS) 

“Global Navigation Satellite System (GNSS) refers to a 

constellation of satellites providing signals from space that 

transmit positioning and timing data to GNSS receivers. The 

receivers then use this data to determine location”. [4] 

Global Positioning 

System (GPS) 

“The Global Positioning System (GPS) is a U.S.-owned utility 

that provides users with positioning, navigation, and timing 

(PNT) services”. [5] 

Machine Learning 

(ML) 

“Machine learning is a branch of artificial intelligence (AI) and 

computer science which focuses on the use of data and 
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algorithms to imitate the way that humans learn, gradually 

improving its accuracy”. [6] 

Deep Learning (DL) “Deep learning is a subset of machine learning, which is 

essentially a neural network with three or more layers. These 

neural networks attempt to simulate the behavior of the human 

brain—albeit far from matching its ability—allowing it to 

“learn” from large amounts of data.” [7] 

Convolutional Neural 

Network (CNN) 

“Convolutional neural network (CNN) is a class of deep 

learning methods which has become dominant in various 

computer vision tasks and is attracting interest across a variety 

of domains, including radiology. A CNN is composed of 

multiple building blocks, such as convolution layers, pooling 

layers, and fully connected layers, and is designed to 

automatically and adaptively learn spatial hierarchies of 

features through a backpropagation algorithm”. [8] 

  



1 

 

© Crown Copyright 2022 

Chapter 1 - Introduction 

The thesis is broken down into the following chapters. The introduction includes an overview 

of the research problem and scope, the contribution of the research to the academic 

community and a background to the work. Chapter 2 ‘Chapter 2 - Literature Review’ 

contains the literature review which is broken down into UAS detection and classification; 

GNSS jamming detection and classification; and transfer learning. Chapter 3 ‘ 

Chapter 3 - RF Profiling’ describes the datasets, dataset generation and the representation of 

signals as graphical representations which can be saved as images. Chapter 4 ‘Chapter 4 - 

Supervised Learning’ describes the CNN feature extraction, machine learning classifiers and 

experimental results for classification of UAS and GPS jamming signals. Chapter 5 ‘Chapter 

5 - Unsupervised Learning’ discusses the unsupervised learning algorithm K-Means and its 

application and experimental results for small UAS clustering and for GNSS jamming signal 

clustering. Chapter 6 ‘Chapter 6 - Early Warning including Unknown Signal Detection’ 

considers the implementation of a low cost early warning system made up of a Raspberry Pi 

and BladeRF SDR. It also considers the classification of unknown signal types using the 

supervised models created in Chapter 4. Lastly Chapter 7 ‘Chapter 7 - Conclusions’ will draw 

out the conclusions from the thesis and recommended future work.  

 

1.1 Research Problem and Scope 

 

The use of Radio Frequency (RF) signals as an access vector for malicious cyber-attacks is a 

growing concern in a world made up of connected systems. Security professionals often 

regard Cyber threats as mitigated against by disconnecting a system from the internet. 

However, RF connectivity in many systems is pervasive, underpinning fundamental services 
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and often overlooked in the consideration of cyber security. Wireless standards are inherently 

open and often published on the internet, leaving RF links as an opportunity for adversaries to 

exploit and conduct cyber-attacks. However, open security has been shown to be an overall 

better solution than security by obscurity. The first stage of mitigating cyber-attacks which 

use RF as an access vector is to detect the presence of an unwanted signal. Classifying the 

signal type can further help with attribution of an attack to a perpetrator and to inform time 

critical risk calculations. The application extends itself to other signals of interest such as the 

detection and classification of small commercially available Unmanned Aerial Systems 

(UAS) and RF signals which deliberately interfere with critical services such as Global 

Navigation Satellite Systems (GNSS).  

 

Arguably the largest incident of UAS disruption happened in 2018 at Gatwick Airport where 

over 1000 flights were grounded for 36hrs at a cost of over 50 million pounds to the UK 

economy. An in depth report conducted by the Guardian newspaper concluded there was 

minimal evidence to suggest that a small UAS was even present at all [9]. Incidents of this 

nature have not diminished since 2018 but rather are still causing disruption all over the 

world. In 2022 the United States Department of Homeland Security officials revealed they 

received over 2,000 sightings near airports in the last year [10]. In the UK a 2018 study by 

Dedrone [11] reported almost two detections of small UAS per day at four different UK 

airports, with a 2019 study highlighting that 62% of near miss incidents between small UAS 

and aircraft posed a significant risk [12].  

 

Another example of RF signals of interest relates to the worldwide reliance on GNSS such as 

Global Positioning System (GPS) to provide vital position, navigation and timing services. In 
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2017 the potential economic impact from a loss of services for 5 days was assessed at £5.2bn 

[13]. In 2022 we are highly dependent on GNSS for precise timing signals to enable 

applications from power distribution to emergency services and 5G performance [14]. Future 

technologies such as driverless cars are critically reliant on these signals for safety. Even with 

the growing economic reliance on GPS, intentional interference incidents are increasing with 

a European report showing recorded events to have increased 20 times over a period of 2 

years [15]. This thesis concentrates on UAS RF signals and GNSS jamming RF signals due 

to the availability of open source datasets, which allow for peer comparison of results, and 

due to the prevalence of incidents which have the potential for highly significant impact to 

the economy. However, future application of this work could include any RF signal of 

interest. 

 

Whether it is UAS or GNSS interference signals under consideration, it is apparent that 

routine and consistent detection and classification methods are not widely available or in 

place to recognise unwanted signals. Human analysts are commonly used to manually scan 

the RF spectrum to identify signals of interest [16]. This process can be timely and creates a 

burden on specialist operators which subsequently instills a high dependency on human 

experience. Deep learning and machine learning present an opportunity to reduce the manual 

scan time significantly and point a human operator to a signal of interest. RF signal data is 

inherently large and can be computationally resource intensive. RF signals can also be 

sensitive to collect due to certain legal constraints in many countries such as the UK. Transfer 

learning offers an opportunity to work with smaller datasets while maintaining high accuracy 

results and has been successful in other fields including medical condition diagnosis and 

audio signal classification.  
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Signals from small UASs of the same manufacturer tend to be evolutionary, with a datalink 

being upgraded between UAS platforms from the same manufacturer. One of the world 

leading manufacturers of small commercial UAS is Da-Jiang Innovations (DJI). They have 

recently evolved the LightBridge datalink which is hardware based using a field 

programmable gate array (FPGA), to the OcuSync datalink which utilises a Software Defined 

Radio (SDR) based approach. The evolution of datalinks has potential to lend itself to 

supervised learning to provide a probability indication that an unwanted UAS signal is 

present. However, unsupervised learning provides an opportunity to detect signals which 

have not been seen before in a much quicker time frame. Unsupervised and supervised 

learning operating together also presents the scope to detect and classify signal types in a 

timely and accurate manner as part of a larger early warning system.  

 

Several industry programs claim to be able to perform these functions [17] [18] but incidents 

of malicious UAS activity and GNSS interference are still occurring across the world on a 

daily basis. One potential reason why detection and classification systems are not common 

place is due to the cost of implementing such a system. This thesis will therefore also 

consider whether these techniques can be achieved on a low cost platform to enable future 

widespread use of such a system.  

 

1.2 Contribution of the Research 

The contributions of the work as shown in the thesis are as follows: 

(1) Classifying the flight mode of a UAS signal with high accuracy is an important step 

forward in the field and could provide vital information on the scene of a major incident for 
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risk assessment. We improve accuracy by over 45% to 91% from previous research of flight 

mode classification confirmed using the same open source dataset. Further confirmation is 

proved with a larger dataset containing 11 more classes and tested in the presence of 

interference.  

(2) Pre-trained CNNs for image classification can be employed for feature extraction using 

transfer learning on image based graphical representations of RF UAS and GPS jamming 

signals producing high accuracy results over 98% and reducing the need for large datasets 

and computational resources.  

(3) Supervised machine learning algorithms utilising transfer learning are capable of 

detecting UAS signals not captured in the original dataset, including evolutionary and non-

evolutionary datalinks. This has significant implications for detecting unknown threats.  

(4) Frequency domain graphical signal representations and deeper CNN architectures provide 

features which are robust to interference from other signals operating in the same frequency 

band such as Wi-Fi and Bluetooth.  

(5) CNN feature extraction and transfer learning produces high performance clustering (over 

0.8 v-measure) for unsupervised learning compared to clustering raw data from the SDR and 

raw images but at a cost of time (6s). Raw images are a good overall solution for timely 

clustering (under 0.3s) which could form part of an early warning system to confirm and/or 

cue other sensors.  

(6) A low cost raspberry Pi and SDR based machine learning classification system can 

predict signals it was trained against, and signals it was not trained against, in a live 

environment.   
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Overall the work has produced 8 published and peer reviewed papers, 2 papers which are 

currently under peer review and 2 papers which have been peer reviewed and are ready for 

print imminently, one of which is to be printed in the IEEE Transactions Journal series. I 

have presented at 6 conferences and other contributions include 2 published open source 

datasets, an invitation to be a reviewer for IEEE Transactions on Intelligent Systems Journal 

and an invited seminar at Manchester University as part of their Digital Trust Series on the 

exposure of cyber vulnerabilities using software defined radios. Sections within the thesis 

which include material from published papers in the following list are referenced within the 

section headings. 

 

1.2.1 Journal papers 

Title Journal Status Reference 

K-means Clustering Approach to UAS 

Classification via Graphical Signal 

Representation of Radio Frequency 

Signals for Air Traffic Early Warning 

IEEE Transactions on 

Intelligent 

Transportation Systems 

Published 2022  [19] 

(Invited) Low Cost Raspberry Pi 

based UAS Detection & Classification 

System using Machine Learning 

MDPI Aerospace 

Special Issue Journal - 

Unmanned Aerial 

Vehicles en-Route 

Modelling and Control 

Published 2022  [20] 

A Review of Anomaly Detection in 

the RF Spectrum for the Early 

International Journal of 

Critical Infrastructure 

Protection 

Under Peer 

Review 
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Warning of RF enabled Cyber-Attacks 

using Software Defined Radio 

Challenges of Artificial Intelligence: 

Britain’s Bright Future. 

Air and Space Power 

Journal  

Scheduled to be 

published in 

Autumn/Winter 

2022 edition 

 

A Review of Security Incidents and 

Defence Techniques relating to the 

Malicious Use of Small Unmanned 

Aerial Systems 

IEEE Aerospace and 

Electronic Systems 

Magazine 

Published 2022 [21] 

(Invited) Faithful Wingmen or Killer 

Robots? Artificial Intelligence 

Applications for Air Power 

Air and Space Power 

Review 

Published 2022 [22] 

(Invited) GPS Jamming Signal 

Classification with CNN Feature 

Extraction in low Signal-to-Noise 

Environments 

International Journal 

on Cyber Situational 

Awareness IJCSA 

Volume 6, 2021 

Published 2022 [23] 

(Invited) The Effect of Real-World 

Interference on CNN Feature 

Extraction and Machine Learning 

Classification of Unmanned Aerial 

Systems 

MDPI Aerospace 

Special Issue Journal - 

AI/Machine Learning 

in Aerospace 

Autonomy 

Published 2021 [24] 

Unmanned Aerial Vehicle Operating 

Mode Classification Using Deep 

Residual Learning Feature Extraction 

MDPI Aerospace Published 2021 [25] 
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1.2.2 Conferences 

 

Title Conference Status Reference 

(Invited) Deep Residual 

Learning Feature Extraction for 

GNSS Jamming Signal 

Classification and the effect of 

low Signal-to-Noise Ratio 

Artificial Intelligence, 

Machine Learning and 

Data Science World 

Forum 2022 

Presentation 

2022 

 

(Invited) K-means Clustering 

Approach to GNSS Jamming 

Detection via Graphical 

Representations of Radio 

Frequency Signals 

Conference on Applied 

Science, Engineering 

and Technology 

(GECAET-2022) 

Presentation 

2022 

 

Unmanned Aerial System 

Detection and Classification 

U.S. Department of 

Defence Artificial 

Intelligence 

Symposium 

Poster 

Presentation 

2021 

 

RF Detection and Classification 

of Unmanned Aerial Vehicles in 

Environments with Wireless 

Interference 

2021 International 

Conference on 

Unmanned Aircraft 

Systems (ICUAS) 

Presentation & 

Conference 

Paper Published 

2021 IEEE 

Explore 

[26] 

GNSS Jamming Classification 

via CNN, Transfer Learning & 

2021 International 

Conference on Cyber 

Presentation & 

Conference 

[27] 
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the Novel Concatenation of 

Signal Representations 

Situational Awareness, 

Data Analytics and 

Assessment (CyberSA) 

Paper Published 

2021 IEEE 

Explore 

Unmanned Aerial Vehicle Flight 

Mode Classification using 

Convolutional Neural Network 

and Transfer Learning 

2020 16th International 

Computer Engineering 

Conference (ICENCO) 

Presentation & 

Conference 

Paper Published 

2021 IEEE 

Explore 

[28] 

 

 

1.2.3 Other Contributions 

 

Title Description Status Reference 

(Invited) - Reviewer Reviewer for 

Transactions on 

Intelligent 

Transportation 

Systems 

1 x paper review 

in 2022 

 

(Invited) - Security Challenges 

presented by Malicious Small UASs 

Book Chapter with 

Nova Science 

Publishers, Inc. 

Due to be 

published Aug 22 

(hardcover and 

electronically) 
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(Invited) Software Defined Radios: 

RF enabled cyber vulnerabilities and 

early warning 

Seminar delivery to 

Manchester 

University as part of 

the Digital Trust & 

Security Seminar 

Series 

Delivered May 

2022 

[29] 

DroneDetect Dataset: A Radio 

Frequency Dataset of Unmanned 

Aerial System (UAS) Signals for 

Machine Learning Detection & 

Classification 

IEEE Open Source 

Dataset Publication  

Published 2021 [30] 

Raw IQ dataset for GNSS GPS 

jamming signal classification 

Zenodo Open Source 

Dataset Publication 

Published 2021 [31] 

(Invited) - Reviewer Reviewer for book 

chapter ‘Cyberspace 

Operations’ 

Published 2021 [32] 

 

  



11 

 

© Crown Copyright 2022 

1.3 Background 

 

To introduce the background to these signals of interest this thesis will first consider the 

significance of the small commercially available UAS used for malicious intent. Next the 

section will discuss RF signals which interfere with GNSS before introducing SDRs and their 

use for both the delivery of RF access based cyber-attacks and for the early warning of 

unwanted signals in prohibited areas.  

 

1.3.1 Malicious Small UASs [21]  

 

In recent years the market for small UAS has expanded from hobbyists to supporting the 

economy commercially. In the “Commercial Drone Market, 2021-2028” report, the market is 

predicted to grow exponentially until 2028 [33].  Amazon and Domino’s Pizza in the US are 

trialling deliveries using UAS and industry specific usages such as farming and geological 

surveying are benefitting from the technology. In the US the Department of Transport are 

proposing to ease regulations to enable greater use of small UAS [34].  However increasing 

the ease of use comes with security risks. A study carried out in 2018 by Dedrone across 4 

different UK Airports observed nearly two small UAS detections per day. Dedrone also 

concluded that while Da-Jiang Innovations (DJI) is a world leader in the small UAS market, 

they only made up 44% of the incursions monitored [11]. In 2017 in the UK a study was 

commissioned to understand whether a small UAS could cause critical damage to an aircraft 

from a mid-air collision. The report concluded that factors including the size of the UAS, 

whether the aircraft was bird strike certified and the aircraft type all contributed to whether 

critical damage occurred [35]. In 2019 62% of the near miss incidents between small UAS 
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and aircraft in the UK were deemed to have held significant risk [12]. Following a collision 

between a small UAS and an aircraft in Canada in 2017 [36] the University of Dayton 

Research Institute conducted mid-air collision investigations between a DJI Phantom 2 

quadcopter and an aircraft. They showed that even a small UAS such as the Phantom 2 could 

cause significant damage to an aircraft [37].  

 

Malicious activity from small UAS does not always involve physical damage, we can break 

down malicious activity into 3 categories: 

• Physical attacks 

• Cyber attacks 

• Surveillance 

 

Physical Attacks 

Physical attacks could be caused by mid-air collisions with a moving target as previously 

discussed or carrying a payload against a fixed target, for example chemical, radiological, 

biological, nuclear or explosive materials. A prevalent example of an attempted physical 

attack was seen in 2018 at a speaking event in Caracas. Venezuelan President Maduro was 

subject to an assassination attempt when two UAS carrying explosives detonated near his 

stand [38]. However, as far back as 2015 we have seen small UASs cause disruption, for 

example a small UAS was flown into power lines causing a blackout of electricity for 650 

people in California in 2015 [39]. In 2017 during the Golden State Race Series a Phantom 4 

small UAS hit a tree and then went on to hit a cyclist [40]. In 2016 a small UAS hit Seattle’s 

Space Needle while fireworks were being set up for the New Year’s Eve display [41]. In 
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2017 we observed a collision occurring in Canada between a light aircraft which was landing 

and a small UAS [42]. Then as far back as 2017 small UASs were being weaponised to carry 

explosives and drop munitions by Islamic State (IS) in Iraq [43]. In April 2021 the Institution 

of Engineering and Technology (IET) conducted an open data analysis study looking at 

consumer UASs or drones being armed for terror attacks by conflict groups. They discuss the 

use of weaponised UASs for propaganda, small UAS use by the Taliban for dropping mortars 

and Houthi rebels using UASs for naval mine attacks [44]. It is without a doubt that the use 

of small UASs is becoming more prominent in warfare. 5 years ago Hartmann and Giles [45] 

stated that with plans in place for UASs fitted with physical weapons to target other UASs, 

this would see the first documented case of warfare using UAS on UAS. They liken it to the 

First World War where pilots were armed with rifles in the cockpit of reconnaissance aircraft.  

 

Another concern is that small UASs could be equipped with chemical, radiological, 

biological, nuclear or explosive materials. David Cameron (former UK prime minister) 

warned in 2016 small UASs carrying an aerosol with nuclear materials could be used in 

attacks against Western cities [46]. DeFranco [47] suggests that a new challenge is presented 

to countering biological weapons from UASs. Along with producing a thorough taxonomy of 

threats, Majeed et al. [48] assert that equipping UASs with armed objects by terrorist groups 

is a matter of concern. In 2019 the South China Morning Post reported that criminal gangs 

were using UASs to spread swine fever over pig farms in an attempt to profit from the market 

[49]. The Missile Technology Control Regime (MTCR) is an agreement that includes 

governing UASs and includes 35 countries. The MTCR met in October 2019 and looked at 

the prevention of Weapons of Mass Destruction released using unmanned delivery systems 

[50]. In 2020 China released footage of a swarm of military UASs known as the ‘suicide 

drones’ which operate as one unit to destroy ground targets [51]. In 2021 the first 
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documented use of a swarm of UASs was used in combat against Hamas militants by the 

Israel Defense Forces (IDF). The swarm which was reported to be guided by Artificial 

Intelligence (AI) and used to locate, identify and attack targets in Gaza in May 2021 [52]. 

 

Cyber Attacks 

Small UAS also could provide a platform to carry out cyber-attacks through the interception 

and breaching of wireless networks [53]. At the CanSecWest Conference 2021 security 

researchers Weinmann and Schmotzle used a DJI Mavic 2 carrying a Wi-Fi dongle to hack 

open a Tesla Model X car door [54]. In 2019 at the DroneDeploy Conference, Rhea Naidoo, 

co-founder and Director of Automated Solutions at Cambrian Cyber Group, broke cyber-

attacks using UASs into 3 categories. Attacks which compromised the confidentiality of data, 

for example exfiltrating confidential information; attacks which compromised the integrity of 

data such as manipulating controls or disabling alarms and lastly compromising the 

availability of services by taking processes or networks offline [55]. Devices such as the 

Raspberry Pi can be fitted onto a UAS and used to access insecure networks and retrieve 

personal data or perform techniques such as spoofing [56]. Known as a ‘man in the middle’ 

attack, a UAS can be used to broadcast a Wi-Fi network which has been connected to in the 

past, all the data from that persons phone will then pass through that network allowing an 

attacker access to valuable information [57]. Barker shows that when a directional antenna is 

used that computer network attacks and data exfiltration can be effective at distances larger 

than 800m [58].  

 

UASs can be used as a platform for the interception of wireless networks [53]. Le Roy et al. 

[59] consider attacks using an SDR embedded on a UAS and conclude this an opportunity for 
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attacks. A UAS was shown to hack a Bluetooth mouse in an office building while hovering 

outside the window. The attack successfully installed malware through the connection onto 

the computer and subsequently received malicious communication using light pulses and the 

camera fitted on the UAS [60]. Generally speaking any cyber-attack which uses RF as the 

access vector and can be performed on an SDR is potentially viable. While cyber-attacks 

using RF access points are often described with a person parked up in a car with a laptop and 

a device such as a Wi-Fi Pineapple Nano with targets such as airports, coffee shops and 

hotels, the use of the UAS provides access to geographically disparate areas where the person 

can be a significant a distance away [61]. Further, without a robust registration process for 

small UASs it may be hard to identify attackers for prosecution. The UAS allows a cyber-

attack to be performed both remotely and anonymously [62], an attractive prospect for an 

attacker. However, it is not just the UAS platforms themselves which can cause a threat in the 

cyber domain. In December 2020 the U.S. government imposed serious restrictions on DJI 

amidst claims from cyber security firms of data collection from affiliated applications [63].  

 

Another consideration is that a small UAS being used for legitimate purposes could be 

hacked or hijacked using cyber capabilities. Walters [64] shows a list of vulnerabilities in 

small commercially available UASs which is kept up to date and includes cyber-attacks from 

reverse engineering to denial of service and hijacking. Krishna and Murphy examine the 

range of cyber-attacks on small UASs which have been simulated or studied and suggest that 

GPS spoofing attacks are the most researched. They also highlight GPS jamming, de-

authentication attacks, zero-day vulnerabilities, video replay attacks and the interception of 

data feeds. Krishna and Murphy also indicate that attacks using viruses are not common [65]. 

Some attack methodologies and source code are openly available online which means that 

anyone could download and execute the code [45]. However, if we consider cyber-attacks 
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exploiting small UAS vulnerabilities, there is one incident whereby a small UAS in South 

Korea was affected by GPS jamming and crashed killing an engineer [65].  

 

Surveillance 

Lastly, many small UAS have cameras as a standard fitting which could be used for 

surveillance and mapping of sites. This capability has led to enormous benefits for security in 

agriculture, search and rescue missions and many more applications. However, along with 

these benefits come the risk of malicious use. In 2020 a Welsh man was jailed for using a 

small UAS to spy on and monitor the activities of an ex-partner [66]. In Australia a small 

UAS was used to spy on a woman skinny dipping in her own back garden [67]. A couple who 

lived in a fifth floor apartment reported seeing a small UAS at the balcony door spying on 

them getting ready for a shower [68]. It’s not only individuals that are at risk from spying, 

sports such as football have seen accusations of small drones being used to spy on practises 

[69]. In 2019 an incident occurred whereby UAS swarmed a U.S. warship and hovered in its 

vicinity for days [70].  It is without a doubt that UAS pose many security threats and robust 

detection, classification and counter measure systems are required to mitigate the risk posed. 

Figure 1 shows the different technologies being considered for UAS detection, classification 

and mitigation.  
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Figure 1 - UAS Detection and Classification Sensor Types, and Mitigation Technologies 

The various sensors which have been researched for detection and classification all come 

with different benefits and their own challenges. Radar for example boasts long ranges and 

has advantages over imagery based methods as it is resilient to weather considers but it has 

been shown to have difficulties distinguishing between small UAS and birds. Acoustic 

sensors have proved very accurate in short range and like radar performance they do not 

degrade with visibility but acoustics systems do suffer when noise is present, including wind. 

Imagery based systems using electro-optical cameras are generally low in cost and human 

verification is possible but detection and classification accuracy is affected by environmental 

conditions and time of day. Laser and thermal based systems can be costly and thermal has 

shown to be less effective with power efficient UAS such as some quadcopters.  

 

RF systems can produce ranges similar to radar, they don’t suffer from environmental 

conditions and classification can specify what the UAS is doing – i.e. stationary, hovering or 

flying. It is worth noting that up until 2019 when classification was referred to with UAS it 

considered issues such as distinguishing between UAS and birds and classifying the UAS 

type. Al-Sa’d et al. [71]. As we come to review recent security incidents in this paper we can 

keep in mind that understanding what a UAS is doing, for example capturing video or 
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hovering over a particular site, could impart valuable information contributing to an 

assessment of risk. Classifying the flight mode is an important step forward and a significant 

benefit of RF detection and classification systems. However, these systems cannot detect 

UAS flying without active RF datalinks such as UAS flying in a GPS autonomous mode. RF 

detection when combined with machine learning can increase both reliability and system 

performance [72].  

 

When a malicious UAS has been detected and classified we need to know what to do with it. 

It may be that there is an imminent threat that needs to be dealt with straight away, as with 

the attack on the Venezuelan President in 2018, or we may want to prevent access to an area 

such an active airspace around an airport. Arguably the most researched counter-measure is 

jamming, emitting another signal in the same frequency band which is higher in power and 

subsequently blocks the transmission between the UAS and its controller. Physical measures 

include firing nets and using physical weapons against UAS. Lastly cyber methods have been 

investigated to disrupt malicious UAS activity. All of the counter measure methods which are 

covered in more details within Chapter 2 ‘Chapter 2 - Literature Review’ present legal, policy 

and practical challenges which can vary depending on the environment the system needs to 

operate in. Before moving on to consider the literature in the field, recent security incidents 

related to Critical National Infrastructure including Airports and Nuclear Facilities caused by 

malicious UAS will be discussed.  

 

Security Incidents 

The largest incident to cause airport disruption is without a doubt the 2018 UAS sightings at 

Gatwick Airport in the UK. After a number of sightings flights were grounded for nearly 2 
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days and no suspect has ever been found [9]. The incident did highlight the cost to the 

economy as the disruption affected over 82,000 passengers and at a cost of over 50 million 

pounds [73]. Since 2018 there have been a number of incidents in restricted airspaces across 

the world. In 2019 in New Jersey, U.S. flights were disrupted following a UAS flying within 

9m of an aircraft [74]. In 2019 in Japan a UAS was observed hovering above the runway at 

Kansai Airport [75]. In 2019 Heathrow Airport in the UK grounded flights for 30 minutes 

after a number of UAS sightings [76]. 2019 also saw disruption at Frankfurt Airport in 

Germany twice that year [77], flight diversions at Dublin Airport [78], suspension of flights 

in Dubai [79] and 37 flights delayed at Changi Airport in Singapore due to the UAS sightings 

[80]. In 2020 a confirmed UAS sighting by a military Apache helicopter at Stansted Airport 

in the UK was reported and one arrest was made [81]. Again Frankfurt Airport in Germany in 

202 was subject to 2 hours of grounded flights and diversions due to a pilot sighting of a UAS 

[82]. In 2020 two pilots reported sighting a UAS which resulted in grounded flights for 1 

hour in Spain [83]. Most recently in 2021 we have seen disruption at North Carolina Airport 

in the U.S. [84] and at Auckland Airport in New Zealand where the UAS was sighted only 

30m away and 5m above a helicopter [85]. Although we haven’t seen another incident with 

the scale of disruption that was caused at Gatwick, events are still occurring regularly. The 

Federal Aviation Authority in the U.S. report UAS sightings at airports at over 100 a month 

[86].  

 

It’s not just airports who have had recorded incidents of disruption from small UAS, Nuclear 

Facilities have also seen increased media attention. The first widely reported issue concerning 

small UAS and nuclear power plants occurred in France in 2014. The incidents involved 

multiple UAS, which were never identified, flying into restricted airspace over 13 different 

nuclear power plants [87]. In 2014 the malicious use of small UAS also came into the 
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attention of the British media, with the first conviction in the UK made after a recreational 

UAS flew within 50 metres of a nuclear facility [88]. Aside from an incident involving 

Greenpeace who crashed a superman shaped UAS into a French nuclear facility to expose 

vulnerabilities [89], there was a gap in media reporting of incidents at nuclear facilities 

between 2014 and 2019. However a recent freedom of information request revealed there had 

been 57 incidents at nuclear power plants in the U.S. between December 2014 and October 

2019, with 85% of the incidents being unresolved in terms of attributing the incident to a 

perpetrator [90], [91]. In September 2019 a swarm of UAS entered the restricted airspace of 

the Palo Verde Nuclear Plant, the largest power plant in the U.S. The report stated that 5 or 6 

small UAS flew around the protected area for 80 minutes, indicating that this was not 

conducted by a popular consumer UAS such as the DJI Phantom which has a much lower 

flight time [92]. In June 2021 one or more small quadcopters were reported to have caused 

substantial damage to a nuclear facility in Iran [93].  This highlights the importance of being 

able to classify the UAS type to help with attribution of incidents to perpetrators. Next GPS 

jamming will be discussed. 

 

1.3.2 GPS Jamming [27] [23] 

The term GNSS covers various different satellite constellations that provide position, 

navigation and timing (PNT) information including GPS (United States), Glonass (Russia), 

Beidou (China) and Galileo (Europe). This thesis focusses on GPS satellite constellation and 

receivers.  
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Figure 2 – GNSS Pictoral Represenations of Triangulation for Calculting Receiver Position  

 

GNSS receiver position (x,y,z) is worked out using the calculation of triangulation. Satellites 

are constantly broadcasting position and timing information. The first 3 satellites are required 

to perform the triangulation and the fourth satellite is used to calculate a timing error. This is 

because the satellites each have atomic clocks, so their timing signals are highly accurate to 

each other. Ground receivers generally do not have access to atomic clocks as it would be 

impractical to carry these around in our phones for example. The fourth satellite is required to 

calculate a timing offset for the receiver so that the distances can be accurately measured. 

Figure 2 shows a pictorial representation of this.  

 

GPS is comprised of satellites, control segment, monitoring stations and the user segment 

which is made up of many GNSS receivers. The GPS signal is modulated using a carrier 

frequency before it transmits to the receiver from the satellite. The main two frequencies in 

use for GPS are 1575.42 MHz or the L1 band and 1227.60 MHz also known as the L2 band. 

By the time these signals reach the receiver they are very weak. GPS is susceptible to 

interference from jamming as the signal from the satellite is approximately -130dBm when it 
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reaches the receiver [94]. The weak signal at the receiver has been described as the Achilles 

heel of GPS with satellites technically producing less power than a typical car headlight from 

20,000km into space [95].  

 

For many sectors, GNSS provides vital position, navigation and timing services but are 

extremely vulnerable to interference due to the signals being weak at the receiver. Space 

communications in the UK are deemed critical to national security and therefore classed as 

Critical National Infrastructure [96]. In 2017 the potential economic impact from a loss of 

services for 5 days was assessed at £5.2bn [13]. Although this study has not been repeated, it 

can be assumed that the figure is much higher today. In 2021 society is highly dependent on 

GNSS for applications from power distribution, emergency services, travel and even 5G 

performance for a precise timing signals [14]. A further concern is the cascading effect on 

secondary and tertiary sectors from GNSS disruption [97]. Intentional interference known as 

jamming occurs when a jamming signal is transmitted at high power in a GNSS band, 

disrupting the GNSS service. Jamming equipment is illegal in many countries. In the UK the 

use of a jamming device is an offence under the Wireless Telegraphy Act but it is not illegal to 

buy or own the equipment [98]. Their availability on the open market can be seen from as little 

as £10.99 [99]. This availability combined with an increase in the use of UASs causing public 

annoyance, has created fears of a stark increase in usage, making them a serious and credible 

threat to satellite navigation. An increased use of UASs by law enforcement, hobbyists and 

commercial, has uncovered a potential motivation for civilians to purchase jamming devices to 

illegally combat their use. Morong et al. [100] carry out a study of GNSS jamming in a real 

world environment. They assess that GNSS jammers are very dangerous to aircraft and UASs, 

especially those that are flying at low height. The IET recently did a study to look at how easy 
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it would be to purchase a Drone Jammer Gun from Asia revealing a straightforward practise 

[101].  

However, a high powered jamming gun is not required to create a significant and critical 

effect. In 2013 a truck driver in New Jersey, USA, drove a route past Newark airport over 

several months whilst utilising a GNSS jammer in his vehicle to hide his movements from his 

employer. He was fined $32,000 for interfering with the Air Traffic Control System in 

Newark Airport [102]. With an increase in employers tracking employee movements there 

has been an increase in use and they have been found to be used in Mexico in 85% of vehicle 

thefts [103]. The European Global Navigation Satellite Systems Agency monitored GNSS 

interference in 23 countries over 2 years. The study showed 450,000 events whereby 73,000 

had an impact on GNSS which was deemed significant. 66,000 of those were shown to have 

originated from jammers [104]. GNSS jamming equipment can be purchased easily online. 

Jammers which plug into car cigarette lighters are easily available online from under £10 

[99].  The first step towards the mitigation of GNSS jamming is the detection and 

classification of the signal.  

 

Today, with low cost SDRs on the market it is possible to re-produce many different jamming 

signals. Lineswala and Shah show this in [105] for jamming the Indian Regional Navigation 

Satellite System. Ferreira et al. [106] show the use of GNURadio software to produce jamming 

signals which are then transmitted on a BladeRF SDR to jam GPS signals for the disruption of 

UAS operation. Glomsvoll and Bonenberg [107] showed maritime GPS receivers to be affected 

by even low power jamming signals from 1600 metres away. Positional accuracy was affected 

from under 1000m and showing up to 10m discrepancy in position. The potential harm which 

could result from the use of a low cost jamming device becomes more critical when future 
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reliance of Connected and Autonomous Vehicles (CAV) such as driverless cars on GNSS is 

considered. Pham and Xiong [108] present a survey of 184 papers considering state of the art 

attacks on CAVs. With regards to GNSS jamming they determine that the timely detection of 

a jamming incident in enough to ensure CAV safety and can be a pre-cursor to filtering out the 

attack signal so that the CAV can continue its operation in certain circumstances.  

 

Jamming types have been classified into various categories in previous studies. A graphical 

representation of this can be seen in Figure 3 below. 

 

Figure 3 - Graphical Representation of Jamming Signal Types as described in Literature 

 

Kraus et al. [109] in 2011 suggested four classifications for civilian GNSS jammers. In 2019 

Ferre et al. [110] expand this to 6 classes; Class I: Amplitude Modulated jammers; Class II: 

Chirp jammers; Class III: Frequency modulated jammers; Class IV: Pulse or Distance 

Measurement Equipment (DME) jammers; Class V: Narrowband (NB) jammers; and Class 
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VI: No jamming signal present. These classes act as a basis for the datasets used and 

generated in section Chapter 3.  

 

1.3.3 Software Defined Radio (SDR) 

 

Traditional radio systems work by providing various capabilities entirely by hardware 

elements [111], designed and built for one specific purpose. Reconfiguration commonly 

requires changing elements of the hardware design. The term SDR was first used by Joseph 

Mitola in the early 90s as a class of radio which could be reconfigured through only using 

software [112]. His vision was a radio with just an antenna and an Analogue to Digital 

Converter (ADC) as the physical analogue components. All other functionality would be 

programmable through software [113].  The IEEE definition of an SDR is a “radio in which 

some or all the physical layer functions are software defined” [3]. In 2004 Eric Blossom, the 

developer of GNU Radio, said “software radio is the technique of getting code as close to the 

antenna as possible. It turns radio hardware problems into software problems” [114].   

 

Figure 4 shows the functional blocks contained in a typical SDR receiver.  The RF Front End 

takes the RF signal and converts it to analogue Intermediate Frequencies (IF) using a mixer 

with a local oscillator and amplification. The ADC then samples the IF signal at discrete 

intervals. Next a process called Channelisation occurs within the Digital Down Convertor 

(DDC). The Channelisation process modulates the IF to centre the channel of interest in line 

with the baseband frequency [115]. The Digital Signal Processor (DSP) implements a wide 

range of functions for example error correction and cryptography.  General Purpose Processer 

(GPP), programmable hardware such as Field Programmable Gate Arrays (FPGAs) and 
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Application Specific Integrated Circuit (ASIC) are also potential devices for implementing 

baseband processing.   

 

 

Figure 4 - Functional Blocks which make the basis of a SDR which includes the RF front 

end; Analogue to Digital Convertor (ADC), Digital Down Convertor (DDC) and the Digital 

Signal Processor (DSP) 

 

Antenna Selection and RF Front End 

Traditionally developers designed and built radios with the ability to transmit and receive in 

specific narrow bands. For example, an FM radio could not receive mobile phone signals. 

There are advantages to directional narrow band antennas as they reduce interference and 

tend to have increased performance [116]. As discussed earlier, the advantage of an SDR is 

its flexibility and re-configurable nature, so its usage suits a wide band antenna to take full 

advantages of those features. Antenna design for a truly wideband antenna (e.g. 20 MHz to 6 

Ghz) is incredibly difficult, especially compared with traditional narrowband systems. 

Antenna size is proportional to the wavelength so a wideband antenna will always suffer from 

performance issues compared with narrowband antennas [117].  
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In some circumstances smart antennas could start to bridge this gap. For example, beam 

steering antennas use phased arrays to steer beams dynamically to users. Another example is 

beam switching which switches between directional beams according to user locations [118]. 

Smart or Intelligent antennas select and deselect capacitors and inductors, allowing for a 

changeable frequency response [119]. Once the chosen antenna receives the signal, the RF 

front end changes that RF signal into an Intermediate Frequency (IF) signal.  A Low Noise 

Amplifier can be placed as close to the antenna as possible to reduce noise and amplify the 

signal and then a mixer is used with a Local Oscillator to convert the signal to IF [120]. 

 

ADC and DDC 

In the past developers found the Analogue to Digital Converter (ADC) a limiting factor in 

SDR development. The ADC turns the IF signal into digital samples. To ensure the signal 

sampled replicates the original signal, Nyquist states that the sampling frequency must be at 

least twice the bandwidth of the signal for correct representation. At baseband this equates to 

twice the highest frequency. Power consumption and efficiency other parameters in the 

design phase which require attention, especially for battery powered SDRs. Battery powered 

SDRs have motivated the development of ADCs which are more energy efficient [120].  

 

Another consideration is the effect of jitter caused by the high-speed sampling clock. When 

the clock varies, it effects the sampling of the input and this effect increases in severity as the 

frequency increases [121].  It should also be noted that higher sampling rates imply faster 

electronics and hence increased power consumption. 
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The signal then passes from the ADC to the Digital Down Converter (DDC). A DDC 

typically consists of a mixer and an oscillator. The mixer multiplies digital IF signals with 

complex sinusoidal waves and down converts the data to a baseband frequency. Once the 

baseband signal is acquired, a low-pass filter is used to filter out the harmonic frequencies 

[122]. 

 

 

Baseband processing 

There are different options for signal processing which each have advantages and 

disadvantages. The first is the use of a General-Purpose Processor (GPP) such as the x86 

microprocessor. A GPP is defined as a “digital circuit that is clock-driven and register-based, 

and is capable of processing different functions, operating on data streams represented in a 

binary system” [123]. GPPs do not have the processing power for real time requirements but 

their flexible nature makes them attractive for some SDR systems [124]. Digital Signal 

Processors (DSPs) are a type of GPP that can conduct high speed instruction and arithmetic 

processing. DSPs have been optimised for digital signal processing [125] and promote 

flexibility, for example they are able to be reprogrammed when standards change [126].  

 

Application-specific integrated circuit (ASIC) advantages include power consumption and 

efficiency. Example applications include the implementation of wireless standards. However, 

ASICs are hard wired and not re-programmable after the design phase. Therefore ASICs do 

not lend themselves well to the concept of an SDR [124]. Further, ASICs can have a long 

development time and at a large cost. An alternative is Field Programmable Gate Array 

(FPGAs), arrays of logic blocks where the routing is programmable in seconds [127] and 
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reconfigured in milliseconds. However, FPGAs are slower and less efficient than ASICs. In 

order for FPGAs to compete with ASICS in low power applications, FPGA designers must 

address the issue of power efficiency. Grover and Soni [128] found that FPGA optimisation 

at the system level resulted in significant power savings.  Previously FPGA development 

required experienced VHSIC Hardware Description Language (VDHL) software 

programmers. Today High-Level Synthesis (HLS) allows the design of applications in C++ 

for example, without needing to understand or program in VHDL. The HLS compiles the 

code in the correct language for the FPGA making it more accessible for software 

programmers [120]. Designers in general consider FPGAs less flexible than GPPs. However, 

FPGAs perform reconfigurable computation with much higher speed and efficiency and lend 

themselves to real time processing applications [123].  

 

History 

The concept of a programmable radio was first considered almost 50 years ago and the first 

design was developed through United States research departments within government 

organisations in 1970s–1980s [129]. US and UK military ground troops used an ADC 

connected to an 8085 microprocessor as a VLF radio [130]. In 1984 E-Systems (now 

Raytheon) published a newsletter which referred to a ‘software radio’. It used arrays of 

processors to perform functions such as adaptive filtering [131]. In 1991 the US Defence 

Advanced Research Projects Agency (DARPA) released details of a military program called 

SPEAKeasy. SPEAKeasy was a radio which operated between 2MHz and 2 GHz, supporting 

up to ten different protocols in an open architecture, with software implementing all physical 

layer components [131].  
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In 1992 at the National Telesystems Conference Joseph Mitola presented a radio which could 

be reconfigured using only software and included the ability to both transmit and receive 

[112]. The community credits him with the term Software Radio and he was the first person 

to publish on the technology. In 1996 a partnership between industry, government and 

academia, at the initiation of the US Department of Defence (DoD) was set up called 

MMITS. The DoD wanted MMITS to define an open architecture for SDRs [132]. In 1997 

the DoD set up the Joint Tactical Radio System (JTRS) to try and collate various stove piped 

service led programs into one main effort. The intention was for JTRS radios to be 

compatible with legacy radios and provide further capability for the warfighter to access 

information [133]. The US government shut down the JTRS program in 2011 but it 

undoubtably made a significant contribution to the worldwide community of SDR 

enthusiasts.  

 

In the late 1990s, the use of the SDR spread from military application to the commercial 

sector, in particular cellular networks and base stations were considered a potential 

application [134].  In 2000 a company called Lyrtech worked in conjunction with Mathworks 

to create a development environment for fast prototyping. The hardware platform was created 

using Digital Signal Processors and Field Programmable Gate Arrays (FPGA) and the 

Mathworks Simulink formed a bridge for simulation and execution [135]. This advancement 

provided a commercially available development suite for SDRs. In 2001 Eric Blossom, 

funded by Sun Microsystems, founded an open source framework called GNU Radio. The 

framework allowed for the development of SDR using a free toolkit within a PC environment 

[136]. Developers use GNU Radio with a variety of platforms and hardware to perform signal 

processing and to create SDRs. Applications can be programmed in both Python and C++ 

languages [137].  
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In 2005 a company called Vanu released the first commercial SDR base station system 

certified by the US Federal Communications Commission [138]. Aimed at the 3G market, 

Picochip introduced the PC102, dramatically reducing the power, cost and size of the 

equipment[136]. Up until the introduction of the PC102 commercial SDRs had been based on 

x86 processors. In 2009 Lime Microsystems released a FPGA which could handle the RF 

Front End on one chip. Research into the use of FPGAs continued and in 2016 Osma proved 

an FPGA-based SDR using Xilinx System Generator programming and Matlab [139].  

 

SDR Comparison 

Today SDRs are used for a multitude of tasks from wireless base stations to military 

communications [140]. The real advantage of an SDR is flexibility, the ability for 

functionalities such as changing frequency bands and updating protocols to be implemented 

through a software download rather than full hardware replacement [141]. 

Table 1 - SDR Comparison 

 
RTL-SDR V3 

[142] 

HackRF One 

[143] 

BladeRF x40 

[144] 

Ettus USRP 

B210 [145] 

Frequency Range 500 kHz – 1766 

MHz 

1 MHz - 6 GHz  300MHz to 

3.8GHz 

70 MHz – 6 

GHz 

Bandwidth 2.4 MHz 20 MHz 28MHz 56MHz 

Sample Rate 3.2 Msps 20 Msps 40 Msps 61.44Msps 

ADC 8 bit 8 bit 12 bit 12 bit 
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TX 0 1 1 2 

RX 1 1 1 2 

Duplex N/A Half Full Full 

Interface USB 2.0 USB 2.0 USB 3.0 USB 3.0 

Chipset RTL2832U MAX5864, 

MAX2837, 

RFFC5072[146

] 

LMS6002D AD9361 

Price £16.73 [147] £217.95 [148] £408.75 [149] £1,100  

 

Table 1 shows a comparison between the main SDR competitors available for purchase 

today. The Ettus USRP series represents the higher price end of the market. The mid-price 

range includes the full duplex BladeRF which uses a high speed USB3 connection with an 

FPGA. A single chip, the LMS6002D, performs most of the functionality including the mixer 

and Analogue to Digital Converter. It can cover 300 MHz to 3.8 GHz on the spectrum, but 

frequency range is limited due to the single chip approach. The Ettus B210 uses the AD9361 

which has similar functionality but uses 2 chips. The HackRF uses several different 

components to achieve its frequency coverage. The Ettus B210 and the BladeRF both utilise 

the Cypress FX3 microcontroller (ARM9 core), while the HackRF does not comprise of an 

FPGA but uses complex programmable logic and an NXP microprocessor [150]. At the 

bottom end of the market the RTL-SDR digital TV receiver is low cost and easily converted 

for SDR use. An observer should not discount the RTL-SDR due to its lower specifications 

detailed in Table 1. This very low cost SDR has proved it usage in multiple capacities, for 
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example its ability to receive live weather satellite imagery through reception of an 

Automatic Picture Transmission signal [151]. Due to the advances in computational power 

and their low cost, SDRs provide researchers with the ability to design and evaluate cyber-

attacks on different wireless systems [152]. As technology rapidly continues to advance and 

RF communications become even more embedded into our everyday lives; from intelligent 

transport systems to IoT devices in the home, to the control and navigation of aircraft in the 

sky, RF vulnerabilities increase. SDRs allow RF spectrum analysis which can allow an 

attacker to reverse engineer a signal in order to devise new attack methodologies [153]. SDRs 

can be used to both expose cyber vulnerabilities and to provide early warning of unwanted 

signals in a prohibited airspace. Next their use for exposing cyber vulnerabilities will be 

considered.  

 

1.3.4 SDR RF enabled Cyber 

RF signals provide access points into many connected systems, in some cases bypassing 

security controls. Many devices integral to our daily lives contain analogue sensors, from 

mobile phones to Supervisory Control and Data Acquisition (SCADA) systems. The 

information and data provided by these sensor inputs can form part of critical decision paths 

which can be vulnerable. The application of Cyber Security does not generally include any 

consideration of the RF spectrum. However, spectrum access underpins many types of 

technology of which cyber security is a concern. In a 2018 white paper [154], QinetiQ 

proposes the term cyber-spectrum security and predicts that attacks utilising the spectrum will 

increase due to factors such as the interconnectivity of radio systems.  

Examples of RF access based attacks have been seen in different forms. In the U.S. an SDR 

was used to compromise an RF link which formed part of an Emergency Services System. 
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The attack set off 150 weather sirens across the city for over 90 minutes [155]. Significant 

media coverage regarding Remote Keyless Systems on new vehicles highlights a practical 

example of cyber security vulnerabilities exploited via the RF spectrum. Ibrahim et al. [156] 

demonstrate a hijack attack on a car lock by jamming, listening and then replaying a signal. 

Even with the prominence of these attacks, recent government literature on connected 

vehicles is still focussed on the security of information over spectrum vulnerabilities [157]. 

Another example is seen in [158] where Tripple et al. proved the insertion of digital values 

into microprocessors and embedded systems using intentional acoustic interference through 

the addition of steps onto a Fitbit1. 

 

In March 2019 the UK National Air Traffic Services announced the start of operational trials 

of a space based Automatic Dependent Surveillance Broadcast (ADS-B)2  following a $69 

million investment in 2018 [159]. Moser et al. [160] show ADS-B is vulnerable to spoofing 

even with the addition of multi-lateration techniques to try and verify the integrity of a signal. 

Vulnerabilities in ADS-B is another example of the use of RF links as a viable access vector 

for a cyber-attack. Spoofing has also been seen with other RF signals such as with the 

operation of Satellites and the vulnerabilities with technologies that provide PNT 

information. Wang et al. [161] proves the use of a low cost SDR to change the date and time 

of a target device. With SDR technology decreasing in cost and increasing in complexity, 

security professionals must look to secure any dependence on wireless connectivity. The first 

stage of mitigating against RF enabled cyber-attacks is the detection and early warning of 

unwanted signals in an airspace. SDRs can also be used in an early warning capacity.  

  

 
1 Wireless enabled activity tracker that measures data such as steps walked, heart rate and other fitness metrics. 
2 An aircraft automatically uses satellite navigation such as GPS to determine its location and broadcasts it to 

other sensors and aircraft 
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Chapter 2 - Literature Review 

 

2.1 UAS Detection and Classification [21] [28] [25] [24] 

This section is split into the main research areas for small UAS detection and classification 

including imagery based systems (electro-optical and thermal), acoustic, radar, RF, LiDAR 

and LADAR based systems. For each sensor type the review is conducted chronologically 

ending with the most recent literature. Each of the techniques have strengths and weaknesses 

but RF is seen as the best tool for detection at distance. The ability to detect and classify a 

UAS with enough time for decision making regarding the threat is key to dealing with the 

threat [162].  

 

2.1.1 Imagery 

Thai et al.[163] use a CNN for feature extraction of motion patterns and k-nearest neighbour 

(kNN) to classify results with an accuracy of 93%. Acceptable accuracy values would be 

defined in the system requirements for an early warning system and would be highly 

dependent on what the use case for the system in question. Schumann et al. [164] use a 

convolutional neural network (CNN) to detect UASs for the birds vs. drones competition. 

They find that when they increase the training data to include images from the web from 

many varied scenarios, their results increase in accuracy. They use the metric average 

precision and achieve their highest overall result as 80%. The birds vs. drones challenge 

[165] is set up because drones can be confused with birds. Saqib et al. [166] compare various 

CNNs for UAS detection including pre-trained VGG-16 using transfer learning. They 

conclude that faster R-CNNs produce the highest performing results (average precision over 

60%) when comparing all the architectures. Schumann et al. [167] present a CNN  which is 
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trained on video which have been pre-processed with median background subtraction. The 

classifier is able to distinguish the UAS from birds and other background noise. Rozantsev et 

al. [168] use 3d Histograms of Gradients (HoG3D) and a CNN to perform detection using 

one camera. They utilise a regression approach for motion stabilisation and produce an open 

source dataset for the community and achieve 86% average precision. Aker and Kalkan [169] 

propose a CNN for small UAS object detection using background subtracted images. They 

show that birds can be distinguished from small UAS using this method.  

 

Yoshihashi et al. [170] use deep learning and a multi-frame approach for identifying small 

objects. They present a Recurrent Correlational Network which can perform detection and 

tracking simultaneously using multiple frames. Peng et al. [171] address the need for large 

datasets to train neural networks by creating an artificial dataset of photorealistic UAS 

images using a process called Physically Based Rendering Toolkit. The new images rendered 

vary with orientation, camera specs, background details and UAS positions/size. The network 

is trained using Faster R-DNN and achieves higher accuracy with the larger dataset than 

using a smaller one. Lee et al. [172] uses camera imagery and a CNN to classify the UAS 

type. Their detection system is based on a second UAS and the camera imagery collected 

from it. The dataset consists of google images and the OpenCV library to identify the location 

of the UAS on the image and the make/model of the UAS. The system has an accuracy of 

89%. Unlu et al. [173] use General Fourier Descriptors as features for UAS detection and 

classification from birds. In their work they show that using these features with a CNN 

produces the highest accuracy for classification. Nalamati et al. [174] consider various CNN 

architectures such as ResNet and Inception. Transfer learning is employed due to limited data 

and they show that ResNet using the Faster-RCNN is preferable for higher accuracy results 

(improving accuracy by 15%).  Coluccia et al. [175] evaluate the highest performing 
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algorithms produced for the 2020 Drones v. Birds competition, achieving 80% average 

precision. Challenges for video detection and classification were observed when classifying 

between birds and UAS at greater distances. The other problem perceived was with moving 

cameras. Coluccia et. al recommend training data to be updated to include greater distances 

and for categories such as real time detection and computing complexity be considered in the 

future.   

 

We will now consider the use of thermal imagery for small UAS detection and classification. 

Andraši et al. [176] investigate the use of thermal signatures for small UAS detection. They 

find that quadcopter style UAS which are electrically powered do not produce a significant 

amount of heat compared with UAS which use fuel consumption for power. This is due to the 

efficient nature of electrically powered motors and the air circulation within the quadcopter. 

Diamantidou et al. [177] propose a fusion process using a neural network. The fused 

information includes thermal imaging but does not expand on specifics details such as 

resolution [178]. Wang et al. [179] produce a monitoring system using visible and thermal 

imagery. They suggest that the largest issue for this work using deep learning techniques is a 

lack of data. They address this using augmentation techniques and show that systems trained 

on synthetic data performs well on real world UAS images, even those incorporating complex 

backgrounds. Svanstrom et al. [178] propose a multi-sensor detection system for UAS. They 

observe that the thermal camera which has a lower resolution has equal performance to an 

electro-optical camera. 
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2.1.2 LiDAR and LADAR 

LiDAR stands for Light Detection And Ranging and is commonly used for object detection 

for example it is utilised for collision avoidance with autonomous vehicles using 

simultaneous localization and mapping (SLAM). However the range detection on the sensor 

is limited to 100m [180]. LADAR stands for LAser Detection And Ranging. The basis of the 

technology is the same but LADAR systems have a greater distance and are therefore more 

suited and commonly used for detection and classification systems.  

 

Kim et al. [180] highlight the problems of LiDAR for detecting UAS at distance and propose 

a 3D LADAR sensor which can perform detection up to 2km. Depending on the size of an 

airfield, which can vary in the UK between anywhere from 0.2 miles to 2.7 miles, with 

Gatwick Airport being 2 miles in length [181], multiple sensors may be required to cover that 

space. They propose a data augmentation method and a clustering algorithm variable-radially 

bounded nearest neighbour (V-RBNN) which overcomes issues with prior research using an 

RBNN. However, they do not consider the issue which LADAR suffers in distinguishes 

between UAS and birds but they do propose this for future work. Khan et al. [182] observe 

the issue of LADAR datasets lacking long distance targets. They propose a fusion data 

generation methodology for small targets and present an approach for real time small UAS 

detection. Kim et al. [183] extend their previous work to consider a double pan-tile scan laser 

radar to detect a 0.5m small UAS in real time from a distance of 2km. They show that this is 

achievable with complex background scenario with a calculation time of 20 millisecond per 

frame. Salhi and Boudriga [184] consider arrays of laser sources and concentrators in a 

spherical form with a photodiode in the middle. This method is evaluated by Salhi and 

Boudriga for UAS detection. 
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2.1.3 Acoustic  

Audio signals have been studied using microphones pointed in different directions that can 

capture sound up to 30ft away. Mezei et al. [185] use mathematical correlation as a way of 

fingerprinting audio signals from different UASs. This method concentrates on capturing the 

motor sound which resonates around 40KHz but this technique struggles in urban areas 

where the base noise level is high. Busset et al. [186] combine the first approach with a video 

system [164] achieving a detection range of 160-250m (UAS type dependant). Nijim and 

Mantrawadi [187] use data mining techniques for UAS in flight identification. They use a 

Hidden Markov Model to perform phenome analysis with good results. However, the work 

does not consider the issue of noise or any real time considerations. Jeon et al. [188] do 

consider real-life environments when analysing the audio data from UAS by augmenting the 

audio with environmental sound produced from diverse environmental settings. They 

consider a CNN, a Gaussian Mixture Model and a Recurrent Neural Network (RNN) for 

detection and the RNN provides the highest accuracy using 240ms of audio. Bernardini et al. 

[189] use features from the time and frequency domain such as spectral centroid, spectral 

roll-off and Mel Frequency Cepstral Coefficients with machine learning classifier support 

vector machine to detect an audio fingerprint from a UAS. Their work uses audio with 

sampling rates higher than 48kHz taken from the internet. Flying UAS are classified against 

nature sounds, traffic noises, crowded areas and trains. They produce high accuracy of 96.4% 

using this method. Kim et al. [190] tackle the aspect of real time monitoring and detection 

using acoustic signals. They implement a FFT on the data in real time and perform detection 

with machine learning classifiers kNN and plotted image machine learning (PIL). Kim et al. 

use a mixture of indoor and outdoor audio signals with environmental noise created using 
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YouTube. They further produce a framework to allow other researchers to test other 

classifiers in the future. 

 

Yue et al. [191] use acoustic signals collected using an SDR and machine learning algorithm 

support vector machine for small UAS detection. They focus on the frequency domain 

representation Power Spectral Density (PSD) which they showed reduced noise and produced 

successful detection rates. They also added in Additive Gaussian White Noise (AGWN) so 

they could control the SNR and observe the results in different noise scenarios. Seo et al. 

[192] study the 2D features produced by the Short Time Fourier Transform (STFT) for UAS 

detection. They use 20ms samples with AWGN noise added and the produced STFT image is 

then classified using a CNN. They found that they could successfully distinguish between 

scooters and motorcycles using this method but suggest further research to consider wider 

acoustic signals which have similar harmonics. Matson et al. [193] use features derived from 

STFT and mel-frequency cepstral coefficients for inputs as 2D images to support vector 

machine and CNN for detection of small UAS. The work was limited to the testing of one 

type of UAS the Parrot AR and background activities. STFT features and support vector 

machine produced the highted accuracy for detection. Shi et al. [194] focus on real time 

detection and localisation of small UAS using audio signals through an array of microphones 

and [195] follow the same methodology. Localisation is performed with Time Distance on 

Arrival (TDOA) and using a Bayesian filter. 

 

2.1.4 Radio Frequency (RF) 

Shin et al. [196] investigate the security of UAS controllers with a particular emphasis on the 

employment of Frequency Hopping Spread Spectrum (FHSS) technology. Shin et al. show it 
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is possible to extract the hopping sequence of a controller using a Universal Software Radio 

Peripheral (USRP) SDR. Nguyen et al. [197] suggest investigate two methods for UAS 

detection systems. Firstly they look at an active approach which sends an RF signal and waits 

for a returned reflection. The second is a passive method whereby the signal is observed and 

analysed. Both approaches use the USRP SDR and they find that as the distance is increased 

the detection accuracy suffers. Shi et al. [198] use support vector data description with has 

fingerprints to detect small UAS operating in the 2.4GHz frequency band. They focus on 

producing the envelope of the RF signal before creating a fingerprint. The system is only 

tested in an indoor environment and accuracy decreases with the addition of AWGN. Nguyen 

et al. [199] examine whether features of UASs such as body vibration can be used to 

distinguish UAS from moving Wi-Fi or mobile phone signals. They use a SDR to test the 

detection accuracy at various distances using this technique. Abeywickrama et al. [200] 

present an autoencoder DNN for UAS direction finding using a single channel RF receiver. 

They achieve this using a circular antenna array which is directional and the accuracy of the 

direction finding was shown to be over 90%. Zhao et al. [201] classify UAS RF signals 

collected from a SDR using Auxiliary Classifier Wasserstein Generative Adversarial 

Networks (AC-WGANs). In an indoor setting the system shows an accuracy of 95%.  

 

Ezuma et al. [202] use a Markov models-based naïve Bayes decision mechanism with UAS 

RF signals for UAS detection of 15 types of UAS controllers. Once the UAS is detected, 5 

different machine learning classifier were evaluated for classification. Ezuma et al. evaluate 

the systems performance at various SNR and includes two of the same controller in the set. 

Huang et al. [203] expand detection to include a low cost method of localisation using 

multiple HackRF SDRs. Al-Sa'd et al. [71] are the first authors to consider classifying the 

flight mode of the UAS - whether it is switched on and connected to the controller, hovering 
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or flying with or without the video feed. The use a DNN to detect the UAS and classify its 

type and flight mode. Accuracy declines as the number of classes increase. They produce 

99.7% accuracy for UAS detection, 84.5% for classifying the UAS type and 46.8% for 

classifying the flight mode. They also contribute by producing the DroneRF dataset [204] for 

other researchers to use. Liang et al. [205] use the Hilbert Spectrum for features and an ANN 

for micro UAS detection. SNR is noticeably improved by using a higher order cumulant 

algorithm. Al-Emadi and Al-Senaid [206] use the DroneRF dataset and a CNN to improve 

the results of Al-Sa'd et al. by 0.1% for UAS detection, 1.3% for UAS type classification and 

12% for UAS flight mode classification. Their work suggested that the CNN produces higher 

accuracy for classifying UAS signals over a DNN.  

Nemer et al. [207] propose a hierarchical approach using ensemble learning and pre-

processed RF data. The first classifier detects the UAS, the second classifies it by type and 

the following two specify the flight mode. The method is shown to produce classification 

accuracy of 99% but the flight mode classification is limited to the Bebop and AR UAS. 

Future work looks to work with larger and more diverse datasets.  

 

Lv et al. [208] compare the Power Spectral Density (PSD) of a signal with an average PSD to 

achieve the detection of small UAS. The method boasts advantages when computational 

power and efficiency are constrained.  

 

2.1.5 RADAR 

The majority of the research we will present with respect to radar is regarding frequency 

modulated continuous wave (FMCW) and higher resolution radars which allow for the 

analysis of the micro-Doppler signature. FMCW has suffered issues with detecting and 
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classifying small UAS due to their size, especially when classifying between other flying 

objects such as birds at distance, and micro-Doppler signatured based methods are limited in 

terms of range (70–120m [209]).  De Wit et al. [210] show that micro-Doppler signatures can 

be used as a characteristic to classify small UAS. Molchanov et al. [211] extract features 

from micro-doppler signatures from a 9.5GHz radar. Pre-processing includes filtering and 

alignment to overcome the Doppler shift. Classification accuracy using Support Vector 

Machine produces an accuracy of 95% for birds, planes, small UAS and helicopters. 

Harmanny et al. [212] again tackle the issue of successfully discriminating between birds and 

small UAS using micro-Doppler signatures. Spectrogram and Cepstrograms are used to not 

only distinguish between bird and UAS but to visually determine the UAS type.  

 

De Wit et al. [213] characterise between fixed and rotary based UAS by using Micro-doppler 

features after first distinguishing between a UAS and a bird. Singular Value Decomposition is 

used to extract features from spectrogram images. Mohajerin et al. [214] use a mixture of 

simulated UAS, bird and plane radar tracks and a range of statistical features for 

classification. The work however doesn’t fully take into account atmospheric and 

environmental effects. Fioranelli et al. [215] use multi-static RADAR and micro-Doppler 

signature analysis to classify between UASs carrying different payloads. They achieve 

accuracy over 90% using centroid features from the micro-Doppler signature. Zulkifli and 

Balleri [216] design and develop a radar system to detect nano-drones using a micro-Doppler 

technique. Semkin et al. [217] consider radar cross-sections for detection and classification in 

urban environments and suggest further work to include the use of machine learning. 

Practical issues with RADAR detection systems include the cost of implementation and the 

requirement for licenses for transmission [53].  
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Ritchie et al. [218] observe that micro UAS electromagnetic scattering caused by the rotor 

blades produces strong variations with azimuth and frequency. Jahangir and Baker [219] use 

Holographic Radar (HR) that uses a 2D antenna array to create a multi-beam 3d surveillance 

sensor. Decision tree which is a machine learning classifier is used to distinguish between 

false tracks successfully and overall detection of 88%. Lundén and Koivunen [220] use a 

deep CNN to extract features from high range resolution profiles (HRRPs) for multi-static 

radars. They show that large target aircrafts are distinguishable using this method but the 

work does not extend to smaller targets such as UAS. Torvik et al. [221] use polarimetric 

parameters to address the problem with radars distinguishing between birds and UAS which 

are comparable in size. They focus on reducing critical detection time by using polarimetric 

features with a nearest neighbour classifier. Oh et al. [222] perform automatic multicategory 

classification of mini UAS using empirical-mode decomposition. Statistical and geometrical 

features are fed to machine learning classifier support vector machine for prediction. 

 

Kim et al. [190] were one of the first to consider a CNN with merged Doppler images to 

perform classification of UASs. They found frequency domain features to be more robust 

than micro-Doppler signatures, which prior work had concentrated on. Mendis et al. [223] 

use a deep belief network (DBN) and spectral correlation functions (SCF) from a Doppler 

radar. SCF are used due to their resilience to noise. They show that environments where SNR 

is less than 0 that high levels of accuracy (above 90%) can be maintained. However, their 

work does not consider UAS in motion but only in static positions. Ren and Jiang [224] 

highlight that existing micro-Doppler spectrogram, Cepstrogram and cadence representations 

do not include any phase information but only magnitude. They address this using a 2 
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dimensional complex Fourier transform and in doing so improve error rates for cadence 

velocity diagrams. Zhang et al. [225] enhance micro-Doppler signature robustness by using 

short-time Fourier Transform spectrograms in the K-band and X-band with principal 

component analysis for feature extraction. Support Vector Machine is again used as the 

machine learning classifier and they show that the fusion of multiple radar sensors produces a 

higher accuracy than a single radar feed. Regev et al. [226] highlight the issue that UASs 

present radars due to their low radar cross section and when detection has occurred, 

distinguishing the UAS from birds or by UAS type. They use a Multi-Layer Perceptron 

(MLP) neural network to classify UAS type using the baseband signal from the radar return. 

 

Fuhrmann et al. [227] classify UAS types - quadcopters, octocopters, helicopters and fixed 

wing platforms of various sizes using features extracted from time frequency transforms 

including Short-Time Fourier Transform, Cadence Velocity and Cepstrograms. Using 

Support Vector Machine classification accuracy is produced at over 96%. Oh et al. [222] use 

empirical-mode decomposition for UAS classification. They use eight statistical and 

geometrical features and SVM as the machine learning classifier. The utilise the unique 

patterns in micro-Doppler produced by the motion of the UAS blades. Ma et al. [228] 

investigate entropies Shannon, spectral, log energy, approximate, fuzzy and permutation to 

enhance mini UAS classification accuracy. Support Vector Machine again is used as the 

machine learning classifier. They show higher accuracy than compared work but with 

increased computational power requirements. Sun et al. [229] classify and localise drones 

using micro-Doppler signatures and dimensionality reduction. Sun et al. show robust feature 

selection which works at lower frequencies. Habermann et al. [230] introduce a new type of 

feature and use point cloud features generated from the radar return to classify helicopters 
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and UAS. The classification uses an MLP artificial neural networks and can classify between 

different types of helicopters and UAS even in very low SNR environments.  

 

Wang et al. [231] compare CNN detection methods with traditional CFAR methods. The 

CNN had the highest performance especially in low SNR environments. They also found that 

coincidence detection could improve CNN results. However, their work is limited to 

simulated data and is yet to be tested on real radar emissions. Samaras et al. [232] highlight 

issues with existing research requiring long illumination times and therefore a tracking radar 

architecture rather than a surveillance radar. This is due to existing methods being based on 

the Fourier spectra. Samaras et al. propose a deep learning solution for surveillance radar data 

to distinguish between UAS, birds and noise, producing accuracy of 95%. Choi and Oh [233] 

use a deep CNN to classify micro-Doppler signatures from different UAS. Wan et al. [179] 

prove that HRRP feature extraction for automatic target recognition using a CNN and 

spectrograms. However, again this work does not extend to smaller targets such as UAS.  

 

Guo et al. [234] use a one dimensional CNN to overcome priori issues with HRRP 

sensitivity. Again the work does not consider smaller UAS targets. Chen et al. [235] develop 

motion models for UAS and flying birds and then calculate the variance in the time domain 

of the model occurrence probability to estimate the target before identifying and classifying 

it. The model results are validated using ground truth radar data from airport and coastal 

environments. Messina et al. [236] automatically classify UAS using machine learning and 

surveillance radar signals. The show classification between bird, planes and cars at higher 

than 98% and classifying between fixed wing and quadcopters at over 93%. Coluccia et al. 

[237] review the method of RADAR for the detection and classification of UAS systems. In 
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particular they consider frequency modulated continuous wave (FMCW) radar as per the 

latest technology advances and also sensors which are spatially distributed. Amongst this 

they also discuss the main challenges for detection, verification and classification of small 

UAS. Passafiume et al. [238] investigate the reliability of FMCW radar images for 

classifying a UAS by the amount of motors it has and they rule out the rotation speed from 

effecting classification.  

 

2.1.6 Critical Evaluation of Detection and Classification Methods 

Table 2 shows a summary of critical analysis points observed from reviewing the current 

research in each field. It can be seen that distances of up to 3280ft can be achieved with 

RADAR for example. However, each method as already discussed has weaknesses. There is 

no one golden solution for small UAS detection, rather a fusion of sensors should be 

considered so the advantages of various method can be maximised.  

Table 2 - Critical Evaluation of Detection Methods 

Method Example 

Detection 

Range 

Example 

Detection 

Results 

Critical Evaluation 

Radar 3280ft [219] 88% 

Accuracy  

[219] 

Dependant on good radar cross section. 

Struggles to distinguish between flying objects 

with similar radar cross section. 

RF 1400ft [239] 99% 

Accuracy 

[240] 

Unable to detect UAS operating in autonomous 

mode. 
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Can be susceptible to inference in the same 

frequency band. 

Acoustic 30ft [185] 96% 

Accuracy 

[189] 

Most research focussed on detection. 

Short detection range. 

LiDAR  

and 

LADAR 

systems 

328ft [180] 

(LiDAR); 

6561ft [180]  

(LADAR) 

No 

comparable 

accuracy 

scored 

available as 

methodology 

based on 

clustering 

[180] 

Sensitive to environmental factors. 

Difficulties distinguishing between UAS and 

birds. 

Imagery 

(electro-

optical) 

350ft [239] 78% F1-

score [178] 

Lack of large open source datasets. 

Sensitive to environmental factors. 

Hard to perform 24x7 real time detection over a 

large area 

Thermal 350ft [239] 76% F1-

score [178] 

Difficult to detect heat efficient UAS 

Lack of current research 

 

 

Radar is one of the most researched sensor types as it is already the choice for large aircraft, 

it works in all-weather environments and is capable for truly long range detection. However, 

traditional radar systems were not designed to detect objects with small radar cross sections 
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or objects that have similar cross sections to birds. So radar does suffer with these challenges. 

The next best detection ranges undoubtedly come from RF detection. However, RF methods 

will never be able to detect a UAS which isn’t emitting any RF signals, i.e. a UAS operating 

in a GPS autonomous mode. Some RF methods have been shown to suffer when there are 

other signals present in the same frequency band. Acoustic signals have proved incredibly 

effective for UAS detection but the method is highly susceptible to noise and only works at a 

very short range. As with imagery systems, the success of LiDAR and LADAR systems is 

dependent on good environmental conditions as they will degrade in low visibility for 

example. They also struggle to distinguish between small UAS and birds, especially at 

distance.  

 

While imagery based techniques have many advantages, including the ability to use camera 

systems already in place and the significant improvements which have been made using deep 

learning to distinguish birds from UAS, we note a number of considerations from our review. 

There is a lack of large open source datasets to support the deep learning research. This has 

been overcome with some success in various pieces of work through the use of transfer 

learning, using a pre-trained neural network or generating synthetic images to enlarge a 

dataset. In the papers we have reviewed we have not seen any work relating to detection 

range and this may not be achievable with this method. Lastly we note that line of sight is 

essential for this technique which leaves it vulnerable to changes environment conditions 

such as low visibility due to weather or to a purposeful denial of service by covering the 

camera with spray paint for example.  
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Although the results being produced with imagery are high in accuracy we feel it would need 

to be utilised alongside another method to ensure detection. Thermal imagery is also 

considered but has limited research which may be due to a lack of open datasets. Research 

from 2016  showed that quadcopters were harder to detect with this method due to the 

efficiency of the motors and inadequate heat emissions. Nijim and Mantrawadi [187] go as 

far as to say that it is near impossible to detect a battery powered UAS with thermal 

signatures. Subsequent research which has referred to thermal imagery has been in the 

context of multi sensor detection systems [179]. We can see that each individual method has 

advantages and challenges, there is no one golden ticket solution. This is why there has been 

an increasing number of researchers and commercial programs looking at either fusing sensor 

data to reap the benefits of more than one of these methods or considering a number of 

individual sensors together to make a detection prediction with more certainty.  

2.1.7 Multi-Sensor Systems 

In industry we have seen two European programs which are looking to use a combination of 

different types of sensor data. Safeshore [18] is a project which integrates together various 

detection methods with intelligent data fusion in an attempt to address maritime border 

security issues. The Aladdin project [241] looks to develop a system to detect, localise, 

classify and neutralise suspicious UAS. Detection, classification and localisation uses radar, 

optronic, acoustic and other sensors, while the neutralisation aspect is said to include 

jamming, hacking and physical methods. The project also includes the development of a deep 

learning algorithm to fuse the different sensor data together. The Drone Detection Grid [242] 

is a system made by DD Countermeasures which flags unknown transmitters within a certain 

frequency range. Systems like these are susceptible to false positives as no classification of 

the signal is performed, so it could be something other than a UAS flagging detection. [243] 

describes a solution based on a network of sensors which use energy detection to identify the 
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UAS and then correlation to classify them. Since the system uses a network of sensors, time 

difference of arrival can then be used to locate the device. However, due to the number of 

distributed sensers required these systems can be expensive. 

 

In academia, Shi et al. [244] use multiple sensors to perform UAS detection, localisation and 

jamming as a counter measure. Acoustic, imagery and RF signals are collected and processed 

using Support Vector Machine in parallel. The data results are fused using a logical OR 

operation to produce a final detection decision. Diamantidou et al. [177] propose fusing 

features from multiple sensors for UAS classification and detection. They do this using a 

framework of a neural network to merge extracted features and increase accuracy from 

utilising the benefits of more than one sensor. Zhang et al. [245] perform small UAS 

detection, tracking and localisation with a multi-sensor approach. It uses visual imagery and 

deep learning object detection to define a bounding box. LiDAR is used to calculate distance 

measurements from the pixel data and thermal data to detect the bounding box and then track 

it. Although Zhang et al. are not fusing the data in order to improve detection and 

classification, they show how a combination of different sensor data can provide a richer 

overall system capable of multiple functions. 

 

 

 

2.1.8 Counter Measure Systems 

We split Counter-measures into three main categories, physical measures, jamming and 

cyber-attacks.  Brust et al. [246] use a swarm of UAS, capable of self-organising when a 

malicious UAS is detected, to chase the malicious UAS. They achieve this using clustering 
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and develop a system resilient to the loss of communications with the swarm.  Rothe et al. 

[247] present a counter UAS method through catching a UAS in mid-air by using a formation 

of UAS and a net. Prior work has concentrated on single UAS with nets but this limits the net 

size. This research was limited to indoor testing but outdoor experiments are planned for the 

future. ‘Robotic Falcon’ developed by Michigan Technological University [248] and the 

SkyWall 100 which has just secured a contract with the European Union police forces use net 

capture technology [249]. Dutch Police trailed the use of birds of prey to tackle malicious 

UASs but there were issues with consistency and concerns over animal rights [250]. China 

developed an electric fence to stop malicious UASs entering prohibited areas [251]. France 

have tested a laser defence against small UASs ahead of the 2024 Paris Olympics Games 

[252]. BBC News report that the U.S. Air Force are employing a microwave based counter 

measure system [253] and India are exploring rubber bullets as a physical counter measure 

[254]. All of these physical countermeasures contain risk when employed. For example, 

shooting a small UAS with a rubber bullet over a crowded area could cause harm to civilians 

if it crashed to the ground.  

Multerer et al. [255] combine a FMCW radar for UAS detection and a directional 2.4GHz 

jammer to produce an anti-drone system. The jammer again aims to disrupt the control signal 

between the UAS and the controller and the tracking function within the system allows the 

signal to continue to be jammed. Shi et al. [244] use RF jamming as a countermeasure for 

malicious UAS in wider multi sensor system which we presented earlier. The system receives 

the location of the UAS and calculates an azimuth angle for the jammer antenna to be steered 

towards. The goal of the jammer is to break the communication signal between the UAS and 

the controller. They observe the issues of controlling the jamming power and the 

unintentional consequences of interfering with other wireless communications in the same 

frequency band. Parlin et al. [256] propose protocol aware jamming for UAS controller 
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signals which normal employ some form of frequency hopping. They use a SDR and 

experiments proved that a protocol aware jammer was more effective than sweep jamming 

and required less transmit power. Li et al. [257] target UAS eavesdroppers by getting 

physically close to the UAS and transmitting a jamming signal to disrupt the malicious UAS.  

 

Sliti et al. [258] propose three types of attack scenario including jamming the control link 

between the UAS and its controller which usually instigates the UAS returning to a 'home' 

location. The 'home' location is something pre-set. It also propose a black hole attack 

whereby network traffic is dis-regarded and a replay attack which repeats real communication 

that is happening between the controller and the UAS. Chen et al. [259] consider false data 

injection onto UAS navigation algorithms on open source flight control systems. In particular 

they show they can compromise magnetometer measurements to directly affect the UASs 

state estimation and therefore seriously compromising navigation, stability and power 

consumption. Kwon et al. [260] specifically target the micro-air-vehicle communication 

(MAVLink) protocol which is an open source communication protocol for UAS. It is widely 

used with ground control based systems. They prove an attack which disables a UAS and its 

subsequent mission by exploiting a vulnerability with the protocol. As always when attack 

methodologies progress we see security measures progressing in parallel. One example is the 

work of Lei et al. [261] who propose a new lightweight authentication protocol for UAS. 

Westerlund and Asif [262] investigate Wi-Fi based vulnerabilities with two commercially 

available UAS which operate on Wi-Fi. Cyber based attacks including Denial of Service, De-

authentication, man in the middle, root access and packet spoofing are specifically considered 

and proved, highlighting security vulnerabilities for Wi-Fi based UAS.  
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Aside from the methods considered above there are various reports of laser weapons for 

counter UAS [263], [264], projectiles [265],[266] and even the use of animals [267],[268].  

 

Table 3 - Critical evaluation of counter-measure methods. 

Counter Measure Method Critical Evaluation 

Physical • Must be lightweight 

• Net mechanism must be large enough 

Jamming • Can interfere with other frequency band users 

• Illegal in some countries 

Cyber • Can be difficult to perform 

• Dependant on specific UAS type / communication 

protocol used which can be encrypted 

• Illegal in some countries 

 

Table 3 shows, as with detection and classification methods, that there is not one gold plated 

solution. Jamming is incredibly effective but it comes at a cost of having other consequences. 

Cyber again is very effective but it is specific and therefore will incur cost and will likely not 

deal with unknown UAS. All methods must at the very least employ successful detection 

systems as a prior requisite and physical measures require tracking alongside this.  
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2.2 GNSS Jamming Detection and Classification [27] [23] 

 

2.2.1 GNSS Specific  

Related works to the detection and classification of GNSS jamming signals includes 

Lineswala and Shah [269] who consider Indian constellation signals and the use of the power 

spectral density (PSD) which is a measurement of power in the frequency domain to detect 

jamming. Although the work is successful at detection it does not look at the classification of 

the jamming signal type. Ferre et al. [110] take the work further and use spectrograms which 

are a representation of the signal power over time to both detect and classify the signal. They 

use machine learning classifier Support Vector Machine (SVM) to produce 95% accuracy 

and a CNN which produces 91% accuracy for the 6 jamming signal classes described above.  

Other studies are less discriminative, Glomsvoll and Bonenberg [107] consider narrow and 

wideband jamming signals on high end receivers for  GPS L1 and GLONASS L1 frequency 

bands. Their work concluded that the impact to GPS from jamming was more critical than 

jamming GLONASS. Lee et al. [270] consider a cloud based solution for the detection of 

GNSS jamming but rely on multiple receivers in the area of the jammer. They prove the 

detection of jammer type and estimate localisation based on the 2 dimensional time-

frequency correlation between receivers. Kim et al. [271] again show the validity of 

considering the jamming signal as a 2 dimensional correlation in the time-frequency domain 

for detection of jamming type and estimated localisation. As in [270] this solution is based on 

generating a network of receivers. Xu et al. [272] propose the use of a DNN with time, 

frequency and transform domain features from the signal for jamming recognition. The DNN 

was able to detect 12 jammer types with over 99% accuracy and outperformed traditional 

machine learning classifiers. Sreeraj et al. [273] use PSD data and an adversarial autoencoder 

(AAE) to detect synthetically generated anomalies in the wireless spectrum. The model is 
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trained in an unsupervised manner for mean squared error reduction and then via semi-

supervised learning to learn the features where they achieve 80% accuracy. 

  

2.2.2 Wireless Communications 

Related work to the detection and classification of jamming signals in GNSS bands, is that of 

wireless communication links and spectrum monitoring. Tandiay et al. [274] use 

spectrograms stored as 2D images using a video prediction system called Prednet [275] to 

detect jamming through a comparison of the spectrum with no jamming signal present. 

O’Shea et al. [276] use spectrograms with a CNN in order to detect and classify signals for 

wireless spectrum monitoring, such as GSM, Bluetooth and LTE.  Arjoune et al. [277] 

evaluate SVM, Random Forest and Neural Network as machine learning models to detect 

whether a jamming signal is present or not in wireless communications. This work only 

considers detection and not classification, which is proposed for future work. Wu et al. [278] 

assess CNN as a feature extractor for the classification of jamming signals in satellite 

communication networks and concentrate on the combination of multiple jamming signals. 

The work showed near 100% accuracy but capability to generalise on unseen data was not 

assessed. Yang and Zhu [279] consider the recognition of satellite interference signals using 

an incremental learning SVM model. They extend this model to allow it to function with 

multiple classes. Their overall conclusions were that although the model did not improve 

accuracy compared with traditional SVM models, it did reduce computing time and the 

memory capacity for training the models. It effectively improved efficiency and maintained 

accuracy compared to traditional methods but reduced the resources needed to produce 

though results.  
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For jamming signal detection and classification research also exists which utilises an SDR 

and a Raspberry Pi for real time classification. Price et al. [280] are concerned with the 

detection and classification of signals which jam the 2.4GHz control signal between a UAS 

and ground control station. They consider barrage, protocol aware, single tone and pulse 

jamming signal types using GNU-Radio and classify the signals using a random forest 

machine learning model. They then fit a small UAS with a HackRF SDR and use a raspberry 

Pi to make predictions in real time. They achieve accuracy of 93% and suggest further work 

needed for experimenting while the UAS is running and then implementing the classification 

as part of a wider counter system which could employ mitigations such as path re-scheduling.  

 

2.2.3 RADAR  

The detection of RADAR jammers is another area which is related to the detection and 

classification of GNSS jamming signals. Hao et al. [281] tackle the issue of detecting a 

specific type of jammer called a dense false target jammer.  The jamming signal is designed 

specifically to interfere with pulse compression radar. Hao et al. use a feature extractor based 

on Gabor time-frequency atomic decomposition which are then fed to a SVM classifier for 

recognition. They found that for the problem of dense false target jammers that the Gabor 

atomic time-frequency parameter extraction and SVM where successful with a high detection 

rate (above 92%). Fu in [282] consider the issue of classifying different types of radar 

jamming signals. The extract features using the time domain, frequency domain and with the 

use of fractal dimensions. Fu uses neural networks to classify the signal types and specifically 

the paper looks a when there are more than two jamming signals operating at the same time.  
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Zhang and Cao [283] use SVM to consider the classification of radar interference signals. 

They argue that with the introduction of advanced driving systems that more and more 

interference issues concerning radar on radar are going to be experienced. They consider 6 

different types of radar to radar interference. The driver assistance radars considered lie in the 

77GHz range and Zhang and Cao consider frequency data with a linear SVM to produce real 

time classification for future driverless vehicles. They achieve 90.6% accuracy and use cross 

validation to highlight any overfitting in the model. Kong et al. [284] consider the recognition 

of interference signals for radio ground-to-air using SVM. In particular they consider an 

optimisation method called gravitational search algorithm which they conclude has high 

efficiency for recognition between interference and non-interference signals. Junfei et al. 

[285] consider barrage jamming of synthetic aperture radar (SAR) systems. They consider 

statistical characteristics of SAR echo signals and use a VGG-16 CNN to classify simulated 

interference types. Shao et al. [286] consider the classification of pulse compression RADAR 

interference to be an important step to be able to counter the jamming. They use a one 

dimensional CNN to consider classification with limited and resourceful datasets.  
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2.3 Transfer Learning [25] 

Deep CNNs have proven very successful at object detection and classification over recent 

years. Many pre-trained CNNs are available which have been trained of large sets of images 

such as VGG-16 [287] and Residual Networks (ResNet) [288]. ResNet architectures allow 

for deep neural networks to be trained using a technique called skip connection which takes 

the output from an earlier layer and combines it with the a later layer. This technique 

overcame prior difficulties with training very deep neural networks whereby gradients would 

vanish due to repeated multiplication. ResNet50 has been commonly used for transfer 

learning research with a large scale image recognition database of over 14 million images 

called ImageNet [287]. Training the weights in a neural network from scratch can take a very 

long time and needs a large amount of training data, for example the 14 million images that 

trained the weights for ImageNet.  

 

Transfer Learning allows other domains to benefit from the use of pre-trained weights for a 

new purpose. The main principle behind transfer learning is that the lower layers of the CNN 

are general and therefore we can find commonality and transferability between different types 

of domains. When transfer learning based pre-trained CNNs are used for feature extraction, 

traditional linear based classifier models which are quick to train can be used because they 

will have chosen any non-linear features in a robust manner using the CNN feature extraction 

[289]. The experiments within this thesis use two different CNNs for feature extraction using 

transfer learning. The first is the 16 layer VGG-16 [287] and the 50 layer ResNet-50 [290]. 

Both CNNs were pre-trained on ImageNet, an object detection database containing 1000 

classes and 14 million images. Transfer learning is where a CNN is trained for one purpose 

but used for a different one. Although ImageNet does not contain images of this nature, 

spectrogram images in particular have been successful in other fields which will be detailed 
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in the sections 2.3.1 to 2.3.3 below. The assumption with machine learning is that data needs 

to follow the same distribution as the model being trained. With transfer learning this is not 

necessary and existing data and models can be used for new environments [291].  

 

2.3.1 Audio Classification  

Tsalera et al. [292] describe a “promising paradigm” in their research surrounding transfer 

learning and spectrogram images. They compare three image based datasets of spectrograms 

and scalograms produced from audio signals on pre-trained CNNs using ImageNet. They 

compare the use of transfer learning to also training the CNNs from scratch. Transfer 

Learning out performs the CNNs trained from scratch significantly, producing an average of 

27%, 57% and 25% higher classification accuracy results for GoogleNet, SqueezeNet, and 

ShuffleNet CNNs.  

 

Their applicability for sound classification has been realised in various recent research 

whereby Palanisamy et al. [293] show that a CNN with pretrained weights on ImageNet can 

provide “a strong baseline for audio classification, even with a significant difference between 

spectrograms and ImageNet samples, assumptions gained from transfer learning hold firmly.” 

They classify various audio datasets using CNNs pre-trained on ImageNet with spectrogram 

images. Their work shows that using pretrained weights from ImageNet produces higher 

accuracy results than starting with weights which have been randomly initialised.  

 

Koike et al. [294] use a heart sound classification dataset which was developed to consider 

new ways of detecting cardiovascular disease from the sound our hearts make. The 

development of sound classification for heart conditions has partly been due to the increase in 
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wearable technology and also the increase in the use of machine learning techniques. Transfer 

learning is investigated using audio signals and also using pre-trained CNNs on ImageNet for 

use with spectrograms. It was found that the deep models pre-trained by audio signals 

outperformed the image based ones. Zhao et al. [295] use pre-trained CNN architectures on 

ImageNet to detect and classify abnormal heart beats using scalogram images of 

Phonocardiogram (PCG). They found that the features extracted from the VGG-16 CNN 

were more robust than an audio feature set which has been more widely used. They suggest 

future work to look at data augmentation and for datasets to include a greater number of heart 

sound classifications.  

 

Zhou et al. [296] use CNNs pre-trained on ImageNet for acoustic scene classification. They 

highlight the fact that a lot of data is needed to be able to distinguish between different 

acoustic scenes as significant overlaps and similarities are contained within each one. 

Transfer learning was considered by Zhou et al. because of the success it has had in the 

imagery domain and they discuss whether transfer learning can be successful in a totally 

different classification task. They consider spectrograms of the audio signals as images, 

treating it as an image classification problem and produce classification accuracy scores of 

between 59.7% and 77.8%. Nagarajan and Oruganti in [297] classify emotions using transfer 

learning. They use spectrogram representation of the audio files which include the emotional 

responses and extract features using a pre-trained CNN AlexNet on ImageNet. A linear 

classifier was then trained using the extracted features from the CNN AlexNet. They were 

able to classify eight different emotions and built on the success of prior research in the field 

by 16% in terms of f1-score.  
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Muller et al. [298] determine that image based features are general purpose in their paper. 

They use pre-trained CNNs AlexNet, ResNet and Squeeze Net to extract features from mel 

spectrogram images and then train anomaly detection models using the features. Dufourq et 

al. [299] in their paper highlight the fact that designing architectures for CNNs requires 

extensive knowledge and that hyper-parameter optimisation and tuning can be time 

consuming and computationally intensive. Their work considers bioacoustics classification 

using CNNs which have had their weights pre-trained using ImageNet for passive acoustic 

monitoring. Twelve different CNNs are considered with four different datasets for passive 

acoustic monitoring. They find that the pre-trained CNNs utilising transfer learning can 

provide high f1-scores (82%) and robust models for passive acoustic monitoring.  

 

2.3.2 Medical Diagnosis 

CNNs which have been pre-trained on ImageNet have been used in the medical field for 

identifying conditions such as Diabetic Retinopathy (DR). Thota and Reddy [300] use a 

VGG-16 pre-trained on ImageNet with transfer learning and fine tune the CNN to classify 

how severe the conditions DR presented were. They implement data augmentation and were 

able to achieve an overall accuracy of 74%, improving on other research in the field. 

Jayakumari et al. [301] also consider transfer learning for the early detection and 

classification of DR. They find a higher accuracy can be achieved with the application of 

transfer learning through a pre-trained CNN on ImageNet. Their work achieves 98.6% 

accuracy. Weimann and Conrad [302] consider the fact that remote monitoring devices are 

producing a lot of data for health care patients to monitor heart activity. The increase in the 

amount of data also presents problems with needing more physicians to analyse the data. 

Salem et al. [303] highlight the fact that DNNs can produce higher accuracy results (when 

trained correctly) at detecting cardiac arrhythmias from ECG patterns than cardiologists. 
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They classify four types of ECG signals using a transfer learning based approach from the 

image classification domain. They show that the model can classify arrhythmias with an 

accuracy of 97.23% using cross validation.  

 

Pal et al. [304] introduce a system called ‘Cardio Net’ which uses transfer learning with a 

neural network called Dense Net pre-trained with ImageNet to classify arrhythmia heartbeats. 

The neural network is fine-tuned and achieves accuracy levels of 98.92% for classification of 

29 different types of heartbeats. Venton et al. [305] compare different types of CNN pre-

trained on ImageNet whereby the neural network was fine-tuned on a database of ECG 

images. They conclude that out of the data given in their experiments. spectrograms and 

scalograms produced the best results. They also concluded that out of the different CNN 

models tried, there was no pattern with any one producing significantly higher accuracy 

results than the others. Their experiments considered AlexNet, GoogLeNet and SqueezeNet. 

 

The diagnosis of COVID-19 has also benefited from the use of transfer learning with CNN 

feature extraction following by machine learning classification using logistic regression 

[306], random forest [307] and support vector machine [308].  Imran et al. [309] use transfer 

learning with cough samples to provide a COVID-19 preliminary diagnosis. Lahsaini et al. 

[310] consider confirmed COVID-19 patient’s chest CT images and patients without 

COVID-19. They evaluate various deep learning models including DenseNet121, 

DenseNet201, VGG16, VGG19, Inception Resnet-V2, and Xception  and produce a model 

using DenseNet to perform COVID-19 detection in chest CT images. Garg et al. [311] 

consider whether CNNs utilising transfer learning can effectively detect COVID-19. They 

pretrain the following CNNs on ImageNet; VGG16, ResNetV2, InceptionResNetV2, 
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DenseNet121, and MobileNetV2 CNN. They found that ResNetV2 and DenseNet121 were 

the best feature extractors to detect COVID-19 using X-Ray images. They also concluded 

that principle component analysis (PCA) can be used to increase efficiency. Overall for three 

classes they achieve an accuracy of over 94%. Alotaibi in [312] classifies between normal, 

COVID-19 and viral pneumonia using chest X-Ray images and pre-trained CNNs which are 

fine tuned. The CNNs tested were ResNet50, VGG19, DenseNet121, and InceptionV3. He 

found that the accuracy for all four models were similar and that 98.3% could be achieved for 

the classification of COVID-19 patients, normal patients and those with viral pneumonia. 

 

Mormont et al. [313] consider transfer learning for various CNNs to perform classification 

for digital pathology and microscopy images. They produced the highest results with fine 

tuning the pre-trained CNN, however this came with the resource burden associated with the 

re-training of the network. Thota et al. [300] consider the use of transfer learning to improve 

the classification accuracy for the early detection and severity of DR. They improve upon 

other research in the field in terms of classification accuracy using the fine tuning of a 16 

layer VGG-16 CNN. Kaur et al. [314] examine a pre-trained CNN using transfer learning to 

classify pathological brain images. Kaur et al. use cross-validation to ensure their results are 

not overfitting and find that the pretrained model with transfer learning out performed other 

current research. They also highlight as an advantage the fact that no hand crafted features 

need to be implemented as the CNN extracts its own features from the data.  

Oktavian et al. [315] highlight the use of Magnetic Resonance Imaging (MRI) scans to detect 

Alzheimer’s disease and how deep learning is effective but very large datasets and high 

computational power are needed to produce high accuracy models. They use a ResNet-18 

CNN architecture pretrained with ImageNet weights and therefore utilising transfer learning 
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to detect for Alzheimer’s disease in MRI scans. Maqsood et al. [316] also consider MRI scan 

images for the early detection and classification of Alzheimer’s disease and dementia. The 

classification is further broken into four distinct phases for dementia that is shown in patients.  

AlexNet is used as the CNN pre-trained on ImageNet and fine-tuned for use with MRI scan 

images. They achieve an overall accuracy of over 92% for the classification of MRI scan 

images for dementia stage and Alzheimer’s disease classification. Khan et al. [317] use breast 

histopathology images to detect cancer and utilise transfer learning so that the benefits of 

deep learning can be utilised without the need for extensive datasets. Their results show that 

fine tuning a CNN model with prostate cancer images produced higher accuracy results that a 

model pre-trained on ImageNet (or from scratch on just breast cancer images). They show 

that cross domain transfer learning approaches are worth investigating for the detection of 

cancer in histopathology images.  

 

2.3.3 Other  

Chen et al. [318] use a pretrained CNN on ImageNet to extract features from short Fourier 

transform images for accurately detecting cracks in the pavement. Using pre-trained CNNs 

with ImageNet and the process of transfer learning with graphical representations of the RF 

signal has also been used for classifying small UASs. Saqib et al. [174]  consider transfer 

learning for UAS detection in long-range surveillance videos and found residual CNNs to be 

strongest for classification. A second piece of work by Saqib et al. [166] considers the 

detection of UAS using imagery detection and transfer learning.  

 

In their work entitled Deep Neural Networks to Enable Real-time Multi messenger 

Astrophysics’ Huerta et al. [319] conclude that transfer learning reduces the time for training 
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classifiers and also improves accuracy in low SNR environments. George et al. [320] 

consider detecting anomalies such as glitches from gravitational wave data. They utilise 

transfer learning through pre-trained deep learning models to show that training time can be 

significantly reduced and that accuracy can remain very high at over 98.8%. Ackermann et al. 

[321] consider a transfer learning based approach for detecting galaxy mergers. They show 

that a pre-trained CNN and transfer learning can significantly improve performance for small 

datasets and compared to the current methods for detecting galaxy mergers. They showed 

their system robust to noise interference and also to distortions. The introduction of transfer 

learning improved accuracy overall and lowered error rates.  

 

Dayang et al. [322] consider the identification of planetary nebulae from other object types. 

The architectures that were pre-trained on ImageNet were not optimised to the dataset and 

one issue was highlighted that astrology images are bigger than the maximum size expected 

by the pre-trained neural networks. However, even with these limitations they proved what 

they deemed to be “impressive results”. The neural network which provided the highest 

results was the DenseNet201. Wei et al. [323] consider the classification of compact start 

clusters using the Hubble Space Telescope ultraviolet optical imagery of spiral galaxies 

which are nearby. The amount of labelled star cluster samples is small so transfer learning is 

employed for this reason. Star clusters are classified into four classes and the ResNet18 and 

VGG-19-BN are used as the CNNs in the experiments. Their work shows that star cluster 

classification can be automated at scale and the next stage for this work would be to produce 

an agreed upon and standardised star cluster dataset to improve the study.  
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2.4 Contribution of Research 

The following table shows were we have continued from previous research through 

identifying a gap from conducting the literature review and relating it to chapter headings and 

publications of our work. 

Gap identified through 

Literature Review 

How experiments fill 

identified gaps 

Own Work 

Publications 

UAS Flight Mode Classification. 

Al-Sa'd et al. [71] are the first 

authors to consider classifying the 

flight mode of the UAS but only 

achieve 46.8% accuracy using a 

DNN as a classifier. The work does 

also not consider interference in the 

same frequency band from other 

signals. There are also only 3 UAS 

types in the dataset and they are 

older platforms.  

Our experiments in Chapter 4 - 

Supervised Learning carry on 

the work of Al-Sa’d et al. 

directly by using transfer 

learning and CNN feature 

extraction followed by 

machine learning classifiers to 

improve the results. From our 

own results we carry this work 

on further by introducing a 

larger dataset, deeper CNN 

architectures and looking at the 

presence of interference from 

signals operating in the same 

frequency band. 

 [22]–[27] 

Transfer learning via CNN 

feature extraction has shown 

successful for audio signal 

Chapter 3 - RF Profiling – 

considers the different ways 

that an RF signal can be 

 [22]–[27] 
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classification [292] [293] [294] and 

the diagnosis of medical conditions 

through scan images [300] [301] 

[306]. This process has not been 

applied to the fields of UAS 

detection & classification and GPS 

jamming classification via 

graphical representation of the RF 

signal as an image.  

graphically represented and 

saved as an image for use in 

transfer learning CNN feature 

extraction.  

Chapter 4 - Supervised 

Learning looks at using 

transfer learning with CNN 

feature extraction as a pre-

cursor for training supervised 

learning models.  

Transfer Learning CNN Feature 

Extraction as a Pre-curser to an 

Unsupervised algorithm. In 

literature CNN feature extractors 

have been shown to enhance 

clustering of complex natural 

images [324]. This has not been 

done with UAS detection & 

classification using transfer 

learning.  

In Chapter 5 - Unsupervised 

Learning we look at using 

transfer learning with CNN 

feature extraction as a pre-

cursor for training 

unsupervised learning models. 

[19] 

Low Cost Raspberry Pi/SDR 

Early Warning System. Price et 

al. [280] mount an SDR and 

raspberry Pi onto a UAS to detect 

and classify jamming signals 

Chapter 6 - Early Warning 

including Unknown Signal 

Detection considered running 

the CNN feature extractor and 

machine learning classifier 

[20] 
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targeted against the 2.4GHz control 

signal in real time. This work was 

in the context of jamming 

detection. No prior work was found 

to consider UAS detection and 

classification on a Raspberry Pi 

using machine learning.  

model on a raspberry Pi with a 

low cost SDR in real time.  

Classifying UAS signals which 

the model had not been trained 

against. The UAS work considered 

in the literature review [199] [198] 

[199] [71] only look at signals the 

model was trained against.  

Chapter 6 - Early Warning 

including Unknown Signal 

Detection considered 

evolutionary and non 

evolutionary datalink 

predictions using a model 

which was not trained against 

those UAS. 
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Chapter 3 - RF Profiling 

The RF Profiling Chapter considers the dataset generation, graphical representation of the 

signals as images and the introduction of wireless interference. The first section Chapter 3 

describes the datasets used in the thesis which have either been produced as part of this work 

or are open source datasets, which allow the results of the work to be easily compared with 

other researchers in the field. The main dataset produced in the thesis is the DroneDetect 

dataset which has been made publicly available for the benefit of other academic researchers 

in the field. The second section 3.2 details how the signals are represented in graphical form 

as spectrograms, PSD, raw IQ constellation, histograms and a concatenation of all four. 

Lastly section 0 looks at the introduction of wireless interference in the band and how this 

effects the graphical signal representations.  

 

Figure 5 – How the RF Profiling Chapter fits into the Thesis 
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3.1 Dataset Generation 

3.1.1 GPS Jamming Dataset [27] [31] 

The first dataset used was an opensource dataset called Image datasets for jammer 

classification in GNSS [31]. The mathematical models used to generate the jamming signals 

are credited to Ferre et al. [110] [325], details can be found in the associated reference. 

Equation (1) represents the signal at the GNSS receiver, with g(t) representing the GNSS 

signal, j(t) the jamming signal and w(t) is background noise, represented in the signal 

generation by AWGN.  

 𝑟(𝑡) = 𝑔(𝑡) + 𝑗(𝑡) + 𝑤(𝑡) (1) 

To incorporate varied scenarios, parameters are randomly generated but modelled with 

uniform distributions. The signal 𝑟(𝑡) was generated with a uniform distribution of AGWN 

whereby Carrier-to-Noise Ratio (𝐶/𝑁0) between 25-50dBHz and Jammer-to-Signal Ratio 

(𝐽𝑆𝑅) 40-80dB. Signals were generated using open source Matlab files [325] which were 

only altered to save them as raw data. For the interference experiments 𝑤(𝑡) is omitted and a 

set level of noise 𝑛 is calculated for set levels of SNR.  

 𝑞(𝑡) = 𝑔(𝑡) + 𝑗(𝑡) + 𝑛 (2) 

 

To allow the evaluation of the signal at set levels of SNR we take our signal 𝑔(𝑡) + 𝑗(𝑡) and 

add our noise 𝑛 to give us signal 𝑞(𝑡) at a set level of SNR. This can be seen in (2). First the 

power in our signal 𝑔(𝑡) + 𝑗(𝑡) is calculated, a noise spectral density using the desired level 

of SNR is worked out and from this the noise power 𝑛 to be added to the original signal can 

be calculated. Once we have our signals in set levels of SNR we produce graphical signal 

representations. 
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3.1.2 JamDetect Dataset [23] 

The JamDetect dataset was produced to extend the GPS Jamming dataset to include a protocol 

aware jammer and a barrage jammer. It also signals allowed those signals to be tested with 

specific levels of SNR. First, 𝑠(𝑡) is represented as the signal at the GPS receiver shown in 

Equation (3). 

 𝑠(𝑡) =  𝑔(𝑡) +  𝑗(𝑡) +  𝑤(𝑡) (3) 

Whereby 𝑔(𝑡) is the GPS signal coming from the satellite, 𝑗(𝑡) is our jamming signal and 𝑤(𝑡) 

is the noise generated by AWGN across the wireless channel. 

 

GPS Signal  

First of all 𝑔(𝑡) is considered, the GPS signal coming from the satellite constellation. GPS is 

specifically be considered as the GNSS system. GPS is a US system consisting of 24 satellites 

across 6 orbits which operate over 12 hr periods. GPS has two carrier frequencies L1 and L2 

which broadcast Binary Phase-Shift Keying (BPSK). The L1 band is the focus which operates 

at 1575.42MHz across a bandwidth of 24MHz. However, it has been proven due to the design 

of the L1 signal that a bandwidth of 9.66MHz is enough for tracking and navigation [326]. A 

bandwidth of 10MHz is used within our experiments.  

To try and create a realistic signal a real GPS signal is generated using GPS-SDR-SIM [327]. 

GPS-SDR-SIM is python based code which generates GPS baseband data for the intention of 

being broadcast by an SDR. It allows you to define a static location, for our experiments the 

New York New York Piano Bar in Las Vegas, GPS co-ordinates 36° 10' 11.7876'' N 115° 8' 

23.3952'' W which corresponds to Latitude Longitude (36.169941, -115.139832) are used. The 

GPS Satellite constellation is then specified using a daily GPS broadcast ephemeris file from 

the NASA Earth Data site [328].  For a date the 20 Dec 2014 is used for testing but ephemeris 
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data is available up to 24hrs into the future, so applications can predict orbits. GPS-SDR-SIM 

uses the data to generate the pseudo range and Doppler for simulated GPS satellites in view at 

that time which is then converted to I/Q baseband samples.  

 

Jamming Signals  

Next the jamming signals 𝑗(𝑡) are considered and the details of the production of the JamDetect 

dataset. GNURadio was used to produce the jamming signals. GNURadio is an open source 

framework which includes a free toolkit for the development of SDRs in a PC environment 

[136]. The signals defined in [106] are used with GNURadio as a starting point and narrowband 

jamming is added to the jamming classes already defined.  

 

Chirp Jammer 

Chirp signals were generated by increasing frequency over time, also known as sweep 

jamming. Signals are constructed across a bandwidth of 10MHz with a fast sweep rate of 

10KHz, the stop and start frequencies are calculated using Equation (4). 

 
𝑓𝑚𝑖𝑛  =  𝑓𝑐  −  

𝐵𝑊

2
 =  1575.42 𝑥 106  −  

10 𝑥 106

2
 =  1570.42𝑀𝐻𝑧 

𝑓𝑚𝑎𝑥  =  𝑓𝑐  +  
𝐵𝑊

2
 =  1575.42 𝑥 106  +  

10 𝑥 106

2
 =  1580.42𝑀𝐻𝑧 

(4) 

The implementation used to produce the chirp signal in GNURadio is sourced from [329].  
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Figure 6 – Visual Representation of a Chirp Jamming Signal as a (a) Spectrogram and (b) 

PSD 

Figure 6 shows the Spectrogram and PSD of the signal. The PSD shows the signal at its highest 

point is approximately -55dB/Hz.   

 

Continuous Wave (CW) Jammer 

The CW jamming signal is produced in GNURadio using a 1KHz cosine signal source. Figure 

7 shows the implementation of the jamming signal generation in GNURadio.  

 

(a) 

(b) 
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Figure 7 – The Generation of a CW Jamming Signal using GNURadio 

In Figure 8 (a) it is observed that the CW jamming signal only occupies a small part of the GPS 

bandwidth.  

 

Figure 8 - Visual Representation of a CW Jamming Signal as a (a) Spectrogram and (b) PSD 

This can be seen clearly in Figure 8 (b) which also shows the highest peak of the signal at 

approximately -45db/Hz on the PSD.  

(a) 

(b) 
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Barrage Jammer 

The barrage jamming signal is produced using a gaussian noise source in GNURadio.  Figure 

9 shows the implementation in GNURadio. 

 

 

Figure 9 - The Generation of a Barrage Jamming Signal using GNURadio  

As opposed to the CW jamming signal, the barrage jammer occupies all the bandwidth. It is 

not a discrete choice of jammer but potentially more effective against GPS due to the spread 

spectrum nature of a GPS signal.  
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Figure 10 - Visual Representation of a Barrage Jamming Signal as a (a) Spectrogram and (b) 

PSD 

 

The difference can be seen clearly when comparing Figure 8 for the CW jammer to Figure 10 

for the barrage jamming. 

 

Narrowband Jammer 

The narrowband (NB) jammer is constructed in GNURadio by generating a QPSK signal which 

covers a bandwidth of 1.6MHz. Generation of the QPSK constellation was produced using the 

information in [330].  

 

(a) 

(b) 
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Figure 11 - Visual Representation of a NB Jamming Signal as a (a) Spectrogram and (b) PSD 

 

Figure 11 shows the signal represented in both Spectrogram and PSD form. It is observed that 

the signal peaking at approximately -45dB/Hz. 

 

Pulse Jammer 

The pulse jamming signal was created using a vector source with a low duty cycle of 2% in 

GNURadio [106]. The implementation of the jamming signal generation is seen in Figure 12 

below.  

 

(a) 

(b) 
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Figure 12 - The Generation of a Pulse Jamming Signal using GNURadio 

 

The sequences of pulses occupy the full bandwidth. Figure 13 shows the Spectrogram and PSD 

for the pulse jamming signal. 
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Figure 13 - Visual Representation of a Pulse Jamming Signal as a (a) Spectrogram and (b) 

PSD 

 

Protocol Aware Jammer 

The protocol aware jammer is constructed in GNURadio by generating a BPSK signal [331] to 

represent the structure of a GPS signal. Figure 14 shows the spectrogram and PSD 

representations of the protocol aware jamming signal. 

 

(a) 

(b) 
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Figure 14 - Visual Representation of a Protocol Aware Jamming Signal as a (a) Spectrogram 

and (b) PSD 

The GPS signal and the jamming signals were combined to achieve a JSR of 40dB.  

Additive Gaussian White Noise (AWGN) 

Lastly 𝑤(𝑡) modelled by AWGN to corrupt the signal and test classification accuracy for 

various levels of SNR is considered. AWGN was generated in Python 3 and added to the signal 

as shown in Figure 15. 

 

Figure 15 - AWGN Channel Process of the addition of noise to a signal 

 

(a) 

(b) 
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SNR is defined in (5) where 𝑃𝑟 is the power in the signal, 𝐵 the bandwidth and PSD of the 

noise 
𝑁0

2
 [332]. 

 
𝑆𝑁𝑅 =  

𝑃𝑟

𝑁0𝐵
 (5) 

 

To add the noise the power in our signal is first calculated. This is seen in (6) where 𝑁 is the 

length of signal 𝑠. 

 

𝑃 =  
1

𝑁
 ∑|𝑠𝑖|

2

𝑁−1

𝑖=0

 (6) 

 

𝑃 is then used with our desired SNR to calculate the noise spectral density 𝑁0 as seen in 

Equation (7). 

 
𝑁0 =  

𝑃

𝑆𝑁𝑅
 (7) 

Lastly the noise power is calculated which is required to generate Gaussian random noise in 

Equation (8). 

 
𝜎2 =

𝑁0

2
 (8) 

The calculations for generating AWGN and its implementation in python are referenced [333].  

 

3.1.3 DroneRF Dataset 

The open DroneRF dataset was produced by Al-S’ad et al. [204]. Table 4 shows the UAS 

classes assessed in the experiments from the DroneRF dataset used within this thesis. Three 

UAS types are included in the dataset – Parrot Bebop, Parrot AR (Elite 2.0) and the DJI 
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Phantom 3. Al-Sa’d et al. in [240] pick these UASs because they are commonly purchased 

for civilian applications.  

Table 4 - UAS Classes 

Class UAS Type Mode 

1 No UAS N/A 

2 Parrot Bebop Switched on and connected to controller 

3 Parrot Bebop Hovering automatically with no controller commands 

4 Parrot Bebop Flying without video 

5 Parrot Bebop Flying with video 

6 Parrot AR Switched on and connected to controller 

7 Parrot AR Hovering automatically with no controller commands 

8 Parrot AR Flying without video 

9 Parrot AR Flying with video 

10 DJI Phantom 3 Switched on and connected to controller 

 

The Bebop, AR and Phantom 3 are varied when it comes to price, size and overall capability. 

They increase with weight and size respectively and in terms of range the Phantom 3 can 

operate out to 1000m, while the Bebop and AR are restricted to 250 and 50m respectively. 

The Phantom 3 and the Bebop utilise the 5GHz and 2.4GHz Wi-Fi bands but during these 

experiments are limited to observing their activity in the 2.4Ghz band. The Bebop can be set 

to automatically select a Wi-Fi channel based on the countries legal requirements and channel 
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congestion or you can manually set the channel yourself [334]. Capturing the whole Wi-Fi 

spectrum ensures that the UAS will be captured even if the device switches channel during 

operation due to interference.  

 

In Table 4 we can see that for the Bebop and the AR various modes are captured, including 

switched on and connected to controller; hovering automatically with no input from the 

controller; flying with video transmission; and flying without video. The DJI Phantom 3 is 

recorded only in the first mode - switched on and connected to controller. Al-Sa’d et al. [240] 

is the first work to the author’s knowledge which considers different modes of operation 

when classifying UASs. This RF forensic analysis would be extremely useful in helping to 

determine intent. Organisations such as the police could use this information to make an 

assessment on risk. For example flying with the video on could indicate an intelligence 

collection operation due to the real time feedback of imagery. Intelligence capabilities on 

UASs have been directly linked to targeted killing [335].  

 

The DroneRF dataset was recorded using two USRP-2943 SDR.  The USRP-2943 is a higher 

end SDR costing around £6350 each [336]. They operate between 1.2GHz and 6GHz 

frequency range with the ability to capture 40MHz of instantaneous bandwidth. Al-Sa’d et al. 

utilise two USRP-2943 simultaneously in order to cover 80MHz of the Wi-Fi spectrum 

(excluding channel 1 and 14). Another SDR would be required to cover the entirety of the 

band. The dataset is recorded in segments to include the class no UAS present which is 

essentially background noise with no UAS and then segments recorded for different UAS in 

modes switched on and connected to the controller, hovering, flying with and without the 

video feed present. The captures are 10.25 seconds in length for the no UAS class and 5.25 
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seconds for the other classes which produces a dataset over 40GB in size. This is broken 

down into 227 segments where each part contains 1 million samples that equate to the time 

domain amplitude of the raw RF signal. More information on the dataset can be found in 

reference [337]. For the experiments in this thesis which use the DroneRF dataset 1000 

samples were taken from each class and split 80 % for training with cross validation and 20% 

kept entirely separate as a hold-out evaluation dataset. It should be noted that while the 

DroneRF dataset was a great starting point for understand if the methodology of transfer 

learning and CNN feature extraction was worth greater exploration, the dataset does have 

limitations. There are only 3 UAS evaluated, they are captured in a lab environment and the 

UAS types themselves were outdated at the time of the experimental work. Producing our 

own dataset allowed the expansion of the work by capturing up to date UAS, more UAS 

types and including real life interference in the frequency bands.  

 

3.1.4 DroneDetect Dataset [25] 

The DroneDetect dataset [338] was developed and made open source. This was our 

contribution for the benefit of the academic community.   
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Figure 16 – Picture of a Nuand BladeRF SDR 

The dataset was recorded using a SDR BladeRF shown in Fig.2 and a Palm Tree Vivaldi 

Antenna shown in Figure 16. The BladeRF is made by Nuand and is a popular choice as a 

low cost UAS due to its wide frequency range of 47MHz to 6GHz, its ability to transmit and 

receive at the same time and its low cost [339].  

 

Figure 17 – Picture of a Palm Tree Vivaldi Wideband Antenna 

 

In Figure 17 we see the low cost Palm Tree Vivaldi Antenna [340] [341]. The Vivaldi has a 

frequency range of 800MHz to 6GHz and is small, easily portable and costs only $18.99 

[342]. Considering future possibilities for UAS detection systems, the Vivaldi would be a 
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perfect addition to a HackRF connected to an Android phone for real time portable UAS 

detection and classification.  

 

Figure 18 – Picture of the Experimental Setup for dataset collection and testing 

As observed in Figure 18, the BladeRF and Vivaldi antenna were mounted on a piece of PVC 

piping approximately one meter high and connected to a laptop running GNURadio. A 

screenshot showing the GNURadio setup can be seen in Figure 19 below.  
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Figure 19 - GNURadio Configuration for the collection of the DroneDetect Dataset 

An Osmocom source block was used to receive the data from the BladeRF in raw I/Q 

complex form. We can observe in Figure 19 that signals were recorded at a sample rate of 

60Mbits/s over 28MHz bandwidth and with a centre frequency of 2.4375GHz. A head block 

was used to limit each recording to 1.2 x 10^8 complex samples, the equivalent of two 

seconds of recording time. Five recording were taken for each UAS flight mode and with no 

UAS present. From an ethical perspective recordings were completed in a rural setting away 

from any other frequency band users and this was confirmed by observing the activity in the 

spectrum prior to the recordings. Complex samples were recorded to file using a file sink 

block with the extension ‘.dat’. It is important to note that GNURadio saves complex data as 

interleaved floats and an example file is included with the dataset to allow the loading of the 

files into Python. For our machine learning experiments in our other papers we further split 

the files so that each sample is only 20ms in length and this provides a total of 500 samples 
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per class (100 per individual file). This process is included with the dataset for ease of use for 

other researchers. We also considered sample lengths of 40ms and 80ms.  

Flying was conducted within a radius of 40m of the antenna and at an altitude of 20m in 

height. For the ‘hovering’ samples the UAS was overhead at an altitude of 20m. Lastly for 

the ‘switched on’ samples the UAS was 4m from the antenna on the ground. For all of the 

samples the controller was approximately 4m from the antenna. This was done so that 

training samples were of good quality and it should be noted that reception at considerably 

greater distances is trivial.  

 

Interference Sources 

The end devices for Bluetooth and Wi-Fi interference were placed approximately 2m from 

the antenna and the connecting device directly next to the antenna. Table 5 shows the 

interference devices.  

 

Table 5 - Interference Type & End Device & Connecting Device & Source 

Interference Type              End Device Connecting Device Source 

Bluetooth JBL Charge 

Speaker 

Android Phone Music 

Wi-Fi MacBook Air iPhone Personal Hotspot YouTube Video 

 

 

 



90 

 

© Crown Copyright 2022 

Data Structure 

UASs were recorded with the following structure seen in Figure 20 and Table 6 shows the 

identification codes for the UAS and flight modes.  

 

 

Figure 20 - File Configuration for the Drone Detect Dataset 

 

Interference identifiers were 00 for a clean signal, 01 for Bluetooth only, 10 for Wi-Fi only 

and 11 for both Bluetooth and Wi-Fi interference presence. Table 3 expands on each 

description. 

Table 6 - UAS Recording Description 

UAS               UAS ID Flight Mode Flight Mode ID 

No UAS NO No UAS 00 

Air 2 S AIR Switched On 00 

Air 2 S AIR Hovering 01 

Air 2 S AIR Flying 00 

Parrot Disco DIS Switched On 00 

Parrot Disco DIS Flying 00 

Inspire 2  INS Switched On 00 
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Inspire 2 INS Hovering 01 

Inspire 2 INS Flying 00 

Mavic Pro  MP1 Switched On 00 

Mavic Pro MP1 Hovering 01 

Mavic Pro MP1 Flying 00 

Mavic Pro 2 MP2 Switched On 00 

Mavic Pro 2 MP2 Hovering 01 

Mavic Pro 2 MP2 Flying 00 

Mavic Mini  MIN Switched On 00 

Mavic Mini MIN Hovering 01 

Mavic Mini MIN Flying 00 

Phantom 4  PHA Switched On 00 

Phantom 4 PHA Hovering 01 

Phantom 4 PHA Flying 00 

 

An example code for the first sample of the Inspire hovering in the presence of Bluetooth 

interference would be: 

𝐼𝑁𝑆 +  01 +  01 + 01 = INS_0101_01.dat 
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The SDR is collecting everything that is happening in the frequency range of collection, 

whatever datalinks are present it will pick up. Table 7 lists the UASs we are looking at 

against their respective transmission systems. 

 

Table 7 - UAS Transmission Systems 

UAS Type Transmission System 

Air 2 S OcuSync 3.0 

Parrot Disco Wi-Fi 

Inspire 2 Lightbridge 2.0 

Mavic Pro OcuSync 1.0 

Mavic Pro 2 OcuSync 2.0 

Mavic Mini Wi-Fi 

Phantom 4 Lightbridge 2.0 

 

The DJI range of UASs use three types of transmission system: Wi-Fi, Lightbridge and 

OcuSync. The Mavic Mini uses Wi-Fi and operates in the 5.8 GHz range (5.725-5.850 GHz}) 

and in the 2.4GHz range (2.4-2.4835GHz), with an effective isotropic radiated power (EIRP) 

or transmission power of 19dBm at 2.4~GHz [343]. The Lightbridge 2 has a maximum 

(interference free) transmission distance of 5km, the EIRP of the antenna is 100mW at 

2.4GHz, and it can operate in the 5.8GHz range (5.725-5.825GHz) and the 2.4GHz range 

(2.4-2.483GHz) [344]. The OcuSync scans the band for any interference and decides which 

transmission channel is best. It then automatically switches between channels during the 

flight. OcuSync 1.0 and 2.0 have a range of 7km; they differ due to Ocusync 2.0 being able to 

utilise 2.4 and 5.8GHz frequency diversity. OcuSync 1.0 has an EIRP of 26dBm [345] and 
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OcuSync 2.0 an EIRP of 25.5 dBm. The OcuSync 3.0 range is increased again to 12km [346] 

and EIRP 26dBm [347]. The Parrot Disco uses the SkyController 2, which is a Wi-Fi-based 

protocol with a range of 2 km using MIMO antennas in the 2.4 and 5.0Ghz frequency bands 

[348].  

 

OcuSync and Lightbridge are similar in the sense that they use Orthogonal frequency-

division multiplexing (OFDM) to transmit the video (downlink). Unless manually changed, 

this channel is chosen when the platform switches on and it will stay on that channel for the 

flight unless interference is detected. The control link  (uplink) on both Ocusync and 

Lightbridge uses Frequency-hopping spread spectrum (FHSS) which works by changing the 

carrier frequency very quickly over a large portion of the spectrum. The difference in the 

Ocusync and the Lightbridge really lies in how they were developed, the Lightbridge is more 

hardware based using an FPGA. The Ocusync moved towards a software defined radio 

approach, making changes to the datalink much easier as it can be implemented on the 

existing hardware via a software upgrade. For the Lightbridge to be updated it would need a 

hardware change [349].  

 

3.2 Graphical Signal Representations [25] 

3.2.1 Spectrogram 

While the PSD looks at the distribution of signal strength in the frequency domain, a 

spectrogram looks at how the frequencies are changing with time. Spectrograms are used 

extensively in fields such as speech processing due to their ability to visualise bursts of 

activities at different frequencies over time.  
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The spectrogram shows the intensity of the STFT magnitude over time. It is a sequence of 

FFTs of windowed data segments which lets us visualise how the frequency content of the 

signal is changing over time. In Equation (9) we define the STFT [350].  

 

 𝑋(𝑤, 𝑚) = 𝑆𝑇𝐹𝑇(𝑥(𝑛)) 

                                       ≔ 𝐷𝑇𝐹𝑇 (𝑥(𝑛 − 𝑚)𝜔(𝑛)) 

                                                ≔  ∑ 𝑥(𝑛 − 𝑚)𝜔(𝑛)𝑒−(𝑖𝜔𝑛)

∞

𝑛=−∞

 

                                             ≔  ∑ 𝑥(𝑛 − 𝑚)𝜔(𝑛)𝑒−(𝑖𝜔𝑛)

𝑅−1

𝑛=0

 

(9) 

 

Equation (9) describes a visual representation of the STFT magnitude |𝑋(𝜔, 𝑚)|, the 

spectrogram. In (4) 𝑥(𝑛) represents the signal, 𝜔(𝑛) the windowing function with a length of 

R and the windowing function determines the block length. As with the PSD, Matplotlib is 

used to plot the spectrogram with a Hanning windowing function and FFT length 1024. There 

is a correlation between the chosen FFT size and the frequency resolution of each spectral 

line, hence larger FFT sizes require a longer time to compute. During the beginning stages of 

the PhD FFT size was experimented with for varying signal types such as Wi-Fi and 

Bluetooth. A FFT size of 1024 was found to produce a frequency resolution which was 

sufficient for classification with a low computational time. This informed the choice for these 

experiments but FFT size is something which could be experimented with in future work to 

understand the subsequent effect on classification results. 
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UAS Signals 

Figure 21 shows sample spectrograms produced using Matplotlib in python 3. On the left the 

class no UAS can be seen. This represents the baseline, the background activities captured in 

the spectrum when the collection took place. This should be minimal as the dataset was 

collected in an extremely rural and isolated environment with no nearby residential areas or 

activity in the spectrum.  

 

Figure 21 – Spectrogram Graphical Signal Representation for the classes (a) No UAS, (b) 

Parrot Disco Switched on and connected to the controller and (c) Parrot Disco flying 

The middle of Figure 21 shows the Parrot Disco switched on (b) and on the right hand side 

shows the spectrogram of the Parrot Disco flying (c). On both graphs we can see a signal in 

the bottom half of the frequency range which in the time domain shows itself as yellow bursts 

of activity. The Disco operates using the Wi-Fi protocol which is effectively what is being 

displayed here. On the right hand side of Figure 21 there is slightly more noise apparent from 

the centre frequency downwards but the burst communication can still be seen across the time 

frame. The Parrot Disco is a fixed wing platform which is why the captures only include the 

classes switched on and flying. Fixed Wing platforms cannot physically hover over one 

location like a quadcopter.  
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Figure 22 - Spectrogram Graphical Signal Representation for the classes (a) Air 2 S Switched 

on and connected to the controller, (b) Air 2 S Hovering and (c) Air 2 S flying 

Figure 22 shows the spectrogram for the Air 2 S which uses the newest OcuSync 3.0 datalink 

for the control transmission link. The concentration of activity when the platform is switched 

on but not yet taken off (a) occurs in the top half of the frequency spectrum. When hovering 

(b) and flying (c) the activity is seen to spread further across the full range of spectrum shown 

with small concentrated bursts in the centre and lesser power lines extending up and down the 

frequency range. If we compare Figure 22 for the Air 2 S (a) (c) to Figure 21 with the Disco 

signal (b) (c), we are really comparing the Wi-Fi protocol to the Ocusync 3.0. Visually 

inspecting the signals, the Ocusync 3.0 presents like a Bluetooth burst protocol.  
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Figure 23 - Spectrogram Graphical Signal Representation for the classes (a) Inspire 2 

Switched on and connected to the controller, (b) Inspire 2 Hovering and (c) Inspire 2 flying 

Figure 23 show the Inspire 2 from left to right, switched on (a), hovering (b) and flying (c). In 

the left hand side spectrogram (a) a larger band of activity is visible and all the activity is 

happening within the lower end of the spectrum. Hovering (b) and flying (c) display more of 

a Bluetooth burst protocol type signal. The Inspire 2 uses the Lightbridge protocol for 

transmission.  

 

 

Figure 24 - Spectrogram Graphical Signal Representation for the classes (a) Mavic Pro 

Switched on and connected to the controller, (b) Mavic Pro Hovering and (c) Mavic Pro 

flying 

The Mavic Pro uses the first edition of the Ocusync 1.0 which is more software based than 

the original Lightbridge protocol suite. If we compare Figure 24 Mavic Pro (a) (b) (c) to 

Figure 23 for the Inspire (a) (b) (c), which correspond to the Ocusync 1.0 and Lightbridge 2.0 
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respectively. The Ocusync 1.0 uses smaller and more frequent bursts of communication 

around the frequency range.  

 

Figure 25 - Spectrogram Graphical Signal Representation for the classes (a) Mavic Pro 2 

Switched on and connected to the controller, (b) Mavic Pro 2 Hovering and (c) Mavic Pro 2 

flying  

The Mavic Pro 2 uses the Ocusync 2.0 transmission protocol and the spectrogram graphical 

signal representation can be seen in Figure 25. Again the protocol displays as small bursts of 

activity in yellow which are more concentrated in the bottom half of the spectrum for 

hovering (b) and flying (c). A larger band is present when the platform is simply switched on 

but not started flying (a).  

 



99 

 

© Crown Copyright 2022 

 

Figure 26 - Spectrogram Graphical Signal Representation for the classes (a) Mavic Mini 

Switched on and connected to the controller, (b) Mavic Pro Hovering and (c) Mavic Mini 

flying 

Like the Parrot Disco, the Mavic Mini also uses a form of the Wi-Fi protocol to 

communicate. Figure 26 shows that there isn’t much difference in terms of the signal between 

switched on (a), hovering (b) and flying (c). This is interesting to note for when the 

experiments are run to see if the features extracted from the CNN can distinguish between the 

flight mode of the UAS when visually we cannot.  

 

 

Figure 27 - Spectrogram Graphical Signal Representation for the classes (a) Phantom 4 

Switched on and connected to the controller, (b) Phantom 4 Hovering and (c) Phantom 4 

flying 

Lastly the Phantom 4 spectrograms for switched on but not yet taken off (a), hovering (b) and 

flying (c) can be seen in Figure 27. As with the Ocusync 2.0, 1.0 and Lightbridge 2.0, a larger 
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yellow band of activity can be seen when the platform is switched on but not yet taken off 

(a). The Phantom 4 also uses the Lightbridge 2.0 transmission system. For hovering (b) and 

flying (c) the signal then presents itself in smaller bursts of yellow activity spreading further 

into the range of the frequencies on show.  

 

Overall the Ocusync and Lightbridge protocols look more like Bluetooth signals on the 

spectrograms than Wi-Fi signals. When the spectrograms are fed to the CNN they are striped 

of the writing, range values and labels.  

 

GPS Jamming Signals 

Spectrograms were produced in python3 with the PyPlot library from Matplotlib. Figure 28 

shows a spectrogram plot of the class ‘no jamming signal present’. Effectively the 

spectrogram is showing a baseline plot of background AWGN described in more detail in 

section 3.1.2.  
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Figure 28 - Spectrogram for the class of No Jamming Present 

Figure 29 shows the spectrogram plot for a narrowband jamming signal. From visually 

inspecting the graph a large yellow band can be seen around the centre frequency. This 

yellow band represents the increased power of the jamming signal compared to the green of 

the background. There is a clear separation between the signal and the background AWGN 

when Figure 28 and Figure 29 are compared.  
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Figure 29 - Spectrogram for the class of Narrowband Jamming Signal 

Figure 30 shows the spectrogram graphical signal representation of the chirp signal. It can be 

seen compared to Figure 29 that the signal has a higher concentration in the centre of the 

frequency band. If Figure 30 is visually inspected closely it can be seen that the yellow band 

is actually made up of smaller distinct bands.  
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Figure 30 - Spectrogram for the class of Chirp Jamming Signal 

 

Figure 31 shows the spectrogram plot for the FM jamming signal. It can be seen from 

observing the graph that separated jamming signals appear at discrete frequencies. The 

signals are periodic in nature occurring primarily upwards of the centre frequency. 

Comparing the FM signal pattern in Figure 31 to the chirp jammer in Figure 30 we observe a 

discrete jamming signal compared to the noise generated across the band from the chirp 

jammer.  
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Figure 31 - Spectrogram for the class of FM Jamming Signal 

Figure 32 displays the spectrogram graphical signal representation of the AM jammer. The 

AM jammer consists of a narrow line of noise at one frequency whereby the amplitude of that 

signal is modulated. The modulation of amplitude is apparent at the start time capture on the 

spectrogram whereby a glow can be observed around the signal.  

 
𝑠𝑖𝑛𝛳𝑠𝑖𝑛𝜙 =  

cos(𝛳 − 𝜙) − cos (𝛳 + 𝜙)

2
 (10) 

To explain Equation (10) can be consulted which shows the product of two sinusoids which 

represents the carrier signal and the envelope yielding signal at their sum and difference 

frequencies. If Figure 32 is then compared to the FM signal in Figure 31, it can be observed 

that the signals do not include any glowing due to the amplitude staying constant in the FM 

signals.  



105 

 

© Crown Copyright 2022 

 

Figure 32 - Spectrogram for the class of AM Jamming Signal 

Figure 33 shows the spectrogram for the DME pulse jammer. The pulse is clearly observed at 

the start of the time period in this capture by the yellow line which fades into green. This is in 

contrast to the constant jamming signals seen in the FM jammer in Figure 31 and the glow 

which appears on the constant signal of the AM jammer in Figure 32.  
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Figure 33 - Spectrogram for the class of DME Jamming Signal 
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3.2.2 Power Spectral Density (PSD) 

PSD calculates the strength of a signal and the distribution of that strength in the frequency 

domain. This is done using Welch’s method, an approach developed by Peter Welch that uses 

periodogram spectrum estimates and converts the signal from the time to the frequency 

domain. The Welch method is known for its ability to provide improved estimates when SNR 

is low but there is a trade-off between the reduction in variables to achieve this and the 

resolution of the PSD [351]. First the signal in the time domain is partitioned into blocks as 

shown in Equation (11) [352]. The signal 𝑥 is broken into m windowed frames and Equation 

(11) shows the 𝑚-𝑡ℎ windowed frame from signal 𝑥 where 𝑅 is the hop size (the number of 

samples between each successive FFT window) and 𝐾 is the number of frames [352].  

 𝑥𝑚(𝑛)  ≜ 𝑤(𝑛)𝑥(𝑛 + 𝑚𝑅) 

= 0,1, … , 𝑀 − 1, 𝑚 = 0,1, … . , 𝐾 − 1 

(11) 

Next the periodogram of the m th block is calculated as show in Equation (12) [352]. 

 

𝑃𝑥𝑚 , 𝑀(𝑤𝑘) ≜  
1

𝑀
| ∑ 𝑥𝑚(𝑛)𝑒

−2𝑗𝜋𝑛𝑘
𝑁 |²

𝑁−1

𝑛=0

 (12) 

Lastly in Equation (13) we calculate the Welch estimate which is an average of all the 

periodograms [352].  

 

𝑆𝑥
𝑊(𝑤𝑘) ≜

1

𝐾
∑ 𝑃𝑥𝑚1, 𝑀(𝑤𝑘)

𝐾−1

𝑚=0

 (13) 

The implementation of PSD in this thesis uses Python 3 Matplotlib which utilises the Welch 

method. 1024 data points are used in each segment for the FFT and a windowing overlap of 

120 points between segments using a Hanning windowing function. Figure 34 shows the PSD 

for the class No UAS on the left hand side, with the Parrot Disco in the middle switched on 

and the Disco flying on the right hand side. For our implementation when the PSD images are 
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created they are bounded to -115 to -55dB/Hz on the y axis using the ylim() function. We 

perform this restriction because the default setting on matplotlib automatically chooses the 

range of the y-axis depending on the data it has to plot. Therefore if we didn’t not limit the 

range it could potentially vary between training classes. However, defining a range with the 

ylim() function allows a consistent range between classes for when the images are fed to the 

CNN for feature extraction.   
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UAS Signals 

First the thesis will consider the PSD graphical signal representations produced for the UAS 

signals in the DroneDetect dataset.  

 

Figure 34 – PSD Graphical Signal Representation No UAS (a), Parrot Disco switched on and 

connected to the controller (b) and Parrot Disco Flying (c) 

It can be seen in Figure 34 on the left hand graph (a) that the noise floor sits around -75dB 

with very minor background activities being displayed as small periodic peaks. When the 

disco is switched on (b) in the middle a spike can be seen in the lower third of the spectrum 

with a significant drop in the higher frequencies. When the disco is in flight (c) the power 

levels out for the first half of the frequency range and then drops off in the higher third of the 

spectrum covered. The disco uses the Wi-Fi protocol and is fixed wing so only the switched 

on and flying flight modes can be considered.  

(a) (b) (c) 
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Figure 35 - PSD Graphical Signal Representation Air 2 S switched on and connected to the 

controller (a), Air 2 S hovering (b) and Air 2 S flying (c) 

Figure 35 (a) (c) shows the Air 2 S which uses the Ocusync 3.0 datalink. Compared with 

Figure 34 (b) (c) there is a difference in both hovering (b) and flying (c) flight mode PSD 

representations which are easily distinguishable with the human eye. We can also see that the 

power peaks are around 10dB higher for the Ocusync 3.0 compared with Wi-Fi. Within 

Figure 35 for the platform switched on (a) there are peaks at 2.428GHz and 2.441GHz. For 

hovering (b) three peaks occur around the centre frequency and at a high power level. For the 

flying (c) class there are three main peaks again but they are spread out slightly further and 

occur in the lower half of the frequency range, rather than around the centre frequency.  

 

Figure 36 - PSD Graphical Signal Representation Inspire 2 switched on and connected to the 

controller (a), Inspire 2 hovering (b) and Inspire 2 flying (c) 

Figure 36 shows the PSD for the Inspire 2 which uses the Lightbridge 2.0 transmission 

protocol. The PSD for the class switched on (a) is shown on the left and visually looks similar 

to the Wi-Fi protocol, with the signal dropping off significantly in the higher end of the 

(a) (b) (c) 

(a) (b) (c) 
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spectrum. The PSD for hovering (b) and flying (c) are similar in terms of where the peaks 

occur to the Ocusync 3 in Figure 35. For hovering (b) the peaks occur again around the centre 

frequency (the middle peaks around -5db/Hz higher than the flying peaks). For the flying (c) 

class the peaks occur from the centre frequency down to the lower end of the spectrum.  

 

 

Figure 37 - PSD Graphical Signal Representation Mavic Pro switched on and connected to 

the controller (a), Mavic Pro hovering (b) and Mavic Pro flying (c)  

Figure 37 shows the Mavic Pro which utilises the OcuSync 1.0 transmission link. Comparing 

Figure 37 with Figure 36 it can be seen that for the class switched on (a) the pattern is similar 

but the power is stable at around -70db/Hz for the Mavic Pro. Again for hovering (b) we see 

the majority of the peaks to occur around that centre frequency and with a higher level of 

power. Then for the flying (c) those peaks occur again the lower half of the frequency range 

at a lower power level.  

(a) (b) (c) 



112 

 

© Crown Copyright 2022 

 

Figure 38 - PSD Graphical Signal Representation Mavic Pro 2 switched on and connected to 

the controller (a), Mavic Pro 2 hovering (b) and Mavic Pro 2 flying (c) 

Figure 38 shows the Mavic Pro 2 which uses the Ocusync 2.0. The switched on (a) class 

visually has a similar pattern to both the Ocusync 1.0 in Figure 37 and the Lightbridge 2.0 in 

Figure 36. However for the hovering (b) and flying (c) we see a change in the pattern, the 

power is lower for the hovering peaks compared to the flying peaks. Also the peaks for 

hovering (b) occur in the lower end of the frequency spectrum along with the flying (c) 

peaks.  

 

Figure 39 - PSD Graphical Signal Representation Mavic Mini switched on and connected to 

the controller (a), Mavic Mini hovering (b) and Mavic Mini flying (c) 

Figure 39 is the PSD for the Mavic Mini which, like the Parrot Disco in Figure 34 (b) (c), 

uses the Wi-Fi protocol for communication. A peak can be seen at the same point in each 

PSD for switched on (a), hovering (b) and flying (c). This peak occurs at 2.434GHz. This 

could be the video transmission downlink or another constant within the overall signal. 

Overall the pattern of the signal for hovering (b) and flying (c) are very similar visually.  

(a) (b) (c) 

(a) (b) (c) 
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Figure 40 - PSD Graphical Signal Representation Phantom 4 switched on and connected to 

the controller (a), Phantom 4 hovering (b) and Phantom 4 flying (c) 

Lastly in Figure 40 the PSD for the Phantom 4 can be seen. The Phantom 4 uses the 

Lightbridge 2.0 for transmission, the same transmission system used by the Inspire in Figure 

36. The PSD in Figure 40 for switched on (a) is of a similar pattern to Figure 36 but with a 

large drop in power around 2.424GHz and with an overall drop in power compared to the 

Inspire. The class hovering (b) in Figure 40 has three peaks which are fairly spread out with 

one occurring above the centre frequency and the other two below it. The flying class (c) 

PSD has more peaks and there is more power in the lower end of the spectrum. Although the 

Phantom and Inspire are operating using the same datalink, there are visual differences 

between the corresponding PSD images in Figure 36 and Figure 40.  

 

  

(a) (b) (c) 
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GPS Jamming Signals 

Figure 41 shows the PSD graphical signal representation of the no jamming class in the GPS 

Jamming Dataset described in section 3.1.1. Effectively the PSD graph is showing a baseline 

plot of background AWGN described in more detail in section 3.1.2.  

 

 

Figure 41 - PSD Graphical Signal Represenation for the class No Jammer Present 

Figure 42 shows the PSD of the narrowband jamming signal. Compared with Figure 41 it can 

be seen that the power across the whole spectrum is increased by a minimum amount of 5-

10dB/Hz and then there is a concentrated increase around the centre frequency of around 20-

30dB/Hz. The jamming signal is clearly visible when comparing the narrowband signal in 

Figure 42 with the no jamming signal present class in Figure 41. 
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Figure 42 - PSD Graphical Signal Represenation for the class Narrowband Jammer 

While with the narrowband jamming signal in Figure 42 an increase in power can be seen 

across the whole frequency band, the chirp jammer only emits the signal 20MHz around the 

centre frequency, as seen in Figure 43. The rest of the spectrum is comparable with the no 

jamming signal in Figure 41. This makes the chirp signal a different pattern visibly to that of 

the narrowband jammer in Figure 42. 
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Figure 43 - PSD Graphical Signal Represenation for the class Chirp Jammer 

Figure 44 shows the PSD for the AM jamming signals and the spike in power can be seen 

around 7MHz above the centre frequency. The dB/Hz value will likely chance for this signal 

depending on when the capture is taken but the frequency will remain the same. 
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Figure 44 - PSD Graphical Signal Represenation for the class AM Jammer 

Figure 45 shows the PSD for the FM jamming signal. As with the AM signal in Figure 44 

where one spike of activity was observed, the FM signal displays multiple spikes at various 

different frequencies. The peaks are highest around the centre frequency and then decrease in 

power as they move away from the centre frequency. This forms a distinct patter again 

compared to the no jamming signal class in Figure 41. 
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Figure 45 - PSD Graphical Signal Represenation for the class FM Jammer 

Lastly the PSD for the DME pulse jamming signal is observed in Figure 46. On the PSD the 

DME pulse looks similar to the AM signal in Figure 44. However, if the signals are observed 

closely it can be seen that the AM signal is a straight line which fans out at the bottom while 

the DME is more triangular in shape. This is a pattern makes the two signals distinguishable 

on the PSD representation.  
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Figure 46 - PSD Graphical Signal Represenation for the class DME Pulse Jammer 

Overall the both the Spectrogram and PSD graphical signal representations show distinct 

visual differences that an experienced human operator could likely easily identify. However, 

that operator may have to manually scroll through a significant amount of spectrum plots 

which contain no jamming activity. This is time consuming and errors can be made, events 

can be missed, especially when operators are tired. Machine learning presents an opportunity 

to direct a human operator to a place of interest, increasing efficiency and providing an 

indication of the class of the signal in a much quicker time frame.  
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3.2.3 Histogram and Raw IQ Plot 

Next the histogram and the raw IQ plots were also considered. The raw data captured from an 

SDR is IQ data. I stands for In phase and Q for Quadrature, the I representing the real 

component of the signal and Q the imaginary, a complex number. A very basic SDR receiver 

connected to an antenna is shown in Figure 47 [353].  

 

Figure 47 – The components which would form part of a basic SDR Receiver 

In Figure 47 𝜔 can be equated to 2𝜋𝑓 where 𝑓 is the frequency from the local oscillator. With 

respect to time, I and Q components have the same phase relationship as 𝑠𝑖𝑛𝑥 being 90 

degrees different from 𝑐𝑜𝑠𝑥. Utilising I and Q components allows signals of different 

frequencies above and below the local oscillation frequency to be separated. There are other 

advantages as these vectors provide more information for a Fast Fourier Transform (FFT) 

than a single scaler. Further, it will produce the same result with half the sampling rate so a 

wider bandwidth can be achieved [353]. I and Q components can be plotted with Matplotlib 

to show various different graphical signal representations presented in section 3.2.  
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Figure 48 to Figure 53 show the 6 classes of GPS jamming signals graphically represented as 

both raw constellation scatter plots and histograms. Note that as with the PSD the x and y 

axis’s are both limited to provide consistency between the classes. On the raw constellation 

scatter plot the y axis is limited from -8000 to 8000 using the Matplotlib ylim() function and 

the x axis is limited from -7500 to 30000 using Matplotlib xlim() function. For the histogram 

the y axis is limited from 0 to 1200 using the Matplotlib ylim() function and the x axis is 

limited from -8000 to 10000 using Matplotlib xlim() function. 

 

Figure 48 - Raw IQ Plot (a) & Histogram (b) for the class No Jamming Present 

Figure 48 shows the raw IQ plot which is a scatter diagram (a) and the histogram plot (b), 

both plotted using Matplotlib. The no jamming signal class is a representation of any 

background noise, in the case of the GPS Jamming dataset described in section 3.1.1 this is 

the AWGN produced with a uniform distribution whereby C/N0 is between 25-50dBHz and 

JSR between 40-80dB. In Figure 48 a small cluster of red is observed in the lower left 

quadrant of the raw IQ scatter plot (a) and on the histogram (b) a small peak at the centre of 

the distribution.  

(a)                                                                    (b) 
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Figure 49 - Raw IQ Plot (a) & Histogram (b) for the class AM Jamming Signal 

Figure 49 shows the raw IQ plot (a) and histogram (b) for the AM jamming signal. It can be 

observed compared to Figure 48 and the no jamming class, that the AM signal fills a greater 

proportion of both of the plots. The pattern is very distinctive in the raw IQ (a) presenting 

itself almost as an ovate bullseye and the histogram (b) showing peaks at each end of the real 

component distribution. Visually there is a clear difference between Figure 48 for no 

jamming signal present and Figure 49 for the presence of an AM jamming signal. 

 

Figure 50 - Raw IQ Plot (a) & Histogram (b) for the class Chirp Jamming Signal 

Figure 50 shows the raw IQ plot (a) and histogram (b) for the Chirp jamming signal. 

Compared with the AM signal in Figure 49 and no jamming signal in Figure 48, the chirp 

     (a)                                                             (b) 

(a)                                                                (b) 
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jammer presents itself as a larger concentration again of red in the raw IQ plot (a) and as a 

wider and more evenly spread distribution on the histogram (b).  

 

Figure 51 - Raw IQ Plot (a) & Histogram (b) for the class DME Jamming Signal 

Figure 51 shows the raw IQ plot (a) and histogram (b) for the DME or pulse jamming signal. 

The pulse is clearly observed as a red concentration in the form of a line with a circular head 

in the raw IQ plot (a). On the histogram (b) it presents itself as a vertical distribution which 

extends upwards to the top of the y axis range. Comparing the patterns to the classes seen so 

far; no jammer in Figure 48, the AM jammer in Figure 49 and the chirp jammer in Figure 50, 

there is again a clear visible difference in the pattern of each different jamming signal type.  

(a)                                                                 (b) 
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Figure 52 - Raw IQ Plot (a) & Histogram (b) for the class FM Jamming Signal 

Figure 52 shows the raw IQ plot (a) and histogram (b) for the FM jamming signal. The FM 

signal comprises of several jamming signals at different frequencies being sent out at once. 

On the raw IQ (a) this presents itself as a circular pattern which is mostly filled in compared 

to the hollow bullseye pattern that the AM signal produced in Figure 49. On the histogram (b) 

3 peaks can be observed on the distribution which correlates to the jamming signals on 

different frequencies which make up the FM signal.  

 

 

Figure 53 - Raw IQ Plot (a) & Histogram (b) for the class Narrowband Jamming Signal 

Figure 52 shows the raw IQ plot (a) and histogram (b) for the Narrowband jamming signal. 

While the raw IQ plot (a) looks similar in its horizontal spread to the DME pulse jammer in 

(a)                                                    (b)                 

(a)                                                               (b) 
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Figure 51, the histogram (b) looks significantly different, displaying a wide spread across the 

whole distribution in contrast to the vertical peak of the DME jammer. Comparing the 

narrowband jammer in Figure 52 to the no jamming class in Figure 48, it is visually clear that 

a jamming signal is present. When all the graphical signal representations for raw IQ (a) and 

histogram (b) are compared for all the classes from Figure 48 through to Figure 53, they are 

all visually different to the eye.  
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3.2.4 Concatenation 

The block process for taking the raw data, producing the graphs and then concatenating them 

into one image is shown as a block diagram in in Figure 54. 

 

Figure 54 - Block diagram of concatenation process from raw data to an image ready for the 

CNN feature extraction 

As described in sections 3.2.1 to 0, Python3 library Matplotlib was used to generate 

spectrogram, PSD, histogram, and constellation colour plots. Two functions were defined in 

python for vertical and horizontal concatenation. Essentially the images are stitched together 

to form a larger image and then the new image can be resized to 224x244 pixels which is the 

size required for the CNN. The following concatenated images are produced from the 

DroneRF dataset detailed in section 3.1.3. The frequency range covered is from 2.402GHz – 

2.482GHz (Ch 1 – Ch 13 Wi-Fi bands with the exception of the first and last 1 MHz). In the 

figures below 0Hz represents the centre of the captured spectrum 2.442GHz.  
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Figure 55 - DroneRF dataset in graphical signal representations (a) Histogram, (b) PSD, (c) 

Raw Constellation, (d) Spectrogram for class No UAS Present 

Figure 55 shows the different signal representations when there is no UAS present. What we 

are looking at here is the background noise or other signals present in the frequency band at 

the time of signal capture. Figure 56 shows the Bebop in mode 1 – switched on and 

connected to the controller. It is clear on the PSD (b) that there is some activity in the higher 

end of the spectrum (2.44-2.48GHz). As there is no video transmission in this mode, it is 

likely that this is the command and control signal between the UAS and controller. 
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Figure 56 - DroneRF dataset in graphical signal representations (a) Histogram, (b) PSD, (c) 

Raw Constellation, (d) Spectrogram for class Bebop Mode 1 - switched on 

 

In Figure 57 the Bebop is hovering in automatic mode. What we can see is that there is an 

even spread of activity across the entire band. In particular if we compare the PSD (b) to the 

no UAS class.  If we compare the spectrogram in Figure 57 where the platform is hovering in 

an automatic mode (with no active communication with the controller) to Error! Reference 

source not found. (no UAS present), we see a decrease in power in the higher end of the 

spectrum, again indicating this to be a command and control signal.  
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Figure 57 – DroneRF dataset in graphical signal representations (a) Histogram, (b) PSD, (c) 

Raw Constellation, (d) Spectrogram for class Bebop Mode 2 - hovering 
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Figure 58 - DroneRF dataset in graphical signal representations (a) Histogram, (b) PSD, (c) 

Raw Constellation, (d) Spectrogram for class Bebop Mode 3 - flying without video 

Figure 58 shows the Bebop flying without video and Figure 59 with video. The histogram (a) 

indicates an increase in activity with the video transmitting.  
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Figure 59 - DroneRF dataset in graphical signal representations (a) Histogram, (b) PSD, (c) 

Raw Constellation, (d) Spectrogram for class Bebop Mode 4 - flying with video 
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Figure 60 - DroneRF dataset in graphical signal representations (a) Histogram, (b) PSD, (c) 

Raw Constellation, (d) Spectrogram for class AR Mode 1 - switched on 

Figure 60 shows the AR switched on and connected to the controller. The spectrogram (d) 

and PSD (b) show two clear bands of activity in the spectrum, one above and one below the 

centre frequency. Figure 61 shows the spectrum when the AR is hovering. If we compare this 

to Figure 57 where the Bebop is also hovering we can see a similar constant spread of activity 

across the entire spectrum but with a drop at the centre frequency.  
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Figure 61 - DroneRF dataset in graphical signal representations (a) Histogram, (b) PSD, (c) 

Raw Constellation, (d) Spectrogram for class AR Mode 2 - hovering 

Figure 62 and Figure 63 show the AR flying without and with video respectively. We can see 

in Figure 63 on the PSD (b) that the higher end of the spectrum increases in power by around 

3dB when the video is present. We can also see a clear rise in the histogram (a) representation 

when the video feed is turned on.  
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Figure 62 - DroneRF dataset in graphical signal representations (a) Histogram, (b) PSD, (c) 

Raw Constellation, (d) Spectrogram for class AR Mode 3 - flying without video 
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Figure 63 - DroneRF dataset in graphical signal representations (a) Histogram, (b) PSD, (c) 

Raw Constellation, (d) Spectrogram for class AR Mode 4 – Flying with video 

Figure 64 shows the DJI Phantom turned on and connected to the controller. Comparing this 

to the Bebop in Figure 56 and the AR in Figure 60 we can observe that the Phantom has a 

more even spread of power across the entire spectrum.  
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Figure 64 - DroneRF dataset in graphical signal representations (a) Histogram, (b) PSD, (c) 

Raw Constellation, (d) Spectrogram for class Phantom Mode 3 - switched on 

In all of the figures it is hard to see any real pattern in the raw data changes, this may be due 

to the fact that we looking at so much of the frequency range at once. We need to consider the 

whole frequency range as we can’t be sure if a UAS will hop to a random Wi-Fi channel due 

to interference during operation.  

 

Figure 65 shows the concatenated images as they are given to the CNN for feature extraction. 

Figure 65 shows an example of a concatenated image for each of the 6 classes of GPS 

Jammer types, marked (a) through to (f).  
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Figure 65 - Concatenated Dataset; (a) no jamming; (b) DME; (c) narrowband; (d) AM; (e) 

Chirp; (f) FM. 

Figure 65 (a) shows the input to the CNN for the class no jamming signal present. Figure 65 

(b) shows the input to the CNN for the class DME jammer. The graphs were created with no 

axis or label information, just the graph itself and then the 4 representations – spectrogram, 

histogram, PSD and raw constellation were stitched together using the functions we created 

for concatenation.  
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3.3 Wireless Interference 

3.3.1 UAS Signals 

For the UAS, signals were collected in the presence of Bluetooth and Wi-Fi signals to 

represent an environment whereby other signals were present in the same frequency band. 

The process by which this was achieved is described in section 3.1.4. Below the graphical 

signal representations will be considered for the spectrogram and the PSD.  

 

Figure 66 - Spectrogram Graphical Signal Representation for the classes (a) No UAS, (b) 

Parrot Disco Switched on and connected to the controller and (c) Parrot Disco flying with 

Interference  

 

Figure 67 - Spectrogram Graphical Signal Representation for the classes (a) No UAS, (b) 

Parrot Disco Switched on and connected to the controller and (c) Parrot Disco flying no 

Interference  
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Figure 66 shows the spectrogram graphical signal representation for the classes no UAS (a), 

parrot disco switched on but not yet taken off (b) and disco flying (c). If Figure 66 is 

compared to Figure 67 which shows the no UAS and disco classes in a clean noise 

environment, the Bluetooth and Wi-Fi interference is clear on Figure 66. The Bluetooth 

signal is observed as the smaller yellow horizontal bursts of activity and the Wi-Fi as the thin 

vertical bursts occurring at around 9ms and 11.5ms. When the class disco switched on is 

consulted (b), it is impossible to tell with the human eye whether the Wi-Fi bursts on the 

spectrogram are coming from the interference or from the disco as it uses a version of the Wi-

Fi protocol to communicate. There are no strong Bluetooth interference signals present within 

the switched on class (b), this is entirely possible as it is a burst protocol and there may not 

have been any activity within that 20ms time frame. Lastly on the spectrogram for the disco 

flying class (c) in Figure 66 a Bluetooth interference signal can be observed but again it is 

impossible to know visually whether the Wi-Fi signal we are observing are the parrot disco or 

the interference.  

 

 

Figure 68 - PSD Graphical Signal Representation for the classes (a) No UAS, (b) Parrot 

Disco Switched on and connected to the controller and (c) Parrot Disco flying with 

Interference 

(a) (b) (c) 
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Figure 69 – PSD Graphical Signal Representation No UAS (a), Parrot Disco switched on and 

connected to the controller (b) and Parrot Disco Flying (c) 

When Figure 68 is compared with Figure 69 we can visually observe the interference in the 

no UAS class (a) by the peaks present on the PSD in Figure 68. When comparing the disco 

switched on (b) and flying (c), both signal patterns are different, with a visual peak being 

displayed within Figure 68 for the flying class (c) around 2.434GHz. Figure 70 shows the 

spectrograms for the classes switched on (a), hovering (b) and flying (c) for the Air 2 S with 

interference from Bluetooth and Wi-Fi devices present. Compared to the clean environment 

in Figure 71 there is additional activity present in the bottom end of the spectrum for the class 

switched on (a) which visually appears as both Bluetooth and Wi-Fi. For the classes hovering 

(b) and flying (c) we observe additional activity especially in the lower end of the spectrum.  

(a)                                                (b)                                               (c) 
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Figure 70 - Spectrogram Graphical Signal Representation for the classes (a) Air 2 S Switched 

on and connected to the controller, (b) Air 2 S hovering and (c) Air 2 S flying with 

Interference 

 

Figure 71 - Spectrogram Graphical Signal Representation for the classes (a) Air 2 S Switched 

on and connected to the controller, (b) Air 2 S hovering and (c) Air 2 S flying 

 

Figure 72 shows the PSD for the Air 2 S classes switched on (a), hovering (b) and flying (c) 

from left to right respectively. Comparing Figure 72 to the clean environment in Figure 73 it 

is hard to visually distinguish the interference from the genuine UAS signal. However, the 

interference does produce a more jagged appearance of the PSD line in all three classes and 

the overall noise floor is increased.  



142 

 

© Crown Copyright 2022 

 

Figure 72 - PSD Graphical Signal Representation for the classes (a) Air 2 S Switched on and 

connected to the controller, (b) Air 2 S hovering and (c) Air 2 S flying with Interference 

 

Figure 73 - PSD Graphical Signal Representation Air 2 S switched on and connected to the 

controller (a), Air 2 S hovering (b) and Air 2 S flying (c) 

 

Figure 74 shows the PSD for the Inspire 2 for classes switched on (a), hovering (b) and flying 

(c). Compared with the clean environment in Figure 75 we observe an overall increase in 

noise, denoted by the background appearance of the spectrogram as greenish yellow in Figure 

74 and more of a blue variant in Figure 75. While the platforms which operate with the Wi-Fi 

protocol are indistinguishable from the interference Wi-Fi, the Ocusync and Lightbridge 

based platform signals appear more like Bluetooth signals. In the classes hovering (b) and 

flying (c), it is impossible to say whether the Bluetooth type signals are the interference or the 

UAS when comparing Figure 74 with Figure 75.  

(a) (b) (c) 

(a)                                             (b)                                             (c) 
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Figure 74 - Spectrogram Graphical Signal Representation for the classes (a) Inspire 2 

Switched on and connected to the controller, (b) Inspire 2 hovering and (c) Inspire 2 flying 

with Interference 

 

Figure 75 - Spectrogram Graphical Signal Representation for the classes (a) Inspire 2 

Switched on and connected to the controller, (b) Inspire 2 hovering and (c) Inspire 2 flying  

 

Figure 76 shows the PSD representation for the Inspire 2 switched on (a), hovering (b) and 

flying (c) in the presence of Bluetooth and Wi-Fi interference. When compared to the PSD 

without interference in Figure 77, again the noise floor is raised and the signals appear to 

have a jagged appearance as an indication of the interference being present.  
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Figure 76 - PSD Graphical Signal Representation for the classes (a) Inspire 2 Switched on 

and connected to the controller, (b) Inspire 2 hovering and (c) Inspire 2 flying with 

Interference 

 

 

Figure 77 - PSD Graphical Signal Representation Inspire 2 switched on and connected to the 

controller (a), Inspire 2 hovering (b) and Inspire 2 flying (c) 

 

Figure 78 shows the spectrogram for the Mavic Pro with interference for the classes switched 

on (a), hovering (b) and flying (c). When compared to the clean environment in Figure 79 it 

would be impossible to say visually which of the yellow bursts were interference sources and 

which were the UAS itself. However, just because the patterns and difference between the 

two cannot be easily distinguished with the human eye does not mean they are not there.  

(b) (c) (a) 

(a)                                             (b)         (c) 
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Figure 78 - Spectrogram Graphical Signal Representation for the classes (a) Mavic Pro 

Switched on and connected to the controller, (b) Mavic Pro hovering and (c) Mavic Pro 

flying with Interference 

 

Figure 79 - Spectrogram Graphical Signal Representation for the classes (a) Mavic Pro 

Switched on and connected to the controller, (b) Mavic Pro hovering and (c) Mavic Pro 

flying  

 

Figure 80 shows the PSD for the Mavic Pro 2 with interference for the classes switched on 

(a), hovering (b) and flying (c). When compared to the clean environment in Figure 81 the 

interference can be clearly observed in all three classes with the increase in peaks across the 

frequency range. It again is not easily distinguishable with the human eye as to which peaks 

are caused by the interference and which are caused by the UAS. Even when we compare 

back to the no UAS class with interference in Figure 68 
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Figure 68 - PSD Graphical Signal Representation for the classes (a) No UAS, (b) Parrot 

Disco Switched on and connected to the controller and (c) Parrot Disco flying with 

Interference, the only visual indication of the interference is the increase in the amount of 

peaks across the frequency band.  

 

Figure 80 - PSD Graphical Signal Representation for the classes (a) Mavic Pro Switched on 

and connected to the controller, (b) Mavic Pro hovering and (c) Mavic Pro flying with 

Interference 

  

 

Figure 81 - PSD Graphical Signal Representation Mavic Pro switched on and connected to 

the controller (a), Mavic Pro hovering (b) and Mavic Pro flying (c)  

 

Figure 82 shows the spectrogram for the Mavic Pro 2 with interference for the classes 

switched on (a), hovering (b) and flying (c). When compared to the clean environment in 

(a) (b) (c) 

(a)                                             (b)                                              (c) 
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Figure 83 it is difficult to visually detect the difference in pattern. There is a visible increase 

of activity within the hovering class (b) when the interference is added.  

 

Figure 82 - Spectrogram Graphical Signal Representation for the classes (a) Mavic Pro 2 

Switched on and connected to the controller, (b) Mavic Pro 2 hovering and (c) Mavic Pro 2 

flying with Interference 

 

Figure 83 - Spectrogram Graphical Signal Representation for the classes (a) Mavic Pro 2 

Switched on and connected to the controller, (b) Mavic Pro 2 hovering and (c) Mavic Pro 2 

flying  

 

Figure 84 shows the PSD for the Mavic Pro 2 with interference for the classes switched on 

(a), hovering (b) and flying (c). When compared to the clean environment in Figure 38 it is 

easier to observe that there is interference present by the increased number of peaks in all 

three classes. This is easier to observe in general visually when compared to the spectrograms 

in Figure 82 for each of the classes switched on (a), hovering (b) and flying (c).  
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Figure 84 - PSD Graphical Signal Representation for the classes (a) Mavic Pro 2 Switched on 

and connected to the controller, (b) Mavic Pro 2 hovering and (c) Mavic Pro 2 flying with 

Interference 

 

Figure 85 - PSD Graphical Signal Representation Mavic Pro 2 switched on and connected to 

the controller (a), Mavic Pro 2 hovering (b) and Mavic Pro 2 flying (c) 

 

Figure 86 shows the Spectrogram for the Mavic Mini with interference for the classes 

switched on (a), hovering (b) and flying (c). When compared to the clean environment in 

Figure 87 the Bluetooth interference can be isolated visually in Figure 86 within all three 

classes but the Wi-Fi would be difficult to distinguish between interference and the Mavic 

Mini as it uses a Wi-Fi based protocol.  

(a) (b) (c) 

(a)                             (b)          (c) 
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Figure 86 - Spectrogram Graphical Signal Representation for the classes (a) Mavic Mini 

Switched on and connected to the controller, (b) Mavic Mini hovering and (c) Mavic Mini 

flying with Interference 

 

Figure 87 - Spectrogram Graphical Signal Representation for the classes (a) Mavic Mini 

Switched on and connected to the controller, (b) Mavic Mini hovering and (c) Mavic Mini 

flying 

 

Figure 88 shows the PSD for the Mavic Mini with interference for the classes switched on 

(a), hovering (b) and flying (c). When compared to the clean environment in Figure 89 we 

can visually observe the difference the interference causes in each class by the increased 

number of peaks across the frequency range. In general terms both Figure 88 and Figure 89 

show a general decreasing slope from left to right but with differing peaks occurring within 

the descent.  
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Figure 88 - PSD Graphical Signal Representation for the classes (a) Mavic Mini Switched on 

and connected to the controller, (b) Mavic Mini hovering and (c) Mavic Mini flying with 

Interference 

 

Figure 89 - PSD Graphical Signal Representation Mavic Mini switched on and connected to 

the controller (a), Mavic Mini hovering (b) and Mavic Mini flying (c) 

Figure 90 shows the Spectrogram for the Phantom 4 with interference for the classes 

switched on (a), hovering (b) and flying (c). When compared to the clean environment Figure 

91 we can visually observe the addition of Wi-Fi interference in Figure 90. However, as with 

the other Lightbridge and OcuSync platforms it is hard to tell which of the small horizontal 

bursts of yellow activity are Bluetooth interference and which are the Phantom 4. This is 

irrespective of the class switched on (a), hovering (b) or flying (c).  

(a) (b) (c) 

(a)                                           (b)     (c) 
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Figure 90 - Spectrogram Graphical Signal Representation for the classes (a) Phantom 4 

Switched on and connected to the controller, (b) Phantom 4 hovering and (c) Phantom 4 

flying with Interference 

 

Figure 91 - Spectrogram Graphical Signal Representation for the classes (a) Phantom 4 

Switched on and connected to the controller, (b) Phantom 4 hovering and (c) Phantom 4 

flying  

 

Lastly Figure 92 shows the PSD for the Phantom 4 with interference for the classes switched 

on (a), hovering (b) and flying (c). When compared to the clean environment Figure 93 the 

interference again displays itself as a general increase in the noise floor and with a jagged 

appearance to the signal in all three classes switched on (a); hovering (b) and flying (c).  
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Figure 92 - PSD Graphical Signal Representation for the classes (a) Phantom 4 Switched on 

and connected to the controller, (b) Phantom 4 hovering and (c) Phantom 4 flying with 

Interference 

 

 

Figure 93 - PSD Graphical Signal Representation Phantom 4 switched on and connected to 

the controller (a), Phantom 4 hovering (b) and Phantom 4 flying (c) 

 

  

(a) (b) (c) 

(a)                                             (b)                                              (c) 
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3.3.2 GPS Jamming Signals  

GPS Jamming Dataset 

Figure 94 to Figure 97 shows the graphical signal representations for AM jamming signals 

for 30, 10, -10 and -20dB SNR respectively so the addition of the SNR changes can be 

observed.   

 

Figure 94 - AM jamming signal present at 30dB SNR; PSD (top left); spectrogram (top 

right); raw constellation (bottom left); histogram (bottom right). 

In Figure 94 at 30dB SNR the AM jamming signal can be observed clearly in all signal 

representations by comparing  the individual graphs with those seen in Error! Reference 

source not found.. If we compare Figure 94 with the corresponding PSD in Figure 44, 
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spectrogram in Figure 32 and raw IQ scatter plot and histogram in Figure 49 for the GPS 

Jamming Dataset we can see the signals observe the same pattern but with less noise.  

 

Figure 95 - AM jamming signal present at 10dB SNR; PSD (top left); spectrogram (top 

right); raw constellation (bottom left); histogram (bottom right). 

In Figure 95 the SNR is decreased from 30 to 10dB. We observe the noise floor raised in the 

PSD on the top left and the noise increase in the spectrogram by the change in colour from 

blue to green/blue compared to Figure 94. On the raw constellation the red circle fills in and 

we see a slightly wider spread of real data on the histogram. If we also compare back with the 

corresponding PSD in Figure 44, spectrogram in Figure 32 and raw IQ scatter plot and 

histogram in Figure 49 for the GPS Jamming Dataset we can see the signals observe the same 

differences when comparing SNR 30dB in Figure 94. 
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Figure 96 - AM jamming signal present at -10dB SNR; PSD (top left); spectrogram (top 

right); raw constellation (bottom left); histogram (bottom right). 

In Figure 96 the SNR decreases to -10dB and we observe the noise floor increase from 

18dB/Hz to -2dB/Hz on the PSD from Figure 95 to Figure 96. The background on the 

spectrogram turns more yellow to represent the increase in noise, more red is present on the 

raw constellation and again the spread of the histogram real data grows across the entire 

spectrum range. We are starting to lose the signals within the noise. However the signal 

pattern can still be observed clearly in the PSD with the peak remaining around 18dB/Hz 

higher than the noise floor. The signal can be seen visually in the spectrogram but it is faint in 

comparison to the background noise level. The pattern of the original raw IQ plot (oval 

shape) and the pattern in the original histogram is visually lost within the noise.  
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Figure 97 - AM jamming signal present at -20dB SNR; PSD (top left); spectrogram (top 

right); raw constellation (bottom left); histogram (bottom right). 

 

In Figure 97 the SNR decreases to -20dB and we observe the noise floor increase to 10dB/Hz 

on the PSD from Figure 96 to Figure 97. The background on the spectrogram turns more 

yellow to the point where our AM signal cannot be visually detected with the eye. The raw 

constellation fills in with a greater proportion of red representing the noise and the spread of 

the histogram becomes even. The signal is lost within the noise and is not visible within the 

spectrogram, raw IQ plot and within the histogram. The only plot to preserve the signal 

visually is the PSD where we can observe the signal peaking up at around 8-9dB/Hz above 

the noise floor.  So that the effect of SNR could be tested fully, a dataset was produced for 
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SNR levels 30dB, 10dB, -10dB and -20dB where each class was made up of 1000 images 

224x224 pixels. 

 

JamDetect Dataset [23] 

For the interference experiments using the JamDetect dataset, image datasets were created for 

SNR 50dB, 30dB, 10dB, -10dB and -20dB to understand the effect on classification 

accuracy. A PSD was used to represent the signal in the frequency domain, displaying the 

power distribution over the frequency range. A spectrogram was used to consider the signal 

in the time domain. Both representations were plotted in Matplotlib Python 3 with an FFT 

size of 1024 and a Hanning windowing function. A raw constellation is plotted with real and 

imaginary parts of the signal on the x and y axis respectively and a histogram representation 

of the real part of the signal over 500 bins. Lastly a concatenated representation onto one 

image is created using python to include a dataset which contains all 4 graphical signal 

representations. Datasets were created of 1000 images of size 224x224.  

 

First the CW jamming signal at a SNR of 50dB are observed in Figure 98 (left). The jamming 

signal is clearly present on the raw constellation graphical representation.  
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Figure 98 - JamDetect CW Jammer SNR 50dB (left) SNR 10dB (right). 

Figure 98 (right) shows the same CW jamming signal but after dropping the SNR to 10dB. 

The constellation in red fills in and increases in size compared to Figure 98 (left). 

 

Figure 99 - JamDetect CW Jammer SNR -10dB (left) SNR -20dB (right). 

In Figure 99 (left) the SNR ratio is dropped to -10dB and again the red constellation increases 

in size. In Figure 99 (right) the CW jamming signal with a SNR of -20dB is observed and the 

whole plot is covered in red due to the increase of noise.  
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Chapter 4 - Supervised Learning  

The overall process followed for the supervised learning is shown in Figure 100 below. The 

previous section described the process for dataset use/generation, representing the signal as 

an image in the form of a graphical signal representation and the introduction of interference 

in the frequency band.  

 

Figure 100 - Supervised Learning Chapter Explanation 

As highlighted by the red box in Figure 100, this chapter will describe the CNN feature 

extraction, machine learning classifiers and will provide the supervised learning experiments 

and results.  
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4.1 CNN Feature Extraction [25] [27] [23] 

4.1.1 VGG-16 

CNNs are often used for object detection but through a process called transfer learning, a pre-

trained CNN can be used for other purposes such as detecting medical condition through 

brain scan or eye scan images [300], [314]. A VGG-16 is a type of CNN with 16 layers, 

produced by Oxford Visual Geometry Group and commonly utilised in a pre-trained manner 

using a 14 million image database called ImageNet [287]. To utilise the VGG-16 in our 

research for feature extraction forward propagation is stopped at the last pooling layer to 

enable features to be saved. Table 8 shows the structure of the VGG-16 CNN used. 

Table 8 - VGG-16 Architecture. 

Layer Type Shape 

Input Layer)          224x224x3    

Convolutional 2D Layer 112x112x128     

Convolutional 2D Layer 112x112x128     

Max Pooling 2D Layer  112x112x128     

Convolutional 2D Layer 56x56x256 

Convolutional 2D Layer 56x56x256 

Max Pooling 2D Layer  56x56x256 

Convolutional 2D Layer 28x28x512 

Convolutional 2D Layer 28x28x512 

Convolutional 2D Layer 28x28x512 
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Max Pooling 2D Layer 28x28x512 

Convolutional 2D Layer 14x14x512 

Convolutional 2D Layer 14x14x512 

Convolutional 2D Layer 14x14x512 

Max Pooling 2D Layer 7x7x512 

Convolutional 2D Layer 7x7x512 

Convolutional 2D Layer 7x7x512 

Convolutional 2D Layer 7x7x512 

Max Pooling 2D Layer 7x7x512 

 

The last layer of shape 7x7x512 produces a feature vector of 25,088 values when flattened.  

 

4.1.2 ResNet 50 

ResNet [288] allows for deep neural networks to be trained using a technique called skip 

connection which take the output from an earlier layer and combines it with the a later layer. 

This technique overcame prior difficulties with training very deep neural networks whereby 

gradients would vanish due to repeated multiplication. ResNet50 has been commonly used 

for transfer learning research with a large scale image recognition database of over 14 million 

images called ImageNet [287]. Training the weights in a neural network from scratch can 

take a very long time and needs a large amount of training data, for example the 14 million 

images that trained the weights for ImageNet. Transfer Learning allows other domains to 

benefit from the use of pre-trained weights for a new purpose. ResNet50 is 50 layers deep, 
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consisting of 48 convolution layers, 1 max pooling and 1 average pooling layer. The last 

layer will have an output shape of 7x7x2048. For feature extraction this gives us a feature 

vector of 100,352 values when the shape is flattened. 

 

4.1.3 Feature Maps 

4.1.3.1 UAS Signals 

To try to understand the features that are being chosen by the CNN we plot the features maps 

for the Parrot AR from the DroneRF dataset for the class switched on and connecter to the 

controller. In particular we consider the PSD for the class Parrot AR switched on and 

connected to the controller. Figure 102 to Figure 104 shows the output of convolutional 

layers 0, 20 and 48. We have restricted the depth in the maps to 64 for consistency in the 

comparison but it should be noted that the depth is greater in deeper layers. PSD was chosen 

for the feature map visualisation as it produces the highest accuracy in Section 4.4.1. Figure 

101 shows the input image given to the ResNet50 model for feature visualisation.  

 

Figure 101 - PSD Graphical Signal Representation for the Parrott AR Class Switched On 

Figure 102 shows the output of the first convolutional layer (layer 0) and we can clearly see 

the detail of the PSD for both input images AR Mode 1 – switched on and connected to the 

controller. 
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Figure 102 - Feature Map Extraction Convolutional Layer 0 

As we move to convolutional layer 20, Figure 103 shows that although we can still see the 

outline and depth of the PSD, we start to lose some detail. This happens because the CNN 

starts to pick up on generic concepts rather than specific detail. 
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Figure 103 - Feature Map Extraction Convolutional Layer 20 

Figure 104 shows the output of the last convolutional layer 48 and we can see that it is 

difficult now to determine with the human eye what the features are that the CNN is 

distinguishing.  
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Figure 104 - Feature Map Extraction Convolutional Layer 48 
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4.1.3.2 GPS Jamming Signals [27] 

For the GPS Jamming Dataset detailed in section 3.1.1, to help visualise which features the 

CNN was choosing we created feature map outputs from 3 of the main blocks that end in 

pooling layers, shown in Figure 105 below.  

 

Figure 105 - CNN Model Structure: VGG16 architecture 

Although the depth in deeper layers is greater than 64 we set a limit of 64 for comparison 

consistency. 

 

Figure 106 - Feature Maps Extracted from Block 1 (DME Signal) 

We can see clearly that Figure 106 displays fine detail. The original DME input image 1 is 

shown in the left of Figure 109.  
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Figure 107 - Feature Maps Extracted from Block 4 (DME Signal) 

As we move into block 4 in Figure 107 we lose more detail from the feature maps. This is 

normal as the model starts to interpret more generic concepts. We interpret the red box as the 

peak of the histogram and the blue box as potentially the concentration of raw IQ samples. 

Our interpretation of the yellow box is the DME pulse on the spectrogram image. 

 

Figure 108 - Feature Maps Extracted from Block 5 (DME Signal) 

In Figure 108 we can see how difficult it is to determine what the CNN is picking as features. 

It is not uncommon with CNNs for a human eye to be unable interpret deeper feature maps. 
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Figure 109 - Input Image 1 DME (left), Input Image 2 No Jamming signal (right) 

For comparison Figure 110 shows block 4 when input image 2 (no jamming signal present) 

from Figure 109 is used as the input. The original input image can be seen in the right hand 

image in Figure 109.  

 

Figure 110 - Feature Maps Extracted from Block 4 (No Jamming Signal) 

Comparing the features we interpreted from Figure 107, the red box potentially represents the 

histogram peak. We have highlighted the same square in Figure 110 which shows a slightly 

lower peak, correlating with the difference in the input images seen in Figure 109. The blue 

box in Figure 110 again correlates with Figure 107 and highlights the raw constellation.   
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4.2 Machine Learning Classifiers [25] [27] [24] 

 

4.2.1 Logistic Regression 

LR is a machine learning model which has a fixed number of parameters based on the 

number of features in the input. The output of LR is categorical and uses a sigmoidal curve. 

The equation for a sigmoid can be seen in Equation (14). 

 
ℎ =  

𝑒𝑥

(1 + 𝑒−𝑥)
 (14) 

 

The output of Equation (14) will always be between 0 and 1 so if we define a threshold for 

example of 0.5, then any values below 0.5 will return 0 and above 1. 𝑥 represents the input 

features and to initialise 𝛳 it is multiplied by a random value 𝛳. When there are multiple 

features this makes the equation seen in Equation (15). 

 ℎ =  𝛳0 +  𝛳1𝑋1 +  𝛳2𝑋2 +..  (15) 

 

The algorithm in Equation (15) updates 𝛳 and eventually will establish a relationship 

between the features and the output through updating 𝛳. For a situation where we have 

multiple classes, the sigmoid is generalised and this is called the Softmax function. The 

Softmax function takes a input vector and then plots it to a probability distribution between 0 

and 1. In Equation (16) we describe the Softmax function for vector 𝑧 with 𝑘 dimensions or 

classes [354]. 

 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =  

𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

 (16) 
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LR was implemented in Python 3 through Sklearn. Ridge Regression was used as the penalty 

for the loss function and Limited memory Broyden–Fletcher–Goldfarb–Shanno (LGBFS) 

was used as the solver. Values for regularisation (‘C’) were optimised using SkLearn 

GridSearchCV.  

 

4.2.2 Linear SVM 

A Linear SVM was also considered in some of the experiments. Mete and Ensari [355] show 

the use of SVM as a classifier following CNN feature extraction for flower species as 

superior to other ML models. The SVM support vector classification function in Sklearn is 

used to implement this model. For hyper-parameter selection values for regularisation (‘C’) 

were chosen in a range of [10, 1.0, 0.1, 0.01, 0.001].  

 

4.2.3 Random Forest 

A RF Classifier is evaluated which works by creating a number of decision trees and 

outputting the prediction of the tree using averaging to improve accuracy. The number of 

trees in the forest was set to 1000 for the experiments. RF has cross validation/bootstrapping 

built in during training so is not necessary to be included in the hyper-parameter optimisation. 

 

4.2.4 K-Nearest Neighbour (kNN) 

kNN uses the dataset to find the closet point to the input point. The classifier then works by 

using a majority vote of neighbours. The Minkowski distance was utilised as part of our 

experiments and can be calculated as show in Equation (17). 

 𝑠𝑢𝑚(|𝑥 − 𝑦|𝑝)1/𝑝 (17) 
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The k-nearest neighbour of the particular data point is then found and assigned to the class 

that has the highest probability. 

 
𝑃(𝑦 = 𝑗 |𝑋 = 𝑥) =  

1

𝐾
∑ 𝐼(𝑦(𝑖)

𝑖𝜖𝐴

= 𝑗) (18) 

Equation (18) shows the probability of an input x being assigned to the class that has the 

highest probability [356]. For each of the models, fivefold cross validation was used to 

indicate whether the model was overfitting. Hyper-parameter regularisation for LR and the 

number of neighbours for kNN were optimised using threefold nested cross-validation. 
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4.3 Performance Metrics [25] [27] 

4.3.1 Cross Validation 

In machine learning, models need to be able to make accurate predictions on data not seen 

before and this is known as generalisation [357]. Traditional models split the data into 

training and test, the training data is used to train the model and some test data is kept 

separate to validate the results. This technique does not work well with limited datasets as it 

can produce high bias. Cross validation is a method for assessing how a machine learning 

model will generalise to a data set. The technique aims to estimate whether the model will 

make accurate predictions in practice and can highlight problems such as overfitting or bias 

[358]. K-Fold cross validation is a method which is considered to produce a model with less 

bias with a small dataset. The data is partitioned randomly into k subsets, the model trained 

using k-1 subsets and the last subset is then used as the test data to validate the model. The 

performance of the model is measured by averaging the score for each subset. To validate the 

machine learning models in our experiments the dataset (800 samples per class) was divided 

into 10 folds using the K-Fold cross-validation through Python SkLearn. StratifiedKfold was 

used which keeps the different class percentage the same for each subset so the model is 

equally distributed [359].  

 

There is a trade off in terms of bias and variance when it comes to choosing a value for k. 

The statistical community tend to agree on a value of either k = 5 or k = 10 as they have 

proved not to be susceptible to either high bias or high variance [360]. A value of 10 was 

evaluated in these experiments and the full model (including feature extraction) was included 

within the cross validation. Hyper-parameter optimsation was conducted using nested k-fold 

cross validation through SkLearn GridSearchCV. Hyper-parameters are values which control 
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the learning process and are set, rather than being learned. Table 9 shows the hyper-

parameters chosen for the experiments in this thesis.   

Table 9 - Hyper-parameter Optimisation 

 Regularisation (‘C’) 

LR [100, 10, 1.0, 0.1, 0.01] 

SVM [10, 1.0, 0.1, 0.01, 0.001] 

  

Choosing an optimal set is an important part of the machine learning process. Gridsearch 

searches through subsets of the hyper-paramaters for every combination and evaluates their 

performance using cross validation. Grid search was chosen over Random search, an 

alternative which randomly selects the combinations to find the best one, because the goal of 

the work was to look at the accuracy. Although random search is less computationally heavy 

and takes less time, it won’t always produce the most accurate result. Other optimisation 

methods exist such as Bayesian but they were not considered in this paper. Features were 

extracted from the dataset and then predictions were made using the best classification 

models (determined by the hyper-parameter optimisation).  

 

4.3.2 Metrics 

There are different metrics we could use to evaluate performance. A confusion matrix helps 

us to calculate and visualise indictors of performance such as accuracy. Figure 111 shows the 

components that make up a confusion matrix.  
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Figure 111 - Confusion Matrix Pictoral Representation 

True Positive (TP) tells us that the prediction was correct and it was true to what was 

predicted. True Negative (TN) is where we have predicted something was incorrect and it 

was incorrect. False Positive (FP) is where we have predicted something was correct but it 

was not. False Negative (FN) is where we predicted incorrect when it was correct. The values 

help us to define accuracy and F1-score. Accuracy shows us how often the model was right in 

its predictions, shown in Equation (19).  

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (19) 

To calculate F1-Score we need to understand how to calculate both recall and precision. 

Precision is calculated by dividing TP by TP + FP. This shows how many predicted positives 

were actually positive. Recall is calculated by dividing TP by TP + FN. It shows the fraction 

of positives that were correctly predicted.  

Equation (20) shows the formula for precision showing how many positive predictions were 

correct. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (20) 
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Equation (21) shows the equation for recall and considers the correctly predicted positives as 

a fraction. 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (21) 

F1-Score is often used as a performance metric as it takes into consideration both recall and 

precision as seen in Equation (22).  

 
𝐹1 𝑆𝑐𝑜𝑟𝑒 =  

2 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (22) 
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4.4 Classification Results & Discussion 

The classification results and discussion have been broken down by dataset. Table 10 gives 

an overview of the differences between the experiments including CNN type, ML classifiers, 

image types tested, number of classes, SNR and the dataset used. The process described in 

sections Chapter 4 to 0 was used for all experiments unless otherwise detailed in the results 

below. 

Table 10 - Experiments Overview 

UAS Classification Experiments 

Experiment CNN 

Types 

ML 

Classifiers 

Image 

Types 

Classes SNR Dataset Reference 

1 VGG-

16 

LR, SVM, 

RF 

PSD, Spec 2,4,10 No DroneRF [28] 

2 ResNet-

50 

LR PSD, 

Spec, Raw 

IQ, Hist 

10 No DroneRF [25] 

3 VGG-

16 

LR, kNN PSD, Spec 2,4,10 Yes DroneDetect 

(4 UAS) 

[26] 

4 VGG-

16 

LR, kNN PSD, Spec 2,8,21 Yes DroneDetect 

(8 UAS) 

[24] 

GPS Jamming Signal Classification 

5 VGG-

16 

SVM, LR, 

RF 

PSD, 

Spec, Raw 

IQ, Hist, 

Concat 

6 No GPS 

Jamming 

Dataset 

[27] 
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6 ResNet-

50 

SVM, RF PSD, 

Spec, Raw 

IQ, Hist, 

Concat 

6 Yes GPS 

Jamming 

Dataset 

 

7 VGG-

16 

LR PSD, 

Spec, Raw 

IQ, Hist, 

Concat 

6 Yes JamDetect [23] 

 

 

4.4.1 DroneRF Dataset Experiments [28] [25] 

The DroneRF dataset as described in section 3.1.3 and produced by Al-S’ad et al. [204] 

covers 80MHz of the 2.4GHz frequency band using 2x SDRs. The dataset includes the Parrot 

Bebop, Parrot AR (Elite 2.0), the DJI Phantom 3 and the class no UAS present. 

 

4.4.1.1 Experiment 1 

Overview 

Experiment 1 uses the open DroneRF dataset. The experiments are considered in three sets, 2 

class – UAS, No UAS; 4 class – No UAS, Bebop, AR, Phantom; and for 10 classes we 

include flight modes, mode 1 – switched on and connected to controller, mode 2 – hovering 

automatically, mode 3 – flying without video, mode 4 – flying with video. The 10 classes 

include; No UAS; Bebop Mode 1; Bebop Mode 2; Bebop Mode 3; Bebop Mode 4; AR Mode 

1; AR Mode 2; AR Mode 3; AR Mode 4 and Phantom Mode 1.  



178 

 

© Crown Copyright 2022 

 

Signals were represented in the time domain as a spectrogram and in the frequency domain as 

a PSD. This would let us evaluate whether viewing the data in the time or frequency domain 

produced higher accuracy results for classification. Python 3 Matplotlib was used to plot the 

spectrogram and PSD images both with 1024 FFT size, Hanning windowing functions and 

centre frequency 2.442GHz covering a range of 2.402GHz – 2.482GHz. Images were saved 

as size 224x224 pixels. For our experiments datasets were created for spectrograms and PSD 

with 1000 samples per class. This was further split into 80% for k fold cross validation 

training/test data and 20% as a separate evaluation dataset not used in training. A VGG-16 is 

used for CNN feature extraction and machine learning classifiers LR, SVM and RF are 

evaluated for classification.  

Results 

Table 11 shows that representing the signal in the time domain via spectrogram is 

approximately 20% less accurate than PSD. LR performs the best out of the machine learning 

classifiers producing 87.5% (+/- 0.5%) accuracy for PSD with 10 class flight mode 

classification, 89.2% (+/- 0.9%) with 4 class UAS type classification and 100% (+/- 0.0%) 

for 2 class UAS detection. Although LR outperformed SVM and RF, the actual difference is 

marginal. In the 2 class detection for PSD both LR and SVM produce 100% accuracy and RF 

99%. As we increase the classifications the gap increases but it is still small, less than 1% at 

10 classifications between LR and SVM and 2.5% difference between RF and LR for 4 

classifications. Al-S’ad et al. in [240] showed that accuracy decreased with the increase of 

classes, showing a 15% drop in accuracy as the classes increased from 2 to 4 and a further 

37.7% drop as 4 was increased to 10 classes. Our results show an 11% decrease in accuracy 
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as we increase from 2 to 4 classes and only a marginal difference of 1% when we increase 4 

to 10 classes (LR & PSD).   

Table 11 - DroneRF UAS Classification Accuracy (%) & F1-Score (%) 

  2 Class 4 Class 10 Class 

  Spec PSD Spec PSD Spec PSD 

S
V

M
 

Acc 80.8 (+/- 

1.0%) 

100 (+/- 

0.0%) 

68.6 (+/- 

1.0%) 

88.5 (+/- 

0.7%) 

67.3 (+/- 

0.6%) 

86.9 (+/- 

0.5%) 

F1 80.8 (+/- 

1.0%) 

100 (+/- 

0.0%) 

68.4 (+/- 

1.0%) 

88.5 (+/- 

0.7%) 

67.0 (+/- 

0.5%) 

86.7 (+/- 

0.5%) 

L
R

 

Acc 82.7 (+/- 

0.8%) 

100 (+/- 

0.0%) 

70.3 (+/- 

0.9%) 

89.2 (+/- 

0.9%) 

67.4 (+/- 

1.2%) 

87.5 (+/- 

0.5%) 

F1 82.7 (+/- 

0.8%) 

100 (+/- 

0.0%) 

70.3 (+/- 

0.9%) 

89.2 (+/- 

0.9%) 

67.4 (+/- 

1.1%) 

87.5 (+/- 

0.5%) 

R
F

 

Acc 77.0 (+/- 

0.4%) 

99.9 (+/- 

0.1%) 

62.0 (+/- 

0.8%) 

90.0 (+/- 

0.8%) 

54.9 (+/- 

1.6%) 

84.5 (+/- 

0.8%) 

F1 76.6 (+/- 

0.4%) 

99.9 (+/- 

0.1%) 

61.6 (+/- 

0.7%) 

89.8 (+/- 

0.8%) 

53.3 (+/- 

1.6%) 

84.4 (+/- 

0.8%) 

 

Figure 112, Figure 113 and Figure 114 show the confusion matrix for LR, RF and SVM 

respectively using PSD results from the hold-out evaluation data set. This data was not used 

as part of cross validation training and hyper-parameter optimisation. Figure 112 shows that 
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when we want to simply detect whether there is a UAS present or not that we can achieve 

100% accuracy with this methodology.  

 

Figure 112 -  Confusion Matrix LR 2 Class PSD Graphical Signal Representation 

Figure 113 shows the confusion matrix when we are considering not only detecting the UAS 

but classifying it in terms of type – No UAS, Bebop, AR or Phantom. We can see that 

accuracy reduces to 88.6%. 
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Figure 113 - Confusion Matrix LR 4 Class PSD Graphical Signal Representation 

Lastly Figure 114 shows the confusion matrix for all 10 classes and flight modes. LR with 

PSD signal representation produces 87.36% accuracy which is a 40% increase compared 

directly to the work conducted by Al-S’ad et al. [240]. We can see that the classifier has 

problems distinguishing between the Phantom 3 when switched on and connected to the 

controller and the Parrot AR when flying without video. The spectrum in the frequency 

domain must look similar for both those classes, making it harder for the classifier to 

distinguish between the two. A potential way of increasing the accuracy would be to add 

more SDRs to monitor and capture the 5GHz spectrum. The Parrot AR does not operate in 

that space but the Phantom 3 does, this information would undoubtedly help the classifiers in 

distinguishing between  the two.  
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Figure 114 - Confusion Matrix LR 10 Class PSD Graphical Signal Representation 

Discussion 

In Experiment 1 it was shown that LR had the highest performing classifier but the difference 

between SVM and RF is small.  PSD representation in the frequency domain produces higher 

accuracy than the use of time domain spectrograms for all experiments. LR in conjunction 

with PSD produced 100% accuracy for 2 class UAS detection and 88.6% accuracy for 4 class 

UAS type classification. For 10 classifications including flight modes LR produced 87% 

accuracy which is a 40% increase on prior work in the field by Al-Sa’d et al. They also 

showed the performance of the classifiers to decrease as the classification number increased. 

They found a 37.7% drop in accuracy when increasing the class number from 4 to 10. Our 

results show only a 1% decrease in accuracy when increasing the classifications from 4 to 10. 

In the context of using this model within an early warning system, the accuracy levels 

required would be part of the system requirements. For example, while one system may have 

requirements for a high accuracy results, another system may have other sensor data which 

could be combined to produce that high level indication and therefore a single model may not 
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require results which are as high in performance. This would be laid out in the early warning 

system requirements phase.  

 

Incorporating the 5GHz spectrum could help the classifier increase accuracy in distinguishing 

between flight modes and UAS types. It would be beneficial to evaluate the performance of 

these algorithms in a congested spectrum. For example, testing in a built up city environment 

where there will be a lot of activity in the Wi-Fi spectrum. Overall experiment 1 has 

introduced an approach using transfer learning through CNN feature extraction and machine 

learning classification that has high accuracy even when classifying flight modes and 

outperforming prior work using the same DroneRF dataset. 

 

4.4.1.2 Experiment 2 

Overview 

Samples from the DroneRF dataset were plotted in each of the 4 signal representations using 

MatPlotlib and saved as images with 300 DPI. Separate datasets of images for raw 

constellation, spectrogram, PSD and histogram were created. Each class within each dataset 

contained 1000 image representations resized to 224x224 pixels. The databases were split so 

there were 8,000 images for use with k-fold cross validation and 2000 images with the 

evaluation set. A ResNet-50 was used for the CNN feature extraction and machine learning 

classifier LR for the classification of 10 classes of UAS flight modes. The 10 classes include 

the Parrot Bebop and the Parrot AR flight modes of switched on and connected to controller; 

hovering automatically with no input from the controller; flying with video transmission; and 

flying without video. The DJI Phantom 3 was the 10th class but only provided in the DroneRF 

dataset in the first mode - switched on and connected to controller. 
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Results 

The extracted feature maps for these experiments can be seen in section Chapter 4. 

Cross Validation Training/Test Data 

It can be seen from Table 12 that PSD outperforms raw constellation, spectrogram and 

histogram representations for 10 class UAS flight mode classification.  

 

Table 12 - ResNet 10 Class UAS Flight Mode Classification Accuracy and F1-Score 

Metric Raw IQ  Spectrogram  PSD  Histogram  

Accuracy (%) 45.3 (+/- 1.1) 83.8 (+/- 1.1) 92.3 (+/- 0.3) 37.0 (+/- 0.2) 

F1 Score (%) 45.1 (+/- 1.1) 83.7 (+/- 1.2) 92.3 (+/- 0.3) 36.8 (+/- 0.2) 

 

Spectrogram representation was approximately 10% less accurate than PSD, with histogram 

performing the worst out of all the representations. PSD produced 92.3 (+/- 0.3%) accuracy 

and F1-score which is an increase of over 45% from previous published work.  

 

Table 13 - ResNet 10 Class UAS Flight Mode Individual Classification LR F1-Score 

Mode Raw IQ (%) Spectrogram (%) PSD (%) Histogram (%) 

No UAS 51 97 100 49 

Bebop Switched on 26 88 97 26 

Bebop Hovering 29 83 97 18 
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Bebop Flying 90 79 100 79 

AR Switched on 23 92 100 21 

AR Hovering 31 86 94 14 

AR Flying 20 69 71 18 

Phantom 3 Flying 35 64 71 25 

 

Table 13 shows the individual representations and their F1-score performance for each 

individual class. PSD outperforms the other representations in all classes. Overall Table 13 

shows that PSD is the most accurate way to classify UAS signals across 80MHz of the Wi-Fi 

band using transfer learning with ResNet50 CNN feature extraction and LR. 

 

Hold-Out Evaluation Results 

2000 images as an evaluation set were kept entirely separate from the images used with the 

cross validation training and testing process. This was done to ensure there wasn’t any 

overfitting occurring in the results.  

The evaluation data set results in terms of accuracy and F1-score can be seen in Table 14. 

These results confirm the cross validation results in Table 12 with PSD producing the highest 

accuracy and F1-score. Table 14 shows that PSD is over 10% more effective than 

spectrograms and over 40% more accurate than raw constellation and histograms. 
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Table 14 - ResNet 10 Class UAS Flight Mode Evaluation Data Accuracy & F1-Score 

Metric Raw IQ  Spectrogram  PSD  Histogram  

Accuracy (%) 43.1 81.5 91.2 36.7 

F1 Score (%) 42.9 81.7 91.2 36.6 

 

Figure 115 and Figure 116 show the confusion matrix for PSD and spectrogram 

representations respectively. Both are able to detect whether a UAS is present or not with an 

accuracy of 96% or over, with PSD performing at 99.7%. 

 

Figure 115 - ResNet 10 Class UAS Flight Mode Confusion Matrix PSD Graphical Signal 

Representation 

Figure 115 and Figure 116 confirm that both representations were worst at classifying the AR 

in mode 3 (flying without video) and the Phantom 3 when switched on and connected to the 
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controller. The reason for the Phantom 3 could be the fact that it will hop Wi-Fi channels 

based on interference. Without monitoring the spectrum separately we can’t be sure whether 

this is happening. A larger training dataset could increase accuracy of the Phantom 3 by 

capturing more configurations of the frequency hopping. Further, the parrot AR when flying 

without video must look similar in terms of features in the frequency domain to the Phantom 

3 when switched on and connected to the controller. 

 

Figure 116 - ResNet 10 Class UAS Flight Mode Confusion Matrix Spectrogram Graphical 

Signal Representation 

 

Figure 115 and Figure 116 show the confusion matrix for PSD and Spectrogram 

representations. Both representations produce an overall accuracy of above 81% but PSD 
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performs with higher overall accuracy above 91%. Due to the fact we produced our results 

with the same open DroneRF dataset used and produced by Al-Sa’d et al. [240], who 

achieved accuracy of 46.8% using a DNN across all 10 classes, we can directly compare our 

results. Our results show that LR with PSD, to achieve over 91% accuracy, a 45% increase 

compared with the prior work. We achieve this by viewing UAS classification as an image 

classification problem and utilising transfer learning from the field of imagery. Al-S’ad et al. 

found that when they increased the classification from detecting the presence of a UAS (2 

class) to its type (4 class), to include flight modes (10 class) the accuracy decreased 

significantly. They put this down to similarities caused by two of the UASs (Bebop and AR) 

being manufactured by the same company. We have shown our approach using CNN feature 

extraction able to improve these results distinguishing between same manufacturer. 

 

Discussion 

Experiment 2 for the DroneRF ResNet-50 10 class flight mode UAS classification results 

have shown that PSD outperforms raw constellation, spectrogram and histogram 

representations for LR. PSD produced over 91% accuracy with cross validation results and 

the evaluation dataset. We achieve this by viewing UAS classification as an image 

classification problem, utilising transfer learning and presenting signal representations as 

graphical images to a deep CNN. If a system like this was employed in the real world it 

would likely need to be trained in the particular environment that it needed to work in. For 

example, a built up city area will have more background noise in the Wi-Fi bands than a rural 

area. This will also likely affect the accuracy of the classifier so field testing in city areas is 

paramount for this type of system. It may also help researchers understand how much 

frequency hopping occurs due to interference and whether this has an impact on detection and 
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classification accuracy. Further, the issue of how often you would need to re-train the 

classifier, as RF bands are constantly changing, and how much change the classifier can cope 

with before accuracy starts being affected is an important question which would need further 

investigation.  

 

Future work could also consider the employment of another SDR to capture the 5Ghz band to 

fully represent dual frequency band UASs such as the Bebop and Phantom 3. It is thought 

that this would further improve accuracy as it provides an increase of distinguishing features. 

The dataset could also be expanded to include more UAS platforms. This method which 

utilises signal representations as graphical images would require more processing power and 

therefore increased energy requirements compared with processing 1D data. Further work 

could look at hardware implementations such as FPGA, GPU and hardware accelerators such 

as Tensor processing unit [361] by Google to evaluate practical limitations for 2D data 

against the use of 1D compared with accuracy of the models. In conclusion experiment 3 has 

shown a novel approach by treating UAS classification as an imagery detection problem 

utilising the benefits of transfer learning and outperforming previous work in the field by 

over 45%. 

 

4.4.2 DroneDetect Dataset Experiments [26] [24] 

The DroneDetect dataset was produced as described in section 3.1.4 to firstly expand the 

number of UAS platforms and to allow for the introduction of Bluetooth and Wi-Fi 

interference upon signal collection. In comparison to the DroneRF dataset, the DroneDetect 

dataset captures a much smaller part of the 2.4GHz Wi-Fi frequency band 28MHz centred 

around 2.4375GHz. Where possible UAS platforms were restricted to the 2.4GHz band for 
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these experiments. The uplink and downlink are not discriminated against, everything which 

is transmitting for the UAS flight modes switched on, hovering and flying is recorded within 

that 28MHz band as part of the collection.  

 

4.4.2.1 Experiment 3 

Overview 

For experiment 3 four classes were taken from the DroneDetect dataset – DJI Inspire 2, DJI 

Mavic 2 Pro, DJI Mavic Mini and no UAS present. Datasets for PSD and spectrograms with 

no interference, Bluetooth interference and Wi-Fi interference were produced for 2 class 

UAS detection, 4 class UAS type classification and 10 class UAS flight mode classification. 

For UAS detection the UAS class was made up of an equal number of samples from Inspire 

Mode 3 – flying, Mavic Mode 3 – flying and Mini Mode 3 Flying. Mode 3 flying was also 

used to make the UAS type class for each UAS. VGG-16 was used as the CNN for feature 

extraction and machine learning classifiers LR and kNN for classification.  

 

Results 

Table 15 shows that accuracy and F1-score are unaffected for 2 class UAS detection when we 

consider LR with PSD. LR outperforms kNN for spectrogram representation and for PSD, 

both LR and kNN produce near 100% accuracy. We also observe that PSD frequency domain 

features are more robust than spectrogram time domain features when Bluetooth and Wi-Fi 

interference is introduced. Bluetooth interference effects the spectrogram representation 

accuracy more than Wi-Fi signals.  
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Table 15 - DroneDetect 2 Class UAS Detection Accuracy and F1-Score with Interference 

Classifier Image Type Metric Clean Bluetooth Wi-Fi  

LR PSD Accuracy (%) 100(+/- 0.0) 100(+/- 0.0) 100(+/- 0.0) 

LR PSD F1 Score (%) 100(+/- 0.0) 100(+/- 0.0) 100(+/- 0.0) 

LR Spec Accuracy (%) 99.1(+/- 0.3) 91.9(+/- 1.9) 96.8(+/- 0.7) 

LR Spec F1 Score (%) 99.1(+/- 0.3) 91.9(+/- 1.9) 96.8(+/- 0.7) 

kNN PSD Accuracy (%) 100(+/- 0.0) 99.9(+/- 0.2) 100(+/- 0.0) 

kNN PSD F1 Score (%) 100(+/- 0.0) 99.9(+/- 0.2) 100(+/- 0.0) 

kNN Spec Accuracy (%) 95.5(+/- 1.0) 86.8(+/- 1.4) 90.2(+/- 1.6) 

kNN Spec F1 Score (%) 95.5(+/- 1.0) 86.7(+/- 1.5) 90.1(+/- 1.7) 

 

Table 16 shows the results with 5 fold cross validation for 4 class UAS type classification. 

Again we note that PSD outperforms spectrogram graphical signal representation and that LR 

outperforms kNN as the machine learning classifier. As with Table 15 we note that frequency 

domain features are more robust to the introduction of interference than time domain features. 

LR with PSD maintains near 100% accuracy for 4 class UAS type detection.  

 

Table 16 - DroneDetect 4 Class UAS Type Classification Accuracy and F1-Score with 

Interference 

Classifier Image Type Metric Clean Bluetooth Wi-Fi  

LR PSD Accuracy (%) 100(+/- 0.0) 99.9(+/- 0.1) 100(+/- 0.0) 

LR PSD F1 Score (%) 100(+/- 0.0) 99.9(+/- 0.1) 100(+/- 0.0) 

LR Spec Accuracy (%) 99.8(+/- 0.1) 91.5 (+/-1.6) 95.8(+/-0.5) 
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LR Spec F1 Score (%) 99.8(+/- 0.1) 91.5 (+/-1.6) 95.8(+/-0.5) 

kNN PSD Accuracy (%) 100(+/- 0.0) 98.3(+/- 0.3) 98.9(+/- 0.1) 

kNN PSD F1 Score (%) 100(+/- 0.0) 98.3(+/- 0.3) 98.9(+/- 0.1) 

kNN Spec Accuracy (%) 93.9(+/- 0.9) 83.8(+/- 1.4) 87.5 (+/-1.3) 

kNN Spec F1 Score (%) 93.9(+/- 1.0) 83.8(+/- 1.5) 87.6 (+/-1.3) 

 

Table 17 shows the results for 10 class flight mode classification. LR with PSD 

representation produces the highest accuracy with no interference, Bluetooth interference and 

Wi-Fi interference, maintaining over 95% accuracy in all scenarios. Again frequency domain 

features are shown to be more robust to interference from Bluetooth and Wi-Fi.  

 

Table 17 - DroneDetect 10 Class UAS Flight Mode Classification Accuracy and F1-Score 

with Interference 

Classifier Image Type Metric Clean Bluetooth Wi-Fi  

LR PSD Accuracy (%) 98.0(+/-0.4) 96.4(+/- 0.5) 97.2(+/- 0.3) 

LR PSD F1 Score (%) 98.0(+/-0.4) 96.4(+/- 0.5) 97.2(+/- 0.3) 

LR Spec Accuracy (%) 88.6(+/-0.8) 84.9(+/- 0.8) 82.0(+/- 0.7) 

LR Spec F1 Score (%) 88.6(+/-0.8) 84.9(+/- 0.8) 81.9(+/- 0.7) 

kNN PSD Accuracy (%) 93.5(+/-0.4) 89.5(+/- 0.8) 92.0(+/- 0.1) 

kNN PSD F1 Score (%) 93.5(+/-0.4) 89.5(+/- 0.8) 92.0(+/- 0.1) 

kNN Spec Accuracy (%) 79.7(+/-0.8) 72.0(+/- 0.5) 71.4(+/-0.4) 

kNN Spec F1 Score (%) 79.7(+/-0.8) 72.0(+/- 0.5) 71.5(+/-0.3) 
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The results also indicate that the use of the BladeRF and Palm Tree Vivaldi Ultra-wideband 

Antenna is worth further investigation for low cost UAS detection due to the overall accuracy 

achieved.  

 

Discussion 

In experiment 3 UAS detection and classification in the presence of real world interference 

from Bluetooth and Wi-Fi signals for 4 UAS classes from the DroneDetecet dataset. Results 

showed that CNN feature extraction for frequency domain features are more robust than time 

domain features when interference is introduced. If we only consider UAS detection then 

accuracy can be maintained at 100% as we introduce Bluetooth and Wi-Fi interference for 

PSD representation and LR as the classifier. Classification accuracy for 4 class UAS type can 

be maintained at over 99% again with PSD representation and LR. Accuracy drops by 1.6% 

when Bluetooth interference is present for 10 class flight mode classification and only 0.7% 

in the presence of Wi-Fi interference, indicating that Bluetooth signals are more likely to 

interfere with detection and classification accuracy than Wi-Fi signals.  

 

Further work could include increasing the number of UAS types in the dataset and 

experimenting with multiple interference sources at once, for example Bluetooth and Wi-Fi 

together. Detection distance could also be evaluated with a trained model. Lastly, the results 

in experiment 3 suggest further investigation should be considered using the BladeRF or 

other low cost SDRs as an option for UAS detection and classification systems. 
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4.4.2.2 Experiment 4 

 

Overview 

In experiment 4 the effect of real-world interference from Bluetooth and Wi-Fi signals 

concurrently on the full DroneDetect dataset including 7 types of UAS; Air 2 S, Parrot Disco, 

DJI Inspire 2, Mavic Pro, Mavic Pro 2, Mavic Mini and the Phantom 4. This allows for the  

assessment of multiple UASs that operate using different transmission systems: Wi-Fi, 

Lightbridge 2.0, OcuSync 1.0, OcuSync 2.0 and the OcuSync 3.0. 2 class UAS detection, 8 

class UAS type classification and 21 class UAS flight mode classification are considered in 

experiment 4 and with interference from both Bluetooth and Wi-Fi signals concurrently. The 

CNN considered is a VGG-16 with machine learning classifiers LR and kNN for graphical 

signal representations PSD and spectrograms.  

 

Results 

Table 18 shows that in the presence of concurrent real-world interference Bluetooth and Wi-

Fi signals, we can still detect a UAS with 100% accuracy and 100% F1-score using LR and 

PSD graphical representation. UAS-type classification produces 98.1 (+/-0.4)% accuracy and 

a 98.1 (+/-0.4)% F1-score, with PSD and LR and UAS flight mode classification achieving 

95.4 (+/-0.3)% accuracy and a 95.4 (+/-0.3)% F1-score.  
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Table 18 - DroneDetect Detection, UAS Type & Flight Mode Classification Accuracy and 

F1-Score with Interference Results accuracy and F1-score 

Classifier Image Type Metric Detection Type Flight Mode 

LR PSD Accuracy (%) 100(+/-0.0) 98.1 (+/-0.4) 95.4 (+/-0.3) 

LR PSD F1 Score (%) 100(+/-0.0) 98.1 (+/-0.4) 95.4 (+/-0.3) 

LR Spec Accuracy (%) 96.7 (+/-1.5) 90.5 (+/-0.8) 87.3 (+/-0.4) 

LR Spec F1 Score (%) 96.7 (+/-1.5) 90.5 (+/-0.9) 87.3 (+/-0.4) 

kNN PSD Accuracy (%) 96.6 (+/-0.2) 93.5 (+/-0.6) 86.5 (+/-0.5) 

kNN PSD F1 Score (%) 96.6 (+/-0.2) 93.4 (+/-0.7) 86.3 (+/-0.5) 

kNN Spec Accuracy (%) 88.0 (+/-1.3) 75.1 (+/-1.5) 64.6 (+/-0.9) 

kNN Spec F1 Score (%) 87.9 (+/-1.4) 75.3 (+/-1.5) 64.8 (+/-0.8) 

 

Accuracy and F1-score decrease as the classes increase, but high accuracy is maintained for 

flight mode classification. The table shows that LR outperforms kNN in all the experiments. 

Time domain features from the spectrogram graphical signal representations are less robust to 

the interference than frequency domain PSD features are.  



196 

 

© Crown Copyright 2022 

 

Figure 117 - DroneDetect Interference UAS type classification Confusion Matrix Graphical 

Signal Representation 

Figure 117 shows the confusion matrix for UAS-type classification. We can observe that the 

classifier has some misclassification between the Mavic Pro and the Mavic 2 Pro. If we go 

back to Table 18, we can see that the Mavic Pro uses OcuSync 1.0 and that the Mavic 2 Pro 

uses OcuSync 2.0. The main difference between the two transmission systems is that 

OcuSync 2.0 utilises both the 2.4 and 5.8GHz frequency bands. The misclassification is 

likely due to the similar nature of the systems in the 2.4GHz band.  
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Figure 118 - DroneDetect Interference UAS flight mode classification Confusion Matrix 

Graphical Signal Representation 

Figure 118 shows the confusion matrix for 21 class UAS flight mode classification. We can 

observe that the misclassification occurs again between the classes of Mavic Pro and Mavic 

Pro 2, which we can put down to the similarities between OcuSync 1.0 and 2.0. The second 

area of misclassification occurs between Phantom 4 switched on and Phantom 4 flying. 

However, the misclassification is small.  
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Discussion 

Overall, experiment 4 has shown that although UASs can prove a serious security challenge, 

especially in airfield scenarios, detection and classification can be achieved amongst real-

world interference. Using CNN feature extraction with transfer learning and machine learning 

classifiers, UASs operating with the same transmission systems can be distinguished amongst 

concurrent Bluetooth and Wi-Fi signals. For UAS detection, 100% accuracy can be achieved, 

and for UAS types and flight mode classification, values of 98.1% (+/-0.4%) and 95.4% (+/-

0.3%), respectively, are achieved.  

 

Future work should consider more than one UAS of the same type entering the airspace to 

evaluate how specific the neural network feature extraction is. Further to this, metrics such as 

detection distance and detection time can be applied for a trained model to detect and classify 

a UAS in real time to understand real-world feasibility. 
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4.4.3 GPS Jamming Dataset Experiments [27] 

The next two experiments use the GPS Jamming Dataset described in section 3.1.1 and 

produced in [31].  

 

4.4.3.1 Experiment 5 

Overview 

Experiment 5 uses the GPS Jamming Dataset containing the classes AM, FM, DME, Chirp, 

Narrowband and no jammer present. Transfer learning is applied through feature extraction 

using a VGG16 CNN pretrained on the ImageNet dataset and machine learning classifiers 

SVM, LR and RF. To date, prior research in this field has concentrated on spectrogram 

representation but experiment 5 shows that the novel concatenation of signal representations 

(PSD, spectrogram, raw constellation and histogram) is more effective, allowing the CNN to 

benefit from the strengths of each individual representation.  

 

A dataset containing 1000 image representations for each class was constructed for raw 

constellation; spectrogram; PSD; histogram; and a concatenation of all four. The databases 

were split 80/20 giving a total of 4,800 images for use with k-fold cross validation and a 

hold-out evaluation set of 1,200 images. Images were saved with 100 DPI and re-sized to 

224x224 pixels. Features were extracted from the dataset and then predictions were made 

using the best classification models (determined by the hyper-parameter optimisation). This 

evaluation dataset was not used to train the classification model so provides a final estimate 

of the performance of the model following training and validation.   
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Results 

Feature maps for the CNN extraction for these results can be seen in section Chapter 4. Table 

19 shows results from the nested cross validation (800 images per class). The results show 

SVM, LR and RF models to perform very closely in accuracy and F1-score compared with 

each other. The use of all 3 models for classification with the concatenation image database 

outperforms individual image signal representations. Concatenation of the 4 signal 

representations (PSD, histogram, spectrogram and raw constellation), classified using SVM 

and LR achieves 98% (+/- 0.5%) accuracy, RF 96.3% (+/- 0.6%)  F1-score with 10 fold cross 

validation. This is an increase of 3.1% accuracy compared with prior research in this field by 

Ferre et al. which concentrated on spectrogram images. 

Table 19 - GPS Jamming Dataset Classification Results Accuracy & F1-Score 

  Raw  Spec PSD Hist Concat 

S
V

M
 

Accuracy (%) 75.7 

(+/2.2) 

83.7 

(+/1.3) 

91.9 

(+/1.2) 

78.3 

(+/1.5) 

98.1 (+/-

0.5) 

F1-Score (%) 75.6 

(+/2.1) 

83.7 

(+/1.3) 

91.8 

(+/1.2) 

78.5 

(+/1.5) 

98.1 (+/-

0.5) 

L
R

 

Accuracy (%) 75.9 

(+/1.5) 

84.4 

(+/1.8) 

92.2 

(+/1.3) 

77.3 

(+/1.1) 

98.1 (+/-

0.5) 

F1-Score (%) 76.1 

(+/1.5) 

84.4 

(+/1.7) 

92.2 

(+/1.3) 

77.4 

(+/1.1) 

98.1 (+/-

0.5) 

R
F

 

Accuracy (%) 73.9  

(+/1.4) 

80.8  (+/-

1.7) 

91.3  (+/-

1.5) 

74.8 (+/-

0.8) 

96.3 (+/-

0.6) 
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F1-Score (%) 74.0  

(+/1.4) 

80.6  (+/-

1.7) 

91.2  (+/-

1.5) 

75.3 (+/-

0.8) 

96.2 (+/-

0.6) 

 

Table 20 shows the mean F1-Scores for individual jamming types using LR as the classifier. 

The concatenation of the images outperforms the individual representations for all jamming 

types. It can be seen that different representations can produce higher accuracy results for 

classifying different individual types of jamming signals (see underlined values). Raw 

constellation is best at classifying narrowband while spectrograms are best for chirp signals. 

PSD for classifying no jamming signals, FM and AM, while histogram is best for DME. This 

helps to understand why concatenating the representations into one image produces the 

highest results. The concatenation uses the strengths of each individual signal representation. 

Table 20 - GPS Jamming Dataset Individual Jamming Types LR F1-Score % 

 Raw Spec PSD Hist Concat 

DME 98 97 99 99 100 

NB 95 86 81 61 97 

No Jam 62 91 99 71 98 

Single AM 50 73 98 69 98 

Single Chirp 58 86 82 77 96 

Single FM 85 74 97 94 98 

 

Figure 119 shows the Confusion Matrix for the concatenation dataset within the evaluation 

data for LR. 
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The evaluation data results back up the cross validation scores which indicates that the model 

does generalize to new data and is not overfitting. LR performs the best out of the 3 models at 

97.8% accuracy but the difference is marginal (0.3% difference SVM and 2.3% difference 

RF).  Figure 119 shows that the model can detect whether a signal is present or not with an 

accuracy of over 98%. However, considering only detection of a signal, RF produced the best 

accuracy of 99%. 

 

Figure 119 - GPS Jamming Dataset LR Confusion Matrix 
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Discussion 

In experiment 5 we demonstrated a novel approach to the classification of GNSS jamming 

signals by considering a concatenation of PSD, spectrogram, raw constellation and histogram 

representations of the signal as an image classification problem. Each signal representation 

was shown to have a particular strength, for example raw constellation was best for 

classifying narrowband signals while spectrograms were best for DME signals. The 

concatenation uses the strengths of each individual signal representation to produce the 

highest accuracy in the results. 

 

Using a transfer learning approach with a VGG16 CNN pre-trained with ImageNet weights 

we have shown the concatenation approach achieves a mean classification accuracy of 98% 

(+/-0.5%). This outperforms previous research in the field which has concentrated on 

spectrogram image representation. Further, the process of transfer learning allows us to 

achieve high accuracy without needing a very large dataset of signals. Evidence from our 

experiments demonstrates that PSD produces higher classification accuracy (over 8%) than 

spectrograms when used as individual signal representation images. Our research was 

validated using 10 fold cross validation, with 3 fold nested cross validation for hyper-

parameter optimisation. A holdout evaluation dataset, not used in training and cross 

validation, confirmed the concatenation dataset to perform with accuracy at 97.8% for LR, 

97.5% for SVM and 95.4% for RF.  

 

Further work could include field testing with real GNSS jammers to understand how useful 

synthetic training sets are. Other types of transfer learning such as fine tuning a CNN VGG16 

which has been pretrained with ImageNet or other databases such as ResNet could also be 
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considered. Overall the results in experiment 5 have shown a novel approach using transfer 

learning which has robustness and high accuracy in GNSS jamming signal classification and 

outperforms previous work in the field. 
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4.4.3.2 Experiment 6 

Overview 

In experiment 6 the GPS Jamming dataset was produced for SNR levels 30dB, 10dB, -10dB 

and -20dB where each class was made up of 1000 images 224x224 pixels. Each class was 

further split 800 for use with k fold cross validation and 200 kept entirely separate to validate 

the model. The ResNet-50 was the CNN used for feature extraction . Graphical signal 

representations considered include PSD, spectrogram, raw IQ constellation, histogram and a 

concatenation of all four.  

 

The dataset of graphical signal representations are fed to a CNN for feature extraction. The 

features are then presented to machine learning classifiers Random Forest and SVM which 

were . SVM was employed with the hyper-parameter optimisation for regularisation values 

between 10 and 0.001 and Random Forest was set to 100 trees for the experiments using the 

built in bootstrapping process for hyper-parameter optimisation.  

 

Results 

Table 21 below shows the results with 5 fold cross validation. We can observe each 

individual signal representation for varying levels of SNR from 30dB down to a very low 

SNR of -20dB. We can observe that for all types of signal representation; raw, spectrogram; 

PSD, histogram and concatenation, we see that the accuracy goes down as the SNR 

decreases. SVM outperforms Random Forest in all instances. However the difference is 

marginal when the concatenated graphical signal representation is used. SVM is considerably 

slower to train that Random Forest so the advantages should be weighed up depending on the 
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priorities of the system as Random Forest still produces high accuracy at low SNR with the 

correct input.  

Table 21 - GPS Jamming Dataset Classification Accuracy at set SNR Levels 

 SNR (dB)  Raw  Spec PSD Hist Concat 

S
V

M
 

30 97.2 % 

(+/-0.8) 

99.6 %  

(+/-0.0) 

99.6 %  

(+/-0.1) 

99.6 %  

(+/-0.2) 

99.9 %  

(+/-0.1) 

10 97.2 %  

(+/-0.3) 

99.3 %  

(+/-0.1) 

99.6 %  

(+/-0.2) 

99.4 %  

(+/-0.3) 

99.9 %  

(+/-0.1) 

-10 90.9 %  

(+/-0.6) 

79.4 %  

(+/-1.5) 

86.9 %  

(+/-0.3) 

87.2 %  

(+/-0.8) 

97.2 %  

(+/-0.7) 

-20 50.1 %  

(+/-1.2) 

40.6 %  

(+/-1.3) 

67.1 %  

(+/-1.3) 

50.2 %  

(+/-1.8) 

72.8 %  

(+/-1.2) 

R
F

 

30 96.2 %  

(+/-0.1) 

98.7 %  

(+/-0.3) 

99.7 %  

(+/-0.2) 

98.9 %  

(+/-0.1) 

99.9 %  

(+/-0.2) 

10 97.2 %  

(+/-0.3) 

97.7 %  

(+/-0.4) 

99.5 %  

(+/-0.2) 

99.0 %  

(+/-0.5) 

99.9 %  

(+/-0.1) 

-10 84.4 %  

(+/-1.3) 

74.6 %  

(+/-1.5) 

84.5 %  

(+/-0.7) 

81.6 %  

(+/-0.9) 

94.0 %  

(+/-1.5) 

-20 46.7 %  

(+/-0.6) 

41.9 %  

(+/-1.7) 

65.7 %  

(+/-0.5) 

45.7 %  

(+/-1.7) 

66.9 %  

(+/-1.6) 
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In order to consider generalisation and be sure that the model was not over fitting a separate 

dataset of 200 images per class was reserved to validate the system post cross validation test 

and training. When we compare the results in Table 22 to Table 21 we can see that the 

accuracy measures are roughly the same. This means that the model is not over fitting, it is 

able to generalise and works on data it hasn’t seen before.  

 

Table 22 - GPS Jamming Dataset Validation Results Classification at set SNR Levels 

 SNR 

(dB)  

Raw  Spec PSD Hist Concat 

S
V

M
 

30 96.8 % 99.7 % 99.8 % 99.6 % 99.9 % 

10 97.4 % 99.5 % 99.7 % 99.5 % 100 % 

-10 90.7 % 79.2 % 87.1 % 89.0 % 97.3 % 

-20 52.5 % 42.3 % 65.6 % 50.7 % 74.7 % 

R
F

 

30 96.6 % 98.7 % 99.5 % 98.5 % 100 % 

10 97.6 % 97.4 % 99.2 % 99.0 % 99.9 % 

-10 86.5 % 74.1 % 83.6 % 82.6 % 95.1 % 

-20 48.3 % 41.7 % 63.8 % 44.8 % 68 % 

 

Figure 120 and Figure 121 show the confusion matrix for machine learning classifier SVM 

using the concatenation of graphical signal representations at -10dB SNR and -20dB SNR 
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respectively. We can observe at -10dB the classifier is starting to have very minor mis-

classifications between NB and chirp signals, and also FM and AM signals.  
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Figure 120 - GPS Jamming Dataset Confusion Matrix SVM Concatenation 10dB SNR 

 

Figure 121 - GPS Jamming Dataset Confusion Matrix SVM Concatenation -20dB SNR 
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Figure 121 shows that as the SNR decreases to -20dB those mis-classifications become larger 

between NB and chirp and also between FM and AM jamming signal types. To understand 

why the concatenation of signal representation produces higher accuracy results we have 

shown individual accuracy scores in Table 23 for machine learning classifier SVM at -20dB 

SNR. It can be seen that a spectrogram produces the highest accuracy for DME jamming 

signals and raw constellation produces the highest accuracy for FM jamming signal types. By 

concatenating the signal representations into one image which is then fed to the CNN for 

feature extraction, the CNN is able to utilise all the strengths of the individual signal 

representations.  

 

Table 23 - GPS Jamming Dataset Invidiual Accuracy -20dB SNR 

 Raw  Spec PSD Hist Concat 

DME 40 % 95 % 84 % 36 % 95 % 

NB 32 % 28 % 45 % 38 % 55 % 

No Jam 100 % 32 % 100 % 100 % 100 % 

AM 45 % 47 % 61 % 30 % 68 % 

Chirp 30 % 27 % 47 % 34 % 59 % 

FM 70 % 27 % 56 % 64 % 71 % 

 

If the results from a high SNR environment of 30dB in Table 21 are compared with previous 

work in [27] for the concatenation of signal representations, a deeper neural network 

Resnet50 produces higher accuracy results. In [27] the VGG-16 CNN was used for feature 
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extraction and produced 98% (+/- 0.5%) while this research has shown the ResNet50 to 

increase that to 99.9% (+/-0.1%). Further, if this research is compared to [23] it shows that 

machine learning classifiers SVM and Random Forest are able to utilise the strengths of each 

individual representation of the signal through concatenation and continue to perform well on 

data the model hasn’t seen before.   

 

Discussion 

Overall experiment 6 shows that the use of a deep CNN architecture and transfer learning for 

feature extraction, in conjunction with machine learning classifiers SVM and Random Forest, 

can produce high accuracy results in low SNR environments. The highest accuracy results are 

produced when graphical signal representations spectrogram, histogram, PSD and raw 

constellation are concatenated together so the CNN can benefit from the strengths of each 

individual representation. This is more apparent in low SNR environments where the 

concatenation representation can produce 75% accuracy at -20dB SNR. A separate dataset 

used to validate the model shows that there was no overfitting present in the results.  

Future work could look to expand the jamming classifications and look to test the model with 

real signals and detection/classification distances. However, this is problematic in some 

countries for example in the UK where legalities would prohibit these trials. In today’s 

economy GPS technology is only increasing in dependencies from 5G to driverless cars so 

the issue of jamming detection and classification remains of the upmost importance. 
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4.4.4 JamDetect Dataset Experiments [23]  

 

4.4.4.1 Experiment 7 

Overview 

The JamDetect dataset is produced containing 6 different types of commercial jamming 

signals including chirp, continuous wave (CW), barrage, narrowband, pulse and protocol 

aware jammers. It is produced with set levels of SNR and details of this process are described 

in section 3.1.2. Experiment 7 considers a VGG-16 as the CNN utilising transfer learning for 

feature extraction and machine learning classifier LR for classification. Graphical signal 

representations considered include PSD, spectrogram, raw IQ constellation, histogram and a 

concatenation of all four. Datasets were created for each graphical signal representations and 

the concatenated images at SNRs 50dB, 30dB, 10dB, -10dB and -20dB to understand the 

effect on classification accuracy. Datasets were created of 1000 images of size 224x224 for 

use with 5-fold cross validation. 5-fold cross validation was chosen due to the work of [360] 

who found that either k=5 or k=10 both showed empirically errors rates which displayed 

neither high variance or high bias. K=5 is less computationally heavy than k=10 so it was the 

choice for the experiments.  

 

Results 

Table 24 shows the training/test 5-fold cross validation results. PSD produces the highest 

accuracy when SNR is reduced. It can be seen that as the SNR reduces from 50 downwards, 

but a decrease in accuracy is not seen until the SNR drops below 10dB. This allows us to 

make the assumption that evaluating the signal in the frequency domain is less susceptible to 

noise and able to still identify and classify the signal. When the time domain via the 
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spectrogram graphical representation is considered it can be seen that it maintains accuracy 

levels up to -10dB SNR but significantly decreases below this, this is a significant drop when 

compared to the PSD graphical signal representation. The raw constellation is shown to be 

the most susceptible to noise and has the lowest performing accuracy scores. This indicates 

that the raw constellation data may produce higher accuracy results with some pre-processing 

which could include processes such as filtering. Concatenating the different signal 

representations seems to also inherit the low accuracy levels seen for the raw constellation 

and histogram representations at lower SNR levels which is logical.  

 

Table 24 - JamDetect Classification Results Set Levels SNR Accuracy (%) 

SNR 

(dB) 

PSD 

Accuracy (%) 

Spectrogram 

Accuracy (%) 

Raw 

Accuracy (%) 

Hist 

Accuracy (%) 

Concat 

Accuracy (%) 

50 100 100 83.3 (+/- 0.1) 100 100 

30 100 100 66.7 (+/- 0.1) 99.9 (+/-0.1) 100 

10 100 100 76.8 (+/- 1.5) 94.3 (+/-0.2) 100 

-10 100 99.6 (+/- 0.3) 50.2 (+/- 1.2) 50.7 (+/-0.7) 100 

-20 82.7 (+/-0.7) 40.0 (+/-0.6) 25.8 (+/-1.3) 22.6 (+/-0.8) 74.0 (+/- 1.5) 

 

Table 25 shows the validation results. The most significant finding from the validation results 

is with respect to the concatenated signal representations. Although effective at SNR levels of 

10dB and above, the validation scores show that the concatenation of the signal 

representation presents overfitting at -10dB and below. This means that the model was 
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learning the training data so well that the model did not generalise when it was given new 

samples in the validation set. A slight increase at the mid SNR level is also seen which 

indicates that the model produces higher accuracy with some level of noise present. This 

indicates that the model can generalise well with a certain amount of noise present.  

 

Table 25 - JamDetect Validation Classification Results Set Levels SNR Accuracy (%) 

SNR 

(dB) 

PSD 

Accuracy (%) 

Spectrogram 

Accuracy (%) 

Raw 

Accuracy (%) 

Hist 

Accuracy (%) 

Concat 

Accuracy (%) 

50 100 100 83.4 94.1 96.1 

30 100 100 66.8 100 84.1 

10 100 100 78.5 94.2 100 

-10 100 99.7 51.1 50.1 55.8 

-20 81.7 40.1 27.1 23.9 19.4 

 

The validation results also confirm the training and test results that the PSD produces the 

highest accuracy scores in low SNR environments and therefore is the least susceptible to 

noise.  

 

Discussion 

Overall our results have shown that the PSD graphical signal representation is the least 

susceptible to noise and produces the highest accuracy in low SNR environments. While our 
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previous work showed that concatenating various graphical signal representations together as 

the input for the CNN, this extension of that work has shown this to be effective only in 

environments with SNR levels higher than -10dB. This is significant for congested 

environments where it is vital to know GPS jamming is being attempted. In low SNR 

environments PSD should be utilised for GPS jamming classification. 

 

Further work could include exploring deeper architectures and types of neural networks for 

feature extraction. Experimentations with real GPS jamming signals which includes distance 

of detection and classification should also be considered for future exploration. Overall 

experiment 7 has shown that PSD graphical signal representation provides the highest 

accuracy for GPS jamming classification in low SNR environments with CNN feature 

extraction and machine learning classifier logistic regression. 
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Chapter 5 - Unsupervised Learning 

This section will cover the unsupervised algorithm experiments. How this work fits into the 

other chapters discussed so far is highlighted by the red box in Figure 122 below. The work 

in this chapter and the results presented in section 5.5.2 have been published early access 

with IEEE Transactions on Intelligent Transportation Systems [19].  

 

Figure 122 - Unsupervised Learning Chapter within larger Thesis Construct 

5.1 Clustering 

Human beings cluster objects on a daily basis and from a very early age. For example the 

CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) 

determines whether the user is a human by presenting it with a challenge response problem 

such as identifying pictures with chimneys in them. In a similar manner, clustering uses 

patterns found in the data to group data objects. The same set of data can be clustered in 

different ways depending on the numbers of clusters which are defined and depending on 

how the type of clustering algorithm used.  The main two types of clustering are hierarchical 

and partitional.  
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As the name suggests hierarchical clustering produces a cluster hierarchy, also known as a 

dendrogram. Within the structure clusters also contain sub-clusters. These sub clusters can be 

determined either with a bottom up approach using similarity (assuming all the data points 

are individual) or through a top down approach which starts with one clusters and with each 

step the cluster is split down further [362]. The issue with hierarchical clustering lies with the 

sheer amount of data which is available to process for different problems, there are so many 

possibilities that locating a optimum by investigation all of them is very difficult [363].  

 

Partitional clustering or non-hierarchical clustering gives a way of dealing with this issue 

using a heuristic approach that takes a global optimum and performs the optimization from 

there.  It doesn’t follow the hierarchical structure that can resemble a tree but rather the data 

is grouped by a criteria such as similarity but with no hierarchical connections. K-means 

clustering is a popular type of partitional clustering.  

 

5.2 K-Means Clustering 

Unsupervised machine learning algorithm K-means clustering does not need training data 

labels. Instead unsupervised learning works by letting the algorithm work out the underlying 

inherent patterns in the data. K-means was chosen as in comparison to other clustering 

models as it is fast and has been proven robust [364]. K-means clustering uses a metric of 

similarity to group the data and then that group is represented using a centroid. When the 

model is presented with new information it will assign the data to its closest centroid and 

therefore group. Similarity is found in these experiments by using the Euclidean distance. 

Equation (23) below shows the formula for calculating the Euclidean distance 𝑑𝑖𝑗  [365].  
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𝑑𝑖𝑗 =  √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2

𝑛

𝑘=1

 (23) 

In equation (23) 𝑛 represents the number of vectors and 𝑥𝑖𝑘 and 𝑥𝑗𝑘  are the two data points 

being compared. There are three parts to using k-means clustering. First a value must be 

selected for k which defined the number of initial centroids or cluster means. These initial 

values can be chosen at random or by other means which will be discussed in section 5.3. 

When those initial centroids are chosen from the data, the rest of the points are then assigned 

to each one depending on the similarity measure discussed in equation (23). The k-means 

algorithm then calculates new centroids based on the new mean of each other clusters. The 

process it iterative from there on, with the new centroid value calculation being followed by 

the data points being again assigned to their closest centroid. The process repeats until the 

centroids no longer change from one iteration to the next and they therefore achieve 

convergence.  

 

5.3 K-Means Initialisation 

One of the key factors which has been shown to determine how well K-means performs is to 

do with how the centroids are initialised [366]. This experiments in this thesis will consider 

the most common initialisations which include k-means++, principal component analysis 

(PCA) dimensionality reduction and random.   

 

K-means++ uses the probability proportional to the squared distance after selecting the first 

centroid randomly. The effect of this is that the centroids are moved as far away as they can 
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be from each other [367].  Initialisation which is random works by choosing random points 

from the dataset and using an average distance between the centroid and the point [368].  

 

PCA is a method of reducing dimensionality but keeping the feature information which is 

deemed important [369] [370]. Due to the dimensionality being reduced, PCA can produce 

very quick results compared with the other initialisations. PCA was tested by Ding and He 

[371] who found that PCA reduced data contained the same information which produced the 

same centroids for K-means. We are using PCA to reduce the dimensionality by projecting 

the data into an n dimensional space (where n is equal to the number of known classes). Then 

we are using those components of the PCA as the initialisation method which is 

deterministic. The method has also been tested by Li and Li [372] who compare PCA 

initialisation to k-means++ and random initialisation using the handwritten digits dataset 

[373]. Li and Li showed that PCA gave the same cluster centroids, similar accuracy to k-

means++ and random initialisations, but performed in a much quicker time.  

 

K-means was chosen as the clustering method due to its speed and we can use the value of k 

to help indicate new platforms when other known systems are in use on an airfield. This is 

due to the fact that UASs are being used increasingly for legitimate purposes. For example on 

airfields small UASs are being used for security, being deployed quickly to go and check a 

fence perimeter if an alarm is triggered [374]. They are used for the detection of runway 

debris, building inspections and controlling wildlife [375]. Early warning systems for UASs 

are normally made up of numerous subsystems and potentially different sensor types. So if 

for example, we knew that we had 4 different UASs operating on an airfield and a radar 

identified a potential UAS flying near the runway, an unsupervised learning algorithm could 
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be set to 𝑘 + 1, so in this instance 𝑘 = 5, to provide a quick indication and confirmation of 

whether the radar was picking up something of concern, i.e. a new cluster. That could then 

trigger a supervised learning algorithm of higher accuracy which will however take longer to 

determine a result. The clustering will have provided the vital information, that it is highly 

likely there is a new platform operating in a restricted airspace. The value comes from how 

quickly the clustering can give a result as an indicator and this is the reason why k-means 

clustering has been chosen for these experiments. 

 

5.4 Performance Metrics 

As stated previously the point of unsupervised learning is to allow the algorithm to find 

inherent patterns in the data by not giving any label information. However, if label 

information is available it can be used to check and understand how well the model has 

performed. For our datasets we have the label information so this can be used to check how 

well the model is performing against our ground truth labels by using clustering quality 

metrics. The first is called v-measure score and it is a harmonic of homogeneity score and 

completeness score. Homogeneity looks of whether the clusters only contain members of a 

single class and completeness looks at whether all points in a class belong to the same cluster 

[376]. A 1 represents perfect scoring between the label and the prediction, and equation (24) 

shows how the v-measure score is calculated from the two.  

 

 
𝑣 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  

(1 + 𝛽)(ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑒𝑡𝑦)(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠)

𝛽(ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 + 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠)
 (24) 
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When 𝛽 is less than 1 more weight is assigned to homogeneity, when greater than 𝑞 more 

weight is assigned to completeness. A perfect score is defined as 𝑣 = 1. The Adjusted Rand 

Index (ARI) and the Adjusted Mutual Information (AMI) consider the difference between the 

label and the sample cluster with AMI normalising against chance. A 0 would indicate 

random labels and 1 indicating perfect matches.  

 

5.5 Results 

Supervised learning techniques applied to RF signals have been considered for the 

classification of UAS type with high accuracy but due to labelled data assume the UAS signal 

is already known. Unsupervised learning algorithms such as K-means clustering provide a 

potential for clustering small UAS signals which have not been seen before for this problem 

set. The use of transfer learning and CNN feature extraction with spectrogram graphical 

signal representations have been successfully used in a supervised manner for medical 

diagnosis and audio classification. This research is the first application of transfer learning 

and CNN feature extraction as a pre-cursor to an unsupervised learning algorithm for use 

with UAS RF signals (or GPS jamming signals). Table 26 shows a key for all the 

experiments in this section with experiments 1 representing the raw images – either in PSD or 

spectrogram form being presented for k-means clustering. For experiments 2 and 3 the 

images have been pre-processed with a pre-trained VGG-16 and ResNet-50 respectively for 

feature extraction. Then the features are presented for k-means clustering. 
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Table 26 – K-Means Experiments Key 

Experiment Graph Type Method 

1 PSD or Spectrogram Raw Image 

2 PSD or Spectrogram VGG-16 Feature extraction 

3 PSD or Spectrogram ResNet-50 Feature extraction 

 

5.5.1 DroneRF Dataset 

5.5.1.1 Overview 

The DroneRF dataset as described in section 3.1.3 and produced by Al-S’ad et al. [204] 

covers 80MHz of the 2.4GHz frequency band using 2x SDRs. The dataset includes the Parrot 

AR (Elite 2.0), Parrot Bebop, no UAS present and the DJI Phantom 3. On Figure 127 to 

Figure 130 the cluster numbers 0-3 represents the AR, Bebop, No UAS and Phantom 3 

respectively. On Figure 123 to Figure 126 cluster 0 represents no UAS present and cluster 1 

represented a UAS being active in the area. Signals were represented in the time domain as a 

spectrogram and in the frequency domain as a Power Spectral Density (PSD). This would let 

us evaluate whether viewing the data in the time or frequency domain produced higher 

accuracy results for classification. Python 3 Matplotlib was used to plot the spectrogram and 

PSD images both with 1024 FFT size, Hanning windowing functions and centre frequency 

2.442GHz covering a range of 2.402GHz – 2.482GHz. Images were saved as size 224x224 

pixels with 800 images per class. For the VGG-16 feature vectors of 25, 0888 values were 

produced and for the ResNet-50 features vectors of 100,352. Experiment 1 uses the raw 

images with K-means clustering and experiments 2 and 3 VGG-16 and ResNet-50 feature 

extraction respectively. 
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5.5.1.2 Results – Clustering (UAS Detection) 

Table 26 shows a key for understanding the experiments presented in tables Table 31 and 

Table 32. Experiments 1 represent raw images, experiments 2 VGG-16 features extraction 

and experiments 3 ResNet-50 features extraction.  

Table 27 - DroneRF K-Means Clustering Detection Results UAS 

Exp. Image Init Time (s) homo compl v-measure ARI AMI 

1 PSD kmeans++ 0.423 0.982 0.982 0.982 0.992 0.982 

1 PSD random 0.104 0.982 0.982 0.982 0.992 0.982 

1 PSD PCA 0.126 0.982 0.982 0.982 0.992 0.982 

1 SPEC kmeans++ 0.441 0.001 0.001 0.001 0.001 0.001 

1 SPEC random 0.155 0.001 0.001 0.001 0.001 0.000 

1 SPEC PCA 0.147 0.001 0.001 0.001 0.001 0.001 

2 PSD kmeans++ 2.664 0.970 0.970 0.970 0.987 0.970 

2 PSD random 2.086 0.970 0.970 0.970 0.987 0.970 

2 PSD PCA 1.424 0.970 0.970 0.970 0.987 0.970 

2 SPEC kmeans++ 2.930 0.187 0.255 0.145 0.216 0.100 

2 SPEC random 3.483 0.210 0.272 0.175 0.236 0.098 

2 SPEC PCA 1.745 0.206 0.267 0.173 0.233 0.099 

3 PSD kmeans++ 10.785 0.986 0.986 0.986 0.995 0.986 

3 PSD random 9.470 0.986 0.986 0.986 0.995 0.986 

3 PSD PCA 6.031 0.986 0.986 0.986 0.995 0.986 

3 SPEC kmeans++ 17.291 0.026 0.026 0.026 0.035 0.025 

3 SPEC random 13.115 0.028 0.028 0.028 0.028 0.028 

3 SPEC PCA 9.256 0.024 0.024 0.024 0.024 0.023 
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Table 27 shows the results for the clustering of UAS detection for experiment 1 - raw images 

(PSD and spectrogram) and experiments 2 and 3 whereby the PSD and spectrograms were 

preprocessed using a VGG-16 and ResNet-50 feature extraction respectively. Table 27 shows 

that v-measure scores for PSD significantly outperform spectrograms – for raw images and 

both types of CNN feature extractors. Random initialisation outperforms k++ and PCA 

generally for inference time, while for v-measure PCA and random produce the highest 

scores. ARI and AMI mimic the trends seen with v-measure scores.   

 

Overall the best performing combination of initialisation and image with or without CNN 

feature extraction was PSD graphical signal representation with a REsNet-50 feature 

extractor, producing a 0.986 v-measure score. Initialisation did not affect v-measure score but 

if the initialisation method was to be chosen by quickest inference time then PCA was fastest 

at 6.031 seconds. However, PSD raw images without feature extraction performed nearly as 

high on v-measure at 0.982, again with all v-measure scores for each initialisation begin the 

same. The quickest inference time was seen with the random initialisation at 0.104 of a 

second, significantly quicker than using the ResNet-50 feature extractor.  
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Figure 123 - DroneRF K-Means Detect Spectrogram Graphical Signal Representation Raw 

Image 

Figure 123 shows the first two principal components plotted on a scatter graph for 

spectrogram raw images with PCA initialisation of K-means. This produced a very low v-

measure score of 0.001 indicating that k-means was unable to cluster between UAS and no 

UAS. This is also seen visually in Figure 123 were the overlap between cluster 0 and cluster 

1 can be observed as they meet in the middle of the graph.  

 

 



226 

 

© Crown Copyright 2022 

 

Figure 124 - DroneRF K-Means Detect PSD Graphical Signal Representation ResNet-50 

Feature Extraction 

A clear difference can be seen in Figure 124 when it is compared to Figure 123. Figure 124 

shows principle component 1 and 2 for PSD graphical signal representations pre-processed 

with ResNet-50 feature extraction. There is good separation between no UAS (cluster 0) and 

UAS (cluster 1), with the UAS signals having a higher concentration of grouping. The 

separation is reflected in the v-measure score of 0.986, the highest performing combination 

which was tested.  

 

 

 



227 

 

© Crown Copyright 2022 

 

Figure 125 - DroneRF K-Means Detect Spectrogram Graphical Signal Representation VGG-

16 Feature Extraction 

Figure 125 shows the spectrogram signal representations with VGG-16 feature extraction. As 

with Figure 123 which displays the raw spectrograms, there is little separation in either 

Figure 123 or Figure 125 between the clusters. If the centre of the graph is observed closely it 

can be seen that the no UAS (cluster 0) and UAS (cluster 1) overlap in the red and blue. This 

correlates with the low v-measure scores seen in Table 27.  
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Figure 126 - DroneRF K-Means Detect PSD Graphical Signal Representation Raw Image 

Lastly Figure 126 shows the first two principle components for raw PSD graphical signal 

representations with PCA initialisation of k-means clustering. Figure 126 shows a clear 

separation between no UAS (cluster 0) and UAS present (cluster 1) with the UAS cluster 

showing a higher concentrated cluster. This visual separation is correlated by the high v-

measure score of 0.982 described in Table 27.  

 

5.5.1.3 Results – Clustering (UAS Type)  

Table 28 shows the results for the K-means clustering. In general PSD images – whether raw 

or used with VGG-16 or ResNet-50 features extraction, significantly outperform spectrogram 

images, showing that frequency domain representation produces higher v-measure scores for 
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clustering than time domain. Initialising the k-means clustering with PCA not only produces 

the highest v-measure score but it has the quickest inference time for raw images, VGG-16 

and ResNet-50 feature extraction.  

Table 28 - DroneRF K-Means Clustering Type Results UAS 

Exp. Image Init Time (s) homo compl v-measure ARI AMI 

1 PSD kmeans++ 0.889 0.594 0.825 0.691 0.541 0.690 

1 PSD random 0.301 0.714 0.835 0.770 0.636 0.770 

1 PSD PCA 0.189 0.715 0.836 0.771 0.637 0.770 

1 SPEC kmeans++ 0.942 0.170 0.173 0.171 0.149 0.171 

1 SPEC random 0.337 0.172 0.175 0.173 0.148 0.173 

1 SPEC PCA 0.220 0.172 0.175 0.173 0.149 0.173 

2 PSD kmeans++ 8.771 0.443 0.776 0.564 0.354 0.564 

2 PSD random 6.771 0.514 0.671 0.582 0.383 0.581 

2 PSD PCA 4.682 0.683 0.773 0.725 0.632 0.725 

2 SPEC kmeans++ 7.609 0.210 0.219 0.214 0.158 0.214 

2 SPEC random 5.661 0.209 0.215 0.212 0.155 0.211 

2 SPEC PCA 3.750 0.211 0.222 0.216 0.162 0.215 

3 PSD kmeans++ 30.623 0.559 0.688 0.617 0.431 0.616 

3 PSD random 24.855 0.455 0.648 0.534 0.375 0.534 

3 PSD PCA 15.489 0.570 0.692 0.625 0.447 0.625 

3 SPEC kmeans++ 36.033 0.195 0.203 0.199 0.151 0.198 

3 SPEC random 30.847 0.193 0.202 0.198 0.149 0.197 

3 SPEC PCA 20.150 0.193 0.202 0.198 0.149 0.197 
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The highest v-measure score of 0.771  is produced by raw image - PSD graphical signal 

representation and PCA initialisation. This completed in a time of 0.189 seconds. Raw PSD 

images with PCA initialisation showed a higher v-measure score than feature extraction with 

PCA initialisation which was 0.725 for VGG-16 feature extraction and 0.625  for ResNet-50 

feature extraction.  

 

Figure 127 - DroneRF K-Means Spectrogram Graphical Signal Representation Raw Image 

Figure 127 shows the first two principle component for spectrogram raw image graphical 

signal representation. It can be seen that the class no UAS (cluster 2) is not clearly separated 

from the UAS signals AR, Bebop and Phantom. There is a not a clear divide between any of 

the clusters defined.  



231 

 

© Crown Copyright 2022 

 

Figure 128 - DroneRF K-Means PSD Graphical Signal Representation VGG-16 Feature 

Extraction 

 

Figure 128 shows the scatter plot of principle component 1 and 2 from VGG-16 feature 

extraction of the PSD with PCA initialisation. The class no UAS (cluster 2) is here clearly 

separated from the UAS clusters. The Bebop (cluster 1) also shows a higher visual separation 

from the AR and Phantom 3.  
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Figure 129 - DroneRF K-Means Spectrogram Graphical Signal Representation VGG-16 

Feature Extraction 

Figure 129 shows the VGG-16 feature extraction with spectrogram. It is not as clearly 

separated as the PSD representation in Figure 128. It also visually depicts more outliers and a 

wider spread than the spectrogram images which are used without feature extraction in Figure 

127. The feature extraction with spectrograms did produce a slightly higher v-measure score 

of 0.216 compared to 0.173 with raw spectrograms in Table 28. 
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Figure 130 - DroneRF K-Means PSD Graphical Signal Representation Raw Image 

Figure 130 shows the first two principle components plotted on a scatter graph for PSD Raw 

images. This produced the highest v-measure score of 0.771 and completed in under 0.2 

seconds. Cluster 2 on Figure 130 represents the class no UAS and it can be clearly seen there 

is a distinct separation between a UAS being present and not present. This reflects Figure 126 

which shows good separation for clustering no UAS and UAS signals using PSD graphical 

signal representations and PCA initialisation for k-means.  
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5.5.1.4 Discussion 

UAS detection results shows that PSD graphical signal representations significantly 

outperformed spectrograms for k-means clustering regardless of the initialisation means or 

whether feature extraction had occurred. For inference time, random initialisation 

outperformed k++ and PCA and for v-measure PCA and random initialisation produced the 

highest scores. Considering both inference time and v-measure score, PSD raw images 

without feature extraction produced a v-measure of 0.982 in 0.104 of a second, significantly 

quicker than using the ResNet-50 feature extractor which did have a marginally higher v-

measure score. Visually it could be seen from Figure 126 that good separation was achieved 

reflecting the high v-measure score for PSD graphical signal representation with PCA 

initialisation.  

 

PSD images significantly outperform spectrogram images for raw image use and for feature 

extraction. This indicates that representing the signal in the frequency domain produces 

higher clustering results than representing the signal in the time domain. Initialising k-means 

with PCA produces the highest v-measure scores and the fastest inference times. There is no 

real advantage to applying feature extraction compared to raw images. The feature extraction 

adds time to the process and does not increase the v-measure score compared with raw 

images.  The highest v-measure score of 0.771 which completed in under 0.2 seconds is using 

raw PSD graphical signal representations with PCA initialisation.  
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5.5.2 DroneDetect Dataset 

 

5.5.2.1 Overview 

The experiments use the ‘DroneDetect’ Dataset and the following eight UAS; DJI Air 2 S 

(OcuSync 3.0), Parrot Disco (Wi-Fi), DJI Inspire 2 Pro (Lightbridge 2.0), DJI Mavic Pro 

(OcuSync 1.0), DJI Mavic Pro 2 (OcuSync 2.0), DJI Mavic Mini (Wi-Fi), DJI Phantom 4 

(Lightbridge 2.0) and No UAS present. The data is presented to the k-means clustering as an 

image of the graphical signal representations spectrogram and PSD; following CNN feature 

extraction using a VGG-16 pre-trained on ImageNet and following CNN feature extraction 

using a ResNet-50 pre-trained on ImageNet. Images for PSD and spectrogram datasets were 

saved as 224x224 pixels with 400 images per class.  

 

5.5.2.2 Results – Clustering (UAS Detection) 

 

Table 26 shows a key for understanding the experiments presented in tables Table 29 and 

Table 30. Experiments 1 represent raw images, experiments 2 VGG-16 features extraction 

and experiments 3 ResNet-50 features extraction.  

 

Table 29 - DroneDetect K Means Clustering Results UAS Detect Clean 

Exp. Image Init Time (s) homo compl v-measure ARI AMI 

1 PSD kmeans++ 0.237 0.965 0.965 0.965 0.985 0.965 

1 PSD random 0.133 0.655 0.668 0.661 0.693 0.661 

1 PSD PCA 0.122 0.760 0.764 0.762 0.819 0.762 
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1 SPEC kmeans++ 0.288 0.259 0.263 0.261 0.325 0.260 

1 SPEC random 0.059 0.259 0.263 0.261 0.325 0.260 

1 SPEC PCA 0.060 0.259 0.263 0.261 0.325 0.260 

2 PSD kmeans++ 1.618 1.000 1.000 1.000 1.000 1.000 

2 PSD random 1.270 1.000 1.000 1.000 1.000 1.000 

2 PSD PCA 0.753 1.000 1.000 1.000 1.000 1.000 

2 SPEC kmeans++ 1.858 0.708 0.712 0.710 0.783 0.710 

2 SPEC random 1.506 0.767 0.768 0.768 0.842 0.767 

2 SPEC PCA 0.847 0.712 0.716 0.714 0.788 0.714 

3 PSD kmeans++ 8.203 1.000 1.000 1.000 1.000 1.000 

3 PSD random 7.751 1.000 1.000 1.000 1.000 1.000 

3 PSD PCA 3.832 1.000 1.000 1.000 1.000 1.000 

3 SPEC kmeans++ 6.162 0.782 0.783 0.782 0.856 0.782 

3 SPEC random 7.395 0.782 0.783 0.782 0.856 0.782 

3 SPEC PCA 3.712 0.793 0.794 0.794 0.860 0.793 

 

Table 29 shows K-means clustering results for UAS detection in a clean environment using 

the DroneDetect dataset. In general PSD graphical signal representation outperform 

spectrograms. The highest v-measure was produced from using the PSD image with either the 

VGG-16 or the ResNet-50 feature extractor, both producing a perfect score of 1.000.  

Inference time for the ResNet-50 was 3.832 seconds and 0.753 seconds for the VGG-16, 

showing that the VGG-16 produces higher v-measure scores. An even faster inference time 

can be seen with only a small reduction in v-measure by employing the PSD raw images with 
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a k++ initialisation. This produces a v-measure of 0.965 with an inference time of 0.237 

seconds.  

Table 30 - DroneDetect K Means Clustering Results UAS Detect Intereference 

Exp. Image Init Time (s) homo compl v-measure ARI AMI 

1 PSD kmeans++ 0.312 0.177 0.282 0.217 0.094 0.216 

1 PSD random 0.108 0.177 0.282 0.217 0.094 0.216 

1 PSD PCA 0.138 0.177 0.282 0.217 0.094 0.216 

1 SPEC kmeans++ 0.349 0.107 0.111 0.109 0.136 0.108 

1 SPEC random 0.137 0.107 0.111 0.109 0.136 0.108 

1 SPEC PCA 0.125 0.107 0.111 0.109 0.136 0.108 

2 PSD kmeans++ 1.849 0.179 0.283 0.219 0.096 0.281 

2 PSD random 1.661 0.284 0.361 0.318 0.212 0.317 

2 PSD PCA 0.959 0.284 0.361 0.318 0.212 0.317 

2 SPEC kmeans++ 2.599 0.343 0.343 0.343 0.435 0.342 

2 SPEC random 2.001 0.157 0.266 0.197 0.075 0.075 

2 SPEC PCA 1.126 0.000 0.000 0.000 -0.001 -0.001 

3 PSD kmeans++ 8.711 0.544 0.569 0.556 0.554 0.556 

3 PSD random 7.279 0.291 0.367 0.325 0.222 0.324 

3 PSD PCA 4.933 0.291 0.367 0.325 0.222 0.324 

3 SPEC kmeans++ 8.754 0.011 0.012 0.012 0.013 0.011 

3 SPEC random 7.394 0.153 0.264 0.194 0.073 0.193 

3 SPEC PCA 4.949 0.008 0.008 0.008 0.009 0.009 
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Table 30 shows the same K-means clustering results for UAS detection but in an environment 

where both Bluetooth and Wi-Fi interference signals are present. Information about these 

signals can be found in section 3.1.4 and section 0. As with the clean environment in Table 

29, PSD graphical signal representation significantly outperforms spectrograms. However, 

the interference effects performance in terms of v-measure considerably. Comparing the top 

performing combination in Table 29 of PSD with VGG-16 feature extraction producing a v-

measure of 1.000, in Table 30 PSD with VGG-16 feature extraction produces the highest v-

measure of 0.318 for PCA and random initialisation. This shows that interference does affect 

the ability of k-means to perform clustering. However, the highest performing combination 

was seen with the ResNet-50 feature extractor, PSD images and k++ initialisation. This 

produced a v-measure of 0.556 with an inference time of 8.711. This indicates that the deeper 

CNN architecture may be more resilient to noise when determining UAS features.  

 

 

Figure 131 - DroneDetect PSD Graphical Signal Representation Raw Image Clean and 

Interference Detection 
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Figure 131 shows the first two principle components from the combination of PSD raw 

images with PCA initialisation for k-means clustering. On the left the clean environment is 

observed and on the right the interference is introduced. Table 29 and Table 30 show that the 

v-measure score drops from 0.762 to 0.217 when the interference is present with the UAS or 

no UAS signal. The left hand side of Figure 131 a higher concentration of cluster 0 which 

represents no UAS, especially compared to the interference on the right hand side where the 

red points for no UAS are actually quite far away from the centroid assigned to them (marked 

by the black cross).   

 

 

Figure 132 - DroneDetect Spectrogram Graphical Signal Representation Raw Image Clean 

and Interference Detection 

 

Figure 132 shows the spectrogram raw images utilising PCA initialisation for k-means in a 

clean environment on the left and in the presence of interference on the right. Corresponding 

v-measure scores are 0.261 for the clean environment and 0.109 for the interference presence, 

presented in Table 29 and Table 30 respectively. Visually there is a higher level of 

concentration, especially for the UAS cluster, in the clean environment.  
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Figure 133 - DroneDetect PSD Graphical Signal Representation VGG-16 Feature Extraction 

Clean and Interference Detection 

Figure 133 shows the principle component 1 and 2 plot of VGG-16 feature extraction with 

PSD images and PCA initialisation for k-means. In the clean environment on the left the 

separation of the two clusters is clear and corresponds with a v-measure score of 1.000. On 

the right hand side the separation is less vivid and again this is reflected with a significant 

drop in v-measure to 0.325 as seen in Table 29 and Table 30. 
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Figure 134 - DroneDetect PSD Graphical Signal Representation ResNet-50 Feature 

Extraction Clean and Interference Detection 

Lastly Figure 134 shows the clean and interference environments with a combination which 

uses the ResNet-50 for feature extraction with PSD images. The highest performing 

combination for the interference environment used k++ for initialisation and showed a 0.556 

v-measure score. Figure 134 shows PCA initialisation which produced a 0.325 v-measure 

score. On the left hand side in the clean environment on Figure 134 the separation between 

cluster 0 (no UAS present) and cluster 1 (UAS present) is clear with a higher concentration of 

grouping around the centroid (black cross) for no UAS present (cluster 0).  

 

5.5.2.3 Results – Clustering (UAS Type) 

Table 26 shows a key for understanding the experiments presented in tables Table 31 and 

Table 32. Experiments 1 represents raw images, experiment 2 shows the VGG-16 features 

extraction results and experiments 3 considers ResNet-50 feature extraction.  
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Table 31 – DroneDetect K Means Clustering Results UAS Type Clean 

Exp. Image Init Time (s) homo compl v-

measure 

ARI AMI 

1 PSD kmeans++ 1.014 0.392 0.585  0.469  0.197  0.467 

1 PSD random 0.703 0.586 0.684 0.631 0.413 0.630 

1 PSD PCA 0.280  0.580 0.668 0.620 0.428 0.619 

1 SPEC kmeans++ 1.207  0.271 0.314 0.291 0.148 0.288 

1 SPEC random 0.895  0.260 0.279 0.269 0.144 0.266 

1 SPEC PCA 0.401  0.295 0.319 0.307 0.159 0.304 

2 PSD kmeans++ 13.914  0.629 0.731 0.676 0.488 0.675 

2 PSD random 9.999  0.631 0.700 0.664 0.490 0.663 

2 PSD PCA 4.927 0.651 0.701 0.675 0.525 0.674 

2 SPEC kmeans++ 17.061  0.694 0.865 0.770 0.579 0.770 

2 SPEC random 13.947  0.684 0.773 0.725 0.555 0.724 

2 SPEC PCA 6.083  0.807 0.821 0.814 0.731 0.814 

3 PSD kmeans++ 68.375  0.698 0.724 0.711 0.581 0.709 

3 PSD random 50.335 0.737 0.776 0.756 0.628 0.755 

3 PSD PCA 24.509  0.711 0.731 0.721 0.617 0.720 

3 SPEC kmeans++ 67.166  0.717 0.815 0.762 0.583 0.762 

3 SPEC random 56.466  0.678 0.765 0.719 0.533 0.718 

3 SPEC PCA 24.564  0.720 0.749 0.734 0.586 0.733 

 

Table 31 highlights the performance metrics for presenting the k-means clustering on PSD 

and spectrogram images and Feature Extraction (FE) using VGG-16 and ResNet-50 for clean 
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signals. PCA dimensionality reduction speeds up the clustering time compared to random and 

k-means++ initialisations. If we consider time only then the fastest performance comes from 

using the images on their own with no feature extraction and PCA dimensionality reduction. 

The highest v-measure score is 0.814 which is using spectrogram images with the VGG-16 

FE and PCA dimensionality reduction. ARI and AMI scores mimic the v-measure in terms of 

the highest performing. However, the highest v-measure score comes at a cost of time taking 

6.083 seconds to complete. It is also interesting to note that the v-measure scores remain 

similar between experiment 1, 2 and 3 for PSD images, the CNN feature extraction does not 

increase v-measure significantly. While with the spectrogram images, the v-measure score 

doubles. For example raw spectrogram images using k++ initialisation produce 0.291 v-

measure, while after the CNN feature extraction the v-measure increases to 0.770. It can also 

be seen that the deeper CNN architecture in experiment 3 does increase the v-measure scores 

for PSD but not for spectrogram.  

Table 32 - DroneDetect K Means Clustering Results UAS Type Interference 

Exp. Image Init Time (s) homo compl v-measure ARI AMI 

1 PSD kmeans++ 1.009  0.363 0.521 0.428 0.275 0.426 

1 PSD random 0.675  0.473 0.575 0.519 0.356 0.517 

1 PSD PCA 0.193  0.584 0.617 0.600 0.475 0.599 

1 SPEC kmeans++ 0.945  0.274 0.290 0.282 0.144 0.279 

1 SPEC random 0.798  0.276 0.292 0.284 0.145 0.281 

1 SPEC PCA 0.321  0.276 0.292 0.284 0.145 0.281 

2 PSD kmeans++ 17.207  0.709 0.821 0.760 0.620 0.760 

2 PSD random 11.010  0.674 0.786 0.726 0.595 0.725 

2 PSD PCA 5.232  0.678 0.723 0.699 0.554 0.698 
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2 SPEC kmeans++ 19.534 0.440 0.519 0.476 0.342 0.474 

2 SPEC random 14.621  0.450 0.544 0.493 0.351 0.491 

2 SPEC PCA 7.045  0.496 0.513 0.505 0.370 0.503 

3 PSD kmeans++ 72.722  0.684 0.702 0.693 0.566 0.692 

3 PSD random 55.690  0.617 0.668 0.641 0.525 0.640 

3 PSD PCA 24.284  0.633 0.653 0.643 0.513 0.642 

3 SPEC kmeans++ 79.026  0.448 0.511 0.477 0.318 0.475 

3 SPEC random 78.479  0.441 0.490 0.464 0.319 0.462 

3 SPEC PCA 31.298  0.463 0.491 0.477 0.335 0.475 

 

Table 32 highlights the performance metrics for presenting the k-means clustering on PSD 

and spectrogram images and feature extraction using VGG-16 and ResNet-50 for signals in 

the presence of interference. Again, PCA dimensionality reduction speeds up the clustering 

time compared to random and k-means++ initialisations. As with the clean signals, if we 

consider time only then the fastest performance comes from using the images on their own 

with no feature extraction and PCA dimensionality reduction. The highest v-measure score is 

0.760 which is using PSD images with the VGG-16 FE. This indicates that PSD is more 

robust to noise. ARI and AMI scores mimic the v-measure in terms of the highest 

performing. Again the highest v-measure score comes at a cost of time at 17 seconds.  

 

To understand which implementation is best we really must consider the desired application 

of the system for it to be used within. For example if the system needs to display as high an 

accuracy as possible but time is not urgent then the correct choice would be a spectrogram 

with VGG-16 FE and PCA initialisation which takes 6 seconds and produces a 0.814 v-
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measure score in a clean environment. In the presence of interference the PSD outperforms 

the spectrogram, still with the VGG-16 and k++ initialisation which takes 17 seconds and 

produces a 0.760 v-measure score. However, if the system needs to be highly time sensitive 

but can cope with a slightly lower accuracy then the best option would be image PSD with 

PCA which can complete in 0.280 seconds with a v-measure of 0.620 in a clean environment 

and 0.193 seconds with a v-measure of 0.60 in the presence of interference. In this instance 

the unsupervised learning could be used for a very timely indication that a UAS might be in 

the vicinity to cue another system, even a supervised algorithm with much higher accuracy. 

 

Figure 135 - DroneDetect K-Means PSD Graphical Signal Representation Image PCA 

Initialisation Clean 
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Figure 136 - DroneDetect K-Means Spectrogram Graphical Signal Representation Image 

VGG-16 FE PCA Initialisation Clean 

Figure 135 shows the k-means clustering for PSD images using PCA dimensionality 

reduction in a clean environment with no interference from Bluetooth or Wi-Fi signals. Fig. 

Figure 136 shows spectrogram images which have been through FE with VGG-16 and PCA 

initialisation in a clean environment. Comparing  

Figure 135 to Figure 136 it can be seen that the centroids in  

Figure 135 have greater separation corresponding to a higher v-measure score, ARI and AMI. 
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Figure 137 - DroneDetect k-Means Spectrogram Graphical Signal Representation Image 

ResNet-50 FE PCA Initialisation with interference 

 

Figure 138 - DroneDetect K-Means PSD Graphical Signal Representation Image VGG-16 FE 

PCA Initialisation with Interference. 

 

 

Figure 137 shows the k-means clustering for spectrogram images using PCA dimensionality 

reduction and ResNet-50 FE in the presence of interference whereby the centroids are marked 

by black crosses. We can see that the clusters boundaries are quite close together. This 

produces the slightly lower v-measure score of 0.495 and a longer resolution time of 30 

seconds.  

Figure 138 shows the higher accuracy implementation of the PSD image VGG-16 FE with 

PCA initialisation producing a v-measure of 0.699 in the presence of interference but 

completing in a slower time of 5.2 seconds.  
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5.5.2.4 Discussion 

Overall these experiments have shown that unsupervised learning algorithms such as K-

means clustering provide a potential for clustering small UAS signals which have not been 

seen before. In the future this could be extended for other datalink type and not exclusive to 

UAS signals. For UAS type, clustering graphical representations of the signal and utilising 

CNN feature extraction with transfer learning produces the highest v-measure score but at a 

cost of time, 6 seconds in a clean environment with spectrograms and 17 seconds with PSD 

in the presence of interference. With small UASs being capable of traveling at speeds of 45 

mph, timely detection is essential in many use cases. Utilising a PSD image with PCA 

dimensionality and accepting a reduction of 0.2 v-measure in a clean environment allows 

clustering time to complete in under 0.3 second even in environments with interference from 

Bluetooth and Wi-Fi in the same band. Ultimately it should be dependent on the mission of 

the system. If a timely result is prudent then PSD images implemented with PCA 

initialisation would provide effective early warning to instigate the cueing of a secondary 

sensor or supervised algorithm with higher classification accuracy. However, employing 

transfer learning with CNN FE gives a higher v-measure score of 0.814 when employed with 

PCA initialisation and producing the clustering in 6 seconds.  

For detection PSD graphical signal representation significantly outperformed spectrogram 

graphical signal representations. The interference from Bluetooth and Wi-Fi signals 

introduced in the frequency band decreased v-measure scores significantly. Comparing the 

highest performing clean combination of PSD, VGG-16 and any initialisation saw a 0.7 drop 

in the same combination with interference. This shows that interference does affect the ability 

of k-means to perform clustering. However, the ResNet-50 feature extractor was able to 

achieve a v-measure score of 0.556 even in the presence of the interference with PSD images 
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and k++ initialisation. This experiment indicates that the deeper CNN architecture may be 

more resilient to noise when determining UAS features. 

 

Future work could consider a larger number of UAS types in the dataset. Other types of 

unsupervised clustering algorithms and dimensionality reduction techniques could also be 

compared to extend this work. Another piece of valuable future work should include the 

collection of datasets at set distances away from the detection system. This would allow for a 

thorough evaluation of the correlation between clustering results and distance of the UASs 

from the detection equipment. Datasets could also be collected in a city based environment to 

understand the effect that a highly congested EM spectrum would have on the clustering 

results. The reason for this is that built up areas will contain other signals in the same band, 

for example Wi-Fi signals. These signals may introduce ‘confusion’ as noise within the band 

and inhibit the ability of the model to correctly cluster the results. This has the potential to be 

especially detrimental in built up areas but it would need tested to understand whether the 

clustering was able to distinguish between UAS signals and ordinary Wi-Fi signals in the 

same band. Future work should also include the testing of more than one of the same UAS 

type to see whether it would be pointed to the same cluster or whether the algorithm would 

define a new cluster for a second UAS model. If the second UAS of the same model type was 

to be placed in the same cluster then this would be a limitation of the system for early 

warning as an adversary operating a same ‘type’ UAS would not show up as a new cluster. 

Hence this would need further investigation. However, these experiment so far have shown 

the ability of unsupervised clustering for the timely early warning of malicious activity in 

restricted airspace which remains paramount in an era of ever-increasing dependencies on 

small UASs. 



250 

 

© Crown Copyright 2022 

 

 

 

5.5.3 GPS Jamming Dataset 

5.5.3.1 Overview 

For the experiments the data was considered in 3 formats. For a baseline a dataset was kept in 

its raw IQ form. Secondly, datasets were created of images, as described and shown above for 

PSD and spectrogram. Lastly the images were fed to a pre-trained CNN for feature extraction 

to understand if the process of transfer learning was able to increase accuracy. VGG-16 and 

ResNet-50 were both considered for CNN feature extraction. Section 3.1.1 describes the 

dataset and section the 3.2 graphical signal representations as images. Section Chapter 4 

describes the CNN feature extraction.  

 

5.5.3.2 Results 

Table 33 to Table 36 respectively highlight the performance metrics for presenting the k-

means clustering on raw IQ data, images in the form of PSD, spectrogram, histogram, raw IQ 

plot and concatenation; and feature extraction using VGG-16 and ResNet-50 for PSD, 

spectrogram, histogram, raw IQ plot and concatenation. In terms of time, dimensionality 

reduction through PCA speeds up the clustering process when the input data is images. 

However, although the fastest time for completion was 0.295 seconds, accuracy was 

impacted. If we consider v-means as a way of representing homogeneity and completeness, 

the highest v-measure of 0.811 was using ResNet-50, the deeper neural network FE which 

took 57 seconds to complete.  
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Table 33 - GPS Jamming Dataset K-Means Clustering Results Raw 

 Init Time (s) homo compl v-

measure 

ARI AMI 

RAW  kmeans++ 11.542 0.418 0.784 0.545 0.24 0.544 

RAW random 4.978 0.189 0.614 0.288 0.071 0.287 

RAW PCA 3.239 0.485 0.681 0.567 0.245 0.566 

 

Using the raw data straight from the SDR without any pre-processing can be seen in Table 

33. The highest v-measure score is seen from using PCA initialisation, giving a score of 

0.567 and a 3.24 second completion time. This highlights the fact that pre-processing is 

necessary for higher v-measure scores and can in fact speed up the processing time too.  

 

Table 34 - GPS Jamming Dataset K-Means Clustering Results Images 

 Init Time (s) homo compl v-

measure 

ARI AMI 

PSD kmeans++ 1.474 0.158 0.177 0.167 0.099 0.166 

PSD random 0.825 0.149 0.15 0.15 0.09 0.148 

PSD PCA 0.317 0.164 0.166 0.165 0.109 0.164 

Spectrogram kmeans++ 1.759 0.525 0.527 0.526 0.387 0.525 

Spectrogram random 1.607 0.525 0.527 0.526 0.387 0.525 

Spectrogram PCA 0.728 0.546 0.582 0.563 0.39 0.563 

Histogram kmeans++ 1.172 0.139 0.516 0.219 0.071 0.218 
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Histogram random 0.542 0.494 0.637 0.556 0.396 0.556 

Histogram PCA 0.295 0.570 0.672 0.616 0.429 0.616 

Raw Scatter kmeans++ 1.241 0.181 0.536 0.271 0.072 0.270 

Raw Scatter random 0.579 0.657 0.685 0.671 0.558 0.670 

Raw Scatter PCA 0.295 0.735 0.736 0.736 0.663 0.735 

Concatenation kmeans++ 1.167 0.616 0.705 0.657 0.512 0.657 

Concatenation random 0.722 0.552 0.712 0.622 0.490 0.621 

Concatenation PCA 0.485 0.648 0.654 0.651 0.507 0.651 

 

The result with the highest v-measure score for providing the k-mean algorithm with images 

of the graphical signal representation came from using the raw IQ scatter plot of the data with 

PCA initialisation. This gave a v-measure score of 0.736 and completed in less than 

0.3seconds.  

 

Table 35 - GPS Jamming Dataset K-Means Clustering Results VGG-16 Feature Extraction 

 
Init Time (s) homo compl v-

measure 

ARI AMI 

PSD kmeans++ 17.332 0.456 0.548 0.498 0.311 0.497 

PSD random 10.461 0.376 0.512 0.433 0.253 0.432 

PSD PCA 5.246 0.522 0.551 0.536 0.355 0.536 

Spectrogram kmeans++ 20.139 0.709 0.877 0.784 0.643 0.784 

Spectrogram random 12.551 0.751 0.854 0.799 0.691 0.799 

Spectrogram PCA 6.501 0.751 0.854 0.799 0.691 0.799 
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Histogram kmeans++ 21.084 0.190 0.812 0.308 0.102 0.307 

Histogram random 14.164 0.653 0.743 0.695 0.505 0.695 

Histogram PCA 6.671 0.635 0.691 0.662 0.468 0.661 

Raw Scatter kmeans++ 18.546 0.538 0.730 0.619 0.440 0.619 

Raw Scatter random 14.647 0.665 0.720 0.691 0.511 0.691 

Raw Scatter PCA 9.395 0.700 0.754 0.726 0.561 0.726 

Concatenation kmeans++ 24.904 0.671 0.774 0.719 0.563 0.718 

Concatenation random 20.845 0.729 0.777 0.752 0.593 0.752 

Concatenation PCA 14.159 0.800 0.805 0.803 0.702 0.802 

 

The highest v-measure scores were produced from the feature extraction using the deeper 

CNN architecture – the ResNet-50. The VGG-16 was not far behind giving the highest v-

measure score as 0.803 with a concatenation of the signal representations and using PCA 

initialisation but at a time of 14.16 seconds. The ResNet-50 increased this v-measure score to 

0.811 using spectrograms with a random initialisation. However the time increased 

significantly taking 57 seconds to complete.  

Table 36 - GPS Jamming Dataset K-Means Clustering Results ResNet-50 Feature Extraction 

PSD kmeans++ 80.892 0.721 0.789 0.754 0.6 0.753 

PSD random 52.339 0.689 0.796 0.739 0.624 0.738 

PSD PCA 24.94 0.727 0.762 0.744 0.626 0.744 

Spectrogram kmeans++ 80.399 0.8 0.819 0.809 0.735 0.809 

Spectrogram random 57.263 0.801 0.820 0.811 0.735 0.81 

Spectrogram PCA 34.65 0.747 0.798 0.772 0.648 0.772 

Histogram kmeans++ 70.327 0.420 0.657 0.512 0.310 0.512 
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Histogram random 73.784 0.557 0.663 0.606 0.423 0.605 

Histogram PCA 42.847 0.643 0.694 0.667 0.494 0.667 

Raw Scatter kmeans++ 73.204 0.491 0.727 0.586 0.345 0.586 

Raw Scatter random 62.328 0.710 0.765 0.736 0.572 0.736 

Raw Scatter PCA 39.219 0.740 0.746 0.743 0.657 0.743 

Concatenation kmeans++ 90.479 0.699 0.748 0.722 0.546 0.722 

Concatenation random 76.189 0.642 0.720 0.679 0.498 0.678 

Concatenation PCA 46.679 0.723 0.766 0.744 0.604 0.743 

If we consider both time and v-measure together then by accepting a 0.02 drop in v-measure 

(0.799) with VGG-16 FE, spectrograms and PCA dimensionality reduction, the time is 

reduced to 6.5 seconds. Figure 139 shows the clustering with FE using the VGG-16 neural 

network with spectrograms and employing PCA dimensionality reduction.  
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Figure 139 - FE VGG-16 Spectrogram Graphical Signal Representation K-means PCA 

initialisation 

The VGG-16 gave a high v-measure score as 0.803 with a concatenation of the signal 

representations and using PCA initialisation but at a time of 14.16 seconds. This can be seen 

in Figure 140 where it can be seen that there are a few outliers but in general the classes have 

clustered onto the corresponding centroids. 

 

Figure 140 - FE VGG-16 Concatenation Graphical Signal Representation K-means PCA 

initialisation 

However, the timely nature of the detection should be considered when applying these 

techniques. Clustering time can be further reduced to less than 0.3 second for a v-measure 

score of 0.736 with a raw IQ scatter plot and PCA dimensionality reduction. It is therefore 
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essential for the application to consider what is important as there is a notable trade-off 

between accuracy and clustering time. ARI and AMI further emphasise the results shown 

through the v-measure, providing the same reflection of the accuracy of the 

clustering/grouping. Overall spectrograms outperformed PSD and by utilising PCA 

dimensionality reduction alongside FE with the VGG-16 we can produce high accuracy 

clustering of 0.8 in a short time frame. It can also be noted that comparing the highest scoring 

v-measure for raw IQ data is 0.24 less than using spectrograms with VGG-16 FE and PCA 

dimensionality reduction. The raw IQ scatter plot of the data with PCA initialisation gave the 

overall best performance with a v-measure score of 0.736 and completing in less than 

0.3seconds. 

 

Figure 141 - Raw IQ Scatter Plot Image K-means PCA initialisation 
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5.5.3.3 Discussion 

Overall, this experiment showed that employing the dimensionality reduction technique PCA, 

can reduce time and improve the accuracy (v-measure, ARI, AMI) of clustering. In general 

spectrogram images produced higher v-measure scores than PSD and raw data. The raw data 

scores highlighted the fact that pre-processing is necessary for higher v-measure scores and 

can in fact speed up the processing time too. The use of images allows for a quicker 

clustering result to be calculated compared to raw data. When using CNN FE with transfer 

learning it is observed that v-measure, ARI and AMI scores are generally in the region of 

25% higher. Utilising FE with PCA dimensionality reduction is calculated in a similar time 

frame to using raw data but with a substantial increase in v-measure, ARI and AMI. Utilising 

transfer learning with CNN FE is highly significant when limited data for training is 

available. Signal data is renowned for being computationally heavy and it can be limited due 

to legal sensitivities surrounding the collection of datasets. Therefore, transfer learning 

provides a valuable means to improve accuracy for small datasets. However, pre-processing 

the SDR data into an image, in particular the raw IQ scatter plot of the data with PCA 

initialisation gave the overall best performance with a v-measure score of 0.736 and 

completing in less than 0.3seconds. 

 

Future work could consider a larger number of jammer classes and the system tested with real 

world data. However, there are legal constraints surrounding both the collection of signal data 

and broadcasting signals in many countries. However, the ability to cluster or classify signals 

such as those produced by GPS jammers remains paramount in an era of ever-increasing 

dependencies such as autonomous vehicles.  
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Chapter 6 - Early Warning including Unknown Signal Detection 

Figure 142 shows the early warning system and what this chapter will be looking at. The low 

cost early warning system is made up of a BladeRF SDR and wideband antenna to capture 

the raw data and a Raspberry Pi to conduct all the processing required to make the graphs, 

images, to run the CNN feature extraction and the machine learning model predictor.  

 

Figure 142 - Early Warning System Chapter with larger Thesis Construct 

We have broken the chapter into sub sections. First we will discuss the creation of the 

detection and classification model. Then the implementation of the early warning system will 

be presented before presenting the results of both the model validation and then the prediction 

software running on the Raspberry Pi. Lastly the chapter will consider what will happen 

when the system is presented with signals it was not trained against. The information in this 

chapter has been published in a paper entitled ‘Low Cost Raspberry Pi based UAS Detection 

and Classification System using Machine Learning’ in a special edition MDPI Aerospace 

Journal which can be found in reference [20]. 
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6.1 Early Warning System  

 

6.1.1 Detection & Classification Model Creation 

The training dataset used considered five platforms from the DroneDetect Dataset. Table 37 

[377] shows the UAS considered in these experiments and the datalinks used for their 

transmission. For these experiments the platforms were restricted where possible to the 

2.4GHz frequency range due to the use of one SDR. Future work to include a second SDR 

operating in the 5.8GHz range to cover both operating frequency ranges. 

Table 37 - UAS Transmission Systems 

Platform Datalink EIRP (2.4GHz) Frequency Range 

(2.4GHz) 

Air 2 S OcuSync 3.0 20dBm 2.400-2.4835 GHz 

Parrot Disco Wi-Fi 19dBm 2.400-2.4835 GHz 

Inspire 2 Lightbridge 2.0 17dBm 2.400-2.483 GHz 

Mavic Pro 2 OcuSync 2.0 20dBm 2.400-2.4835 GHz 

Mavic Mini Wi-Fi 19dBm 2.400-2.4835 GHz 

 

Each recording in the DroneDetect dataset consists of 1.2 x 10^8 complex samples equating 

to 2 seconds recording time in the form of a ‘.dat file’. In the experiments the recordings are 

split into samples equating to 80ms in length. The real and imaginary parts of the signal were 

added together and the samples processed in python using the Matplotlib API to produce 

spectrograms and power spectral density (PSD) graphs. The graphs were saved as images of 

224x224 pixels to produce datasets of 250 samples per class whereby 200 were used to train 
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the system and 50 to validate the results with k-fold cross validation. PSD and Spectrogram 

graphs were plotted using a 1024 FFT and a Hanning window with a 120 overlap. 

 

Figure 143 and Figure 144 show a spectrogram and PSD respectively with a DJI Inspire 

flying. The platforms flew at a height of 20m in a 40m radius around the antenna with the 

pilot and controller approximately 4m from the detection/classification system. In both plots 

a wider concentrated band of larger bursts of activity can be observed in the higher end of the 

frequency band and also higher powered smaller bursts of activity, shown in a stronger 

yellow on the spectrogram, across a wider part of the spectrum.  
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Figure 143 - Early Warning Spectrogram Graphical Signal Representation: DJI Inspire 2 
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Figure 144 - Early Warning PSD Graphical Signal Representation: DJI Inspire 2 

Figure 145 and Figure 146 show a spectrogram and PSD respectively with a DJI Mavic Mini. 

If Figure 143 and Figure 145 are compared, there is a clear difference visually between the 

transmission of the Mavic Mini and the Inspire. The same is observed when comparing the 

PSD graphs in Figure 144 and Figure 146. 
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Figure 145 - Early Warning Spectrogram Graphical Signal Representation: DJI Mavic Mini 
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Figure 146 - Early Warning PSD Graphical Signal Representation: DJI Mavic Mini 

 

 

Using the training datasets for spectrograms and PSD images a VGG-16 CNN with pre-

trained weights on ImageNet, an object detection database of over 14 million images[289], 

was used as a feature extractor. During the training process, forward propagation is stopped at 

the last pooling layer and produces extracted features. The features were then used by 

machine learning classifiers LR and kNN to produce the classification model. Models were 

produced for spectrogram and PSD images, for classifiers LR and kNN and for 2 class 

detection and 6 class UAS type classification. Cross validation was used to try and highlight 

any overfitting with 5-fold and hyper-parameters were optimised using 3 fold nested cross 

validation for regularisation and the number of neighbours for kNN. Models were saved 

using the python pickle module.  
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6.1.2 Early Warning System Implementation 

For these experiments the processing of the data to perform the classification was done on a 

low cost Raspberry Pi acting as an edge device. The Raspberry Pi can be purchased for $35 

[378], the BladeRF SDR by Nuand at $480 [339] and the Palm Tree Vivaldi Antenna at 

$18.99 [342], making the cost of an edge device under $540. Figure 147 shows the 

configuration of an early warning system with 3 edge devices made up of an antenna, SDR 

and raspberry Pi and one control unit. For context the typical length of an airfield runway in 

the UK can vary between anywhere from 0.2 miles to 2.7 miles, with Gatwick Airport being 

2 miles in length [181]. The length of a runway, along with the power of the antennas used 

would determine the amount of edge nodes required. It should also be noted that the approach 

to the runway must also be considered and not just the runway itself.  

 

Figure 147 - Early Warning System Configuration 

The control unit could simply be a laptop if the processing is happening on the edge devices. 

However, it could be a higher powered processor if the edge devices are used only to send the 

RF data back to the control unit to process there. For this reason we also considered ZeroMQ 

sockets to transmit the data between the edge and control units.  
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GNURadio was used to read the data from the BladeRF SDR and send it out through a 

ZeroMQ socket. ZeroMQ is an open source messaging and communications library which is 

asynchronous and fast. ZeroMQ has different types of sockets depending on the type of 

communication required for example request and reply is used when a reply is required for 

each message sent. In these experiments publish and subscribe is used. This is where a 

publisher can send data and multiple recipients can subscribe to receive it. This method was 

chosen as an early warning system may have two c2 nodes for redundancy which are both 

processing the data. Another methodology would be to do the processing at the receiving 

node but this would require more computational power at the end units. There are advantages 

and disadvantage of both approaches but ZeroMQ is capable of supporting either 

implementation with minor programming changes. ZeroMQ also supports pipelines for 

connected nodes and pairs for an exclusive connection. 

 

Figure 148 - GNURadio set up with ZeroMQ Socket 
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Figure 148 shows the GNURadio set up using a ZeroMQ socket which is publishing the 

BladeRF data. GNURadio can be run on a microcomputer such as a Raspberry Pi which 

when connected to an SDR provides a small footprint for an edge node in an early warning 

system.  

 

On the c2 node a python script would then receive the information from the socket to produce 

a graphical representation of the signal as an image and run it through the prediction model. 

Within the experiments the socket information is received on the Raspberry Pi so that the 

time taken to made a prediction is evaluated using a low cost edge device. The inference time 

is recorded from when the libraries are loaded and the information is being received from the 

socket until the prediction is made. Another consideration is that the control unit would likely 

be taking inputs from other sensors. For example an early warning system may also include 

another sensor such as a video system or radar, which when activated would instigate the RF 

model to be run. The system could also include an unsupervised algorithm which may have 

less accuracy but would produce another indication marker in a very quick time scale.  
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Figure 149 - Raspberry Pi based UAS Early Warning System 

When we have the RF data and have produced the graphical signal representations, 

TensorFlow lite was used on the Raspberry Pi to load the previously trained model and make 

a prediction on the class. TensorFlow lite is a small version of the TensorFlow library 

specifically designed to run on embedded devices which are Linux based such as the 

Raspberry Pi. The Raspberry Pi in the experiments was loaded with Ubuntu 22.04, running 

python version 3.10.4 and TensorFlow version 2.9.0. Figure 149 shows a picture of the 

Raspberry Pi based UAS early warning system running the experiments on Ubuntu with 

python and TensorFlow.  
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Figure 150 - Early Warning System Setup 

 

Figure 150 shows the setup of the experiments to test the early warning system. The system is 

capturing any RF signals within a 28MHz bandwidth with a 2.4375GHz centre frequency. 

The BladeRF SDR was set with a sample rate of 60MBits/s and connected to a low cost 

antenna with a frequency range from 800MHz to 6GHz [340] [341]. GNURadio ran on the 

Raspberry Pi to visualise the spectrum and also to show the implementation of the ZMQ 

socket. A python script then ran in the terminal to receive the data and run the prediction 

using the previously trained models.  
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6.1.3 Early Warning System Results 

 

6.1.3.1 Model Training & Validation 

Before the early warning system is considered the results from training the model are 

evaluated using F1-score and accuracy as the performance metrics. The metric accuracy 

considers how many times the model was right, while F1-score also takes into account the 

metrics recall and precision. Recall calculates the fraction of positives predictions the model 

deemed to be correct while precision considers the amount of positive predictions which were 

in fact positive.  

 

Table 38 - Early Warning Model Training Classification Results Accuracy & F1-Score 

Classifier Image Metric Detection Type Classification 

LR PSD Accuracy (%) 100(+/- 0.0) 99.3 (+/-0.6) 

LR PSD F1-Score (%) 100(+/- 0.0) 99.2 (+/-0.6) 

LR SPEC Accuracy (%) 99.6 (+/-0.3) 98.4 (+/-0.6) 

LR SPEC F1-Score (%) 99.6 (+/-0.3) 98.4 (+/-0.6) 

kNN PSD Accuracy (%) 100(+/- 0.0) 97.0 (+/-0.6) 

kNN PSD F1-Score (%) 100(+/- 0.0) 97.0 (+/-0.6) 

kNN SPEC Accuracy (%) 98.2 (+/-0.5) 95.7 (+/-1.5) 

kNN SPEC F1-Score (%) 98.2 (+/-2.6) 95.6 (+/-1.5) 

 

Table 38 gives the F1-score and accuracy scores for the different models trained for 2 class 

detection and 6 class UAS type classification. It can be observed that PSD graphical signal 
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representations slightly outperform spectrograms and that the LR models again slightly 

outperform kNN but only marginally in both cases.  

 

Table 39 - Early Warning Model Training Validation Results Accuracy & F1-Score 

Classifier Image Metric Detection Type Classification 

LR PSD Accuracy (%) 100 100 

LR PSD F1-Score (%) 100 100 

LR SPEC Accuracy (%) 98.6 98.5 

LR SPEC F1-Score (%) 98.6 98.5 

kNN PSD Accuracy (%) 99.3 97.7 

kNN PSD F1-Score (%) 99.3 97.7 

kNN SPEC Accuracy (%) 99.3 92.9 

kNN SPEC F1-Score (%) 99.4 92.9 

 

To ensure the models were not overfitting some data was held back for validation. Table 39 

shows the validation results. When comparing  Table 38 with Table 39 it can be seen that the 

models do not appear to be overfitting as the validation results do not drop significantly when 

the model is presented with new information.  

 

6.1.3.2 Predictor Results 

These models were then loaded onto the Raspberry Pi to be tested as part of the early warning 

system. Table 40 shows the results from running the 2 class detection system on the 

Raspberry Pi. It can be observed that running each model in the presence of no UAS flying, 
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Mavic Mini and the Mavic Inspire produced the correct prediction results with 100% 

confidence each time. Inference time varied from 15 to 28 seconds which lends itself to the 

conclusion that edge processing on a Raspberry Pi should either be used in conjunction with 

other sensors which can produce a more timely result or the Raspberry Pi should act as a 

relay with the processing being done on a higher powered device on the control unit. Overall 

the 2-class detection system was correct with its prediction on whether a UAS was present or 

not with 100% accuracy and 100% confidence.  

 

Table 40 - Early Warning 2-Class Detection Results 

Classifier Image UAS Flying Model Prediction Prediction (%) Time (s) 

LR PSD No UAS No UAS 100 28 

LR PSD Mini UAS Detected 100 26 

LR PSD Inspire UAS Detected 100 15 

LR SPEC No UAS No UAS 100 22 

LR SPEC Mini UAS Detected 100 23 

LR SPEC Inspire UAS Detected 100 19 

kNN PSD No UAS No UAS 100 24 

kNN PSD Mini UAS Detected 100 24 

kNN PSD Inspire UAS Detected 100 20 

kNN SPEC No UAS No UAS 100 24 

kNN SPEC Mini UAS Detected 100 26 

kNN SPEC Inspire UAS Detected 100 20 
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Table 41 shows the results from running the 6 class UAS type classification system on the 

Raspberry Pi. Comparing the inference times in Table 40 to Table 41, it can be observed that 

there is no real significant difference or penalty for performing a greater number of classes. 2-

class detection inference times range from 15 to 28 seconds and for the 6-class UAS type 

classification system 18-28 seconds. In terms of prediction accuracy, the system is 100% 

correct and confident in its prediction for no UAS and for the Mavic Mini. For the Inspire the 

prediction model predicts correctly 2 out of 3 times but confidence in the prediction ranges 

from 50-66.67%.  

Table 41 - Early Warning 6-Class UAS Type Classification Results 

Classifier Image UAS Flying Model Prediction Prediction (%) Time (s) 

LR PSD No UAS No UAS 100 22 

LR PSD Mini Mini  100 27 

LR PSD Inspire Inspire 50 18 

LR SPEC No UAS No UAS 100 22 

LR SPEC Mini Mini 100 24 

LR SPEC Inspire - - - 

kNN PSD No UAS No UAS 100 26 

kNN PSD Mini Mini  100 27 

kNN PSD Inspire Inspire 66.7 23 

kNN SPEC No UAS No UAS 100 27 

kNN SPEC Mini Mini  100 28 

kNN SPEC Inspire Air 2 S 60 21 
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Table 41 shows that the highest confidence results are seen from using the kNN classifier 

with PSD graphical signal representations. The overall accuracy was 90.9% for UAS type 

classification on the UASs tested. Further research would be needed to look at the reason why 

the Inspire produced lower confidence results, the original dataset may not have included all 

of the Lightbridge 2.0 activity. It is unlikely that the loss of confidence was due to 

environmental changes as the Mavic Mini and No UAS predictions were 100% correct with 

100% confidence.  

 

6.1.4 Discussion 

The experiments showed that the Raspberry Pi 4 B connected to a BladeRF SDR and low 

cost antenna, is capable of running a CNN feature extractor and machine learning classifier as 

part of an early warning system for UASs. However, the inference times ranged from 15-28 

seconds for 2-class UAS detection and 18-28 seconds for classification. This suggests that for 

systems which require timely results the Raspberry Pi would be better suited to act as a 

repeater of the raw SDR data. This would enable the production of the graphical signal 

representations and the machine learning model prediction to be completed on a higher 

powered central control unit. If time was not of a concern then the Raspberry Pi is capable of 

making predictions as an edge device and could easily form part of a larger system made up 

of other sensors capable of faster indications to trigger higher accuracy results such as these. 

The overall accuracy of the 2-class detection system was 100% and 90.9% for UAS type 

classification on the UAS tested and noting that 3 of the predictions for the classifier ranged 

from 50-66.67% in confidence.  
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Further research would be needed to understand the reason why the Inspire produced lower 

confidence results for 6-class UAS type classification. It is possible that the original dataset 

may not have included all of the potential Lightbridge 2.0 activity which may move around 

the frequency band dependent on other activity. It is unlikely that the loss of confidence was 

due to environmental changes as the Mavic Mini and No UAS predictions were 100% correct 

with 100% confidence. For these experiments the platforms were restricted to the 2.4GHz 

frequency range due to the use of one SDR. However, all of the platforms considered in these 

experiments are capable of auto switching between 2.4GHz and 5.8Ghz. A future piece of 

work would include a second SDR operating in the 5.8GHz range to cover both operating 

frequency ranges. Future testing should also include a wider range of sensors and utilising the 

capabilities of multiple edge SDRs to triangulate the signal.  

 

6.2 Unknown Signal Classification 

 

6.2.1 Overview 

The purpose of this set of experiments was to understand whether a supervised machine 

learning model which had been trained using a number of different UAS signals, could pick 

up UAS signals it was not trained on. The machine learning model used was trained upon the 

signals detailed in Table 37 which contains the OcuSync 3.0, Lightbridge 2.0, OcuSync 2.0 

and Wi-Fi transmission protocols. 

 

As part of these experiments 3 different UAS are considered. The DJI Mavic 3 which uses 

the OcuSync 3+ as the for the transmission protocol. The model has been trained on the 

OcuSync 3 so the OcuSync 3+ is an evolution of the previous datalink. The eBee uses a 
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proprietary protocol which is not detailed in any of the SenseFly documentation. However it 

does operate within the 2.400 to 2.4835 GHz and with a slightly lower EIRP than the Mavic 

3. The DX8 is an 8 channel DSMX transmitter which uses CDMA and frequency hopping 

technology in the 2.4GHz frequency band.   

 

The aim of the experiments is to understand whether a machine learning model which has 

been trained in a supervised manner against specific datalinks can recognise new datalinks 

which it wasn’t originally trained against. Both evolutionary datalink and entirely new ones 

will be considered as part of these experiments. Four different machine learning models will 

be considered as part of the experiments and are details by models 1 – 4 and the VGG-16 

CNN, pre-trained on ImageNet, was used as the feature extractor for each one.  

 

Table 42 - Unknown Signal Experiment Models 

Model Image Type Machine Learning Classifier 

1 PSD LR 

2 PSD kNN 

3 Spectrogram LR 

4 Spectrogram kNN 

 

Lastly in section 6.2.3.3 the supervised model using VGG-16 CNN feature extraction is 

trained to include the following signals – Air 2 S, Parrot Disco, eBee X, DJI Inspire 2, Mavic 

Pro, Mavic Pro 2, Mavic Mini, No UAS, DJI Phantom 4 and the DX8 DSMX transmitter. 

Machine learning classifiers LR and kNN are evaluated alongside graphical signal 



277 

 

© Crown Copyright 2022 

representations PSD and spectrogram for a total of 10 class UAS type classification. Now the 

three UAS used for the unknown signals will be considered and presented in more detail.  

 

6.2.1.1 Mavic 3 

Table 43 shows a comparison of the DJI Mavic 3 and the DJI Air 2 S. The Air 2 S operates 

on the OcuSync 3.0 datalink while the newer Mavic 3 uses the OcuSync 3.0+. From Table 43 

it can be seen that the Mavic 3 has a higher EIRP of 33dBm compared to the Air 2 S of 

26dBm and this is reflected with a longer maximum range of flight, 15km for the Mavic 3 

and 12km for the Air 2 S.  

 

Table 43 - DJI Mavic 3 [379] Comparison Air 2 S [380] 

 
DJI Mavic 3 DJI Air 2 S 

EIRP 33dBm (FCC) 26dBm (FCC) 

Operating Frequency 2.400-2.4835 GHz 

5.725-5.850 GHz 

2.400-2.4835 GHz 

5.725-5.850 GHz 

Max Distance (FCC) 15km 12km 

Max download bit rate O3+: 

5.5MB/s (RC-N1) 

15MB/s (DJI RC Pro) 

Wi-Fi 6: 80MB/s 

44 Mbps (download 

bitrate) 

16 Mbps (live video 

bitrate) 

 

In terms of the downlink bit rate the Air 2 S has two variants, 44Mbps for download and 

16Mbps for the live video transmission. The Mavic 3 on the other hand is different depending 
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on the controller which is used with the platform. The bit rate varies from 5.5MB/s for the 

RC-N1 remote controller, 15MB/s with DJI RC Pro remote controller and for Wi-Fi 6 it can 

handle 80MB/s. For these experiments the RC-N1 remote controller is used but if a 

comprehensive dataset was to be made in the future all variants of the set up should be 

included within the training dataset. 

 

6.2.1.2 eBee X 

The eBee X made by SenseFly is a fixed wing UAS which is used for surveillance and 

surveying purposes, designed for the autonomous mapping of large areas. The eBee is fitted 

with a data link antenna which communicates with a USB ground modem plugged into a 

laptop and a piece of software called eMotion.  The eMotion software is used for flight 

planning where the user chooses blocks such as aerial mapping and the software auto 

populates a flight plan. Although the eBee is classed as an autonomous UAS, autonomous 

with take off, in flight and landing, the datalink connection between the eBee and the ground 

modem is used for tracking position and monitoring flight progress. Commands can also be 

sent to the UAS in flight aswell.  
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Figure 151 - eBee UAS Experiments for testing unknown non evolutionary signals 

Figure 151 shows the eBee UAS and the detection software running on the raspberry Pi with 

the BladeRF SDR and Palm Tree Vivaldi wideband antenna. The Sensefly website does not 

give a detailed description of the datalink and no information regarding the protocol used for 

communication. The operating frequency is defined as 2.400 to 2.4835 GHz and the EIRP as 

22.5dBm (FCC) and 20.0 dBm (CE/JP) [381].  

 

6.2.1.3 DX8 DSMX Transmitter  

The Spectrum radios have two transmitter protocols called DSM2 and DSMX which is an 

evolution of DSM2. DSM2 communicates using wideband Direct Sequence Spread Spectrum 

(DSSS). DSM2 keeps two frequency channels free so it can change between the two if the 

signal is lost due to interference. These channels are picked when the transmitter and the 

receiver are first turned on. The system works well unless interference occurs on both 
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channels after that start up process is complete. If both channels experience interference 

which maybe wasn’t present when the channels were chosen at the pairing stage, DSM2 will 

fail.  

 

DSMX was built to try and rectify this issue and it uses two layers of multi-access. DSMX 

communicates using Code Division Multiple Access (CDMA). CDMA is known for 

spreading itself out across a wide frequency range. It also uses pairs of transmitters and 

receivers which each have a particular hop sequence across that frequency range. This allows 

the pairs to communicate and not interfere with other pairs of transmitters and receivers. 

CDMA is known to be reliable for when there is interference in the same frequency band. 

DSMX uses a pseudo-random sequence which is decided upon between the transmitter and 

the receiver. The hop sequence will change thousands of times every single second across 23 

different channels [382].  

 

6.2.2 RF Profiling 

 

6.2.2.1 Mavic 3 

Figure 152 shows the spectrogram for the Mavic 3 which operates using the OcuSync 3+ 

datalink. It can be seen from observing Figure 152 that the bottom half of the spectrum has a 

higher general power level indicated by the yellow band. Then within the whole spectrum 

there are smaller bursts of yellow, some spanning a much larger portion of the spectrum and 

others occupying around 200-300MHz.  
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Figure 152 - Mavic 3 Spectrogram Graphical Signal Representation  

 

For comparison Figure 153 shows the Air 2 S which operates using the OcuSync 3.0 datalink. 

Again the bottom half of the spectrum is displaying a great power output indicated by the 

yellow colour. Then bursts of yellow which span the whole frequency range but vary in 

intensity. Lastly smaller burst of yellow activity which span around 100MHz of the frequency 

band.  
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Figure 153 - Air 2 S Spectrogram Graphical Signal Representation 

Comparing Figure 152 with Figure 153, the Mavic 3 displays more yellow activity. Visually 

the spectrum looks busier. The same increase in general power in the bottom half of the 

spectrum is observed in both Figure 152 and Figure 153. The Air 2 S in Figure 153 displays a 

consistent pattern visually compared with the Mavic 3. The visual inspection of the 

spectrogram for the OcuSync 3.0+ (Mavic 3) and the OcuSync 2.0 (Air 2 S) concludes that 

the images include both similarities and differences. If the CNN is including the similarities 

as features then the Mavic 3 should be detected as a UAS when the experiments are run.  
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6.2.2.2 DX8 DSMX Transmitter 

 

Figure 154 - DX8 Transmitter Spectrogram Graphical Signal Representation 

Figure 154 shows the spectrogram for the DX8 transmitter which is operating with the 

DSMX protocol which utilises CDMA and frequency hopping across the entire band. The 

hopping happens at the rate of thousands per second so it is clear that although our 

experiments collect only 28MHz of the spectrum, it is still picking up the hopping due to the 

sheer frequency at which the transmission protocol hops.  
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Figure 155 - DX8 Transmitter PSD Graphical Signal Representation 

 

Figure 155 displays the PSD graphical signal representation of the DX8 transmitter. While 

we were unable to fly the platform, the signals were recorded whilst the joysticks were being 

moved around on the DX8 controller. Three main peaks can be observed in Figure 155 at 

around 2.426-2.429GHz, 2.431-2.433GHz and a slightly smaller one at 2.434GHz. 

Comparing back to a PSD for no UAS present in Figure 21 the DX8 transmitter signal is 

clearly visible in the spectrum.  
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6.2.2.3 eBee X 

 

Figure 156 - eBee Switched on Spectrogram Graphical Signal Representation 

 

Figure 156 displays the spectrogram when the eBee SenseFly surveillance UAS is switched 

on, connected to the ground modem but not taken off. The transmission between the UAS 

and the ground modem can be seen by observing the yellow bursts of activity, primarily in 

the lower end of the spectrum.  

 

 

 



286 

 

© Crown Copyright 2022 

 

 

Figure 157 - eBee Switched on PSD Graphical Signal Representation 

 

The yellow bursts of activity seen in the time domain in Figure 156 can be seen as spikes in 

frequency on the PSD in Figure 157. The peaks are frequent and occupy mainly the lower 

end of the frequency band. This correlates with the spectrogram in Figure 156 for the eBee 

switched on and connected to the ground modem.  
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Figure 158 - eBee Flying Spectrogram Graphical Signal Representation 

 

Figure 158 considers the eBee when it is flying and the graphical representation of that signal 

using a spectrogram for the time domain. The yellow bursts of activity can again be observed 

in the lower end of the frequency. Comparing this to the eBee switched on in Figure 156 it 

can be observed that the eBee flying produces more power generally in the lower end of the 

spectrum. This is observed by an increase in yellow background activity compared to the 

green in Figure 156. The other difference is the length and frequencies coverage of the bursts. 

In Figure 158 we see vertical bursts of activity which cover 1-2MHz and these bursts are not 

present when the platform is only switched on in Figure 156. 
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Figure 159 - eBee Flying PSD Graphical Signal Representation 

 

Lastly Figure 159 shows the PSD for the eBee when it is flying. The entire signal is lifted by 

around 20dB/Hz compared to the signal observed for the platform only being switched on in 

Figure 157. In general the peaks which are present are higher than the ones observed in the 

switched on spectrogram.  
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6.2.3 Results 

The results for understanding whether a signal which hasn’t been in the training data for a 

supervised learning model can still be predicted as a UAS is considered in two forms. Firstly 

the early warning system produced in section 6.1.2 is tested. Secondly to understand whether 

the positive or negative results from the early warning system are the signals are run through 

the machine learning model as evaluation sets giving a confusion matrix for the eBee X and 

the DX8 DSMX transmitter. A smaller set of images were collected for the Mavic 3 and these 

were also tested as an evaluation set. Lastly in section 6.2.3.3 the supervised model using 

VGG-16 CNN feature extraction is trained to include the following signals – Air 2 S, Parrot 

Disco, eBee X, DJI Inspire 2, Mavic Pro, Mavic Pro 2, Mavic Mini, No UAS, DJI Phantom 4 

and the DX8 DSMX transmitter. Machine learning classifiers LR and kNN are evaluated 

alongside graphical signal representations PSD and spectrogram.  

 

6.2.3.1 Early Warning 

Table 44 shows the results from the low cost Raspberry Pi and Blade RF based early warning 

system when unknown signal types are presented to the machine learning model. Machine 

learning models for PSD graphical signal representations and spectrogram representations 

were combined with machine learning classifiers LR and kNN to test the results. The Mavic 3 

which operated the OcuSync 3.0+ datalink is corrected classified a UAS for each model type. 

It can be assumed that the CNN feature extraction for the Air 2 S which operates the 

OcuSync 3.0 datalink are close enough to produce a positive result for the OcuSync 3.0+. 

The OcuSync 3.0+ is an evolution of the OcuSync 3.0. It was discussed earlier in Table 43 

that the OcuSync 3.0 and the OcuSync 3.0+ have differing EIRP and bit rate transmissions. 

We can therefore assume that the basis for the CNN feature selection is not based on those 

two parameters but rather a pattern that the link is displaying is how it transmits. All four 
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combinations of machine learning classifiers (LR of kNN) and graphical signal representation 

type (PSD or spectrogram) all produced positive results for a UAS detection when the Mavic 

3 was flying.  

Table 44 - Early Warning Predictions Unknown Signals 

Classifier Image UAS Flying Model Prediction Prediction (%) Time (s) 

LR PSD Mavic 3 UAS Detected 100 37 

LR PSD eBee X No UAS Detected 99.86 16 

LR PSD DX8  UAS Detected 100 22 

LR SPEC Mavic 3 UAS Detected 100 21 

LR SPEC eBee X No UAS Detected 92.06 24 

LR SPEC DX8  No UAS Detected 100 18 

kNN PSD Mavic 3 UAS Detected 100 17 

kNN PSD eBee X No UAS Detected 100 24 

kNN PSD DX8  No UAS Detected 100 21 

kNN SPEC Mavic 3 UAS Detected 100 19 

kNN SPEC eBee X No UAS Detected 100 22 

kNN SPEC DX8  No UAS Detected 100 20 

 

Table 44 shows eBee X is not detected by any of the graphical signal representation and 

machine learning classifier combinations. This suggests that the CNN feature extraction is 

specific to the datalink type and that it would be pertinent to include a similar signal for 

positive identification in the future. More research would be needed to see how similar a 

signal would need to be to trigger a positive result. The results from the Mavic 3 however 

suggest this is possible and would cut down resources for training the dataset if less signal 
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types were required. Table 44 shows that the DX8 DSMX transmitter is also in general 

classified as no UAS. There is one exception to this whereby the LR machine learning 

classifier with PSD graphical signal representation did produce a positive UAS detected 

result. This will be examined further in the next section 6.2.3.2 to understand whether this 

combination can consistently classify the DX8 DSMX transmitter correctly when the model 

was not trained on the signal to begin with.  

 

6.2.3.2 Machine Learning Validation 

Validation was performed using the machine learning models produced for classifying the 

Air 2 S, Parrot Disco, Inspire 2, Mavic Pro 2, Mavic Mini and No UAS. The UAS class 

included training samples from each of those platforms. For this experiment 20 samples of 

the class no UAS detected and 20 samples of the DX8 and eBee and 4 samples of the Mavic 

3 were validated separately for the class UAS detected. Table 45 shows the results for the 

Mavic 3 for machine learning classifiers LR and kNN and for graphical signal representations 

PSD and spectrogram.  

 

Table 45 - Mavic 3 Machine Learning Validation 

Classifier Image Metric Detection 

LR PSD Accuracy (%) 100 

LR PSD F1-Score (%) 100 

LR SPEC Accuracy (%) 100 

LR SPEC F1-Score (%) 100 

kNN PSD Accuracy (%) 100 
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kNN PSD F1-Score (%) 100 

kNN SPEC Accuracy (%) 96 

kNN SPEC F1-Score (%) 96 

 

Table 45 shows that the all machine learning classifiers and image types produce over 96% 

accuracy. Machine learning classifier LR outperforms kNN producing 100% accuracy and f1-

score for both PSD and spectrogram graphical image representations.  

 

Table 46 - eBee Machine Learning Validation 

Classifier Image Metric Detection 

LR PSD Accuracy (%) 100 

LR PSD F1-Score (%) 100 

LR SPEC Accuracy (%) 74 

LR SPEC F1-Score (%) 66 

kNN PSD Accuracy (%) 60 

kNN PSD F1-Score (%) 50 

kNN SPEC Accuracy (%) 69 

kNN SPEC F1-Score (%) 57 

 

Table 46 shows the results for the eBee for machine learning classifiers LR and kNN and for 

graphical signal representations PSD and spectrogram. The highest performing combination 

is LR with PSD which producing 100% accuracy and 100% f1-score for classifying between 

UAS and no UAS using eBee signals. PSD outperforms spectrograms for the LR classifiers 

and spectrograms outperform PSD for kNN classifiers.  
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Table 47 - DX8 Machine Learning Validation 

Classifier Image Metric Detection 

LR PSD Accuracy (%) 100 

LR PSD F1-Score (%) 100 

LR SPEC Accuracy (%) 82 

LR SPEC F1-Score (%) 81 

kNN PSD Accuracy (%) 89 

kNN PSD F1-Score (%) 88 

kNN SPEC Accuracy (%) 68 

kNN SPEC F1-Score (%) 63 

 

Table 47 shows the results for the DX8 DSMX transmitter for machine learning classifiers 

LR and kNN and for graphical signal representations PSD and spectrogram. The highest 

performing classifier again is LR with PSD images which achieves 100% accuracy and an f1-

score of 100%. PSDs outperform spectrograms for both LR and kNN. In terms of machine 

learning classifiers LR outperforms kNN for both PSD and spectrogram graphical signal 

representations.  

 

Figure 160 shows the confusion matrix for the Mavic 3 for PSD graphical signal 

representations. Machine learning classifier LR is shown on the left and kNN on the right. It 

can be observed from Figure 160 that both classifiers are able to distinguish between no UAS 

and UAS 100% of the time with no mis classifications. The confusion matrix for 

spectrograms with machine learning classifiers LR and kNN for the Mavic 3 is not shown as 

the confusion matrix present exactly the same with 100% accuracy and no misclassifications.  
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Figure 160 - Mavic 3 Confusion Matrix PSD Graphical Signal Representation LR (left) kNN 

(right) 

 

 

Figure 161 - eBee Confusion Matrix PSD Graphical Signal Representation LR (left) kNN 

(right) 
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Figure 161 shows the confusion matrix for PSD graphical signal representations and machine 

learning classifiers LR on the left and kNN on the right. It can be observed that the LR 

classifier is able to distinguish between UAS detected and no UAS detected 100% of the time 

with eBee PSDs. The kNN classifier on the right shows an overall misclassification of 40% 

indicating that PSD representations with LR is the highest performing combination for 

classifying eBee signals. 

 

 

Figure 162 - eBee Confusion Matrix Spectrogram Graphical Signal Representation LR (left) 

kNN (right) 

 

Figure 162shows the confusion matrix for the eBee X with spectrogram graphical signal 

representations and machine learning classifiers LR on the left and kNN on the right. The LR 

classifier shows an accuracy of 74% with 26% misclassifications and kNN shows 70% 

accuracy with 30% misclassification. Compared with the PSD representation in Figure 161 

which could achieve 100% accuracy with no misclassifications for LR classifier, the 

performance of the spectrogram image is lower.  
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Figure 163 - DX8 Confusion Matrix PSD Graphical Signal Representation LR (left) kNN 

(right) 

 

Figure 164 - DX8 Confusion Matrix Spectrogram LR (left) kNN (right) 

Figure 163 shows the confusion matrix for the DX8 DSMX transmitter with PSD graphical 

signal representations and machine learning classifiers LR on the left and kNN on the right. 

Again the LR classifier is able to classify the DX8 signal as UAS and the no UAS signals as 

no UAS present 100% of the time with no misclassifications using PSD graphical signal 
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representation. With the kNN classifier the accuracy drops to 89% with 11% 

misclassifications.  

Lastly Figure 164 shows the confusion matrix for spectrogram graphical signal 

representations and machine learning classifiers LR on the left and kNN on the right for the 

Dx8 DSMX transmitter. It can be seen that the LR classifier can achieve 88% accuracy with 

12% misclassifications. The kNN classifier does not perform as well as LR producing 68% 

accuracy with 32% misclassifications. Comparing the LR result of 88% accuracy for 

spectrogram with the PSD in Figure 163, representing the signal in the frequency domain 

with the PSD outperforms the spectrogram achieving 100% accuracy with no 

misclassifications.  

 

6.2.3.3 Re-trained Supervised Models 

The supervised model using VGG-16 CNN feature extraction were trained to include the 

following ten UAS signals classes – Air 2 S, Parrot Disco, eBee X, DJI Inspire 2, Mavic Pro, 

Mavic Pro 2, Mavic Mini, No UAS, DJI Phantom 4 and the DX8 DSMX transmitter. 

Machine learning classifiers LR and kNN were then evaluated alongside graphical signal 

representations PSD and spectrogram. Images for Air 2 S, Parrot Disco, DJI Inspire 2, Mavic 

Pro, Mavic Pro 2, Mavic Mini, No UAS and the DJI Phantom 4 all contained 250 images and 

were split 200 for use with 5 fold cross validation and 50 images were kept entirely separate 

to evaluate the system as a holdout dataset. eBee X and the DX8 DSMX contained 100 

images were split 80/20 for 5 fold cross validation and a separate holdout dataset for 

evaluation to ensure the model was not overfitting.   
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Cross Validation Results 

Table 48 shows the 5-fold cross validation results for the re-trained supervised model for the 

10 classes of UAS type using VGG-16 CNN feature extraction followed by combinations of 

machine learning classifiers LR and kNN and graphical signal representations PSD and 

spectrogram. Table 48 shows that all combinations of the machine learning classifiers and 

graphical signal representations are able to produce accuracy and f1-scores of over 89.5% 

(+/-2.8%). The highest performing model is the LR machine learning classifier with PSD 

graphical signal representation. This produces an accuracy and f1-score of 98.7% (+/-0.4%) 

for the 10 class UAS type classifier. The spectrogram with LR was only marginally lower 

producing 98.4% (+/-0.4%) for both accuracy and f1-score.  

 

Table 48 - Re-trained Supervised Model Cross Validation Results 

Classifier Image Metric Validation 

LR PSD Accuracy (%) 98.7(+/-0.4) 

LR PSD F1-Score (%) 98.7(+/-0.4) 

LR SPEC Accuracy (%) 98.4(+/-0.4) 

LR SPEC F1-Score (%) 98.4(+/-0.4) 

kNN PSD Accuracy (%) 93.2 (+/-1.0) 

kNN PSD F1-Score (%) 93.2 (+/-1.1) 

kNN SPEC Accuracy (%) 89.5 (+/-2.8) 

kNN SPEC F1-Score (%) 89.5 (+/-2.7) 

 

Figure 167 shows the confusion matrix for the PSD using kNN machine learning classifier. It 

can be observed that the mix-classifications occur between the variants of the DJI datalinks 
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OcuSync and Lightbridge. No misclassification occurs with the Wi-Fi platforms Mavic Mini 

and the Parrot Disco. Also there are no mis-classifications seen with the DX8 and the eBee. 

Although misclassifications do occur between the OcuSync and Lightbridge variants, they are 

small. The overall accuracy is high at 93% with only 6.8% overall misclassifications. 

 

Figure 165 - Cross Validation Confusion Matrix PSD Graphical Signal Representation LR 

Figure 165 shows the cross validation confusion matrix for graphical signal representation 

PSD with machine learning classifier LR. It can be observed that there are some very minor 
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misclassification but in total they amount to only 1.2%, giving the model an overall accuracy 

of 98.8%.  

 

Figure 166 - Cross Validation Confusion Matrix Spectrogram Graphical Signal 

Representation LR 

Figure 166 shows the cross validation confusion matrix for graphical signal representation 

spectrogram with machine learning classifier LR. Very minor misclassifications are seen for 

the eBee, Air 2 S, Mavic Pro, Mavic Pro 2, no UAS and the Phantom 4. The overall 

misclassifications are only 1.6% and over accuracy is high at 98.4%, only 0.3% lower than 

the PSD implementation with LR in Figure 165. 
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Figure 167 - Cross Validation Confusion Matrix PSD Graphical Signal Representation kNN 

Figure 168 shows the confusion matrix for the kNN machine learning classifier with 

graphical signal representation spectrogram. While in Figure 167 with the PSD 

misclassifications were observed between the OcuSync and Lightbridge datalinks, the 

spectrogram observes misclassifications for all the classes apart from the Parrot Disco. Figure 

168 shows that even the no UAS class has misclassification and both of the new signals 

introduced including the eBee X and the DX8 DSMX. This suggests that representation of 

the signal in the frequency domain using the PSD will produce higher accuracy results for 

classification of 10 UAS signal types over the spectrogram and time domain representation.  
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Figure 168 - Cross Validation Confusion Matrix Spectrogram Graphical Signal 

Representation kNN 

 

Holdout Dataset Results 

Table 49 shows the hold-out dataset evaluation results for the re-trained supervised model for 

the 10 classes of UAS type using VGG-16 CNN feature extraction followed by combinations 

of machine learning classifiers LR and kNN and graphical signal representations PSD and 

spectrogram. When compared with the results from Table 48 a slight decrease is observed for 

the holdout dataset accuracy and f1-score in general. As the decrease is only marginal it is 
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suggested that the model does not appear to be overfitting. Table 49 shows that the LR 

classifier with the spectrogram graphical signal representation is the highest performing 

combination which is in contrast to the PSD in the cross validation results in Table 48. The 

spectrogram and LR combination gives a result of over 98% accuracy for the holdout dataset. 

This result is the same as the cross validation result of 98%, indicating that the model is not 

overfitting.  

 

Table 49 - Re-trained Supervised Model Hold-out Results 

Classifier Image Metric Hold-out Evaluation 

LR PSD Accuracy (%) 95.4 

LR PSD F1-Score (%) 95.4 

LR SPEC Accuracy (%) 98.0 

LR SPEC F1-Score (%) 98.0 

kNN PSD Accuracy (%) 88.3 

kNN PSD F1-Score (%) 88.1 

kNN SPEC Accuracy (%) 82.9 

kNN SPEC F1-Score (%) 82.4 

 

Figure 171 shows the holdout dataset confusion matrix for the kNN machine learning 

classifier with PSD graphical signal representation. It confirms the results from the cross 

validation confusion matrix in Figure 167 that misclassification only occurs between the 

variants of the OcuSync and Lightbridge DJI datalinks. The DJI Wi-Fi, Parrot Wi-Fi, eBee, 

DX8 DSMX and the class no UAS all perform without any misclassifications. In Figure 171 
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a slightly lower accuracy of 88.3% and an overall higher misclassification of 11.6% can be 

observed compared to the cross validation confusion matrix in Figure 167. 

 

 

Figure 169 – Holdout Confusion Matrix PSD Graphical Signal Representation LR 

Figure 169 shows the holdout confusion matrix for the PSD with classifier LR. It can be 

observed, as with the PSD and kNN classifier in Figure 171 that the misclassifications occur 

between the OcuSync and Lightbridge datalinks. Distinguishing between different Wi-Fi 
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datalinks, the eBee X, the DX8 DSMX transmitter and the class no UAS present no 

misclassifications. However overall accuracy remains high at 95.4% with misclassifications 

of 4.6%.   

 

Figure 170 - Holdout Confusion Matrix Spectrogram Graphical Signal Representation LR 

Figure 170 shows the confusion matrix for the holdout evaluation dataset for spectrogram 

graphical signal representations and machine learning classifier LR. This is the highest 

performing combination for the holdout evaluation results. Overall accuracy is 98.05% and 

misclassifications 1.95%. It can be seen in Figure 170 that all the misclassifications occur 

between the DJI OcuSync variants and the DJI Lightbridge variants. There are no 
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misclassification between the two Wi-Fi datalinks or the eBee X, the DSMX on the DX8 

transmitter and the class no UAS. The results for the holdout evaluation dataset in the 

confusion matrix in Figure 170 are exactly the same as the results in Figure 166 for the cross 

validation. This indicates that the model is not overfitting and the results can be trusted for 

predicting new UAS signals of these types.  

 

 

Figure 171 - Holdout Evaluation Confusion Matrix PSD Graphical Signal Representation 

kNN 
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Figure 172 shows the holdout dataset evaluation results in the form of a confusion matrix for 

the spectrogram images and kNN machine learning classifier. Compared to Figure 168 an 

increase in misclassification with the DX8 DSMX transmitter is seen. The classes of Wi-Fi 

operated UAS and the class for no UAS present with no misclassifications. The overall 

accuracy is less than in Figure 168 at 82.9% and showing 17% misclassifications.  

 

Figure 172 - Holdout Evaluation Confusion Matrix Spectrogram Graphical Signal 

Representation kNN 

 

  



308 

 

© Crown Copyright 2022 

6.3 Discussion 

 

6.3.1.1 Early Warning & Machine Learning Validation 

Overall the results from the early warning testing showed that the Mavic 3 and the OcuSync 

3.0+ was able to be detected on a system which was trained on previous versions of the 

OcuSync datalink, including the OcuSync 3.0 on the Air 2 S platform. This is a positive 

result for detecting UAS evolutionary datalinks on an early warning system. For example if a 

new version of a particular brank of UAS was released but had not been seen before, the early 

warning system would likely be able to classify the signal as a UAS if it had seen a previous 

version of the signal. It suggests that the CNN features are able to pick out patterns which are 

inherent between evolutions of the datalink. This could save resources for training data and 

time for retraining platforms. It could also have very positive implications for detecting new 

signals which have not been seen before as long if they were evolutionary signals. The 

machine learning validation in section 6.2.3.2 backed up these results showing that the Mavic 

3 could be detected with over 96% accuracy and over 96% f1-score in every machine 

learning classifier and graphical signal representation combination.  

 

With respect to the DX8 DSMZ transmitter and the eBee X, the machine learning validation 

results showed that the highest performing was machine learning classifier LR with PSD 

graphical signal representations. The more comprehensive validation showed it was possible 

to classify the DX8 DSMZ transmitter and eBee X with 100% accuracy and 100% f1-score 

even when the model was not trained on the signals.  The LR classifier with PSD 

outperformed the other classifier and image combinations. The results overall indicate that 

although a supervised system should aim to be comprised of all datalink signal types, the 
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classifier was able to distinguish between UAS detected and no UAS detected on signals 

which were not present in the original training set.  

 

The system could also benefit from covering the whole 2.4GHz band. This would allow the 

CNN feature extractor and machine learning classifier access to the full range of features 

from the operating UAS. This could improve accuracy and provide a more comprehensive 

dataset. The dataset should consider types of signals, potentially by manufacturer first and 

then by signal type. For example DJI has three different datalinks, the Lightbridge, the 

OcuSync and Wi-Fi. If the supervised learning model contained at least one of each datalink 

type then this research indicates that it may be sufficient for training.  

 

If a comprehensive dataset was to be made in the future all variants of the set up (for example 

each variant of the Mavic 3 compatible controllers) could be included within the training 

dataset so it is trained against all combinations that could occur. However, the difference in 

the controllers is with respect to the bit rate and EIRP variations. This research suggests that 

the bit rate does not affect the classification as the OcuSync 3.0 and 3.0+ both have different 

bit rates and EIRP but this should be tested across the different Mavic 3 controllers to 

confirm.  

 

6.3.1.2 Re-trained Supervised Models 

Overall PSD outperforms spectrograms for the 10 class UAS type supervised model cross 

validation results. On the holdout evaluation dataset, spectrogram with LR was the top 

performing combination of image and classifier. The new signals including the eBee X and 
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the DX8 DSMX transmitter are classified without error using PSD graphical signal 

representations and kNN. The misclassifications with the kNN classifier occur between the 

OcuSync and Lightbridge variants. However, when considering the PSD signal 

representations the misclassification of those datalinks is low. The kNN and LR classifiers 

using PSD had no issue distinguishing between different Wi-Fi UAS.  

 

As with the kNN classifier, the misclassifications that occur with LR and PSD occur between 

the DJI OcuSync and Lightbridge datalinks. This is the same for LR with spectrogram 

images. This suggests that the features the CNN is deriving or the pattern it is associating 

with those links are similar in some way. However, the misclassification is low. Overall the 

highest performing classifier and image combination was the LR machine learning classifier 

with spectrogram graphical signal representation. This combination could achieve over 98% 

accuracy for 10 class UAS type classification which includes the new signals the DX8 

DSMX transmitter and the eBee X UAS.  

 

Overall the section experiments have shown that a supervised model classifier trained for a 

set of UAS can detect unknown signals with high accuracy. This can be achieved on a low 

cost system consisting of a raspberry Pi and a BladeRF SDR. The last set of experiments in 

section 6.2.3.3 showed that a 10 class UAS type classifier could perform with 98% accuracy 

for confirming the type of UAS which has been detected. Most of the misclassifications occur 

between the OcuSync and Lightbridge variants of the datalinks but overall these 

misclassifications are small.  
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Chapter 7 - Conclusions 

 

Many of today’s systems and networks have RF access points. Cyber security does not 

always consider securing these links against cyber-attacks. The security of RF connectivity is 

paramount in protecting Critical National Infrastructure. The early warning of an anomalous 

signal in frequency bands of concern could indicate a cyber-attack or a malicious UAS 

entering a protected airspace. When addressing the £6.1 million funding that protecting 

wireless networks received in 2019 through the Secure Wireless Agile Networks (SWAN) 

partnership, a GCHQ spokesperson explained: "Though modern wireless standards 

incorporate encryption and authentication; the physical layers currently cannot be patched to 

the same degree as the higher layers in order to respond to new and emerging threats not 

foreseen at design time. It is important to develop new and novel protective measures, which 

should ideally include the ability to field-update every aspect of the physical layer radio 

operation to help mitigate such threats" [383]. 

 

As presented in section 1.2 the contributions of the research are are as follows: 

(1) Classifying the flight mode of a UAS signal with high accuracy is an important step 

forward in the field and could provide vital information on the scene of a major incident for 

risk assessment. We improve accuracy by over 45% from previous research of flight mode 

classification confirmed using the same open source dataset. Further confirmation is proved 

with a larger dataset containing 11 more classes and tested in the presence of interference.  

(2) Pre-trained CNNs for image classification can be employed for feature extraction using 

transfer learning on image based graphical representations of RF UAS and GPS jamming 
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signals producing high accuracy results and reducing the need for large datasets and 

computational resources.  

(3) Supervised machine learning algorithms utilising transfer learning are capable of 

detecting UAS signals not captured in the original dataset, including evolutionary and non-

evolutionary datalinks. This has significant implications for detecting unknown threats.  

(4) Frequency domain graphical signal representations and deeper CNN architectures provide 

features which are robust to interference from other signals operating in the same frequency 

band such as Wi-Fi and Bluetooth.  

(5) CNN feature extraction and transfer learning produces higher accuracy clustering for 

unsupervised learning compared to clustering raw data from the SDR and raw images but at a 

cost of time. Raw images are a good overall solution for timely clustering which could form 

part of an early warning system to confirm and/or cue other sensors.  

(6) A low cost raspberry Pi and SDR based machine learning classification system can 

predict signals it was trained against and signals it was not trained against in a live 

environment.   

This thesis will expand on the contributions by drawing out the conclusions from the research 

which have been split into the sections covered by the thesis outline.   

 

7.1 Supervised Learning for RF Signal Classification 

 

Classifying the flight mode of a UAS signal with high accuracy is an important step 

forward in the field and could provide vital information on the scene of a major incident 

for risk assessment. Up until this thesis the highest accuracy models for classifying the UAS 
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flight mode was conducted by Al-Sa’d et al. [204] who achieved 46.8% accuracy for 

classifying 10 classes of flight mode. This thesis improves that to 91% accuracy using the 

same dataset of 10 flight mode classes. We then extend this work to include a larger dataset 

of more recent UAS platforms containing 21 classes and achieve over 95% accuracy with 

classifying the flight mode even in environments with Wi-Fi and Bluetooth interference in 

the band.  

 

Transfer learning offers benefits for RF signal data as it reduces the need for large 

datasets while still providing high accuracy results. It offers two real advantages for 

classifying RF signal data in the form of image based graphical representations of the signal. 

Neural networks inherently require a lot of data to train from scratch, transfer learning allows 

us to employ smaller datasets and still achieve high accuracy classification results. This is 

highly significant for RF signal data as it is computationally intensive and it can be sensitive 

to collect legally. Secondly the training time for the entire model is reduced significantly 

compared with training a CNN from scratch therefore consuming less resources and 

providing a model in a much more efficient manner. It also allows for the re-training of 

models which are employed in different environments to be completed in a quicker time 

frame.  

 

Providing the CNN feature extractor with different graphical signal representations can 

improve accuracy by allowing the CNN to benefit from the strengths of each individual 

representation. For GPS jammer classification it was shown that the novel concatenation of 

signal representations (PSD, spectrogram, raw constellation and histogram) was more 

effective that single representation images. It effectively allows the CNN to benefit from the 
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strengths of each individual representation. The image concatenation dataset produced 98% 

(+/- 0.5%) classification accuracy with LR and SVM models and 96.3% (+/- 0.6%) with RF. 

The results, validated through 10-fold cross validation, showed that transfer learning using 

CNN VGG16 in conjunction with ML models LR, SVM, and RF and the concatenation of 

signal representations, produced high accuracy for the classification of GNSS jamming 

signals and outperformed previous work in the field.  

 

Time domain features were shown to be less robust than frequency domain features 

when interference signals were introduced from Bluetooth and Wi-Fi. The DroneDetect 

dataset was used to test the effect of interference by deliberately capturing the UAS signals in 

the presence of Bluetooth and Wi-Fi interference. The introduction of interference resulted in 

a drop of less than 2% in accuracy for the classifier.  Representing the signal in the frequency 

domain was shown to be more robust to noise. High accuracy can be maintained using LR as 

a classifier with CNN derived features. Bluetooth signals were shown to be more likely to 

interfere with detection and classification accuracy than Wi-Fi signals. GPS jamming signals 

were also evaluated with varying levels of SNR. Deep features were shown to be robust when 

SNR was degraded, with the concatenation of graphical signal representations producing 75% 

accuracy at -20dB SNR for 6 classes of GNSS jamming signal types. 

 

The highest performing classifier and graphical representation combination is LR with 

PSD frequency domain representation especially in environments with interference. For 

the DroneRF experiments in section 4.4.1 there is little difference between machine learning 

classifiers LR and SVM for 10 class flight mode classification. However, LR does 

outperform the other classifiers when noise in introduced for the Drone Detect dataset in 
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section 1.13.2, the gap gets greater as the interference is introduced and the number of classes 

is increased. The thesis concluded that the machine learning classifier to take forward for use 

with CNN feature extraction would be LR as it is the most robust to the introduction of 

interference with increased classes, especially when used in conjunction with frequency 

domain graphical signal representation PSD. This was shown to be true for both UAS signal 

classification and for the GPS jammer classification experiments whereby considering the 

PSD representation alone for very low levels of SNR (-10dB and lower) provided higher in 

accuracy that the concatenated signal representations.  

 

Deeper CNN architectures improve accuracy and may be more resilient to noise when 

determining UAS features. Extending the evaluation of the DroneRF flight mode 

classification to consider a deeper CNN architecture of the ResNet-50, we found that 

accuracy could be further increased for 10 class flight mode classification from 87% with the 

VGG-16 feature extraction and LR classifier to 91% accuracy with the ResNet-50 feature 

extraction and LR classifier. An increase of 4% and both producing the highest results with 

the PSD graphical signal representations.  

 

For the unsupervised learning experiments in section 5.5.2 the interference from Bluetooth 

and Wi-Fi signals introduced in the frequency band decreased v-measure scores significantly. 

Comparing the highest performing clean combination of PSD, VGG-16 and any initialisation 

saw a 0.7 drop in the same combination with interference. This shows that interference does 

affect the ability of k-means to perform clustering. However, the ResNet-50 feature extractor 

was able to achieve a v-measure score of 0.556 even in the presence of the interference with 
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PSD images and k++ initialisation. This suggests that the deeper CNN architecture is more 

resilient to noise when determining features for UAS signals through CNN feature extraction.  

 

CNN feature extraction explainability is low. The explainability of the CNN feature 

extraction compared to traditional machine learning algorithms is low. Feature maps can be 

visually inspected but get harder to interpret the further into the process you go. However, the 

high accuracy results produced using the FE may offset the lack of explainability, especially 

if the system it is not being used for any ‘risk to life’ applications. In the application of UAS 

and GPS jammer detection and classification, the indication that something is present could 

trigger another sensor or even a human to visually verify the signal. Its use as an indicator is 

extremely valuable regardless of the lack of explainability, unless the system was producing a 

lot of false positives.  

 

Misclassifications could be decreased by observing the whole of the RF spectrum. This 

could be achieved either by using a higher quality SDR which covers the 80MHz of the Wi-

Fi band or using multiple SDRs so the 5GHz range can also be covered. The data could be 

combined at the raw level, as seen with the DroneRF dataset [337] or the images could be 

stitched together such as we have done with the concatenation of signals. As long as the CNN 

feature extractor was receiving all the information then it is believed that either approach 

would work well. For the DroneRF dataset the highest misclassifications occur with the 

Phantom 3. The Phantom 3 uses the 5GHz spectrum as well as the 2.4GHz frequency band so 

increasing the input to the CNN feature extractor to also cover the 5GHz range would provide 

the CNN will all the information to correctly classify the signal.  
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7.2 Unsupervised Learning for RF Signal Classification 

 

CNN feature extraction and transfer learning improve accuracy as a precursor to 

unsupervised learning but at a cost of time. Raw PSD images with PCA initialisation of 

K-Means provides the best overall solution for timely clustering. In general PSD images – 

whether raw or used with VGG-16 or ResNet-50 features extraction, significantly outperform 

spectrogram images, indicating that frequency domain representation is better for clustering 

than time domain. Initialising the k-means clustering with PCA not only produces the highest 

v-measure score but it has the quickest inference time for raw images, VGG-16 and ResNet-

50 feature extraction. Raw PSD images with PCA initialisation of K-Means provides the best 

overall solution for timely clustering. For example considering both inference time and v-

measure score for the DroneRF dataset, PSD raw images without feature extraction produced 

a v-measure of 0.982 in 0.104 of a second, significantly quicker than using the ResNet-50 

feature extractor which did have a marginally higher v-measure score.  

 

Unsupervised learning could be used for a timely indication that a UAS is in the vicinity 

to confirm another sensor and/or cue another system, for example a supervised 

algorithm with much higher accuracy. The desired application of the system and 

interference environment must be considered when choosing the best combination of 

graphical signal representation, potential CNN feature extractor and K-means initialisation. 

For example if the system needs to display as high an accuracy as possible but time is not 

urgent then the correct choice might be a spectrogram with VGG-16 FE and PCA 

initialisation of K-Means clustering, which takes 6 seconds and produces a 0.814 v-measure 

score in a clean environment. In the presence of interference the PSD outperforms the 
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spectrogram, still with the VGG-16 and k++ initialisation which takes 17 seconds and 

produces a 0.760 v-measure score. However, if the system needs to be highly time sensitive 

but can cope with a slightly lower accuracy then the best option would be image PSD with 

PCA which can complete in 0.280 seconds with a v-measure of 0.620 in a clean environment 

and 0.193 seconds with a v-measure of 0.60 in the presence of interference. In this instance 

the unsupervised learning could be used for a very timely indication that a UAS might be in 

the vicinity to confirm another sensor and/or cue another system, for example a supervised 

algorithm with much higher accuracy. 

 

Representing a signal as an image and utilising CNN feature extraction is preferable to 

processing the raw data straight from the SDR for unsupervised clustering. Clustering 

graphical representations of the signal and utilising CNN feature extraction with transfer 

learning compared to raw RF data produces a higher V-measure score and if used in 

conjunction with PCA dimensionality reduction can compete in terms of clustering time with 

raw data. Using the raw data straight from the SDR without any pre-processing provided 

lower v-measure scores in section 5.5.3 for GPS jammer clustering and was more timely than 

using the graphical signal representations. The use of images allowed for a quicker clustering 

result to be calculated compared to raw data. When using CNN FE with transfer learning it 

was also observed that v-measure, ARI and AMI scores are generally in the region of 25% 

higher. 
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7.3 Low Cost Early Warning System 

Low cost SDRs and hardware such as the Raspberry Pi are capable of running machine 

learning classifiers in real time for the purpose of early warning. The main advantage of using 

an SDR for this purpose is flexibility, the ability for system administrators to upgrade 

functionalities through a software download rather than a full hardware replacement. In terms 

of this application, it means that administrators could update and train models periodically 

without changing hardware. SDRs have the potential to alert a system administrator of an 

anomaly in the RF spectrum in a cost effective and timely manner and perform other 

functions such as triangulation of the signal which can track a UAS or mobile jammer using 

multiple SDR edge devices. SDRs provide a potential future solution which could lower the 

cost of RF signal classification significantly, especially when used in conjunction with 

hardware such as the Raspberry Pi. 

 

A low cost Raspberry Pi 4 B connected to a BladeRF SDR and low cost antenna, is 

capable of running a CNN feature extractor and machine learning classifier as part of 

an early warning system for RF signal classification. However, the inference times ranged 

from 15-28 seconds for 2-class UAS detection and 18-28 seconds for classification. This 

suggests that for systems which require timely results the Raspberry Pi would be better suited 

to act as a repeater of the raw SDR data. This would enable the production of the graphical 

signal representations and the machine learning model prediction to be completed on a higher 

powered central control unit. If time was not of a concern then the Raspberry Pi is capable of 

making predictions as an edge device and could easily form part of a larger system made up 

of other sensors capable of faster indications to trigger higher accuracy results such as these. 
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7.4 Unknown Signal Classification 

 

CNN feature extraction is able to pick out patterns which are inherent between 

evolutions of a datalink. The Mavic 3 was presented to the supervised machine learning 

model as an unknown signal that the model was not originally trained against and it was 

corrected classified a UAS for each model type. It can therefore be assumed that the CNN 

feature extraction for the Air 2 S which operates the OcuSync 3.0 datalink is close enough in 

terms of CNN extracted features to produce a positive result for the OcuSync 3.0+. The 

OcuSync 3.0+ is an evolution of the OcuSync 3.0. The OcuSync 3.0 and the OcuSync 3.0+ 

have differing EIRP and bit rate transmissions so CNN feature selection must not be based on 

transmission power or bit rate parameters but rather a pattern that the link is displaying is 

how it transmits. This is a positive result for detecting UAS evolutionary datalinks on an 

early warning system. For example if a new version of a particular brank of UAS was 

released but had not been seen before, the early warning system would likely be able to 

classify the signal as a UAS if it had seen a previous version of the signal. It suggests that the 

CNN features are able to pick out patterns which are inherent between evolutions of the 

datalink. This could save resources for training data and time for retraining platforms. It 

could also have very positive implications for detecting new signals which have not been 

seen before when new variants of a platform are first released or firmware/software is 

upgraded.  

 

Unknown signal types which are not evolutionary can be detected using supervised 

models not originally trained against them. With respect to the DX8 DSMZ transmitter 

and the eBee X, the machine learning validation results showed that the highest performing 
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combination was machine learning classifier LR with PSD graphical signal representations. 

This combination showed it was possible to classify the DX8 DSMZ transmitter and eBee X 

with 100% accuracy and 100% f1-score even when the model had not been trained on the 

original signals (or on any similar signals by the same manufacturer).  The LR classifier with 

PSD outperformed the other classifier and image combinations. The results overall indicate 

that supervised system do not need to contain all platform types as the classifier was able to 

distinguish between UAS detected and no UAS detected on signals which were not present in 

the original training set. This could have large implications for reducing databases for 

supervised models and therefore subsequent training time and resource.  

 

7.5 Future Work 

 

Increased Spectrum Coverage. It would be beneficial to include the whole of the 80MHz 

Wi-Fi band for the feature extraction. This could be done in a couple of different ways. 

Increasing the quality of the SDR to cover the whole band or using multiple SDRs and 

combining the graphical signal representations as was done for the concatenation of signal 

types as described in section 0. Incorporating the 5GHz spectrum could also help the 

classifier increase accuracy in distinguishing between flight modes and UAS types.  

 

Congested City Environments. It would be beneficial to evaluate the performance of these 

algorithms in a congested spectrum. For example, testing in a built up city environment 

where there will be a lot of activity in the Wi-Fi spectrum. The OcuSync 3.0 for example will 

hop to different frequency bands when it experiences interference. It is possible that these 

occurrences would need to be accounted for within the dataset but it really depends on the 
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pattern that the feature extractor is using. For example it might not matter which particular 

band the signal is operating in if the features the CNN is using is not dependent on the part of 

the spectrum the UAS is operating in. This information will not be known until thorough 

testing is done within a constantly changing congested environment. While the experiments 

here introduce interference, it is introduced in a controlled manner and does not replicate a 

city environment where the activity in the band will be constantly changing. It may be found 

that certain locations such as airports have a relatively stable RF background but again this is 

not known until it is tested and the concept may work well with a changeable environment.  

 

Simulated Signals versus Real Signals. The GPS jamming work has been tested with 

signals generated either using python or MATLAB. These simulated signals will be 

representative of real GPS jamming signals however the representation of real world noise is 

done using simulated AWGN. Testing with real world signals and therefore incorporating 

real world noise would be very difficult in the UK due to legal constraints. However, this 

work is essential to know whether the model would work in a real world environment.  
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