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A B S T R A C T

We examine the role of information from the options market in forecasting the equity premium.
We provide evidence that the equity premium is predictable out-of-sample using a set of
CBOE strategy benchmark indices as predictors. We use a range of econometric approaches
to generate point, quantile, and density forecasts of the equity premium. We find that models
based on option variables consistently outperform the historical average benchmark. In addition
to statistical gains, using option predictors results in substantial economic benefits for a mean–
variance investor, delivering up to a fivefold increase in certainty equivalent returns over the
benchmark during the 1996–2021 sample period.

. Introduction

The topic of equity premium predictability has long been of significant interest to academics and practitioners alike. However,
he literature has yet to reach a consensus about the optimal set of predictors, and even about the extent to which the equity
remium can actually be predicted. In this paper, we contribute to this ongoing debate by examining the role of forward-looking
nformation from the options market in forecasting excess market returns.

A number of studies in the earlier literature had argued that the equity premium is, to a large extent, predictable using a set
f financial and economic variables, such as dividend yields, earning-price ratios, book-to-market ratios, term spreads, and default
preads (Campbell and Shiller, 1988; Fama and French, 1988, 1989; Kothari and Shanken, 1997; Pontiff and Schall, 1998; Lettau and
udvigson, 2001; Cochrane, 2008). However, Goyal and Welch (2008) challenged that commonly-held view and argued that these
ariables fail to consistently provide accurate predictions over time, with the associated models having an unstable and overall
oor forecasting performance in-sample and out-of-sample. The finding that standard economic variables produce forecasts with
nstable and short-lived accuracy, particularly when compared to the historical average benchmark, is further supported by Lettau
nd Van Nieuwerburgh (2008), Timmermann (2008), and Baetje and Menkhoff (2016), among others.

Subsequent studies explored whether alternative predictors can provide consistently more accurate forecasts of the equity
remium. For instance, Neely et al. (2014) and Baetje and Menkhoff (2016) examine a set of technical indicators and find that they
esult in more efficient and stable forecasts compared to standard economic indicators. Other studies document the forecasting power
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of investor sentiment (Huang et al., 2015), cross-sectional return dispersion (Maio, 2016), manager sentiment (Jiang et al., 2019),
oil price increases (Wang et al., 2019), news extracted from newspaper articles (Adämmer and Schüssler, 2020), and cross-sectional
higher moments (Stöckl and Kaiser, 2020).

Other studies focus on whether equity premium predictability can be improved by adopting alternative econometric approaches
o generate forecasts from a given set of variables. In particular, Rapach et al. (2010) examine a standard set of macroeconomic
ariables and show that forecast combinations result in statistically and economically significant gains in forecastability, in
ontrast to the poor performance of individual forecasts; see also Meligkotsidou et al. (2014) and Adämmer and Schüssler (2020).
oreover, Meligkotsidou et al. (2014, 2021) and Pedersen (2015) adopt a quantile regression approach and find that point forecasts

hat have been generated by aggregating across a set of quantiles significantly improve forecast accuracy. Following a different
pproach, Pettenuzzo et al. (2014), Li and Tsiakas (2017), and Tsiakas et al. (2020) show that forecast accuracy can be significantly
mproved by imposing economic and statistical constraints on equity premium forecasts.

Our paper contributes to the literature on equity premium predictability by exploring the predictive ability of a set of variables
xtracted from the options market. Given that option contracts are forward-looking by construction, it would be reasonable to expect
hat they contain important information about the future returns distribution of the underlying asset, in addition to information that
s already contained in the historical record of returns or other contemporaneously observed variables. To this end, we focus on
welve strategy benchmark indices quoted by the Chicago Board Options Exchange (CBOE) as potential predictors of the equity
remium. These indices reflect the performance of trading strategies that have been constructed using options written on the S&P
00, and they are designed to serve as benchmarks for investors trading index options. More importantly, the CBOE indices reflect
nvestors’ aggregate expectations about the distribution of future market returns. Considering that each CBOE strategy is based on a
ifferent mix of option contracts, the full set of strategy benchmarks is likely to contain rich information about several aspects of the
istribution of market returns, such as tail risk, volatility risk, expected skewness, etc. Overall, we argue that the forward-looking
ature and the increasing liquidity of index options make the CBOE benchmark indices natural candidates for the set of equity
remium predictors.

Our paper also contributes to the literature by evaluating equity premium predictability at a daily frequency. Previous studies
ave tended to examine financial and economic predictors that are observed weekly, monthly or even at a lower frequency. However,
he daily dynamics of predictors are likely to contain incremental information about the future evolution of the equity premium.
ur dataset consists of the daily time-series of the CBOE benchmark indices and we focus on forecasting the daily equity premium.

Despite the extensive search for optimal predictors of the equity premium in the literature, there has been surprisingly little
nterest in exploiting the forward-looking information embedded in index options. In this sense, our paper is directly related to
small number of recent studies that have explored option-related information in the context of forecasting market returns. More

pecifically, Buss et al. (2017, 2019) show that implied correlation is a robust predictor of aggregate market returns at long horizons.
urthermore, Andersen et al. (2020) find that the tail risk premium extracted from index options can predict future market returns,
hile Cao et al. (2020) report that the implied volatility spread outperforms several well-established predictors at horizons of up

o six months. Our research question is in a similar vein but, in contrast to focusing on a specific option-implied variable, we seek
o exploit a richer information set about several features of the market returns distribution by using a large set of variables based
n trading index options.

We examine the daily time-series of the equity premium from January 1996 to April 2021. We focus on the twelve CBOE strategy
enchmark indices as our main predictors of interest, and we also consider some of the standard economic variables of Goyal and
elch (2008) as well as the VIX and the variance risk premium as commonly used predictors. We employ a methodology that is

onsistent with recent developments in the literature, allowing us to generate point forecasts, quantile forecasts and density forecasts
f the equity premium. We evaluate the performance of alternative forecast models out-of-sample, in order to reflect investors’
eal-time decisions, with the emphasis on identifying models that provide statistical as well as economic gains in forecastability.

The findings provide strong support for the hypothesis that information from the options market can significantly improve the
redictability of the equity premium. First, we find that almost all option variables outperform the historical average benchmark
hen used in univariate linear models, as evidenced by positive and highly significant out-of-sample 𝑅2. This finding is particularly

important considering the relatively poor performance of the Goyal and Welch (2008) economic fundamentals and the fact that the
historical average is notoriously hard to beat (Campbell and Thompson, 2008). The highest improvement in forecasting power is
offered by the risk reversal strategy benchmark, highlighting the importance of skewness premia for predicting future market returns.
Interestingly, we find that using the mean forecast across all univariate models outperforms the historical average benchmark,
but to a lesser extent compared to most univariate models, while a kitchen sink model including all potential predictors actually
underperforms.

Exploiting the entire distributional information of each predictor from quantile regressions and employing variable selec-
tion/shrinkage techniques leads to additional improvements in forecasting power. For instance, the results are even stronger when we
examine point forecasts obtained by aggregating quantile forecasts, with universally positive out-of-sample R-squares and even lower
p-values for all option variables. Moreover, we find that the least absolute shrinkage and selection operator (LASSO) scheme offers
one of the highest improvements over the historical average benchmark, with an out-of-sample 𝑅2 of 1.37%. Applying the Lima and
Meng (2017) post LASSO quantile combinations (PLQC) scheme further improves forecasting performance, with the three-quantile
PLQC3 scheme offering an 𝑅2

𝑂𝑆 of 1.48%, which is the highest across all the models that we examine. In contrast to the findings
n Meligkotsidou et al. (2021), we find that fixed-weight PLQC schemes deliver more significant gains compared to schemes with
ime-varying weights.
2
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The quantile regression results provide further support for the role of option variables in forecasting the equity premium, as all
ption predictors consistently outperform the historical average benchmark across all the quantiles that we consider. However, we
ind that the alternative quantile constant benchmark is relatively harder to beat compared to that of the historical average, with
nivariate models using option variables failing to offer statistically significant improvements in the left part of the distribution.
evertheless, we find that the forecasting power of the CBOE indices gradually increases from the low to high quantiles, and

he majority of univariate option-based models significantly outperform both benchmarks in the right part of the distribution.
mportantly, when used in a multivariate setting, option predictors result in highly significant forecasting gains in both parts of
he distribution.

The results are qualitatively similar when forecasting the entire density, although the performance varies depending on the
eighting scheme used to aggregate across quantiles. In brief, we find that every option predictor outperforms the historical average
enchmark, with the highest improvements offered by the mean forecast model. The quantile constant benchmark is again found
o be more difficult to beat, but we still find that 9 of the 12 option variables offer significant gains under weighting schemes that
lace greater emphasis on the right part or the middle of the distribution, while skewness premia and multivariate models are the
nly cases of outperformance when we place greater emphasis on the left part of the distribution.

Finally, we find that forecasts generated by the option variables are not only statistically significant, but also economically
aluable. For instance, a standard mean–variance investor generating forecasts using the BXMD buy-write index in a univariate
etting would earn a certainty equivalent return (CER) of 5.6% per annum, representing an almost fourfold improvement over and
bove the CER of 1.27% offered by the historical mean benchmark. Applying variable selection via PLQC would offer a more than
ivefold increase in the investor’s Sharpe ratio, reaching 0.60 when using time-varying weights, compared to a Sharpe ratio of 0.12
ffered by the benchmark. Generally, using option predictors delivers important economic gains in terms of returns per unit of risk,
s evidenced by Sharpe ratios that are between three and five times higher than that of the historical average benchmark across all
ur models.

The remainder of the paper is organized as follows. In Section 2, we discuss the econometric methodology that is applied to
enerate and evaluate forecasts of the equity premium under competing models. In Section 3, we describe the data used in the
mpirical analysis, while in Section 4 we present the empirical results. Finally, we conclude in Section 5.

. Methodology

In this section, we describe the methodological approaches we use to produce and evaluate the forecasts of the equity premium.
e begin by discussing a number of alternative forecasting approaches, ranging from the simple linear model to several types of

uantile forecast combinations. We then present the criteria we use to evaluate the accuracy of these forecasts.

.1. Forecasting approaches

.1.1. Univariate linear model
We begin with the traditional predictive linear regression model, where we regress the equity premium against a lagged predictor

s follows:

𝑟𝑡+1 = 𝛼 + 𝛽𝑥𝑡 + 𝜀𝑡+1, (1)

where 𝑟𝑡+1 denotes the equity premium at time 𝑡+ 1, 𝑥𝑡 is the value of the predictive variable at 𝑡, and 𝜀𝑡+1 is a random error term.
We generate out-of-sample forecasts of the equity premium by estimating Eq. (1) recursively; see also Rapach et al. (2010)

and Goyal and Welch (2008). More specifically, we start by estimating the linear model using an initial window consisting of the
first 𝑚 observations, regressing {𝑟𝑡}𝑚𝑡=2 against a constant and {𝑥𝑡}𝑚−1𝑡=1 . Using the estimated parameters and the predictive variable’s
realized value 𝑥𝑚, we produce the first out-of-sample forecast of the equity premium at time 𝑚 + 1, given by:

𝑟̂𝑚+1 = 𝛼̂ + 𝛽𝑥𝑚. (2)

We obtain the time-series of out-of-sample equity premium forecasts by repeating these steps using a sequence of expanding
windows. Finally, we generate one time-series of equity premium forecasts separately for each variable 𝑥𝑡 in our set of predictors.

2.1.2. Kitchen sink
In addition to the univariate linear model in Eq. (1), we combine the information contained in all the predictive variables

by estimating kitchen sink forecasts. We start by estimating multivariate regressions of the equity premium against all 𝑘 lagged
predictors as follows:

𝑟𝑡+1 = 𝛼 +
𝑘
∑

𝑖=1
𝛽𝑖𝑥𝑖,𝑡 + 𝜖𝑡+1, (3)

where 𝑥𝑖,𝑡 denotes the value of the 𝑖th predictor at time 𝑡. The kitchen sink forecast of the equity premium is given by:

𝑟̂𝑡+1 = 𝛼̂ +
𝑘
∑

𝑖=1
𝛽𝑖𝑥𝑖,𝑡. (4)

Similarly to the univariate case in Section 2.1.1, we estimate kitchen sink forecasts in a recursive fashion.
3
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2.1.3. LASSO regression
The multivariate predictive regressions in Section 2.1.2 are likely to suffer from overfitting, especially when the number of

redictive variables is relatively large (see Rapach and Zhou, 2021).1 To address this concern, we adopt the Tibshirani (1996) LASSO
pproach. The LASSO is a shrinkage technique that can be used for variable selection. More specifically, this approach applies a
enalty to the estimated slope coefficients by forcing the sum of the absolute values of these coefficients to be below a predetermined
hreshold. In the process, one or more coefficients could be shrinked to zero, effectively excluding the associated variables from the
et of predictors. The LASSO regression coefficients can be obtained by solving the following optimization problem:

min
𝛼,𝛽1 ,…,𝛽𝑘

[
𝑇−1
∑

𝑡=1
(𝑟𝑡+1 − 𝛼 −

𝑘
∑

𝑖=1
𝛽𝑖𝑥𝑖,𝑡)2 + 𝜆

𝑘
∑

𝑖=1
|𝛽𝑖|], (5)

where 𝜆 denotes a penalty parameter that determines the degree of shrinkage. If 𝜆 = 0, then the LASSO coefficients are identical to
those obtained by the standard kitchen sink estimation in Eq. (3). As 𝜆 increases, 𝛽 shrinks to zero. While selecting an appropriate
alue for the shrinkage parameter is not straightforward, the main objective is to optimize the trade-off between reducing overfitting
nd discarding potentially useful information. When estimating LASSO regressions, we set 𝜆 = 1

𝑛 , where 𝑛 is the number of in-sample
bservations in a particular step.2

.1.4. Elastic net
We use the Zou and Hastie (2005) elastic net (ENet) approach as an alternative shrinkage technique. Similarly to the LASSO

orecast, the ENet forecast is based on a penalized regression that addresses potential overfitting. However, the ENet penalty term
onsists of two components: a LASSO component 𝜆1 and a ridge component 𝜆2 (Hoerl and Kennard, 1970). We follow Dong et al.

(2022) to select the value of the parameter that determines the degree of shrinkage, with the ENet coefficients being obtained by
solving the following system:

min
𝛼,𝛽1 ,…,𝛽𝑘

1
2

𝑇−1
∑

𝑡=1
(𝑟𝑡+1 − 𝛼 −

𝑘
∑

𝑖=1
𝛽𝑖𝑥𝑖,𝑡)2 subject to

𝑘
∑

𝑖=1
|𝛽𝑖| ≤ 𝜆1 and

𝑘
∑

𝑖=1
(𝛽𝑖)2 ≤ 𝜆2. (6)

.1.5. Principal component analysis
We consider forecasts based on principal component analysis (PCA), which has often been adopted in equity premium prediction

s a way to extract a common source of variation among a large set of predictors (e.g., Neely et al., 2014; Li and Tsiakas, 2017).
e also apply the more recent scaled PCA (sPCA) approach developed by Huang et al. (2021). In contrast to the equal weighting

f predictors in the PCA, the sPCA scales each predictor according to its predictive power over a particular target that is being
orecasted. In other words, instead of maximizing the extent to which a principal component can explain the variation among the
redictors, the sPCA attempts to maximize a principal component’s forecasting accuracy on a specific target. As a result of using the
arget variable information to guide dimension reduction, the sPCA has been found to generate more efficient forecasts of market
eturns (Huang et al., 2021; Chen et al., 2022). We follow Dong et al. (2022) and extract the first principal component from the
ull set of predictors in our sample, for both the PCA and the sPCA forecasts.

.1.6. Partial least squares
We use the partial least squares (PLS) approach to construct a single forecasting variable from our large set of predictors.

ollowing Kelly and Pruit (2013, 2015), we apply a three-pass regression filter to construct a factor as a linear combination of
ndividual predictors. In a similar spirit to the sPCA, the PLS technique uses information from the forecasting target to create an
ptimal predictor. More specifically, the weight of each individual predictor in the PLS combination is determined by its covariance
ith the forecast target (i.e., the equity premium), resulting in a univariate predictor that is expected to maximize the correlation
ith the target variable (see also Dong et al., 2022).

.1.7. Quantile regression
The linear models discussed in the previous sections can generate forecasts about the mean of the returns distribution. However,

number of studies document significant non-linear predictability patterns in stock returns (e.g., Guidolin et al., 2009; Henkel et al.,
011). To capture the potentially non-linear relationship between the equity premium and the set of predictors, we adopt a quantile
egression approach that allows us to explore the equity premium’s predictability across different parts of its distribution, including
he center as well as the tails (see Meligkotsidou et al., 2014, 2019; Pedersen, 2015).

The quantile regression model is given by:

𝑟𝑡+1 = 𝛼(𝜏) + 𝛽(𝜏)𝑥𝑡 + 𝜀𝑡+1, (7)

1 As a first, simple way of addressing overfitting, we consider the mean of all univariate forecasts generated in sub Section 2.1.1 (Mean), as well as the
ross-sectional mean of individual predictors (PredAvg).

2 We also considered selecting the optimal value for 𝜆 by running a tenfold cross-validation and then choosing the value for 𝜆 that minimizes the respective
ean squared error. The results are relatively similar to, albeit weaker than, those obtained when simply setting 𝜆 equal to 1

𝑛
. Therefore, we omit these latter

results for brevity, but they are available upon request.
4
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where 𝜏 ∈ (0, 1), while 𝛼(𝜏) and 𝛽(𝜏) are quantile-varying parameters. The errors 𝜀𝑡+1 are assumed to be independent and drawn from
n error distribution 𝑔𝜏 (𝜀) with the 𝜏th quantile equal to 0 (i.e., ∫ 0

−∞ 𝑔𝜏 (𝜀)𝑑𝜀 = 𝜏).
These quantile regressions are estimated separately for each predictive variable in our set. The estimated parameters 𝛼̂(𝜏) and

̂(𝜏) are obtained by minimizing the sum ∑𝑇−1
𝑡=0 𝜌𝜏

(

𝑟𝑡+1 − 𝛼(𝜏) − 𝛽(𝜏)𝑥𝑡
)

, where 𝜌𝜏 (𝑢) is an asymmetric linear loss function given by:

𝜌𝜏 (𝑢) = 𝑢 (𝜏 − 𝐼(𝑢 < 0)) = 1
2
[|𝑢| + (2𝜏 − 1)𝑢] . (8)

Once the parameters in Eq. (7) have been estimated, the forecast of the 𝜏th quantile of the equity premium distribution at
𝑡 + 1 can be obtained as 𝑟̂(𝜏)𝑡+1 = 𝛼̂(𝜏) + 𝛽(𝜏)𝑥𝑡. For example, in the symmetric case of 𝜏 = 1

2 , we obtain the median of the forecasted
istribution. Moreover, we follow Meligkotsidou et al. (2014) and Lima and Meng (2017) and forecast the mean of the equity
remium distribution as the weighted average of a set of quantiles. The weights used can be interpreted as the probabilities associated
ith different quantile forecasts, indicating how likely a particular regression quantile is to predict the equity premium over the
ext period. More specifically, we compute the point forecast of the equity premium as:

𝑟̂𝑡+1 =
∑

𝜏∈𝑆
𝑝𝜏 𝑟̂

(𝜏)
𝑡+1,

∑

𝜏∈𝑆
𝑝𝜏 = 1, (9)

here 𝑝𝜏 denotes the weight associated with quantile 𝜏, and 𝑆 denotes the full set of quantiles that are being aggregated. Regarding
he specific choice of weights 𝑝𝜏 , we follow Gastwirth (1966) and use the three-quantile (𝑄3) and the five-quantile (𝑄5) estimators
iven by:

𝑄3 ∶ 𝑟̂𝑡+1 =
1
3
𝑟̂(0.3)𝑡+1 + 1

3
𝑟̂(0.5)𝑡+1 + 1

3
𝑟̂(0.7)𝑡+1 . (10)

𝑄5 ∶ 𝑟̂𝑡+1 =
1
5
𝑟̂(0.3)𝑡+1 + 1

5
𝑟̂(0.4)𝑡+1 + 1

5
𝑟̂(0.5)𝑡+1 + 1

5
𝑟̂(0.6)𝑡+1 + 1

5
𝑟̂(0.7)𝑡+1 . (11)

2.1.8. Post LASSO quantile combinations
Including predictors with very small effects on the equity premium in the forecasting equation is likely to have a significant

negative impact on forecast accuracy. We address the issue of potentially weak predictors by applying the post LASSO quantile
combination (PLQC) approach that was first proposed by Lima and Meng (2017). The PQLC is a methodology that attempts to
minimize the negative impact of weak predictors and estimation errors by applying an averaging scheme to quantiles that are based
on LASSO-selected predictors.

We begin by applying the 𝓁1-penalized LASSO following Chernozhukov et al. (2010). We then select only the predictors whose
coefficients have not been shrunk to zero (i.e., excluding any weak predictors).3 We then use the selected predictors in a quantile
egression, with the post-LASSO forecast for quantile 𝜏 being given by:

𝑟̂(𝜏)𝑡+1 = 𝛼̂(𝜏) +
𝑘∗
∑

𝑖=1
𝛽(𝜏)𝑖 𝑥∗𝑖,𝑡, (12)

here 𝛼̂(𝜏) denotes the estimated intercept and 𝛽(𝜏)𝑖 the estimated slope for the 𝑖th predictor in the quantile regression. Furthermore,
∗
𝑖,𝑡 is the value of the 𝑖th predictor selected at time 𝑡, while 𝑘∗ is the total number of selected predictors. We use this approach to
btain one forecast for each quantile at time 𝑡. We combine all these quantile forecasts to construct the PLQC forecast of the mean
f the equity premium distribution as:

𝑟̂𝑡+1 =
𝐽
∑

𝑗=1
𝜔𝑡,𝜏𝑗 𝑟̂

(𝜏𝑗 )
𝑡+1,𝑡, (13)

here 𝜔 denotes the averaging scheme we use to combine quantile forecasts and 𝐽 is the total number of quantiles we use to
ggregate the forecasts. In our analysis, we use both fixed and time-varying schemes. With respect to fixed weights, we consider
discrete set of quantiles 𝜏 ∈ (𝜏1, 𝜏2,… , 𝜏𝐽 ) and compute the PLQC forecast as the simple arithmetic average with equal weighing
𝜏 = 𝜔. Consistent with the quantile models presented in Section 2.1.7, we compute these equal-weighted PLQC forecasts as:

𝑃𝐿𝑄𝐶3 ∶ 𝑟̂𝑡+1 =
1
3
𝑟̂(0.3)𝑡+1,𝑡 +

1
3
𝑟̂(0.5)𝑡+1,𝑡 +

1
3
𝑟̂(0.7)𝑡+1,𝑡. (14)

𝑃𝐿𝑄𝐶5 ∶ 𝑟̂𝑡+1 =
1
5
𝑟̂(0.3)𝑡+1,𝑡 +

1
5
𝑟̂(0.4)𝑡+1,𝑡 +

1
5
𝑟̂(0.5)𝑡+1,𝑡 +

1
5
𝑟̂(0.6)𝑡+1,𝑡 +

1
5
𝑟̂(0.7)𝑡+1,𝑡. (15)

In addition, we apply time-varying weights to account for the possibility that the contribution of specific quantiles in the optimal
forecast varies across time. Similarly to Lima and Meng (2017), we determine the weighting scheme 𝜔𝑡,𝑗 by estimating a constrained
OLS regression of 𝑟𝑡+1 on 𝑟̂(𝜏)𝑡+1,𝑡, 𝜏 ∈ (𝜏1, 𝜏2,… , 𝜏𝐽 ). The resulting PLQC forecasts with time-varying (TW) weights are given by:

𝑇𝑊3 ∶ 𝑟̂𝑡+1 = 𝜔𝑡,𝜏1 𝑟̂
(0.3)
𝑡+1,𝑡 + 𝜔𝑡,𝜏2 𝑟̂

(0.5)
𝑡+1,𝑡 + 𝜔𝑡,𝜏3 𝑟̂

(0.7)
𝑡+1,𝑡, (16)

3 The 𝓁1-penalized LASSO method can be used to classify predictors into three groups. Strong predictors are those that are selected in all quantiles, weak
predictors are those that are selected in a subset of all quantiles, while fully weak predictors are those that are not selected in any quantile. When obtaining
post-LASSO forecasts for a given quantile, we exclude all weak predictors, without trying to distinguish between weak and fully weak ones across the entire set
5

of quantiles.
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𝑠.𝑡. 𝜔𝑡,𝜏1 + 𝜔𝑡,𝜏2 + 𝜔𝑡,𝜏3 = 1.

𝑇𝑊5 ∶ 𝑟̂𝑡+1 = 𝜔𝑡,𝜏1 𝑟̂
(0.3)
𝑡+1,𝑡 + 𝜔𝑡,𝜏2 𝑟̂

(0.4)
𝑡+1,𝑡 + 𝜔𝑡,𝜏3 𝑟̂

(0.5)
𝑡+1,𝑡 + 𝜔𝑡,𝜏4 𝑟̂

(0.6)
𝑡+1,𝑡 + 𝜔𝑡,𝜏5 𝑟̂

(0.7)
𝑡+1,𝑡, (17)

𝑠.𝑡. 𝜔𝑡,𝜏1 + 𝜔𝑡,𝜏2 + 𝜔𝑡,𝜏3 + +𝜔𝑡,𝜏4 + 𝜔𝑡,𝜏5 = 1.

2.2. Forecast evaluation criteria

The methodologies discussed in Section 2.1 allow us to generate a set of point, quantile, and density forecasts of the equity
premium. We obtain these time-series of equity premium forecasts using a recursive (expanding) window. In particular, we begin
by using the model parameters we obtain in the initial estimation period that consists of the first five years, as well as the predictors’
values on the last day of the estimation period, in order to forecast the equity premium one day ahead. We continue to generate
out-of-sample forecasts by continuously updating the estimation period, adding one observation at a time. This approach allows us
to generate a time-series of one-day-ahead out-of-sample forecasts of the equity premium, under a set of competing models. We
evaluate the forecast accuracy of each model based on the following criteria.

2.2.1. Point forecast accuracy
We evaluate the accuracy of point forecasts using the standard out-of-sample 𝑅2, computed as:

𝑅2
𝑂𝑆 = 1 −

𝑀𝑆𝐹𝐸𝑖
𝑀𝑆𝐹𝐸0

, (18)

here 𝑀𝑆𝐹𝐸𝑖 and 𝑀𝑆𝐹𝐸0 denote the mean squared forecast errors of the 𝑖th model and the benchmark model, respectively.
Positive values of the 𝑅2

𝑂𝑆 are indicative of the proposed model outperforming the benchmark, while negative values indicate the
pposite. We evaluate the statistical significance of a model’s 𝑅2

𝑂𝑆 by performing the Clark and West (2007) test.

2.2.2. Quantile forecast accuracy
Gneiting and Raftery (2007) and Gneiting and Ranjan (2011) suggest that forecast evaluation should be based on the same loss

function as the one used in model estimation (i.e., Eq. (8) used in the quantile regressions in this study). In order to evaluate the
accuracy of quantile forecasts, we follow Manzan (2015) and compute the forecasts’ quantile score (𝑄𝑆). More specifically, we
compute the 𝑄𝑆 of the 𝜏th quantile forecast generated by the 𝑖th model as:

𝑄𝑆 𝑖
𝑡+1∣𝑡(𝜏) =

[

𝑟𝑡+1 − 𝑟̂(𝜏)𝑖,𝑡+1

] [

𝜏 − 𝐼(𝑟𝑡+1 − 𝑟̂(𝜏)𝑖,𝑡+1 < 0)
]

, (19)

where 𝑟̂(𝜏)𝑖,𝑡+1 denotes the 𝑖th model’s forecast of quantile 𝜏, and 𝐼 is an indicator function that takes the value of 1 if the argument
is true and the value of 0 otherwise. A lower 𝑄𝑆 indicates superior forecast accuracy.

We evaluate the statistical significance of quantile forecast accuracy by following Giacomini and White (2006) and Amisano and
Giacomini (2007). To this end, we compute the quantile score’s test statistic as

𝑡𝑄𝑆
𝑖 (𝜏) =

𝑄𝑆 𝑖(𝜏) −𝑄𝑆0(𝜏)
𝜎

, (20)

where 𝑄𝑆 𝑖(𝜏) and 𝑄𝑆0(𝜏) denote the mean QS for quantile 𝜏 generated by the 𝑖th model and the benchmark model, respectively,
hile 𝜎 is the standard error of the quantile score difference. The null hypothesis is that both models’ quantile scores are equal,
ith model 𝑖 outperforming the benchmark if the null is rejected with a negative 𝑡𝑄𝑆

𝑖 (𝜏) and the benchmark outperforming model 𝑖
f the null is rejected with a positive 𝑡𝑄𝑆

𝑖 (𝜏).

.2.3. Density forecast accuracy
We interpolate across the set of quantile forecasts to approximate the entire density of the equity premium, without the constraint

f assuming a particular distribution. The forecast accuracy of these density forecasts is evaluated via the weighted quantile score
𝑊𝑄𝑆) by integrating the 𝑄𝑆 across the set of quantiles 𝜏, with a function 𝜔 assigning different weights to different parts of the
istribution. We compute the 𝑊𝑄𝑆 of model 𝑖 as:

𝑊𝑄𝑆 𝑖
𝑡+1∣𝑡 = ∫

1

0
𝑄𝑆 𝑖

𝑡+1∣𝑡(𝜏)𝜔(𝜏)𝑑𝜏. (21)

Given that our analysis is based on a discrete set of quantiles, we replace the continuous version of 𝑊𝑄𝑆 in Eq. (21) with a
iscrete version that aggregates across the obtained quantiles. More specifically, we employ four different weighting functions 𝜔,
amely:

1. 𝑊𝑄𝑆1: 𝜔(𝜏) = 1, assigning uniform weights across the entire distribution.
2. 𝑊𝑄𝑆2: 𝜔(𝜏) = 𝜏(1 − 𝜏), assigning greater weights to the middle of the distribution.
3. 𝑊𝑄𝑆3: 𝜔(𝜏) = (1 − 𝜏)2, assigning greater weights to the left tail of the distribution.
4. 𝑊𝑄𝑆4: 𝜔(𝜏) = 𝜏2, assigning greater weights to the right tail of the distribution.

Finally, we evaluate the statistical significance of the weighted quantile score by replacing 𝑄𝑆 with 𝑊𝑄𝑆 in Eq. (20).
6
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3. Data and main variables

We focus on the period January 4, 1996 to April 15, 2021, for a total of 6312 daily observations. Our main variable of interest is
he equity premium 𝑟𝑡, defined as the log return of the market index in excess of the risk-free rate. In particular, the equity premium
t time 𝑡 is given by 𝑟𝑡 = ln(1 + 𝑟𝑚𝑘𝑡,𝑡)∕ ln(1 + 𝑟𝑓,𝑡), where 𝑟𝑚𝑘𝑡,𝑡 and 𝑟𝑓,𝑡 denote the return of the S&P 500 index and the 1-month

Treasury bill rate, respectively, at 𝑡. We use the first five years (1248 daily observations) as our initial estimation period in the
forecasting exercise, with the out-of-sample period starting on January 3, 2001.

The set of predictors consists of the daily returns of 12 strategy benchmark indices trading S&P 500 options, the VIX, the variance
risk premium (VRP), and 3 economic variables. We obtain data on the strategy benchmark indices directly from the CBOE, which
reports the daily returns of a number of passive strategies involving options written on the S&P 500. These indices are designed
to serve as benchmarks for investors trading options on the exchange, and they can be split into seven categories according to
the type of information that they are expected to reflect. Each category contains several strategies that are designed to broadly
pursue the same objective by adopting variations of the same construction methodology. Given the significant degree of correlation
among same-category strategies, we select from each group only a subset of strategy indices that can capture the main properties
of that category. More specifically, our set of option predictors consists of the Buy-Write (BXM, BXMC, BXMD, and BXY), Put-Write
(PUT and PUTY), Combo (CMBO), Butterfly (BFLY), Condor (CNDR), Collar (CLL), Put Protection (PPUT), and Risk Reversal (RXM)
strategies. Table A1 in the Online Appendix provides more information about the construction of each strategy benchmark index.

While a theoretical framework that links these option variables to subsequent equity returns has yet to be developed, our choice
of options-based strategies as potential predictors is motivated primarily by the substantial literature that has emerged on the
informational content of the options market. For instance, Vanden (2008) shows that option prices subsume market expectations
about future investment opportunities, while several studies find that information extracted from options has significant forecasting
power over stock price dynamics (e.g., Shackleton et al., 2010; Christoffersen et al., 2012; Buss et al., 2017, 2019).

The forward-looking nature of option contracts suggests that they are, in theory, expected to contain information about investors’
expectations of the future state of the underlying market index. Moreover, each benchmark strategy reflects aggregate expectations
about different parts and/or moments of the index’s distribution, determined by the specific types of option contracts that it trades.
Buy-Write strategies, for instance, provide long equity and short volatility exposure (Israelov and Nielsen, 2014). By going long
in the underlying market index and short in a covered call, these strategies perform well when the market fluctuates little in the
short-term and rises in the longer-term. As such, these option variables reflect investors’ beliefs about the future short-term and
longer-term movements of the underlying index, regarding the market’s level and volatility. Importantly, each of the four Buy-Write
strategies (BXM, BXMC, BXMD, and BXY) has different exposure to short volatility, determined by the moneyness of the options
used in its construction, so that using all four variables captures a large part of the forecasting power embedded in the options’
implied volatility smile; see also Whaley (2002) and Israelov and Nielsen (2014, 2015).

Put-Write strategies, on the other hand, reflect the performance of providing crash insurance on the market index, a practice that
has traditionally offered very high returns (Bondarenko, 2014; Kelly et al., 2016). In this sense, PUT and PUTY capture investors’
expectations about the likelihood of a market crash, as well as their associated aversion to crash risk. This variable is expected to
correlate significantly with the subsequent equity premium, with higher returns of put-writing strategies being indicative of investors
attaching a higher probability to a subsequent market crash.

Butterfly (BFLY) and Condor (CNDR) are standard volatility trading strategies that reflect investors’ appetite for insurance against
volatility risk. Previous studies show that volatility expectations embedded in the VIX and the VRP have significant forecasting power
over the equity premium, documenting a positive relation between volatility expectations and subsequent market returns (Bollerslev
et al., 2009, 2014; Buss et al., 2017). The volatility strategies that we explore can be similarly seen as complimentary measures of
aggregate uncertainty and risk aversion extracted from option prices. In fact, BFLY and CNDR represent direct ways of trading on
the variance risk premium using options, as opposed to going short in VIX futures. Therefore, we expect these volatility strategies to
contain incremental information about future market returns, in line with the findings of Bollerslev et al. (2009) of high volatility
premia being associated with high future returns. The Combo strategy (CMBO) is essentially a 50/50 combination of the PUT and
BFLY strategies, jointly reflecting investors’ beliefs about crash risk and volatility risk.

Collar (CLL) and put protection (PUTY) strategies are typically considered as a cost-efficient way of hedging the underlying
market index. By going long in an index put and short in an index call, CLL is designed to protect a long position in the underlying
index at a relatively low cost, at the expense of capping upside potential. Given its construction, CLL is expected to perform well
when investors have bearish short-term forecasts but bullish long-term ones about the market index. PUTY offers an alternative,
and relatively more expensive, way of hedging the market index. Put protection strategies tend to somewhat underperform during
good states of the market but substantially outperform during crashes, thereby reflecting investors’ expectations of large drops of
the market index.

Finally, risk reversals (RXM) are designed to reverse the risk stemming from the well-documented negative skewness of index
returns. As such, RXM returns directly reflect the implied skewness premium and, by extension, capture investors’ expectations about
future market skewness. Although skewness should, in theory, be negatively related to future stock returns, the empirical results
have been somewhat mixed. For instance, Bali and Murray (2013), Chang et al. (2013), Conrad et al. (2013), and Kim and Park
(2018) confirm a negative relation between implied skewness and subsequent stock returns, while a positive relation is reported
7



Journal of Financial Markets 64 (2023) 100801A.K. Alexandridis et al.
Fig. 1. Time-evolution of main variables.
Notes: We plot the time evolution of the equity premium (𝐸𝑃 ) and the options predictors. Each subplot shows the cumulative daily return of the respective
variable. The sample period is from January 3, 1996 to April 15, 2021.

by Bali and Hovakimian (2009), Xing et al. (2010), and Chordia and Lin (2021). We expect RXM to reflect investors’ beliefs about
the likelihood of a market crash (Doran et al., 2007) and to act as a proxy for investor sentiment (Han, 2008; Cao et al., 2020).4

Following the literature on the predictive power of the VIX and the VRP over market returns, we include both of these variables
in our set of predictors. We obtain daily data on the VIX directly from the CBOE, while data on the VRP are from the personal
webpage of Grigory Vilkov.5 In addition to the above option predictors, we use a set of variables that have often been found to
contain information about future market returns. In particular, Goyal and Welch (2008) show that a set of economic variables can
have a significant predictive power over the equity premium. Given that our forecasting exercise is based on daily data, we include
in our set of predictors only the Goyal and Welch (2008) variables that are available at a daily frequency. More specifically, we
include the term spread (TMS), defined as the difference between the yield of long-term government bonds and the yield of T-bills,
the TED spread (TED), defined as the difference between the 3-month T-bill rate and 3-month LIBOR, and the default yield spread
(DFY), given as the difference between the yields of BAA and AAA corporate bonds. We obtain the data on these economic variables
from Bloomberg.

Fig. 1 shows the time evolution of the equity premium and the option predictors during our sample period while Table 1 reports
the descriptives statistics. The equity premium has a mean of 0.02% on a daily basis, with a standard deviation of 1.22%. Consistent
with earlier findings in the literature, we find that the equity premium is characterized by negative skewness and excess kurtosis. All
the option-related predictors are also negatively skewed (with PPUT and VIX being the only exceptions) and substantially leptokurtic,
while the economic predictors have positive skewness. As can be seen in Table 2, the strategy benchmark indices generally tend
to be strongly correlated with one another. Interestingly, the option predictors are negatively and weakly correlated with the VIX,
and almost completely uncorrelated with the three macroeconomic predictors. These relatively weak correlations with variables
that have traditionally been used to forecast the equity premium suggests that the strategy benchmark indices are likely to contain
incremental information about future market returns.

4 Cao et al. (2020) find that an alternative measure of implied skewness (the implied volatility spread) is significantly positively related to several measures
of market expectations and investor sentiment, namely the Gallup investor survey, American Association of Individual Investors survey, Crash Confidence Index
from the Yale School of Management, and the Baker and Wurgler (2006) sentiment index. Implied skewness was also found to be significantly negatively related
to eight measures of market uncertainty, including macroeconomic, political, and financial uncertainty.

5 The VRP data can be found at https://www.vilkov.net/codedata.html. This dataset does not cover our entire sample period, as it ends in December 2017.
Therefore, we include the analysis of the VRP in the paper’s robustness section.
8
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Table 1
Descriptive statistics.

Mean Median St.Dev Min Max Skew Kurt LBQ JB

𝐸𝑃 0.0002 0.0006 0.0122 −0.1277 0.1024 −0.53 12.72 0.00 0.00
𝐵𝑋𝑀 0.0003 0.0006 0.0087 −0.1296 0.0898 −1.53 28.44 0.00 0.00
𝐵𝑋𝑀𝐶 0.0003 0.0007 0.0092 −0.1283 0.1097 −1.11 26.29 0.00 0.00
𝐵𝑋𝑀𝐷 0.0003 0.0008 0.0105 −0.1272 0.0930 −0.88 17.60 0.00 0.00
𝐵𝑋𝑌 0.0004 0.0008 0.0112 −0.2954 0.2969 −0.75 169.24 0.00 0.00
𝑃𝑈𝑇 0.0003 0.0005 0.0083 −0.1218 0.0903 −1.62 32.70 0.00 0.00
𝑃𝑈𝑇𝑌 0.0002 0.0003 0.0071 −0.1228 0.0908 −2.35 52.96 0.00 0.00
𝐶𝑀𝐵𝑂 0.0003 0.0007 0.0090 −0.1240 0.0892 −1.41 24.65 0.00 0.00
𝐵𝐹𝐿𝑌 0.0001 0.0006 0.0070 −0.0501 0.0628 −0.48 9.90 0.09 0.00
𝐶𝑁𝐷𝑅 0.0001 0.0005 0.0048 −0.0462 0.0431 −1.40 23.02 0.00 0.00
𝐶𝐿𝐿 0.0002 0.0003 0.0081 −0.2208 0.1165 −3.10 100.39 0.02 0.00
𝑃𝑃𝑈𝑇 0.0003 0.0003 0.0089 −0.0799 0.0679 0.02 7.11 0.00 0.00
𝑅𝑋𝑀 0.0002 0.0003 0.0074 −0.1189 0.0892 −2.01 42.03 0.00 0.00
𝑉 𝐼𝑋 0.2033 0.0845 0.8269 0.1868 0.0914 2.09 10.54 0.00 0.00
𝑇𝑀𝑆 0.0158 0.0155 0.0112 −0.0095 0.0385 0.05 2.04 0.00 0.00
𝑇𝐸𝐷 0.0046 0.0035 0.0039 0.0009 0.0458 3.35 21.71 0.00 0.00
𝐷𝐹𝑌 0.0099 0.0090 0.0041 0.0050 0.0350 3.07 15.81 0.00 0.00

Notes: This table reports the descriptive statistics for the equity premium (𝐸𝑃 ) and the predictive variables. The set of predictors
includes the returns of twelve strategy benchmark indices based on index options, the VIX, and three macroeconomic variables.
The option strategy predictors consist of the Buy-Write Index (𝐵𝑋𝑀), Conditional Buy-Write Index (𝐵𝑋𝑀𝐶), 30-Delta Buy-Write
Index (𝐵𝑋𝑀𝐷), 2% OTM Buy-Write Index (𝐵𝑋𝑌 ), Put-Write Index (𝑃𝑈𝑇 ), 2% OTM Put-Write Index (𝑃𝑈𝑇𝑌 ), Covered Combo
Index (𝐶𝑀𝐵𝑂), Iron Butterfly Index (𝐵𝐹𝐿𝑌 ), Iron Condor Index (𝐶𝑁𝐷𝑅), 95–110 Collar Index (𝐶𝐿𝐿), 5% Put Protection Index
(𝑃𝑃𝑈𝑇 ), and the Risk Reversal Index (𝑅𝑋𝑀). The macroeconomic variables consist of the term spread (𝑇𝑀𝑆), TED spread
(𝑇𝐸𝐷), and the default yield spread (𝐷𝐹𝑌 ). The descriptive statistics reported include the mean, median, standard deviation,
minimum, maximum, skewness, and kurtosis of the daily time-series. The last two columns report the p-values of the Ljung and
Box (1978) test for serial correlation and the Jarque and Bera (1987) test for normality. The sample period is from January 3,
1996 to April 15, 2021.

Table 2
Correlation matrix.

𝐸𝑃 𝐵𝑋𝑀 𝐵𝑋𝑀𝐶 𝐵𝑋𝑀𝐷 𝐵𝑋𝑌 𝑃𝑈𝑇 𝑃𝑈𝑇𝑌 𝐶𝑀𝐵𝑂 𝐵𝐹𝐿𝑌 𝐶𝑁𝐷𝑅 𝐶𝐿𝐿 𝑃𝑃𝑈𝑇 𝑅𝑋𝑀 𝑉 𝐼𝑋 𝑇𝑀𝑆 𝑇𝐸𝐷 𝐷𝐹𝑌

𝐸𝑃 1.00 0.91 0.22 0.97 0.83 0.88 0.84 0.93 0.17 0.37 0.73 0.90 0.90 −0.15 0.00 −0.05 −0.01
𝐵𝑋𝑀 0.91 1.00 0.22 0.96 0.86 0.97 0.94 0.98 0.42 0.60 0.62 0.70 0.86 −0.14 −0.01 −0.05 −0.02
𝐵𝑋𝑀𝐶 0.22 0.22 1.00 0.23 0.20 0.23 0.24 0.24 0.06 0.09 0.19 0.16 0.23 −0.13 0.00 −0.03 −0.01
𝐵𝑋𝑀𝐷 0.97 0.96 0.23 1.00 0.86 0.94 0.90 0.98 0.31 0.52 0.69 0.82 0.86 −0.14 0.00 −0.04 −0.01
𝐵𝑋𝑌 0.83 0.86 0.20 0.86 1.00 0.84 0.80 0.87 0.30 0.49 0.61 0.68 0.75 −0.13 −0.01 −0.04 −0.01
𝑃𝑈𝑇 0.88 0.97 0.23 0.94 0.84 1.00 0.97 0.97 0.43 0.63 0.58 0.64 0.89 −0.14 −0.01 −0.05 −0.02
𝑃𝑈𝑇𝑌 0.84 0.94 0.24 0.90 0.80 0.97 1.00 0.94 0.39 0.65 0.49 0.55 0.90 −0.15 0.00 −0.06 −0.02
𝐶𝑀𝐵𝑂 0.93 0.98 0.24 0.98 0.87 0.97 0.94 1.00 0.38 0.59 0.65 0.74 0.88 −0.15 0.00 −0.05 −0.01
𝐵𝐹𝐿𝑌 0.17 0.42 0.06 0.31 0.30 0.43 0.39 0.38 1.00 0.64 0.05 0.08 0.17 −0.01 0.00 0.01 −0.01
𝐶𝑁𝐷𝑅 0.37 0.60 0.09 0.52 0.49 0.63 0.65 0.59 0.64 1.00 0.22 0.15 0.44 −0.07 0.00 −0.01 −0.01
𝐶𝐿𝐿 0.73 0.62 0.19 0.69 0.61 0.58 0.49 0.65 0.05 0.22 1.00 0.78 0.57 −0.10 −0.01 −0.02 −0.01
𝑃𝑃𝑈𝑇 0.90 0.70 0.16 0.82 0.68 0.64 0.55 0.74 0.08 0.15 0.78 1.00 0.68 −0.10 0.00 −0.01 0.00
𝑅𝑋𝑀 0.90 0.86 0.23 0.86 0.75 0.89 0.90 0.88 0.17 0.44 0.57 0.68 1.00 −0.15 −0.01 −0.05 −0.02
𝑉 𝐼𝑋 −0.15 −0.14 −0.13 −0.14 −0.13 −0.14 −0.15 −0.15 −0.01 −0.07 −0.10 −0.10 −0.15 1.00 0.13 0.46 0.59
𝑇𝑀𝑆 0.00 −0.01 0.00 0.00 −0.01 −0.01 0.00 0.00 0.00 0.00 −0.01 0.00 −0.01 0.13 1.00 −0.19 0.31
𝑇𝐸𝐷 −0.05 −0.05 −0.03 −0.04 −0.04 −0.05 −0.06 −0.05 0.01 −0.01 −0.02 −0.01 −0.05 0.46 −0.19 1.00 0.34
𝐷𝐹𝑌 −0.01 −0.02 −0.01 −0.01 −0.01 −0.02 −0.02 −0.01 −0.01 −0.01 −0.01 0.00 −0.02 0.59 0.31 0.34 1.00

Notes: This table reports the correlation matrix among the EP and the predictive variables. The set of predictors includes the returns of twelve strategy benchmark
indices based on index options, the VIX, and three macroeconomic variables. The option strategy predictors consist of the Buy-Write Index (𝐵𝑋𝑀), Conditional
Buy-Write Index (𝐵𝑋𝑀𝐶), 30-Delta Buy-Write Index (𝐵𝑋𝑀𝐷), 2% OTM Buy-Write Index (𝐵𝑋𝑌 ), Put-Write Index (𝑃𝑈𝑇 ), 2% OTM Put-Write Index (𝑃𝑈𝑇𝑌 ),
Covered Combo Index (𝐶𝑀𝐵𝑂), Iron Butterfly Index (𝐵𝐹𝐿𝑌 ), Iron Condor Index (𝐶𝑁𝐷𝑅), 95–110 Collar Index (𝐶𝐿𝐿), 5% Put Protection Index (𝑃𝑃𝑈𝑇 ), and
the Risk Reversal Index (𝑅𝑋𝑀). The macroeconomic variables consist of the term spread (𝑇𝑀𝑆), TED spread (𝑇𝐸𝐷), and the default yield spread (𝐷𝐹𝑌 ). The
descriptive statistics reported include the mean, median, standard deviation, minimum, maximum, skewness, and kurtosis of the daily time-series. The sample
period is from January 3, 1996 to April 15, 2021.

4. Results

4.1. In-sample predictability

We begin by exploring the in-sample predictability of the equity premium. To this end, Table 3 reports the estimated coefficients
from univariate predictive regressions of the equity premium against each predictor in turn. The table reports the results from simple
OLS estimations as well as those from quantile regressions.

The univariate regression results provide initial support for the hypothesis that the options market contains significant
information about the future evolution of the underlying equity index. Estimating a simple linear predictive model produces slope
9
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Table 3
In-sample parameters.

OLS 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

𝐵𝑋𝑀 −0.148*** −0.012 −0.039 −0.056*** −0.077*** −0.096*** −0.131*** −0.134*** −0.155*** −0.188***
𝐵𝑋𝑀𝐶 −0.097*** 0.081*** 0.056*** 0.016 0.005 −0.038*** −0.076*** −0.119*** −0.141*** −0.168***
𝐵𝑋𝑀𝐷 −0.121*** 0.012 −0.016 −0.033** −0.062*** −0.079*** −0.105*** −0.122*** −0.146*** −0.159***
𝐵𝑋𝑌 −0.091*** 0.018 −0.007 −0.008 −0.045*** −0.065*** −0.088*** −0.106*** −0.106*** −0.129***
𝑃𝑈𝑇 −0.163*** −0.022 −0.045* −0.064*** −0.085*** −0.103*** −0.133*** −0.155*** −0.173*** −0.208***
𝑃𝑈𝑇𝑌 −0.219*** −0.083* −0.114*** −0.125*** −0.118*** −0.156*** −0.181*** −0.202*** −0.241*** −0.283***
𝐶𝑀𝐵𝑂 −0.147*** −0.013 −0.025 −0.052*** −0.076*** −0.096*** −0.128*** −0.145*** −0.169*** −0.190***
𝐵𝐹𝐿𝑌 −0.036 −0.128*** −0.128*** −0.076*** −0.041*** −0.013* 0.021 0.043** 0.039* −0.013
𝐶𝑁𝐷𝑅 −0.097*** −0.158** −0.131*** −0.095*** −0.052*** −0.021 0.000 0.022 −0.009 −0.068
𝐶𝐿𝐿 −0.055*** 0.159*** 0.081*** 0.021 −0.026* −0.067*** −0.101*** −0.136*** −0.157*** −0.149***
𝑃𝑃𝑈𝑇 −0.062*** 0.083** 0.045** 0.006 −0.040*** −0.077*** −0.107*** −0.119*** −0.138*** −0.150***
𝑅𝑋𝑀 −0.213*** −0.015 −0.030 −0.066*** −0.101*** −0.162*** −0.195*** −0.225*** −0.272*** −0.301***
𝑉 𝐼𝑋 0.002 −0.087 −0.055 −0.029 −0.011 0.005* 0.021 0.038 0.057 0.080
𝑇𝑀𝑆 −0.009 −0.067** −0.040** −0.017 −0.007 −0.005 0.007 0.002 0.001 0.060**
𝑇𝐸𝐷 −0.099** −0.972*** −0.606*** −0.362*** −0.209*** −0.051 0.116** 0.212*** 0.452*** 0.760***
𝐷𝐹𝑌 −0.022 −1.079*** −0.665*** −0.356*** −0.129** 0.029 0.159*** 0.308*** 0.583*** 0.987***

Notes: This table reports the estimated slope coefficients from in-sample univariate predictive regressions of the equity premium against a set of predictors.
The first column reports the estimated coefficients from univariate OLS regressions, and the remaining columns report the results from quantile regressions for
quantiles ranging from 𝜏 = 0.10 to 𝜏 = 0.90. The sample period is from January 3, 1996 to April 15, 2021.
*Statistical significance at the 10% level.
**Statistical significance at the 5% level.
***Statistical significance at the 1% level.

coefficients that are statistically significant at the 1% level across all option-related variables (with the exception of BFLY). For
context, the coefficient of the VIX is insignificant while TED is the only macroeconomic variable with a statistically significant
coefficient.

The quantile regression results confirm the non-linear impact of the predictors on the equity premium distribution. For instance,
looking at the results for 𝜏 = 0.10, it appears that, even though some option predictors have statistically insignificant coefficients, the
left tail of the equity premium distribution is affected by at least one option strategy index from each category group, as well as by
the Goyal and Welch (2008) economic variables. As we move further to the right of the equity premium distribution, the importance
of option predictors increases substantially, as evidenced by the fact that almost all variables have statistically significant coefficients
across all quantiles. In contrast to previous studies, we find that the VIX is largely insignificant as a univariate predictor, both in
an OLS and in a quantile setting.

Interestingly, we find that BFLY and CNDR are significant in-sample predictors mainly for quantiles ranging from 𝜏 = 0.10 to
𝜏 = 0.50, potentially suggesting that volatility premia embedded in option prices are driven by investors’ concerns about downside
risk. The opposite pattern can be seen in the coefficients of Buy-Write strategies (BXM, BXMC, BXMD, and BXY), indicating that
these option variables can more accurately predict the right part of the equity premium distribution compared to the left part.
Overall, the results indicate that option variables have a significant non-linear impact on in-sample equity premium predictability.

4.2. Point forecasts

We next examine the out-of-sample predictability of the equity premium. While in-sample forecasts are generally associated
with higher statistical power, out-of-sample performance is typically considered a more appropriate evaluation measure as it avoids
issues of overfitting and, importantly, it is based on information that would have been available to investors at the time the forecast
was generated. Table 4 reports the out-of-sample R-square (𝑅2

𝑂𝑆 ) of point forecasts under a set of competing forecasting models.
In particular, the table reports the performance of forecasts based on univariate and multivariate linear models, as well as those
generated by quantile forecast combination schemes. The statistical significance of the 𝑅2

𝑂𝑆 is evaluated against a benchmark model
using the Clark and West (2007) test. We adopt the natural benchmark of the historical average (HA), which Campbell and Thompson
(2008) and Goyal and Welch (2008) argue is hard to beat, as the HA generally outperforms an extensive set of commonly-used
predictors out-of-sample.

Table 4 shows that all option strategy indices outperform the benchmark of the historical average, as evidenced by positive
out-of-sample R-squares (BFLY is the only exception with an 𝑅2

𝑂𝑆 of −0.03). Importantly, this outperformance relative to the HA
benchmark is highly significant in most cases, with the majority of the Clark and West (2007) p-values being lower than 1%. The
greatest improvement in forecasting power is offered by the risk reversal strategy RXM, which has the highest 𝑅2

𝑂𝑆 at 1.91 (p-value
= 0.1%). Given that risk reversals reflect the level of implied skewness embedded in index options, it seems that investors’ demand
for downside protection contains substantial information about subsequent market returns, in excess of the information contained
in the historical returns record.

To put these results into context, it is worth highlighting that the three Goyal and Welch (2008) economic variables have a
negative 𝑅2, suggesting that they are inferior predictors of the equity premium relative to the HA benchmark. Therefore, our out-
of-sample results provide strong support for the hypothesis that information from the options market can markedly improve the
predictability of the equity premium, relative to the historical average benchmark and commonly-used economic predictors.
10
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Table 4
Point forecasts: Out-of-sample 𝑅2.

Panel A: Individual predictors

Linear 𝑄3 𝑄5

𝑅2
𝑂𝑆 p-value 𝑅2

𝑂𝑆 p-value 𝑅2
𝑂𝑆 p-value

𝐵𝑋𝑀 1.26* 0.0032* 1.20* 0.0012* 1.24* 0.0011*
𝐵𝑋𝑀𝐶 0.39* 0.0557* 0.29* 0.0335* 0.25* 0.0420*
𝐵𝑋𝑀𝐷 1.24* 0.0012* 1.13* 0.0006* 1.16* 0.0005*
𝐵𝑋𝑌 0.72* 0.0029* 0.73* 0.0015* 0.75* 0.0012*
𝑃𝑈𝑇 1.37* 0.0035* 1.26* 0.0016* 1.28* 0.0015*
𝑃𝑈𝑇𝑌 1.80* 0.0033* 1.70* 0.0018* 1.70* 0.0017*
𝐶𝑀𝐵𝑂 1.32* 0.0022* 1.21* 0.0011* 1.24* 0.0010*
𝐵𝐹𝐿𝑌 −0.03 0.2510 0.03* 0.0817* 0.04* 0.0831*
𝐶𝑁𝐷𝑅 0.04* 0.1683 0.04* 0.1176 0.06* 0.1011
𝐶𝐿𝐿 0.06* 0.1229 0.22* 0.0065* 0.24* 0.0049*
𝑃𝑃𝑈𝑇 0.18* 0.0142* 0.29* 0.0033* 0.29* 0.0031*
𝑅𝑋𝑀 1.91* 0.0014* 1.75* 0.0008* 1.78* 0.0007*
𝑉 𝐼𝑋 −0.31 0.9488 −0.12 0.4388 −0.10 0.3630
𝑇𝑀𝑆 −0.06 0.8602 −0.03 0.2543 −0.03 0.2539
𝑇𝐸𝐷 −0.14 0.4216 −0.13 0.4285 −0.19 0.5784
𝐷𝐹𝑌 −0.33 0.5558 −0.19 0.4177 −0.14 0.4157
Mean 0.72* 0.0027* 0.68* 0.0009* 0.69* 0.0009*
Kitchen sink −0.59 0.0181* 0.23* 0.0073* 0.14* 0.0079*

Panel B: Variable selection and combination schemes

𝑅2
𝑂𝑆 p-value

PredAvg 0.36* 0.0671*
LASSO 1.37* 0.0151*
ENet 0.13* 0.0188*
PCA 1.17* 0.0018*
sPCA 1.41* 0.0031*
PLS 1.11* 0.0044*
PLQC3 1.48* 0.0166*
PLQC5 1.38* 0.0137*
TW3 0.98* 0.0191*
TW5 0.89* 0.0245*

Notes: This table reports the out-of-sample performance for a number of forecasting models that
use a set of option-related and economic predictors. Panel A reports the results for forecasts
produced by linear regression models (including univariate models, taking the mean of univariate
models’ forecasts, and a kitchen sink estimation), as well as quantile combination models (𝑄3
and 𝑄5). Panel B reports the results produced by variable selection and combination schemes,
namely predictor average (PredAvg), LASSO, elastic net (ENet), principal component analysis
(PCA), scaled PCA (sPCA), partial least squares (PLS), and post LASSO quantile combination
(PLQC) models with equally-weighted schemes (PLQC3 and PLQC5) and schemes with time-
varying weights (TW3 and TW5). The table reports the models’ out-of-sample R-square (𝑅2

𝑂𝑆 )
and the respective p-value based on the Clark and West (2007) test. The Clark and West (2007)
test evaluates each model’s forecast accuracy against the benchmark of the historical average.
*Model outperformance against the benchmark (i.e., 𝑅2

𝑂𝑆 > 0) is denoted by *. Statistical
significance at the 10% level (i.e., p-value < 0.10) is denoted by *.

Furthermore, we find that taking the mean of the set of forecasts produced by the univariate linear models also improves the
orecastability of the equity premium, relative to the HA benchmark (see also Rapach et al., 2010). As can be seen in Table 4, the
2
𝑂𝑆 of this forecast mean is positive (0.72) and highly significant (p-value = 0.3%). With an 𝑅2

𝑂𝑆 of 0.36, using the mean of all
redictors as a single forecasting variable (PredAvg) also outperforms the historical average, but to a lesser extent compared to
veraging across forecasts. By contrast, including all variables in a single kitchen sink model results in a markedly lower forecasting
ower, with a negative 𝑅2

𝑂𝑆 of −0.59.
In Fig. 2, we plot the time-series of the differences between the cumulative mean squared forecast error of the HA benchmark

inus that of each univariate linear model. To conserve space, we present the plots of the six best-performing predictors (RXM,
UTY, PUT, CMBO, BXM, and BXMD). In general, the subplots show that forecasts based on the option strategy indices consistently
utperform the historical average benchmark. The forecasting performance of option predictors is somewhat modest, and some even
nderperform slightly, in the beginning of the evaluation period. However, all predictors exhibit substantially increasing predictive
bility post-2008, and they experience another noticeable improvement towards the end of the sample period.

The role of option variables in forecasting the equity premium is further supported by the results of aggregating forecasts
cross quantiles. More specifically, the three-quantile (Q3) and the five-quantile (Q5) estimators produce forecasts that significantly
utperform the HA benchmark across all option variables (including the BFLY, which underperformed in the linear setting). The
ption variables’ positive 𝑅2s are generally highly significant, with p-values that are universally lower than those produced by
11
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Fig. 2. Cumulative MSFE — Benchmark minus univariate linear models.
Notes: We plot the cumulative mean squared forecast error of the historical average benchmark minus that of a selection of univariate linear models. The sample
period is from January 3, 1996 to April 15, 2021, with the out-of-sample period starting in January 3, 2001.

the respective linear models. Interestingly, the choice between aggregating across three or five quantiles does not appear to be
particularly important, as both estimators produce comparable 𝑅2s, in terms of magnitude as well as statistical significance.

Finally, the results from variable selection schemes are equally strong (Panel B of Table 4). All the schemes that we examine
produce forecasts with an 𝑅2 that is positive and significant at the 5% level (with the only exception being PredAvg, which is
significantly positive at the 10% level). The greatest improvement relative to the HA benchmark is offered by the equally-weighted
PLQC3 scheme (𝑅2

𝑂𝑆 = 1.48, p-value = 1.7%), followed by the sPCA and PLQC5 schemes (𝑅2
𝑂𝑆 of 1.41 and 1.38, respectively). LASSO

forecasts also substantially outperform the benchmark (𝑅2
𝑂𝑆 = 1.37), while ENet results in a relatively low, albeit still significantly

positive, out-of-sample R-square. Consistent with Huang et al. (2021) and Chen et al. (2022), we find that using information from
the equity premium to guide dimension reduction leads to more accurate forecasts, as evidenced by the sPCA outperforming the
standard PCA. Finally, the results suggest that the equally-weighted PLQC forecasts (PLQC3 and PLQC5) are associated with a greater
improvement in forecast accuracy compared to the PLQC schemes with time-varying weights (TW3 and TW5).

4.3. Quantile forecasts

In this subsection, we evaluate the accuracy of quantile forecasts. Table 5 reports the t -statistics of the quantile scores (𝑄𝑆)
produced by the set of competing models, using Eqs. (19) and (20). We examine the forecast accuracy of the competing models
across the equally-spaced quantiles 𝜏 = {0.05, 0.10,… , 0.95}, with the table reporting the results for the respective deciles, for brevity.
We evaluate the predictive ability of each model against two different benchmarks. The first benchmark (Panel A of Table 5) refers
to quantile forecasts generated by the historical average (HA) model. The second benchmark (Panel B of Table 5) refers to a simple
quantile constant (QC) model, obtained by setting 𝛽(𝜏)𝑥𝑡 = 0 in Eq. (7).

Panel A of Table 5 shows that all the predictors outperform the HA benchmark across all the quantiles of the equity premium
distribution, as evidenced by universally negative and highly significant QS t -statistics. The mean forecast model offers the most
significant improvement, while the kitchen sink model also generally outperforms the historical average in contrast to the earlier
results from point forecasts (Table 4). Generating PLQ forecasts via Eq. (12) significantly improves forecasting performance as well,
with the respective quantile scores being more significant than those associated with the majority of univariate models.

The results in Panel B of Table 5 show that the QC benchmark is harder to beat. When we consider the left tail of the equity
premium distribution (𝜏 ≤ 0.3), almost all option strategy predictors underperform relative to the benchmark, with quantile scores
that are either positive or negative but statistically insignificant. By contrast, the VIX performs very well across almost all quantiles.
Nevertheless, combining information across the entire set of predictors still improves forecast accuracy, with significantly negative
𝑄𝑆 t -statistics associated with the mean forecast, the kitchen sink model, and the PLQ forecasts in the lower quantiles. Interestingly,
as we move towards the right part of the distribution, the majority of the options predictors begin to outperform the QC benchmark.
12
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Table 5
Quantile forecasts: 𝑄𝑆 t -statistics.

Panel A: HA quantile benchmark

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

𝐵𝑋𝑀 −4.58* −10.87* −13.11* −11.11* −4.03* −4.09* −8.22* −10.11* −8.27*
𝐵𝑋𝑀𝐶 −4.50* −11.05* −13.15* −11.18* −2.36* −2.70* −7.47* −9.24* −7.05*
𝐵𝑋𝑀𝐷 −4.86* −10.95* −13.09* −11.14* −4.26* −4.69* −9.00* −10.46* −8.86*
𝐵𝑋𝑌 −4.57* −10.65* −12.74* −10.69* −3.15* −3.93* −8.62* −10.30* −8.89*
𝑃𝑈𝑇 −5.18* −11.17* −13.31* −11.08* −3.51* −3.43* −7.99* −9.44* −7.79*
𝑃𝑈𝑇𝑌 −5.85* −11.12* −13.03* −10.65* −3.05* −3.55* −7.73* −8.89* −7.44*
𝐶𝑀𝐵𝑂 −4.91* −11.07* −12.94* −10.86* −3.99* −4.33* −8.62* −9.90* −8.14*
𝐵𝐹𝐿𝑌 −5.34* −10.82* −13.06* −11.16* −2.87* −2.92* −8.01* −9.37* −7.77*
𝐶𝑁𝐷𝑅 −5.51* −10.82* −12.92* −11.01* −3.05* −2.76* −7.80* −9.02* −8.10*
𝐶𝐿𝐿 −4.81* −10.96* −12.98* −11.12* −4.85* −5.94* −10.10* −10.81* −9.08*
𝑃𝑃𝑈𝑇 −4.43* −10.75* −12.90* −11.09* −4.39* −5.47* −9.98* −11.13* −9.35*
𝑅𝑋𝑀 −5.11* −11.26* −13.26* −10.97* −3.92* −4.61* −8.70* −9.24* −7.35*
𝑉 𝐼𝑋 −11.31* −13.26* −13.44* −11.06* −2.09* −5.38* −10.28* −13.20* −14.08*
𝑇𝑀𝑆 −4.70* −11.60* −13.04* −11.28* −2.79* −2.98* −7.91* −9.51* −8.33*
𝑇𝐸𝐷 −8.27* −12.42* −13.31* −10.96* −2.02* −1.77* −6.89* −8.74* −8.90*
𝐷𝐹𝑌 −6.29* −11.08* −12.01* −10.37* −1.49* −3.98* −10.34* −12.23* −10.64*
Mean −14.68* −15.60* −15.11* −12.14* −4.75* −6.62* −11.55* −14.55* −16.97*
Kitchen sink −9.59* −11.08* −9.62* −5.22* 0.07* −3.12* −8.41* −12.19* −13.39*
PLQ −9.50* −10.81* −10.91* −10.37* −2.67* −5.44* −9.95* −12.60* −13.51*

Panel B: Constant quantile benchmark

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

𝐵𝑋𝑀 1.89 1.21 −1.21 −2.33* −2.66* −2.57* −3.07* −2.58* −2.39*
𝐵𝑋𝑀𝐶 −0.01 −0.17 0.02 0.25 0.15 −0.56 −1.22 −1.61* −1.22
𝐵𝑋𝑀𝐷 1.53 1.24 −0.91 −2.53* −2.90* −3.23* −4.10* −3.13* −2.81*
𝐵𝑋𝑌 1.59 1.45 1.55 −0.23 −1.51 −2.25* −3.34* −2.74* −2.66*
𝑃𝑈𝑇 1.53 0.53 −2.32* −2.25* −2.06* −1.87* −2.75* −1.94* −2.06*
𝑃𝑈𝑇𝑌 0.16 −0.78 −1.91* −2.05* −1.85* −2.23* −2.78* −1.91* −2.16*
𝐶𝑀𝐵𝑂 1.94 0.92 −0.11 −2.07* −2.65* −2.90* −3.68* −2.56* −2.41*
𝐵𝐹𝐿𝑌 −0.81 −1.44 −0.65 −0.32 0.47 0.38 −0.38 −1.11 1.31
𝐶𝑁𝐷𝑅 −0.02 −0.16 −0.46 0.00 0.46 0.84 1.21 1.75 −0.17
𝐶𝐿𝐿 0.00 0.02 0.86 −0.53 −3.61* −4.64* −5.76* −4.82* −2.96*
𝑃𝑃𝑈𝑇 1.16 0.91 1.15 −0.98 −2.95* −3.96* f−5.41* −4.66* −3.11*
𝑅𝑋𝑀 1.26 −0.05 −1.69* −2.39* −2.89* −3.43* −4.21* −3.10* −2.54*
𝑉 𝐼𝑋 −9.37* −7.49* −5.17* −1.99* 0.47 −4.20* −6.77* −8.56* −10.24*
𝑇𝑀𝑆 0.85 0.89 1.65 1.32 1.37 0.36 1.28 1.12 −0.28
𝑇𝐸𝐷 −6.17* −6.26* −5.19* −3.06* 1.00 0.39 −1.32 −3.06* −4.47*
𝐷𝐹𝑌 −4.27* −3.27* −1.41 −0.16 1.20 −1.32 −2.97* −3.72* −5.04*
Mean −9.99* −9.78* −6.90* −4.16* −3.34* −5.55* −8.46* −9.20* −9.53*
Kitchen sink −8.04* −5.86* −2.83* 0.26 0.72 −2.39* −5.52* −7.96* −9.71*
PLQ −7.96* −5.94* −3.69* −1.35 −1.41 −4.48* −6.85* −8.38* −9.91*

Notes: This table reports the quantile score t -statistics for a number of forecasting models that use a set of option-related and
economic predictors. The 𝑄𝑆 t -statistics are computed following Giacomini and White (2006) and Amisano and Giacomini (2007).
The null hypothesis is that the 𝑄𝑆 of the candidate model is equal to that of the benchmark (equal forecast accuracy). A negative
t -statistic indicates that the candidate model outperforms the benchmark, while a positive t -statistic indicates the opposite. Panel
A reports the results when the performance of candidate models is evaluated against the benchmark of the Historical Average
(HA). Panel B reports the results when the performance of candidate models is evaluated against the Quantile Constant (QC)
model.
*Statistical significance at the 5% level.

ore specifically, all strategy benchmark indices have significantly negative 𝑄𝑆 t -statistics for quantiles 𝜏 ≥ 0.5, with the exception
of BXMC, BFLY, and CNDR.

Overall, these results confirm the role of options predictors in forecasting the equity premium. Single-predictor models seem
to significantly improve forecast accuracy in the right tail of the distribution, while aggregation schemes result in significantly
improved forecasts across the entire distribution of the equity premium.

4.4. Density forecasts

In this subsection, we examine the forecastability of the entire distribution. Table 6 reports the t -statistics of the weighted
quantile scores (𝑊𝑄𝑆) associated with each candidate model, under four different weighting schemes that are intended to
place different emphasis on specific regions of the distribution. Similarly to the previous subsection, we focus on the quantiles
𝜏 = {0.05, 0.10,… , 0.95}, and we evaluate forecast accuracy relative to the HA and the QC benchmarks.

When we evaluate performance against the HA benchmark, we find that all option predictors significantly improve the accuracy
f density forecasts under all four weighting schemes. While the relative importance of specific variables somewhat varies across
13
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Table 6
Density forecasts: 𝑊𝑄𝑆 t -statistics.

Benchmark: HA Benchmark: QC

𝑊𝑄𝑆1 𝑊𝑄𝑆2 𝑊𝑄𝑆3 𝑊𝑄𝑆4 𝑊𝑄𝑆1 𝑊𝑄𝑆2 𝑊𝑄𝑆3 𝑊𝑄𝑆4

𝐵𝑋𝑀 −15.79* −16.07* −12.45* −10.68* −2.65* −2.75* −0.86 −2.81*
𝐵𝑋𝑀𝐶 −16.15* −17.05* −11.87* −9.57* −1.25 −1.19 −0.08 −1.27
𝐵𝑋𝑀𝐷 −16.33* −16.66* −12.60* −11.12* −3.28* −3.40* −1.34 −3.34*
𝐵𝑋𝑌 −16.42* −16.58* −12.05* −11.32* −2.20* −2.11* 0.48 −2.76*
𝑃𝑈𝑇 −14.97* −15.25* −12.60* −9.94* −2.35* −2.37* −1.42 −2.41*
𝑃𝑈𝑇𝑌 −13.06* −13.23* −12.07* −8.94* −2.32* −2.32* −1.63 −2.36*
𝐶𝑀𝐵𝑂 −15.39* −15.65* −12.58* −10.37* −2.81* −2.90* −1.3 −2.91*
𝐵𝐹𝐿𝑌 −17.05* −17.74* −11.82* −11.60* −0.70 −0.76 −0.90 0.33
𝐶𝑁𝐷𝑅 −17.07* −17.66* −11.93* −11.53* 0.21 0.24 −0.09 0.57
𝐶𝐿𝐿 −18.87* −19.58* −12.24* −13.48* −4.44* −4.94* −0.64 −4.74*
𝑃𝑃𝑈𝑇 −18.47* −18.84* −12.14* −13.28* −4.19* −4.39* −0.31 −4.50*
𝑅𝑋𝑀 −13.92* −14.27* −12.90* −9.27* −3.39* −3.53* −2.52* −3.27*
𝑉 𝐼𝑋 −23.60* −23.91* −14.61* −14.76* −16.02* −15.40* −9.51* −10.13*
𝑇𝑀𝑆 −18.12* −18.67* −12.43* −12.08* 1.71 1.96 1.23 0.86
𝑇𝐸𝐷 −18.19* −18.16* −13.12* −11.27* −8.24* −6.89* −6.53* −4.55*
𝐷𝐹𝑌 −17.44* −18.39* −9.88* −14.26* −6.25* −5.04* −3.73* −5.31*
Mean −25.66* −23.95* −19.42* −19.16* −13.23* −11.67* −11.29* −9.35*
Kitchen sink −14.70* −12.18* −11.03* −12.66* −9.61* −7.04* −6.98* −8.71*
PLQ −19.77* −19.65* −12.04* −13.89* −13.40* −12.32* −7.77* −9.76*

Notes: This table reports the weighted quantile score t -statistics for a number of forecasting models that use a set of
option-related and economic predictors. Each model’s 𝑊𝑄𝑆 is computed under four different weighting schemes,
namely (1) 𝑊𝑄𝑆1 ∶ 𝜔(𝜏) = 1, (2) 𝑊𝑄𝑆2 ∶ 𝜔(𝜏) = 𝜏(1 − 𝜏), (3) 𝑊𝑄𝑆3 ∶ 𝜔(𝜏) = (1 − 𝜏)2, and 𝑊𝑄𝑆4 ∶ 𝜔(𝜏) = 𝜏2.
The 𝑊𝑄𝑆 t -statistics are computed following Giacomini and White (2006) and Amisano and Giacomini (2007).
The null hypothesis is that the 𝑊𝑄𝑆 of the candidate model is equal to that of the benchmark (equal forecast
accuracy). A negative t -statistic indicates that the candidate model outperforms the benchmark, while a positive
t -statistic indicates the opposite. The first four columns report the results when the performance of candidate
models is evaluated against the benchmark of the Historical Average (HA), while the last four columns report
the results when the performance of candidate models is evaluated against the Quantile Constant (QC) model.
*Statistical significance at the 5% level.

weighting schemes, VIX, CNDR, CLL, and PPUT are generally associated with the most significant WQS values. Interestingly, the
mean forecast results in consistently greater improvements compared to that offered by univariate models, while the kitchen sink
model offers a less significant improvement.

Consistent with the quantile forecast results in Table 5, improving forecast accuracy is more difficult when evaluated against the
QC benchmark. Nevertheless, the last four columns of Table 6 show that the majority of the options predictors still result in more
accurate density forecasts, while the VIX still results in the highest improvement. For instance, when we place uniform emphasis
across the distribution under the equally-weighted scheme 𝑊𝑄𝑆1, we find that 9 out of 12 strategy benchmark indices significantly
outperform the QC benchmark, with CCL and PPUT being the most significant. The results are very similar when we place greater
emphasis on the middle or the right tail of the distribution, under 𝑊𝑄𝑆2 and 𝑊𝑄𝑆4, respectively.

The results under 𝑊𝑄𝑆3 are the only notable exception, with RXM the only strategy benchmark predictor with a significantly
negative weighted quantile score. This finding suggests that using option variables in a univariate setting is less likely to improve
the accuracy of forecasts of the left tail of the equity premium distribution. However, forecasts obtained by using information from
the full set of option predictors still outperform the QC benchmark under all four weighting schemes, including WQS3. In fact, the
mean forecast model offers its most significant improvement in forecast accuracy under WQS3, suggesting that combinations of
individual forecasts are especially useful when forecasting the left tail of the distribution. Finally, the performance of PLQ forecasts
is consistently somewhere between that of the mean forecast and the kitchen sink model.

4.5. Economic evaluation

In this subsection, we evaluate the economic performance of competing forecast models. Campbell and Thompson (2008) argue
that even small predictability gains, in a statistical sense, could translate to an economically meaningful increase in predictability,
resulting in an increase in portfolio returns for a mean–variance investor who maximizes expected utility. We follow this utility-based
approach within a standard asset allocation framework to evaluate the economic performance of competing models in a way that
captures an investor’s risk-return trade-off.

More specifically, we consider a mean–variance investor who optimally allocates their wealth between equities and the risk-free
asset based on forecasts of the equity premium. In the standard mean–variance framework, the solution to this maximization problem
yields the following weight 𝑤𝑡 for the investor’s wealth to be invested in the risky asset at time 𝑡:

𝑤𝑡 =
𝑟̂𝑡+1

2
, (22)
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Table 7
Economic evaluation.

Panel A: Individual predictors

Linear 𝑄3 𝑄5

𝑟̄𝑝 CER SR 𝑟̄𝑝 CER SR 𝑟̄𝑝 CER SR

𝐵𝑋𝑀 9.55 4.08 0.50 12.55 5.59 0.58 12.66 5.59 0.58
𝐵𝑋𝑀𝐶 6.14 0.55 0.29 11.19 3.56 0.49 11.48 3.71 0.50
𝐵𝑋𝑀𝐷 11.27 5.59 0.58 14.12 6.92 0.64 14.44 7.16 0.66
𝐵𝑋𝑌 9.43 4.03 0.49 11.32 4.42 0.53 11.66 4.55 0.53
𝑃𝑈𝑇 7.89 2.24 0.39 11.65 4.43 0.53 11.76 4.58 0.53
𝑃𝑈𝑇𝑌 9.22 3.38 0.46 12.78 5.26 0.57 12.85 5.25 0.57
𝐶𝑀𝐵𝑂 10.81 4.96 0.55 12.94 5.50 0.58 12.99 5.68 0.59
𝐵𝐹𝐿𝑌 3.60 −0.71 0.17 6.56 −0.35 0.30 6.65 −0.33 0.30
𝐶𝑁𝐷𝑅 4.57 −0.11 0.22 7.79 0.64 0.35 7.88 0.62 0.34
𝐶𝐿𝐿 2.32 −1.21 0.09 6.20 0.43 0.32 6.58 0.35 0.33
𝑃𝑃𝑈𝑇 8.03 2.83 0.42 10.36 3.33 0.48 10.59 3.33 0.48
𝑅𝑋𝑀 11.26 5.16 0.56 14.17 5.89 0.60 14.35 6.00 0.60
𝑉 𝐼𝑋 −0.34 −7.82 −0.08 5.67 −0.91 0.23 5.62 −1.26 0.22
𝑇𝑀𝑆 2.46 −0.69 0.11 5.54 0.18 0.29 5.12 −0.21 0.27
𝑇𝐸𝐷 5.42 0.40 0.26 4.70 0.32 0.33 4.59 −0.36 0.30
𝐷𝐹𝑌 2.51 0.46 0.17 7.36 2.03 0.36 7.74 2.25 0.38
Mean 8.20 3.43 0.45 13.36 6.58 0.63 13.23 6.13 0.61
Kitchen sink 8.60 2.05 0.39 9.40 2.39 0.42 9.37 2.14 0.41

Panel B: Variable selection and combination schemes

𝑟̄𝑝 CER SR

PredAvg 4.67 0.93 0.26
LASSO 8.44 1.86 0.36
Enet 9.32 2.33 0.41
PCA 11.00 4.54 0.52
sPCA 10.65 4.03 0.49
PLS 9.30 3.16 0.44
PLQC3 10.77 4.80 0.54
PLQC5 10.36 4.24 0.50
TW3 11.48 5.54 0.58
TW5 11.56 5.84 0.60

Notes: This table reports the economic performance of a mean–variance investor who allocates their wealth between equities and
the risk-free asset based on forecasts of the equity premium that have been generated by a set of competing models. Panel A
reports the results for forecasts produced by linear regression models, including univariate models, taking the mean of univariate
models’ forecasts, and a Kitchen Sink estimation. Panel B reports the results produced by variable selection and combination
schemes. The table reports the mean daily return 𝑟̄𝑝 earned by the investor’s portfolio (annualized, in percentages), the associated
certainty equivalent return (CER, annualized in percentages), and the portfolio’s Sharpe ratio (SR, annualized). The CER has been
computed using a risk aversion parameter 𝛾 = 3. For comparison, the CER and the SR of the historical average benchmark are
equal to 1.27 and 0.12, respectively.

here 𝑟̂𝑡+1 is the equity premium forecast generated at time 𝑡 for 𝑡+1, 𝛾 is the relative risk aversion (RRA) coefficient that determines
the investor’s appetite for risk, and 𝜎̂2𝑡+1 is the forecasted volatility of the equity premium at 𝑡+1. The volatility forecast at each point

in time is generated as the conditional standard deviation between symmetric quantiles, given by
𝑟̂(0.95)𝑡+1 −𝑟̂(0.05)𝑡+1

3.25 (see also Meligkotsidou
et al., 2021). Following the extant literature, we set the risk aversion coefficient 𝛾 equal to 3. At each point in time, the investor
allocates 𝑤𝑡 of their wealth in the equity index and the remaining (1 −𝑤𝑡) in risk-free T-bills. The portfolio’s return at 𝑡+ 1 is given
by:

𝑟𝑝,𝑡+1 = 𝑤𝑡𝑟𝑡+1 + (1 −𝑤𝑡)𝑟𝑓,𝑡+1. (23)

Table 7 presents the economic performance of the mean–variance investor who trades based on equity premium forecasts
generated by a set of competing models. The table reports each portfolio’s annualized mean daily return, certainty equivalent return
(CER), and Sharpe ratio (SR). The portfolio’s CER and SR are computed as:

𝐶𝐸𝑅 = 𝑟̄𝑝 −
1
2
𝛾𝜎2𝑝 , (24)

𝑆𝑅 =
𝑟̄𝑝 − 𝑟𝑓
𝜎𝑝

, (25)

where 𝑟̄𝑝 and 𝜎𝑝 denote the portfolio’s mean and standard deviation of returns, respectively, during the forecast evaluation period.
The results in Panel A show that all option strategy indices result in portfolios with positive mean returns in the univariate linear

setting. Importantly, these portfolios consistently outperform the one based on the HA benchmark, which offers a mean return of
15
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and the risk reversal strategy RXM (11.26%). Interestingly, exactly half the option predictors outperform the mean forecast model
(8.63%), while the portfolio based on the kitchen sink model forecasts offers a somewhat lower mean return (7.01%).

The ranking among competing models is fairly similar when we account for the portfolios’ risk and investors’ risk aversion.
ore specifically, forecasts based on BXMD result in the highest CER (5.59% per annum), followed by RXM with 5.16%. These two

redictors also result in portfolios with the highest Sharpe ratios (0.58 and 0.56, respectively). In other words, a mean–variance
nvestor would maximize their returns (non-adjusted and adjusted for risk) by exploiting the informational content of strategies
ased on hedging the index and selling insurance against index skewness. For comparison, a portfolio based on forecasts produced
y the HA benchmark offers a CER of 1.27% and a Sharpe ratio of 0.12. As such, the benchmark’s risk-adjusted performance seems
o be inferior to that of the majority of univariate linear models, given that 8 out of 12 predictors offer higher CERs and 11 out of
2 offer higher SRs.

The results are even stronger when point forecasts are generated by aggregating across quantiles. More specifically, both the Q3
nd Q5 estimators result in portfolios that outperform the ones based on linear models in terms of CER and SR for every option
redictor. Similarly, portfolios constructed based on variable selection, dimensionality reduction, and combination schemes (Panel
of Table 7) often outperform those based on linear univariate models. For instance, the time-varying-weighted PLQC schemes

W3 and TW5 offer the highest mean returns (11.48% and 11.56%, respectively), Sharpe ratios (0.58 and 0.60, respectively), and
ERs (5.54% and 5.84%, respectively).

To explore the stability, or otherwise, of these portfolios, in Figs. A3 and A4 in the Online Appendix we plot the time evolution
f the mean–variance investor’s cumulative returns under a set of competing models. Fig. A3 refers to portfolios using univariate
inear models, while Fig. A4 refers to portfolios based on variable selection/shrinkage approaches. For comparison purposes, each
ubplot also shows the cumulative returns of the portfolio based on forecasts generated by the HA benchmark.

Figs. A3 and A4 show that the economic performance of option predictors is relatively stable and, importantly, it does not
eflect an empirical relationship that prevailed in the distant past. In fact, forecasts based on the CBOE indices performed rather
odestly in the first few years of the evaluation period, followed by a period of noticeable outperformance that starts around 2010.
onsistent with the performance measures reported in Table 7, the highest performance is offered by variable selection models with
ime-varying weights (TW3 and TW5), followed by the BXMD and RXM univariate models.

.6. Robustness

We perform a set of additional empirical estimations to determine the robustness of our main findings regarding the forecasting
bility of option variables over the equity premium. We briefly summarize the results of these robustness checks, with the full results
eported in Tables A1–A8 in the Online Appendix.

1. Risk aversion: We re-examine the economic significance of options-based forecasts using alternative risk aversion coefficients.
The main results in Table 7 are based on the risk aversion coefficient 𝛾 taking the value of 3, in line with the most common
choice in the literature. We re-evaluate the economic performance of competing forecast models using the alternative value of
𝛾 = 5 (Table A2 in the Online Appendix). We also use the Bekaert et al. (2021) risk aversion index as an alternative proxy for
investors’ risk aversion (Table A3 in the Online Appendix). The results confirm that option variables can deliver significant
economic gains, with most option variables outperforming the HA benchmark in quantile aggregation schemes, and PLQC
quantile combination schemes offering the highest economic performance overall.

2. Volatility forecasts: The economic evaluation results in Table 7 are potentially sensitive to the way in which volatility forecasts
𝜎̂2𝑡+1 are generated. We further explore the robustness of our economic evaluation results by generating alternative volatility
forecasts via the simplest and arguably most commonly adopted approach in the literature. More specifically, at each point
in time we construct volatility forecasts as the standard deviation of portfolio returns over the previous five years. The results
are reported in Table A4 in the Online Appendix, and they are qualitatively similar to the ones reported in the main analysis.

3. Business cycle: Table 8 and Tables A5–A9 in the Online Appendix present the results of an evaluation of the statistical gains
of competing forecast models for recession and expansion periods as defined by the NBER. Consistent with Rapach et al.
(2010), Neely et al. (2014), and Li and Tsiakas (2017), among others, we find that equity premium predictability is generally
stronger during recessions. For instance, point forecasts tend to have a higher 𝑅2

𝑂𝑆 , which is more likely to be statistically
significant in recessions compared to expansions (Table 8 and Tables A5–A6 in the Online Appendix). Furthermore, during
recessions quantile forecasts tend to have higher and more significant quantile scores QS when compared against the tougher-
to-beat QC benchmark (Tables A7–A8 in the Online Appendix). Somewhat surprisingly, we find that during expansions,
options variables have a more significant QS relative to the HA benchmark, which is nonetheless easier to beat compared to
the QC benchmark. A similar picture emerges from the 𝑊𝑄𝑆 under the density forecast evaluation (Table A9 in the Online
Appendix), with option variables being more likely to outperform the QC benchmark during recessions, but more likely to
outperform the HA benchmark during expansions. Interestingly, PPUT and RXM perform significantly better in recessionary
periods compared to expansions, as evidenced by the substantially higher out-of-sample R-squares. These results are consistent
with the intuition that predictors which capture investors’ beliefs about crash risk play a more important role during market
16
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Table 8
Business cycle.

Panel A: Individual predictors

Recessions Expansions

𝑅2
𝑂𝑆 𝑊𝑄𝑆1 𝑊𝑄𝑆2 𝑊𝑄𝑆3 𝑊𝑄𝑆4 𝑅2

𝑂𝑆 𝑊𝑄𝑆1 𝑊𝑄𝑆2 𝑊𝑄𝑆3 𝑊𝑄𝑆4

𝐵𝑋𝑀 2.73* 1.68 0.99 4.87 −0.02 0.07* −20.97* −20.38* −16.31* −14.30*
𝐵𝑋𝑀𝐶 1.30* 5.06 4.86 5.41 1.83 −0.33 −22.20* −22.01* −17.28* −13.73*
𝐵𝑋𝑀𝐷 2.61* 1.79 1.15 5.15 −0.06 0.12* −20.93* −20.62* −16.44* −13.64*
𝐵𝑋𝑌 1.75* 3.30 2.51 5.90 0.65 −0.11 −20.91* −20.17* −16.00* −14.63*
𝑃𝑈𝑇 3.08* 1.26 0.67 4.29 −0.17 0.00 −19.95* −19.55* −15.93* −13.09*
𝑃𝑈𝑇𝑌 3.95* 0.35 −0.05 2.67 −0.57 0.10* −19.10* −18.42* −15.98* −12.95*
𝐶𝑀𝐵𝑂 2.81* 1.52 0.91 4.79 −0.09 0.12* −20.73* −20.07* −16.57* −14.08*
𝐵𝐹𝐿𝑌 0.32* 7.93 6.86 4.53 5.76 −0.29 −21.88* −21.72* −15.40* −15.79*
𝐶𝑁𝐷𝑅 0.15* 8.47 7.61 5.30 5.59 −0.05 −22.59* −22.32* −16.21* −15.88*
𝐶𝐿𝐿 0.23* 7.60 6.20 6.01 3.69 −0.08 −23.54* −23.46* −16.22* −17.02*
𝑃𝑃𝑈𝑇 0.53* 6.06 4.56 6.11 2.58 −0.10 −23.60* −22.89* −16.70* −17.27*
𝑅𝑋𝑀 4.12* −0.11 −0.59 3.54 −1.07 0.16* −19.58* −18.77* −16.40* −13.37*
𝑉 𝐼𝑋 −0.64 −6.64* −6.01* −4.25* −3.82* −0.07 −27.25* −25.82* −18.23* −19.85*
𝑇𝑀𝑆 0.01* 9.79 9.39 5.54 5.42 −0.11 −21.83* −21.92* −14.98* −15.26*
𝑇𝐸𝐷 −0.26 −3.86* −1.67* −3.13* −2.41* 0.00 −17.91* −18.38* −13.15* −11.19*
𝐷𝐹𝑌 −0.58 −3.90* −2.85* −2.52* −3.28* −0.11 −24.84* −24.09* −16.67* −20.84*
Mean 1.58* −2.10* −1.11 −1.34 −2.39* 0.10 −27.50* −25.78* −19.81* −21.45*
Kitchen sink 4.43* −5.09* −4.08* −3.86* −3.92* −4.27 −16.52* −12.88* −14.09* −16.15*

Panel B: Variable selection and combination schemes

Recessions Expansions

𝑅2
𝑂𝑆 p-value 𝑅2

𝑂𝑆 p-value

PredAvg 1.12* 0.0503* −0.21 0.6776
LASSO 3.26* 0.0228* −0.01 0.1363
ENet 4.26* 0.0226* −2.88 0.2525
PCA 2.68* 0.0046* 0.07* 0.0753*
sPCA 3.36* 0.0580* −0.02 0.1183
PLS 3.33* 0.0041* −0.52 0.331
PLQC3 3.52* 0.0211* −0.02 0.0696
PLQC5 3.24* 0.0255* 0.02* 0.0677*
TW3 2.85* 0.0318* −0.39 0.1453
TW5 2.67* 0.0368* −0.41 0.1798

Notes: This table reports the out-of-sample performance for a number of forecasting models that use a set of option-related
and economic predictors. The results are reported separately for recession and expansion periods, as defined by NBER. Panel A
reports the results for forecasts produced by linear regression models (including univariate models, taking the mean of univariate
models’ forecasts, and a kitchen sink estimation). Panel A reports the models’ out-of-sample R-square (𝑅2

𝑂𝑆 ) and the weighted
quantile score t -statistics under four different weighting schemes. Panel B reports the 𝑅2

𝑂𝑆 and the respective p-values produced
by variable selection and combination schemes.
*Panel A: Statistical outperformance of a model’s 𝑅2

𝑂𝑆 relative to that of the historical average benchmark at the 10% level
(based on the Clark and West, 2007 test) is denoted by *. Statistical outperformance of a model’s 𝑊𝑆𝑄 relative to that of the
historical average benchmark at the 10% level (based on the Giacomini and White, 2006; Amisano and Giacomini, 2007 test) is
denoted by *.
Panel B: Statistical outperformance relative to the historical average benchmark at the 10% level (i.e., 𝑅2

𝑂𝑆 > 0 and p-value
< 0.10) is denoted by *.

4. Variance risk premium: Previous studies show that the VRP is an efficient predictor of the equity premium (e.g., Bollerslev
et al., 2014; Buss et al., 2017, 2019). To explore whether the options strategy indices contain information that is incremental
to that of the VRP, we add the latter to our set of option predictors (for the period January 3, 1996 to December 29, 2017).
Tables A10–A12 in the Online Appendix show that several option variables have a higher forecasting performance compared
to the VRP. For example, 6 out of 12 strategy indices produce out-of-sample R-squares that are higher than that of the VRP
in the univariate linear setting, with a similar pattern in the Q3 and Q5 combination models (Table A10). Moreover, the
VRP tends to have a higher 𝑄𝑆 t -statistic in the left part of the equity premium distribution, but the CBOE indices generally
outperform in the right part of the distribution (Table A11). Finally, virtually all option strategies outperform the VRP in
terms of density forecasting, as evidenced by larger 𝑊𝑄𝑆 t -statistics in Table A12.

. Conclusion

The predictability of the equity premium has received a substantial amount of attention in the literature. Despite an original
onsensus that the equity premium can be forecasted using a set of standard economic variables, Goyal and Welch (2008)
emonstrate that these predictors performed rather poorly after the 1970s. In this study, we contribute to the ongoing debate
n equity premium predictability by examining the forecasting performance of variables from the options market.
17
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Given that option contracts are forward looking by construction, option variables are natural candidates when considering
otential predictors of the equity premium. Our results provide strong support for this intuitive hypothesis. In contrast to the limited,
r at least time-varying, predictive ability of standard economic variables (Goyal and Welch, 2008; Baetje and Menkhoff, 2016), we
ind that using a set of CBOE strategy benchmark indices based on S&P 500 options consistently results in significant improvements
n forecasting performance.

More specifically, we apply a range of approaches to generate point, quantile, and density forecasts. These forecasts are based
n univariate and multivariate linear models, variable selection schemes, and quantile forecast combination schemes. The results
how that forecasts generated by option variables significantly outperform the historical average benchmark, across all the different
rameworks we examine. In addition to a highly significant improvement in statistical accuracy, we find that option-based forecasts
esult in substantial economic gains for a standard mean–variance investor, markedly higher than those associated with the historical
verage benchmark. Considering how notoriously hard it is to consistently beat the historical average (Campbell and Thompson,
008), our results strongly support the use of information from the options market to significantly improve equity premium
redictability.
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Main options data is publicly available on the CBOE webpage
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