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Social mobility across the lifecourse 
and DNA methylation age 
acceleration in adults in the UK
Yanchun Bao 1,2, Tyler Gorrie‑Stone 3,4, Eilis Hannon 5, Amanda Hughes 6, 
Alexandria Andrayas 2,3, Grant Neilson 5, Joe Burrage 5, Jonathon Mill 5, Leonard Schalkwyk 3 & 
Meena Kumari 2*

Disadvantaged socio‑economic position (SEP) is associated with greater biological age, relative to 
chronological age, measured by DNA methylation (positive ‘age acceleration’, AA). Social mobility 
has been proposed to ameliorate health inequalities. This study aimed to understand the association 
of social mobility with positive AA. Diagonal reference modelling and ordinary least square regression 
techniques were applied to explore social mobility and four measures of age acceleration (first‑
generation: ‘Horvath’, ‘Hannum’ and second‑generation: ‘Phenoage’, DunedinPoAm) in n = 3140 
participants of the UK Household Longitudinal Study. Disadvantaged SEP in early life is associated 
with positive AA for three (Hannum, Phenoage and DunedinPoAm) of the four measures examined 
while the second generation biomarkers are associated with SEP in adulthood (p < 0.01). Social 
mobility was associated with AA measured with Hannum only such that compared to no mobility, 
upward mobility was associated with greater age independently of origin and destination SEP. 
Compared to continuously advantaged groups, downward mobility was associated with positive 
Phenoage (1.06y [− 0.03, 2.14]) and DunedinPoAm assessed AA (0.96y [0.24, 1.68]). For these two 
measures, upward mobility was associated with negative AA (Phenoage, − 0.65y [− 1.30, − 0.002]; 
DunedinPoAm, − 0.96y [− 1.47, − 0.46]) compared to continually disadvantaged groups. While we find 
some support for three models of lifecourse epidemiology with early life as a sensitive period, SEP 
across the lifecourse and social mobility for age acceleration measured with DNA methylation, our 
findings suggest that disadvantaged SEP across the lifecourse is most consistently associated with 
positive AA.

The association between unfavourable socioeconomic circumstances in childhood and adulthood and increased 
morbidity and mortality is a near ubiquitous  observation1–4. Three models have been proposed to explain the 
link between life course socio-economic position (SEP) and adult  disease5. The critical/sensitive period model 
proposes that adverse early life SEP can exert permanent changes to biology with long-term health effects. Thus, 
socioeconomic origins exert significant and independent effects on later life health, reflecting the “long arm” of 
childhood  circumstances6,7. The accumulation model posits accumulation of disadvantage across the life course 
and negative impacts on biology and health. Thus, the consequences of cumulative advantage and disadvantage, 
whereby stresses and strains accrue over the life course to a greater extent among those in disadvantaged SEP, 
set in motion more rapid ageing or weathering of biological systems under conditions of chronic  adversity8–10. 
Social mobility frames SEP changes across the life course with differential association of stable or varying SEP 
trajectories on biology and health. An unresolved question in social epidemiological research is whether the 
movement between origin and destination SEPs, per se, influences health net of origin and destination effects.

Social mobility may constrain SEP differences in health such that upward social mobility (i.e., individuals’ 
rising in the SEP hierarchy) would be associated with improved health compared to the situation of stable dis-
advantaged SEP (i.e., remaining in low SEP over time). In turn, downward social mobility (i.e., deteriorating in 
SEP hierarchy) is considered to have negative effects on health compared to the situation of stable advantaged 
SEP (i.e., always experiencing advantaged SEP over time)11,12. Social mobility is dependent on both social origin 
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and destination and traditional regression frameworks should separately estimate the effects of socioeconomic 
origin, destination, and social mobility simultaneously. However, this is not typically  assessed13. An example of 
an approach to overcome these methodological limitations is Sobel’s diagonal reference  model14.

Rapid ageing, often calculated as a greater biological than chronological age can be measured in a number 
of ways, for example methods have been developed using DNA methylation. This is the most widely studied 
epigenetic modification in relation to human health and disease and “epigenetic clocks”, including those by 
 Horvath15 and Hannum et al.16, have been developed that predict age from DNA methylation (DNAm) profiles. 
Although DNAm age and chronological age are highly correlated, the relationship varies between individuals, 
such that some people predicted based on their DNA methylation profile as “older” than their chronological age 
and others are predicted as “younger”. DNAm age older than chronological age, so called ‘age acceleration’ or 
positive age acceleration where DNAm age is greater than chronological age, has been associated with mortal-
ity and morbidity independently of  age17. Recently ‘second generation’ DNAm age algorithms, for example, the 
‘Phenoage’ or Levine  algorithm18 and ‘DunedinPoAm’19 have been described. These algorithms are estimated 
with chronological age and phenotypic aging measures which consists of clinical biomarkers and are considered 
to more closely represent biological age than the first-generation algorithms.

We have previously demonstrated that positive age acceleration, measured by means of the first genera-
tion algorithms, is associated with childhood social class and educational attainment but not with measures 
of social position later in life. These observations, while not  universal20, suggest a lasting influence of early-life 
conditions on positive age  acceleration21. Others have described positive age acceleration in groups that were 
persistently disadvantaged across the lifecourse compared to those that were persistently advantaged, with the 
upwardly and downwardly mobile groups ranking somewhere in between. However, this latter observation was 
not  significant22,23 and it is unclear whether this is due to the inability of the analytic approach used to examine 
mobility separately from early life and later SEP. Recent studies suggest that second generation algorithms are 
more closely related to socio-economic conditions than first generation  algorithms24, which may be important 
as they more closely reflect biological age.

Here we examine the association of social mobility with age acceleration, which is defined as the residuals of 
the linear regression of epigenetic age on chronological  age25 in a UK population. We expand our earlier analyses 
in a number of ways: we use diagonal reference model (DRM) to assess the association of social mobility with 
DNAm age. We examine the relative contribution of early life social position and adult social position measured 
by highest household occupation at aged 14 and adulthood. Further, we examine the association with the second-
generation algorithms, ‘phenoage’ and ‘DunedinPoAm’.

Methods
Participants. Understanding Society the UK Household Longitudinal Study (UKHLS) is a nationally rep-
resentative study which started in 2009 aiming to recruit individuals in 25,000  households26. Specifically, this 
project is based on data from the British Household Panel Survey (BHPS) and a subsample of the General Popu-
lation Sample (GPS) samples in waves 3 and 2 (2010–2012) respectively. Details of the blood sample collection 
can be found  elsewhere27. All methods were carried out in accordance with Information Commissioner’s Office 
guidelines and regulations. Informed consent was obtained from all participants and/or their legal guardian(s). 
The University of Essex Ethics Committee has approved all data collection on Understanding Society main study. 
Approval for asking for consent and the collection of biosocial data by trained nurses in Waves 2 and 3 of the 
main survey was obtained from the National Research Ethics Service (Understanding Society—UK Household 
Longitudinal Study: A Biosocial Component, Oxfordshire A REC, Reference: 10/H0604/2).

Due to the availability of funding, methylation was profiled at two different time points: in 2017 from DNA 
extracted from whole blood from 1193 persons and in 2020 from DNA extracted from whole blood from a further 
2536 resulting in a total n = 3728 who were eligible for and consented to blood sampling and genomic analyses. 
Eligibility requirements for genetic analyses meant that the methylation sample was restricted to participants 
who reported their ethnicity as White/European.

DNA methylation. Five hundred–nanogram samples of whole-blood DNA from 1193 and 2536 persons 
were treated with sodium bisulfite using the EZ96 DNA methylation kit (Zymo Research, Irvine, California) 
following the manufacturer’s standard protocol. DNA methylation was assessed using the Illumina Infinium 
HumanMethylationEPIC BeadChip kit (Illumina, Inc., San Diego, California). DNA methylation levels were 
quantified on an Illumina HiScan System (Illumina, Inc.). Raw signal intensities were parsed into R (R Foun-
dation for Statistical Computing, Vienna, Austria) and converted into β values using the Bioconductor water-
melon and bigmelon  package28. Outliers were identified and removed using ‘wateRmelon::outlyx’. Low quality 
samples (< 85% bisulfite conversion) identified and removed using ‘wateRmelon::bscon’. Data was then nor-
malised using ‘wateRmelon::dasen’, difference between normalised and raw data per sample estimated using 
‘wateRmelon::qual’. Samples were removed on the basis of having a root mean square difference and standard 
deviation of difference > 0.05. After removal of outlying/poor quality samples from raw data, data was subjected 
to ‘wateRmelon::pfilter’ and then renormalised using ‘wateRmelon::dasen’. These steps result in 1174 samples 
and 857,071 probes remaining for the 2017 dataset and 2480 samples and 860,950 remaining in the 2020 dataset. 
The total number with DNAm measurement is 3654.

DNA methylation age and age acceleration. DNA methylation (DNAm) age was calculated through 
linear functions using wateRmelon::agep, supplying different sets of coefficients for  Horvath15,  Hannum16 or 
 Phenoage18 calculations following
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where m is the number of probes and n is the sample size. Coef i is the coefficient of i  th probe and βij is the 
measurement for i th probe and j th individual i = 1, 2, . . . ,m; j = 1, 2, . . . n . Because DNAm age were designed 
for an earlier microarray measurement, missing probes (20 for Horvath, 7 for Hannum; and 2 for Phenoage, 
listed in Supplement Table S1 were not included in calculations. DunedinPoAm was calculated from the using 
information contained within Belsky et al.19 using the code in https:// github. com/ DLCor coran/ Duned inPoA m38.

The age acceleration by each Horvath, Hannum, Phenoage and DunedinPoAm algorithm was then calcu-
lated as residuals of linear regression model of each of DNAm age with chronological age and was included in 
the DRM model as an outcome. A positive value represents positive age acceleration and vice versa. The linear 
regression model also adjusted for batch effect, using plate as a categorical variable, and white blood cell com-
position estimates, which were calculated using the Houseman reference-based algorithm implemented in the 
estimateCellCounts function package in  minfi29,30.

Social class. Childhood social class was based on parents’ National Statistics Socio-economic Classifica-
tion (NS-SEC) when participants were 14 years of age and was categorized as disadvantaged (NS-SEC routine/
semi-routine), intermediate (NS-SEC lower management & professional/intermediate/small employers & own 
account/lower supervisory & technical) and advantaged (NS-SEC large employers & higher management/higher 
professional). The social class of the parent with the highest social class was used where social class was avail-
able for more than one parent. Current social class was based on the NS-SEC of the most advantaged person in 
the household. We excluded young participants (age below 25) from analysis since they are less likely to have 
reached occupational maturity.

Covariates. Sex, standardized chronological age, squared standardized age (to capture possible nonlinear-
ity in age-related confounding) are included as covariates. Further sensitive analysis includes marital status and 
highest education qualification of participants as covariates. Marital status was categorized as single, married/
coupled or divorced/separated. Education attainment was categorized as University degree, A-level, GCSE, no 
qualification.

Statistical analyses. The mean and standard deviation of age acceleration of four epigenetic measures by 
participants’ characteristics and the association between each algorithm with each characteristic was examined 
by either two sample t-test or one-way ANOVA.

A diagonal reference model (DRM) is used to model the social mobility and age acceleration. In a DRM 
mobile, groups resemble their origin and destination classes using non mobile groups as the benchmark. Thus, 
DRM assumes that the outcome (age acceleration in this paper) has a single vector of coefficients for origin classes 
(childhood social position) and destination classes (adulthood social position) for socially immobile groups 
(reference groups), and outcome of those who are mobile is the function of values of immobile groups with 
weighting parameters representing the relative importance of the origin and destination classes. Given a two-way 
contingency table classified by origin and destination classes, then the mean of the off-diagonal cell (represented 
as µij ) represents the outcome for the mobile groups moving from i th origin class to j th destination class ( i  = j ), 
is the function of the mean outcomes of the diagonal cell (represented as µii and µjj ) and covariates is written as:

where β0 is the intercept, subscripts i and j represent the social position of origin and destination, respectively 
and µii = E(Yii) is the mean outcome of origin and µjj = E

(

Yjj

)

 is the mean outcome of destination. The relative 
importance of the origin classes is represented by p . This has a range between 0 and 1, where 0 corresponds to an 
outcome which is only associated with the destination class and 1 represents an outcome which is only associated 
with the origin class. Xij is a vector of covariates and can include the mobility variables (for example, mobile vs. 
immobile contrasts, upward vs. downward contrasts, the number of steps moved though the mobility hierarchy 
etc.). By including additional social mobility variables in model, DRM can distinguish effects of social mobility 
itself from the effects of the origin and destination classes. In this paper, for each measure, we consider four 
models with covariates plus: (1) no mobility variable; (2) any direction mobility variable; (3) variables to indicate 
upward or downward trend; (4) variables to indicate one step, two step upward or downward trend. Analyses 
were conducted in STATA, version 16 (StataCorp LP, College Station, Texas) with “drm” package.

Sensitivity analyses. To understand the robustness of our findings we conduct several sensitivity analyses 
with estimates provided in supplementary documents. First, socioeconomic and health factors including marital 
status and highest education qualification were included in analyses. We then repeated analyses with alternate 
measures of social class using definitions based on mother’s occupation when father’s was not available and ‘own’ 
occupation rather than the most advantaged occupation in the household. We also stratified analyses by par-
ticipant median year of birth (born before 1956, n = 1522; and born after 1956, n = 1618) to investigate potential 
cohort effects. Finally, we investigated the relationship of mobility and age acceleration with two mobile-immo-
bile comparisons: (1) downward mobile group vs immobile socially advantaged group, and (2) upward mobile 
group vs immobile socially disadvantaged group.

DNAmagej = intercept +

m
∑

i=1

βij × Coef i , j = 1, 2, . . . , n,

µij = E
(

Yij

)

= β0 + pµii +
(

1− p
)

µjj + Xijβ ,

https://github.com/DLCorcoran/DunedinPoAm38
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Results
In total, data from 3140 participants were used in analysis where the mean of participants’ age is 54.5 (standard 
deviation, 14.0, range 25 to 98). The number and percentage of participants for demographic characteristics are 
presented in Table 1. With respect to covariates, on average females have negative value of age acceleration, that 
is three of the four DNA methylation algorithms suggest that they are on average biologically ‘younger’ than 
chronological age. The DNAm algorithms were not consistently associated with other characteristics, for example 
with Phenoage and DunedinPoAm, age acceleration was apparent with the covariates divorce, no qualifications, 
child and adult social class. However, age acceleration indexed with Horvath was only associated with divorce 
and Hannum was only linearly associated with childhood social class.

Table 2 shows the average age acceleration indexed by Horvath, Hannum, Phenoage and DunedinPoAm, 
stratified both by origin occupation (row) and destination occupation (column) class. Overall, the arithmetic 
mean of all four measures is negative for advantaged childhood SEP, that is younger than adult chronological 
age while this is apparent for second generation measures only in adulthood. The diagonal of the table reveals 
a social gradient for the socially immobile. Positive age acceleration is observed for stably disadvantaged SEP 
(Horvath 0.05; Hannum 0.18, Phenoage 0.97 and DunedinPoAm 0.98) indicating DNAm age for this group is 
higher than expected from their chronological age. On the other hand, mixed results are apparent in those with 
stable advantage.

Tables 3, 4, 5 and 6 present the results for social mobility with age acceleration indexed by Horvath, Hannum, 
Phenoage and DunedinPoAm, respectively. Table 3 shows that there is no difference of Horvath age accelera-
tion among the three immobile social classes and the contribution of childhood social class to the Horvath age 
acceleration is higher than the contribution of adulthood social class (0.67 vs 0.33) when social mobility variable 

Table 1.  Characteristics of the analytic sample in a study of age acceleration indexed by the epigenetic 
algorithms Horvath, Hannum, Phenoage and DunedinPoAm: mean and standard deviation (n = 3105) by 
categorical variables, UK Household Longitudinal Study, 2010–2012.

N (%)
Mean Horvath 
(SD)

Mean Hannum 
(SD)

Mean Phenoage 
(SD)

Mean 
DunedinPoAm 
(SD) Mean age (SD)

Total 3140 (100) 0.00 (3.75) 0.00 (3.28)  − 0.00 (4.91)  − 0.00 (3.60) 54.5 (14.03)

Age

Old (born before 
1956) 1522 (48.5) 0.01 (4.16)  − 0.01 (3.74)  − 0.16 (5.24)  − 0.06 (4.15) 66.6 (7.46)

Young (born in or 
after 1956) 1618 (51.5)  − 0.01 (3.31) 0.01 (2.79) 0.15 (4.57) 0.06 (2.98) 43.1 (7.89)

Two sample t-test p-value 0.91 0.91 0.08 0.37  < 0.0001

Sex

Male 1388 (44.2) 0.53 (3.79) 0.97 (3.29) 0.05 (4.90) 0.40 (3.54) 55.19 (14.07)

Female 1752 (55.8)  − 0.42 (3.65)  − 0.77 (3.07)  − 0.04 (4.92)  − 0.31 (3.62) 53.93 (13.98)

Two sample t-test p-value  < 0.0001  < 0.0001 0.61  < 0.0001 0.01

Marital status

Single 418 (13.3)  − 0.44 (3.43)  − 0.11 (2.82)  − 0.15 (4.79) 0.33 (2.91) 42.13 (13.02)

Married (coupled) 2036 (64.8)  − 0.003 (3.60) 0.03 (3.16)  − 0.28 (4.60)  − 0.33 (3.48) 55.17 (13.09)

Divorced (separate) 686 (21.9) 0.28 (4.28)  − 0.02 (3.87) 0.94 (5.69) 0.78 (4.14) 59.97 (12.85)

One way ANOVA p-value 0.009 0.73  < 0.0001  < 0.0001  < 0.0001

Highest education qualification

University degree 690 (22.0) 0.12 (3.44) 0.12 (2.92)  − 0.45 (4.51)  − 0.94 (2.80) 49.44 (13.20)

A-level 970 (30.9)  − 0.07 (3.79)  − 0.04 (3.38)  − 0.07 (5.09)  − 0.12 (3.50) 53.13 (13.82)

GCSE 1062 (33.8)  − 0.07 (3.81)  − 0.03 (3.28) 0.10 (4.96) 0.33 (3.60) 54.71 (13.38)

No qualification 409 (13.0) 0.04 (3.88)  − 0.09 (3.63) 0.64 (4.85) 1.02 (4.52) 65.71 (11.20)

Missing data 9 (0.3) 4.01 (5.54) 2.52 (2.24) 2.29 (7.61)  − 0.45 (3.40) 52.22 (9.97)

One way ANOVA p-value 0.69 0.70 0.004  < 0.0001  < 0.0001

Childhood social class

Disadvantage 968 (30.8) 0.13 (3.94) 0.29 (3.34) 0.63 (5.12) 0.46 (3.99) 57. 10 (13.70)

Intermediate 1836 (58.5)  − 0.06 (3.68)  − 0.11 (3.34)  − 0.30 (4.80)  − 0.14 (3.42) 53.90 (14.07)

Advantage 336 (10.7)  − 0.04 (3.49)  − 0.24 (2.70)  − 0.20 (4.72)  − 0.56 (3.19) 50.11 (13.37)

One way ANOVA p-value 0.44 0.003  < 0.0001  < 0.0001  < 0.0001

Adulthood social class

Disadvantage 941 (30.0) 0.05 (3.86) 0.05 (3.40) 0.62 (5.00) 0.81 (3.91) 56.47 (14.30)

Intermediate 776 (24.7)  − 0.11 (3.88)  − 0.38 (3.40)  − 0.22 (5.06)  − 0.08 (3.57) 56.03 (13.84)

Advantage 1423 (45.3) 0.03 (3.59) 0.17 (3.12)  − 0.29 (4.73)  − 0.49 (3.29) 52.33 (13.66)

One way ANOVA p-value 0.62 0.001  < 0.0001  < 0.0001  < 0.0001
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is not considered in the analysis (model 1, best model with smallest AIC or BIC). Horvath age acceleration is 
lower in women than men and there is a non-linear association with age (Supplementary Fig. S1). Results of 
DRM are similar when adding the mobility variables where no mobility variable is associated with Horvath 
indexed age acceleration.

From Table 4, a positive age acceleration indexed with the Hannum algorithm is apparent in immobile 
socially disadvantage participants (0.27 [0.06, 0.49]) while immobile intermediate SEP has a negative value 
(− 0.41 [− 0.64, − 0.18]) indicating lifecourse disadvantage is associated with a positive age acceleration while 
lifecourse intermediate group younger epigenetic age than expected. The result of immobile socially advantage 
group is not significant. The contribution of childhood social class to Hannum age acceleration of mobile groups 
is lower than the contribution of adulthood social class (0.43 vs 0.57) when social mobility is not considered in 
the analysis (model 1). In these multivariate analyses, as observed with Horvath, there is negative age acceleration 
indexed by the Hannum algorithm in women and there is a nonlinear trend with age (Supplementary Fig. S2). 
Results of model 2 in Table 4 shows that mobility is associated with Hannum age acceleration (0.32 [0.04, 0.60]) 
and results of model 3 and model 4 further confirm that there is association of Hannum age acceleration with 
upward mobility (0.47 [0.19, 0.75]) and one step up mobility (0.47 [0.18, 0.76]).

Table 5 shows that life course disadvantage has a positive value (1.02 [0.70, 1.34]) in age acceleration indexed 
by Phenoage while immobile intermediate has a negative value (− 0.54 [− 0.89, − 0.19]) as does life course advan-
tage (− 0.48 [− 0.85, − 0.10]). The childhood and adulthood social classes contribute almost equally to Phenoage 
age acceleration for mobile groups (0.49 vs 0.51 model 1). Phenoage age acceleration has the non-linear asso-
ciation with chronological age (Supplementary Fig. S3) apparent for the other measures of age acceleration but 
did not differ between men and women. For Phenoage age acceleration, the social mobile parameters are not 
significant (model 2-model 4 in Table 5).

From Table 6, a positive value (1.02 [0.78, 1.26]) in age acceleration indexed by DunedinPoAm is clear in 
socially disadvantage participants while life course advantage has a negative value (− 0.87 [− 1.15, − 0.60]). The 
contribution of childhood social class to DunedinPoAm AA of mobile groups is lower than the contribution of 

Table 2.  Arithmetic mean of age acceleration indexed by Horvath, Hannum, Phenoage and DunedinPoAm 
algorithm, by origin (childhood) and destination (adulthood) social class, sample size of each cell is given at 
the bottom of the table. UK Household Longitudinal Study, 2010–2012.

Origin class

Destination class

Total

Horvath

Disadvantage Intermediate Advantage

Disadvantage 0.05 0.37 0.06 0.13

Intermediate 0.02  − 0.29 0.01  − 0.06

Advantage 0.38  − 0.55 0.05  − 0.04

Total 0.05  − 0.11 0.03 0.00

Origin class

Hannum

TotalDisadvantage Intermediate Advantage

Disadvantage 0.18 0.30 0.44 0.29

Intermediate  − 0.05  − 0.64 0.13  − 0.11

Advantage  − 0.15  − 0.90  − 0.03  − 0.24

Total 0.05  − 0.38 0.17  − 0.00

Origin class

Phenoage

TotalDisadvantage Intermediate Advantage

Disadvantage 0.97 0.67 0.11 0.63

Intermediate 0.29  − 0.76  − 0.36  − 0.30

Advantage 0.70 0.36  − 0.57  − 0.20

Total 0.62  − 0.22  − 0.29  − 0.00

Origin class

DunedinPoAm

TotalDisadvantage Intermediate Advantage

Disadvantage 0.98 0.59  − 0.37 0.46

Intermediate 0.70  − 0.38  − 0.46  − 0.14

Advantage 0.20  − 0.32  − 0.79  − 0.56

Total 0.81  − 0.08  − 0.49  − 0.00

Origin class

Sample size (n = 3140)

TotalDisadvantage Intermediate Advantage

Disadvantage 432 234 302 968

Intermediate 467 466 903 1836

Advantage 42 76 218 336

Total 941 776 1423 3140
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Table 3.  DRM parameters estimation [95% confidence interval] for age acceleration indexed by the Horvath 
algorithm, UK Household Longitudinal Study, 2010–2012. Models with covariates plus: (1) no mobility 
variable; (2) any direction mobility variable; (3) variables to indicate upward or downward trend; (4) variables 
to indicate one step, two step upward or downward trend. 95% confidence intervals in brackets. ***p < 0.001.

Model 1 Model 2 Model 3 Model 4

Disadvantage 0.16 [− 0.08, 0.41] 0.18 [− 0.08, 0.44] 0.21 [− 0.08, 0.51] 0.22 [− 0.05, 0.50]

Intermediate  − 0.11 [− 0.43, 0.22]  − 0.12 [− 0.38, 0.15]  − 0.11 [− 0.40, 0.19]  − 0.15 [− 0.45, 0.15]

Advantage  − 0.05 [− 0.41, 0.30]  − 0.06 [− 0.38, 0.25]  − 0.10 [− 0.50, 0.29]  − 0.08 [− 0.40, 0.25]

Origin occupation weight 0.67 [− 0.46, 1.81] 0.68 [− 0.18, 1.55] 0.44 [− 1.00, 1.87] 0.73 [− 0.42, 1.88]

Destination occupation 
weight 0.33 [− 0.81, 1.46] 0.32 [− 0.55, 1.18] 0.56 [− 0.87, 2.00] 0.27 [− 0.88, 1.42]

Female  − 0.96*** [− 1.22, − 0.70]  − 0.95*** [− 1.22, − 0.69]  − 0.95*** [− 1.21, − 0.69]  − 0.95*** [− 1.22, − 0.69]

Age  − 0.03 [− 0.16, 0.10]  − 0.03 [− 0.16, 0.10]  − 0.03 [− 0.16, 0.10]  − 0.03 [− 0.16, 0.10]

Age squared  − 0.35*** [− 0.47, − 0.24]  − 0.35*** [− 0.47, − 0.24]  − 0.35*** [− 0.47, − 0.24]  − 0.35*** [− 0.47, − 0.24]

Mobility in any direction 0.14 [− 0.13, 0.41]

Downward mobility 0.03 [− 0.54, 0.61]

Upward mobility 0.19 [− 0.23, 0.61]

One-step downward mobility 0.10 [− 0.40, 0.61]

Two-step downward mobility 0.41 [− 0.82, 1.64]

One-step upward mobility 0.21 [− 0.11, 0.54]

Two-step upward mobility  − 0.04 [− 0.61, 0.52]

Constant 0.90*** [0.67, 1.13] 0.81*** [0.52, 1.10] 0.80*** [0.50, 1.10] 0.81*** [0.51, 1.10]

Observations 3140 3140 3140 3140

AIC 17,129.8 17,130.8 17,132.6 17,135.5

BIC 17,178.2 17,185.2 17,193.1 17,208.2

Table 4.  DRM parameters estimation [95% confidence interval] for age acceleration indexed by Hannum 
algorithm, UK Household Longitudinal Study, 2010–2012. Models with covariates plus: (1) no mobility 
variable; (2) any direction mobility variable; (3) variables to indicate upward or downward trend; (4) variables 
to indicate one step, two step upward or downward trend. 95% confidence intervals in brackets. *p < 0.05, 
**p < 0.01, ***p < 0.001.

Model 1 Model 2 Model 3 Model 4

Disadvantage 0.27** [0.05, 0.49] 0.36*** [0.13, 0.58] 0.37*** [0.16, 0.59] 0.37*** [0.15, 0.60]

Intermediate  − 0.40*** [− 0.64, − 0.17]  − 0.13 [− 0.44, 0.19]  − 0.36** [− 0.62, − 0.10]  − 0.37** [− 0.64, − 0.10]

Advantage 0.14 [− 0.12, 0.39]  − 0.23 [− 0.51, 0.05]  − 0.02 [− 0.30, 0.27]  − 0.00 [− 0.29, 0.29]

Origin occupation weight 0.43** [0.12, 0.74] 1.00** [0.28, 1.73] 0.53** [0.17, 0.90] 0.53** [0.18, 0.88]

Destination occupation 
weight 0.57*** [0.26, 0.88]  − 0.00 [− 0.73, 0.72] 0.47* [0.10, 0.83] 0.47** [0.12, 0.82]

Female  − 1.73*** [− 1.96, − 1.51]  − 1.76*** [− 1.98, − 1.53]  − 1.74*** [− 1.96, − 1.51]  − 1.74*** [− 1.96, − 1.51]

Age  − 0.04 [− 0.15, 0.08]  − 0.06 [− 0.17, 0.05]  − 0.04 [− 0.16, 0.07]  − 0.04 [− 0.16, 0.07]

Age squared  − 0.23*** [− 0.32, − 0.13]  − 0.22*** [− 0.32, − 0.12]  − 0.22*** [− 0.32, − 0.13]  − 0.22*** [− 0.32, − 0.13]

Mobility in any direction 0.31* [0.04, 0.58]

Downward mobility 0.18 [− 0.16, 0.53]

Upward mobility 0.38** [0.12, 0.65]

One-step downward mobility 0.20 [− 0.15, 0.55]

Two-step downward mobility 0.03 [− 0.88, 0.93]

One-step upward mobility 0.38** [0.10, 0.67]

Two-step upward mobility 0.37 [− 0.04, 0.79]

Constant 1.23*** [1.03, 1.43] 1.00*** [0.74, 1.25] 1.04*** [0.79, 1.29] 1.04*** [0.80, 1.29]

Observations 3105 3105 3105 3105

AIC 15,973.0 15,968.3 15,969.3 15,973.1

BIC 16,021.4 16,022.6 16,029.7 16,045.6
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Table 5.  DRM parameters estimation [95% confidence interval] for age acceleration indexed by Phenoage 
algorithm. Models with covariates plus: (1) no mobility variable; (2) any direction mobility variable; (3) 
variables to indicate upward or downward trend; (4) variables to indicate one step, two step upward or 
downward trend. 95% confidence intervals in brackets. *p < 0.05, **p < 0.01, ***p < 0.001.

Model 1 Model 2 Model 3 Model 4

Disadvantage 1.02*** [0.70, 1.34] 1.06*** [0.74, 1.39] 1.01*** [0.64, 1.39] 1.05*** [0.69, 1.42]

Intermediate  − 0.54** [− 0.89, − 0.19]  − 0.53** [− 0.88, − 0.18]  − 0.54** [− 0.89, − 0.19]  − 0.65** [− 1.04, − 0.26]

Advantage  − 0.48* [− 0.85, − 0.10]  − 0.53** [− 0.91, − 0.15]  − 0.47* [− 0.91, − 0.04]  − 0.41 [− 0.84, 0.02]

Origin occupation weight 0.49*** [0.30, 0.69] 0.50*** [0.31, 0.68] 0.57** [0.23, 0.90] 0.73*** [0.38, 1.07]

Destination occupation 
weight 0.51*** [0.31, 0.70] 0.50*** [0.32, 0.69] 0.43* [0.10, 0.77] 0.27 [− 0.07, 0.62]

Female  − 0.10 [− 0.45, 0.24]  − 0.10 [− 0.44, 0.24]  − 0.10 [− 0.44, 0.24]  − 0.10 [− 0.45, 0.24]

Age  − 0.08 [− 0.25, 0.10]  − 0.08 [− 0.25, 0.10]  − 0.07 [− 0.25, 0.10]  − 0.08 [− 0.25, 0.10]

Age squared  − 0.41*** [− 0.56, − 0.27]  − 0.41*** [− 0.56, − 0.26]  − 0.41*** [− 0.56, − 0.26]  − 0.41*** [− 0.56, − 0.26]

Mobility in any direction 0.26 [− 0.10, 0.63]

Downward mobility 0.42 [− 0.25, 1.08]

Upward mobility 0.19 [− 0.27, 0.64]

One-step downward mobility 0.65 [− 0.02, 1.32]

Two-step downward mobility 0.75 [− 0.88, 2.38]

One-step upward mobility 0.27 [− 0.17, 0.70]

Two-step upward mobility  − 0.47 [− 1.24, 0.30]

Constant 0.52*** [0.22, 0.82] 0.34 [− 0.04, 0.73] 0.36 [− 0.03, 0.74] 0.37 [− 0.01, 0.76]

Observations 3140 3140 3140 3140

AIC 18,851.2 18,851.2 18,852.9 18,853.4

BIC 18,899.6 18,905.6 18,913.4 18,926.0

Table 6.  DRM parameters estimation [95% confidence interval] for age acceleration indexed by 
DunedinPoAm algorithm. Notes: Models with covariates plus: (1) no mobility variable; (2) any direction 
mobility variable; (3) variables to indicate upward or downward trend; (4) variables to indicate one step, two 
step upward or downward trend. 95% confidence intervals in brackets. ***p < 0.001.

Model 1 Model 2 Model 3 Model 4

Disadvantage 1.02*** [0.78, 1.26] 1.04*** [0.80, 1.29] 1.09*** [0.83, 1.35] 1.10*** [0.83, 1.36]

Intermediate  − 0.15 [− 0.40, 0.11]  − 0.13 [− 0.38, 0.12]  − 0.12 [− 0.35, 0.11]  − 0.25 [− 0.54, 0.04]

Advantage  − 0.87*** [− 1.15, − 0.60]  − 0.91*** [− 1.19, − 0.64]  − 0.97*** [− 1.24, − 0.70]  − 0.85*** [− 1.16, − 0.54]

Origin occupation weight 0.36 [0.20, 0.52] 0.35 [0.20, 0.51] 0.17 [− 0.20, 0.53] 0.66 [0.04, 1.28]

Destination occupation 
weight 0.64*** [0.48, 0.80] 0.65*** [0.49, 0.80] 0.83*** [0.47, 1.20] 0.34 [− 0.28, 0.96]

Female  − 0.75*** [− 1.00, − 0.50]  − 0.75*** [− 0.99, − 0.50]  − 0.74*** [− 0.99, − 0.50]  − 0.74*** [− 0.99, − 0.49]

Age  − 0.11 [− 0.24, 0.01]  − 0.11 [− 0.24, 0.01]  − 0.11 [− 0.24, 0.01]  − 0.11 [− 0.24, 0.01]

Age squared 0.07 [− 0.04, 0.17] 0.07 [− 0.04, 0.18] 0.07 [− 0.04, 0.18] 0.07 [− 0.04, 0.18]

Mobility in any direction 0.19 [− 0.08, 0.46]

Downward mobility  − 0.09 [− 0.68, 0.49]

Upward mobility 0.46 [− 0.11, 1.03]

One-step downward mobility 0.55 [− 0.29, 1.39]

Two-step downward mobility 0.44 [− 1.22, 2.10]

One-step upward mobility 0.04 [− 0.55, 0.63]

Two-step upward mobility  − 0.74 [− 1.99, 0.52]

Constant 0.38*** [0.16, 0.60] 0.26 [− 0.02, 0.54] 0.25 [− 0.03, 0.53] 0.27 [− 0.01, 0.56]

Observations 3140 3140 3140 3140

AIC 16,843.9 16,843.9 16,844.8 16,846.1

BIC 16,892.3 16,898.4 16,905.3 16,918.8
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adulthood social class (0.36 vs 0.64) when social mobility is not considered in the analysis (model 1). For Dun-
edinPoAm AA, the social mobile parameters are not significant (model 2-model 4 in Table 6).

Sensitivity analyses. Tables S2–S5 in Supplementary File show that the association with age, sex, social 
classes, and mobility variables for age acceleration indexed by the four epigenetic measures of age acceleration 
was robust when we further control for marital status and highest education qualification. In these multivariate 
analyses, compared to participants who were married or cohabiting, all four measures of age acceleration were 
positive in divorced participants. No clear associations were identified between educational qualifications with 
age acceleration indexed by Horvath, Hannum or Phenoage while positive age acceleration was apparent in 
participants with lower educational attainment when indexed by DunedinPoAm.

Tables S6–S9 in Supplementary Files showed that DRM estimates were robust when we define social class 
with individual social class rather than with the highest in the household. Tables S10–S17 in Supplementary 
Files describe the results based on birth year stratification (born before 1956 vs born after 1956) to investigate 
possible cohort effects on the findings. The upward mobility associations with Hannum were only confirmed in 
older participants (see Fig. 1). Figure 1 show that association of social mobility with age acceleration indexed 
by the four measures were robust to sensitivity analyses. As with Hannum and DunedinPoAm, the stably disad-
vantage group was identified older than expected in the older age group when measured with Phenoage but the 
association was not identified in the younger age group. Table 7 shows the association of mobile group with four 
algorithms restricting comparison groups to the two mobile-immobile comparisons. For downward vs immobile 
socially advantage comparison, there is a positive age acceleration indexed by DunedinPoAm only. For upward 
vs immobile socially disadvantage comparison, there is a negative age acceleration indexed by Phenoage and 
DunedinPoAm with the group moving upward from socially disadvantage origin.

Figure 1.  DRM estimate and 95% CI of mobility variables with (a) Horvath, (b) Hannum, (c) phenoage, and 
(d) DunedinPoAm Acceleration Age. Point estimates from the main model (red dot), adjusted for additional 
covariates, marital status and educational attainment (blue dot) and stratification of the sample to those born 
before 1956, the median year in the study (black dot) and those born after 1956 (yellow dot). Values above 
0 represent positive accelerated age, i.e. older than chronological age and values below 0 represent negative 
accelerated age, i.e. younger than chronological age.
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Discussion
We find evidence for three lifecourse models, sensitive period, accumulation and social mobility in the associa-
tion of SEP and age acceleration. Social position in early life is associated with age acceleration in adulthood. 
These observations were apparent for all estimations of age acceleration. Evidence for accumulation model was 
apparent for the second-generation algorithm. Phenoage indexed age acceleration with association observed for 
early life SEP and adult SEP and each stage contributing equally. Further, we find for this estimator, that upward 
mobility is associated with lower accelerated age compared to those who were disadvantaged throughout the 
lifecourse. We replicate our earlier observations of an association of early life SEP with the Hannum estimator 
of age  acceleration21 and observe that this estimator was associated with upwards social position mobility across 
the lifecourse.

Our findings support the observations that early life social disadvantaged position is associated with accel-
erated age in later  life24,31–33. We had shown an association of early life and age acceleration in later life, extend 
this to a wider and more representative subset of Understanding Society, responding to a previous critique that 
suggests that the current epigenetic literature is too focussed on convenience  populations34.

This paper replicated an association of early life social position and a so called first generation measure of 
age acceleration and also describes associations of social position across the lifecourse with a second generation 
measure of age acceleration. The first generation measures were created to be predictive of age and are associated 
with mortality but less consistently with measures of social position. The second generation measures were cre-
ated to be predictive of mortality and are more reflective of biological  age35. For our first generation algorithm, 
our data do not accord with previous reports of the association of social mobility with age acceleration, that is 
we observe positive age acceleration association with upwards mobility, which is not in the same direction as 
previously  reported24,31,32, where our data are statistically significant. This may be for a number of reasons: the 
analytic method we used which sought to separate mobility from origin and destination  SEP24,31,32; the measure 
of social position used in the  analyses32 and the measures of accelerated age  used32. There is a wide body of lit-
erature on social mobility and broader measures of health; it is possible that the wider social mobility literature 
is mixed due to the failure to examine it independently of origin and destination  SEP36,37.  We21 and  others24 have 
suggested that early life SEP and education  attainment23 rather than later life are associated with age acceleration 
and other measures of health such as allostatic  load38. These results add support to the evidence that early life 
has an impact on health throughout the lifecourse.

For the second generation measure we examined, when comparing mobility to those who were immobile 
for advantage and disadvantage throughout the lifecourse our observations with Phenoage and DunedinPoAm 
indexed accelerated age provide support for an accumulative lifecourse model and support the notion that social 
mobility serves to ameliorate health inequality.

Our suggestions of age acceleration indexed by Hannum with upward social mobility is novel but accords 
with other markers of health, such as inflammatory  markers39. However, these patterns of association contrast 
to observations with other outcomes such as  BMI40 and  hypertension41,42 where associations with downward 
mobility rather than upward mobility are observed. Further we do not observe a dose response or stepwise 
association of increasing social position and age acceleration in our data suggesting that a move up one step is 
similar to a greater move up. This may be because there are few people that move more than one step and that 
most mobility is from intermediate groups. They also contrast with the restricted analyses and findings with 
age acceleration indexed by Phenoage and DunedinPoAm that suggest that upward mobility is associated with 
negative biological age acceleration compared to those that experience lifecourse disadvantage. These findings 
may further reflect the difference between the first and second generation algorithms.

Of the three models proposed to explain the link between life course SEP and adult  disease5, our data support 
all three but they are specific to each index of age acceleration. Overall, these differences may reflect how each 
of the algorithms are generated, with the weakest associations apparent with the first-generation algorithm and 
stronger associations apparent with Phenoage and DunedinPoAm.

We suggest that our findings support the hypotheses that first generation estimates of accelerated age 
reflect processes until measurement and second generation estimates provide insights into processes after 
 measurement35. However, our observation that early life disadvantage is associated with adult life age accelera-
tion for the first generation measure to greater extent in older rather than younger cohorts requires replication. 
The observation can be explained in a number of ways, for example disadvantage in the childhoods of older 
people may be more adverse than childhood disadvantage experienced in younger people. Thus, conditions of 
disadvantage are likely to have been worse in absolute terms in childhoods in the 1930 and 1940s, which were 
characterised by depression and war than experienced in post 1950s when the UK was becoming a more equal 
country in the post war  years43. A number of alternate explanations of the impact of upward mobility on adult 
health are suggested including the stress of cultural mismatch, physiological costs of striving and disruption 
of social  connections44. We can speculate that mismatch between early and late life or ‘lack of belonging’ may 
have been more prevalent in older age groups than younger age groups as a greater proportion of the popula-
tion enters higher education in the UK. In support, we observed the same pattern of association when we used 
education attainment rather than occupation in our analyses stratified by age (data not shown) suggesting the 
adverse association of social mobility may be ameliorated when higher education attainment is more normative. 
It is unclear how physiological  processes45 and disruption of social connections, such as weakening connections 
with communities of origin and  isolation46 and their association with age acceleration would vary by age group.

This study had several strengths as it is based on a national study, it comprised a large sample with repre-
sentation from almost the entire adult age range. We examined a number of measures of age acceleration, using 
both first and second generation algorithms. We used a statistical method that explicitly examined the contribu-
tion of early (origin) and adult (destination) social position to age acceleration but it may generate results that 
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underestimate mobility as it may implicitly force the mobility linear effect to  zero47. However, when looking at 
early social position, we could not examine conditions in early childhood or in utero, where effects on DNAm 
age trajectories are plausibly stronger than at age 14 years. The sample was restricted to those reporting white/
European ethnicity, meaning that results may not be generalizable to other ethnic groups. Measurement of 
DNAm was made on one occasion in adults and therefore it is not possible to examine whether age acceleration 
occurred before social mobility and further it is not possible to assess within person change in adulthood. We 
examined three models of social mobility and four age related outcomes, two of which were considered first 
generation. There are additional algorithms that are developed and can be tested. We did not adjust for multiple 
testing, as the strength of associations indicated that our main conclusions would not be altered by a Bonferroni 
correction. Many of associations with covariates have been reported previously, for example sex differences in 
accelerated  age48,49 but others, such as the positive accelerated age we observe in divorced groups may requires 
further investigation. A focus on estimators of age restricts analyses to a very small subset of methylation across 
the genome and thus limits an analysis of SEP with DNA methylation more broadly. Broader analyses have the 
potential to uncover wider pathways by which SEP and health might be associated.

In conclusion we observe that disadvantaged social position in early life and adulthood is associated with 
positive age acceleration in adulthood. This is particularly apparent for adult SEP and the second generation 
measures of age acceleration. The social mobility framework is only partially supported with upwards social 
mobility associated with health measured with positive age acceleration.

Data availability
All data are available from the UKDA. University of Essex. Institute for Social and Economic Research and 
National Centre for Social Research, Understanding Society: Waves 2 and 3 Nurse Health Assessment, 2010–2012 
[data collection]. 3rd Edition. UK Data Service. SN:7251. https:// doi. org/ 10. 5255/ UKDA- SN- 7251-3.
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