
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION N 

 

Abstract— The growth of IoT, edge and mobile Artificial 

Intelligence (AI) is supporting urban authorities exploit the wealth 

of information collected by Connected and Autonomous Vehicles 

(CAV), to drive the development of transformative intelligent 

transport applications for addressing smart city challenges. A 

critical challenge is timely and efficient road infrastructure 

maintenance. This paper proposes an intelligent hierarchical 

framework for road infrastructure maintenance that exploits the 

latest developments in 6G communication technologies, deep 

learning techniques, and mobile edge AI training approaches. The 

proposed framework abides with the stringent requirements of 

training efficient machine learning applications for CAV, and is 

able to exploit the vast numbers of CAVs forecasted to be present 

on future road networks. At the core of our framework is a novel 

Convolution Neural Networks (CNN) model which fuses imagery 

and sensory data to perform pothole detection. Experiments show 

the proposed model can achieve state of the art performance in 

comparison to existing approaches while being simple, cost-

effective and computationally efficient to deploy. The proposed 

system can form part of a federated learning framework for 

facilitating large scale real-time road surface condition monitoring 

and support adaptive resource allocation for road infrastructure 

maintenance. 

 
Index Terms— 6G, Deep Learning, Mobile Edge Intelligence, 

Pothole Detection, Federated Learning, Intelligent Transportation 

Systems. 

I. INTRODUCTION 

In the near future we are set to see far greater numbers of CAVs 

on our roads. Additionally, IoT and Edge based AI technologies 

provide the promise of delivering the next generation of 

proactive Intelligent Transport System applications. These 

applications will provide real-time decision-making support 

and optimized resource allocation. At the same time, 6G 

communication technologies will form the necessary network 

backend to accommodate the needs arising from the application 

of these technologies namely hyper-fast data rates; ultralow 

latency; high reliability; and more secure communication. One 

of the most important smart city tasks is securing the presence 

of a well-maintained road network. A critical aspect towards 

achieving this goal is the effective detection and timely repair 

of potholes. In order to provide an intelligent and cost-efficient 

solution, a large deployment of sensors, the corresponding 

communication protocols and data processing mechanisms are 

required to be developed and deployed.  

Potholes are a well-documented nuisance for road users and 

a challenge for authorities. A reader complained to the New 

York Times in 1910 that “a steady succession “of potholes was 

rendering travel “a burden rather than a joy” [1]. Potholes 

endanger road users and may cause significant harm to vehicles 

and drivers. The expense of repairing potholes is high and need 

special budgeting. According to an AA survey, almost 61 

million drivers had their cars affected in some way from 

potholes. The expense of repairing these damages was nearly 

$684 million in a single year [2]. The number of potholes filled 

in England every year, according to the report, is nearly 16000 

with 4099 just in London alone. It costs nearly 100 million and 

11 million GBP, in England and London respectively, to repair 

these potholes. According to the United Kingdom’s Department 

of Transport, a third of all local roads in England are now in 

need of urgent maintenance and repair based on data collected 

between 2020 and 2022. As stated in a report commissioned by 

the House of Commons, the pothole repair work in the British 

road network would take nearly 14 years to complete [3]. Road 

users want pothole-free roads to commute, and maintenance of 

roads and highways is vital for effective traffic management. 

Maintaining such a vast network of roads necessitates both 

expertise and funds. Over the years, specialists surveyed roads 

and the accountable authorities then repaired these roads. These 

procedures were labour-intensive, expensive, and time-

consuming [4]. This method is also unable to meet the 

continued demand to keep roads in good condition. There can 

be severe delays to repair road damages which authorities 

blame on the shortage of human resources and funding to 

maintain an ever-expanding road network and growing road 

users. The inspection carried out by experts depend on their 

visual perception and may lack consistency. The effects of 

climate change are also only expected to worsen this situation 

due to the results of extreme weather phenomena such as 

extreme temperatures and floods to the road surface condition.  
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To keep pace with these demands, it is necessary to start 

using advanced sensors and automated solutions. Several 

sensory inputs have been proposed towards this purpose. 

However, utilizing specific input signals, such as image or 

accelerometer data alone, bears significant limitations. Several 

studies propose using artificial neural networks to exploit these 

inputs in order to inspect and identify damage to the road 

surface [5-7]. However, effective Machine Learning (ML) 

models need datasets of adequate volume and quality for 

training [58]. This data collection process would require 

numerous dedicated recording devices. Nowadays, 

smartphones are becoming more ubiquitous and can record 

greater quality imagery, sensory and GPS data. 6G technologies 

can exploit this opportunity and support data collection from a 

multitude of road-user smartphones. In addition to the challenge 

of collecting adequate data for training reliable ML solutions, 

recent review studies have also pointed out privacy in data 

analytics as a major challenge for smart city applications. The 

smart devices used for data collection continuously capture 

sensitive data such as faces, license plates and others [56]. This 

is especially true for pothole detection applications that can use 

a variety of data including image, video and sensory data. 

As demonstrated by recent research efforts Deep Learning 

(DL) methods that rely on diverse input data from multiple 

devices are subject to several challenges such as increased 

latency, energy consumption, network congestion and data 

privacy issues requiring costly computational and network 

resources [8]. Nevertheless, modern distributed optimization 

algorithms such as Federated learning, 6G technologies, and 

multiple access schemes such as AirComp can accommodate 

huge numbers of edge devices and dynamically integrate the 

data coming from these devices [8]. Training and inference 

using DL methods can be done locally on the edge to maintain 

data privacy while being updated by the aggregation of global 

models to improve model accuracy and generalisability. 

Incorporating these technologies into smart city applications 

will lead to the development of next generation edge solutions 

that will be more accurate, efficient, secure and cost effective. 

This paper proposes a hierarchical mobile-edge intelligence 

framework for automated pothole detection that utilizes 

combinations of diverse input from a variety of sensors. The 

proposed framework includes a novel DL methodology for 

pothole detection that fuses together image and sensory data, it 

utilizes Federated edge AI training to support the continuous 

large-scale optimization of the developed model and ensure 

data privacy, and uses smart road signs, 6G and AirComp to 

secure efficient communications along a road network, support 

data exchange and warn drivers of hazardous potholes. Public 

authorities can use the proposed framework for optimising 

resource allocation for maintaining roads in good condition. It 

is important to point out that the proposed DL methodology 

does not require a specialised computer vision device or high 

computational capability making adoption and scalability very 

effective. The contributions of this paper are:  

- A cost-effective method for collecting sensor data 

(accelerometer, imagery, and GPS) that uses standard 

smartphones or dashboard mounted cameras with generic 

mobile applications for collecting data to train new ML models.   

  - Development of a state-of-the-art pothole detection DL 

methodology that fuses sensory and imagery data.  

- An intelligent hierarchical framework for automated 

pothole detection that utilizes federated edge AI training, smart 

road signs and 6G communication to: support large scale smart 

city deployment, adaptive resource allocation for maintenance 

purposes, and overcome training, data security and network 

communication issues and requirements. 

    The remainder of the paper is organised as follows. A 

literature review on state-of-the-art pothole detection methods 

using computer vision and accelerometer data is covered in 

section II. Section III discusses the DL pothole detection 

methodology used in this study. Section IV discusses the 

experimental results. Section V presents the proposed pothole 

detection framework that utilizes mobile edge AI, Federated 

Learning, 6G and Air comp technologies. Section VI concludes 

the paper with limitations and future work. 

II. LITERATURE REVIEW 

Road surface anomalies detection has been studied for many 

years. Overall, there are three approaches to monitor road 

surfaces: 3D reconstruction, vibration/sensory based and 

computer vision-based [9]. The 3D reconstruction requires a 3D 

laser scanner, which scans the surface and makes an accurate 

model compared to the baseline model to detect anomalies [10]. 

However, such laser scanners are very costly, and the methods 

are focused on the local accuracy of the 2D scan [11]. [12] and 

[13] proposed the polarization method to calculate the 

difference between horizontal and vertical polarisation. 

However, the polarisation filters may affect the quality of the 

images, hence reducing the detection accuracy. For this paper, 

the focus is on sensory based methods. More specifically on 

vision and vibration/sensor based methods which are both used 

by the proposed hybrid model. In the literature which follows 

we present several examples using these methods and focus on 

the application of DL, which is also a core component of the 

proposed methodology.     

A. Vision based Methods 

Vision-based methods need image processing algorithms to 

extract texture and then compare the extracted texture with the 

normal texture to find anomalies. In [7], the researchers used a 

charge-couple device (CCD) camera mounted on a vehicle to 

detect defects. The paper suggested using road surface gloss 

and calculating absolute deviation with reference to the low 

luminance level. The authors assumed that the low levels of 

luminance represent the road surface itself, while higher-levels 

represent the reflection. The paper calculated the deviation of 

luminance to predict road conditions. Bouilloud et al. used the 

Interactions between Soil, Biosphere, and Atmosphere (ISBA)-

Route/ ‘‘Crocus’’ to predict road conditions. Their model 

depended on short term forecasts of meteorological conditions 

and long-term surface conditions simulation [14].  

Recent developments in computer vision and computational 

processing power based on the latest GPUs have facilitated 

complex computation and DL to automate the detection of road 
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surface defects. Deep Neural Networks (DNN) have gained 

popularity in the field. DNN are shown to deliver state of the 

art results in diverse industrial and smart city applications 

[59][60]. A large, labelled data set, preferably with different 

datapoints, is required to train deep neural networks-based 

models to achieve good accuracy [15]. GPU availability and 

parallel processing computational power have now made it 

affordable and accessible to develop and train such DNN 

models for real world industrial applications [16-21]. CNN has 

been successfully used to recognize images in several research 

efforts [22-26]. Steinkraus et al. discuss the importance of 

GPU's for DNN training and shows how they trained one of the 

largest CNN to date on subsets of the ImageNet dataset. [27]. 

 Farnood et al. discuss the application of neural networks in 

automation road extraction and vectorized high-resolution 

images obtained from a satellite. The experiment used 

backpropagation to train the model with images of size 500x500 

pixels [28]. Ren et al. has discussed how the region proposal 

algorithm and region-based CNNs (R-CNN) have contributed 

to object detection advances. However, such algorithms could 

be time-consuming and not economical. The paper presents an 

efficient method that shares convolutional layers with state-of-

the-art object detection networks [29]. Kaiming et al. discussed 

how CNN's requirement to have a fixed size image may reduce 

the accuracy of the images or sub-images of an arbitrary 

size/scale. The paper proposes a spatial pyramid pooling 

strategy (SPP), to accommodate flexible size images in the 

networks [30]. In the work by Tsung-Wi et al. a feature 

pyramids network for object detection is presented [31]. The 

researchers have developed sliding window prospers (region 

proposal Network, RPN) [29] in combination with region-based 

detectors [32]. The proposed architecture leverages the 

pyramidal shape of convolution network features while creating 

a feature pyramid by combining low resolution, semantically 

robust features with high resolution, semantically weak features 

via top-down pathway lateral connections. Their method 

produces a feature pyramid with rich semantics at all levels and 

is built quickly from a single image scale. Handcrafted image 

features have been replaced with automatically computed 

features by CNNs. CNNs are robust to the variation in scale and 

can facilitate recognition from features computed on a single 

input scale. The method shows improvement over several 

baseline models [31]. As discussed above, computer vision and 

DL are being used to classify objects. CNNs have been applied 

in image classification [25], [33] and object detection [25], [34]. 

The image-based method is cost-effective in comparison to the 

3D laser scan method, however can be sensitive to 

environmental factors such as light, shadow, water etc. 

B. Vibration-based Methods 

Vibration-based pothole detection methods use 

accelerometer data to detect potholes. This method is cost-

effective, requires little storage and can be used in real-time 

[11]. However, the vibration method fails to differentiate 

between potholes and other forms of anomalies, such as hinges 

and joints on the road surface [11].  

Mednis et al. discuss a vibration method to detect potholes. 

where data samples were collected using a customized 

application, and later detection algorithms -Z thresh, Z-peak 

were applied to find potholes [35]. In the research by Chao et 

al. the use of ML approaches for road pothole detection using 

smartphones is discussed. The paper reviews data processing 

and ML methods such as logistics regression, support vector 

machine, and random forest to detect potholes using features 

extracted from collected data [36]. Anguita et al. described how 

to make a standard human activity recognition dataset using 

smartphone captured data [37]. The dataset is further used in 

[38] to recognize human activities using a Support Vector 

Machine. Recently DL methods such as recurrent neural 

networks and one-dimension CNNs (1D-CNN) have been used 

to provide state-of-art results on activity recognition tasks. 

Huijuan and Jiping have used 1D CNN to extract features that 

were later fed into an SVM classifier [39]. Lee and Cho propose 

1D-CNN for human activity recognition from accelerometer 

data. The model showed 92.71% accuracy and outperformed 

other approaches such as random forest [40].  

Vibration-based methods can broadly be divided into three 

categories (1) Threshold-based methods, (2) dynamic time 

warping (DTW) and (3) ML methods. The threshold-based 

method detects anomalies when there is a change in amplitude 

or the signal's other properties across a specified value. Mohan 

et al. proposed two detectors to detect bumps and potholes. The 

proposed method was sensitive to speed and was conducted at 

25 km/h [41]. The dynamic time rapping (DTM) measures 

similarities between two sequences which may vary in space 

and time [42]. Singh et al. have used accelerometer sensor data 

to detect anomalies using the DTM method. The method 

produced accuracy in the range of 88% and was not sensitive to 

speed [43]. Eriksson et al. collected data from a smartphone's 

sensor installed on a vehicle and used a wide range of filters to 

identify potholes and other severe road surface anomalies [44]. 

As demonstrated from the literature traditional methods for 

identifying potholes are costly and inefficient. Advanced ML 

methods such as DL are able to exploit large scale sensory data 

and are being widely used in road surface monitoring. However, 

computer vision methods are computationally intensive, rely on 

the availability of large amounts of data and fail in specific 

image recognition tasks e.g., differentiating between potholes 

and puddles. Vibration/sensory methods face difficulties to 

differentiate between potholes and other anomalies and rely on 

the driver to go over the pothole with the risk of damaging the 

vehicle and themselves in the process [11].  

    This paper proposes a unique pothole detection framework 

that overcomes current challenges concerning the development 

of effective large scale pothole detection applications. Our 

framework is able to address data availability issues and 

provide training datasets of adequate volume and quality by 

exploiting incoming data from numerous connected vehicles. In 

addition, it is able to support the network requirements of the 

bidirectional communication between the road users/IoT 

devices and the road infrastructure, by exploiting the benefits 

of 6G communication technologies. Moreover, by 

incorporating the federated learning approach, our framework 

supports edge training and secures data privacy. Finally, in 
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order to overcome the weaknesses of computer vision and 

vibration-based systems, we propose a novel fusion DL model 

that uses both image and accelerometer data to detect road 

potholes. This model is a core part of our framework and is 

described in the following section.  

III. DEEP LEARNING POTHOLE DETECTION METHODOLOGY 

Based on the review in section II, it was found that DL can 

deliver excellent results in pothole detection. In this paper, a 

fusion model of a two-dimensional Convolution Neural 

Network (2D-CNN) and a one-dimension Convolution Neural 

Network (1D-CNN) is used to identify road potholes based on 

image and accelerometer data. There are three stages in the 

proposed method: (1) data collection and processing, (2) 

designing, training and optimization of the hyperparameters 

and (3) a fusion CNN DL model as depicted in figures 1 and 2. 

 
Fig. 1: Methodology Stages 1 and 2: Data collection, Model design, 

Training and Optimisation 

 
Fig. 2: Methodology Stage 3: Road Pothole Identification 

 

For testing the proposed methodology, we conducted 

extensive data collection experiments. The collected and pre-

processed data sets were used to train custom CNN-based 

models with a varying number of layers and hyperparameters. 

The derived models were tested to discover the best model that 

leads to the least prediction error. In this study, data was 

collected using an inbuilt camera and a generic sensor data 

collection application that is available on iOS smartphones. 

A. Data Collection 

The data has been collected using a smartphone camera and 

an app installed on the same device. The smartphone was 

securely placed on the windshield of a vehicle, as shown in 

Figure 3a.  The camera of the smartphone was used to collect 

images. Simultaneously, an application installed on the same 

smartphone was used to record 3-Dimensional (X, Y and Z) 

accelerometer data, along with the corresponding timestamp 

and GPS information. The sampling rate of the accelerometer 

was set to 100 Hz. However, due to hardware limitations, the 

GPS sampling rate was set to 1 Hz. Due to the restriction in the 

GPS sampling rate, the image sampling rate was also set at 1 

Hz. The data was stored on the iOS smartphone and later 

downloaded to a computer for further analysis. This study's data 

was collected while driving on motorways, A-roads, B-roads 

and in town. It was observed that motorways and A-roads were 

generally in good condition, and most potholes were noticed on 

B-roads and inside the town. The pothole-data used in this study 

were collected while driving at a constant speed of 30 miles per 

hour. The GPS data sampling rate and image sampling rate were 

both set at 1 Hz. The sensor data sampling rate was set at 100 

Hz, which was later merged to create a datapoint for one 

second. At the mentioned sampling rate, there were 7200 data 

points recorded. Later, sensory data and imagery data were 

augmented to increase the size of the data set and achieve better 

accuracy [15]. Table 1 shows the classes and the number of data 

samples in each class after augmentation. In the data set, each 

of the sensory data samples has a corresponding image. 

 
Table I: Road surface categories description and number of samples 

in the final dataset 
Road Quality Number of Images and sensory 

data sample 

Normal Road Surface 22344 

Pothole as seen from the dash-

board camera 

11016 

 

1) Smartphone Placement: The positioning of the smartphone 

on the windshield is an essential factor for achieving high 

accuracy in pothole detection. For this study, the smartphone 

was securely placed in the middle of the windshield's width and 

at the highest point as shown in Figure 3a. To have a clear view 

of the road. Figure 3b shows how the smartphone camera is 

positioned outward facing, and Figure 3c shows an example of 

the pothole captured. The same smartphone was used to record 

the accelerometer data. There was no ambiguity or confusion 

about the smartphone's axes and the vehicle's axis. In most of 

the research studies that were reviewed, the smartphones were 

mounted on the windshield or the dashboard. A limited number 

of researchers have studied the performance when the 

smartphone was kept in the glove box or the driver’s pocket. As 

demonstrated by the experimental results in these studies, the 

placement of the smartphone in the driver’s pocket or the 

glovebox resulted in lower detection rates. 

 
            (a)                     (b)                                (c)                    

Fig. 3: a) Smartphone placement at the windshield b) The road as 

seen from the smartphone c) Sample of a pothole 

2) The orientation of the smartphone: Images showing a 

pothole are two-dimensional. Therefore, pothole detection will 

not be impacted by the placement of the camera. However, 

Pothole detection using accelerometer data is sensitive to the 

orientation of sensors. [45] and [35] assume a fixed position for 

analysing data from the smartphone. In [36], the researchers 

applied Euler angles to align the orientations for their study 
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[36]. The smartphone in our study was placed securely upright 

on the windscreen making sure that accelerometer data for all 

three axes are in sync with the axes of the vehicle. 

3) Speed Dependency: Inoue et al. discussed the problem of 

motion blur when recording the video of an object from a 

moving vehicle [46]. The degree of motion blur is related to 

camera exposure and the speed of the target. This study uses 

images of road potholes that are stationary. The only motion 

blur in the collected images could have been caused due to the 

speed and vibration of the vehicle. The degree of the motion 

blur can be reduced by keeping the exposure time low and the 

shutter speed fast. However, this will reduce the brightness of 

the videos and affect the road pothole detection rate. The paper 

by Douangphachanh & Oneyama discusses how the average 

speed of a vehicle plays an important role when measuring road 

roughness [47]. The speed of the vehicle influences road 

anomaly detection rate when using accelerometer data. The 

amplitude of the signal captured by a smartphone accelerometer 

when a vehicle passes over a pothole depends on the vehicle's 

speed. For this study, data was collected from all kinds of roads. 

However, most potholes (95%) were recorded on a B road and 

in town. The potholes on the motorway and A-road were not 

included because, at speeds of 60 miles/hour, a vehicle will 

cover over 26 meters per second. Practically it will be 

uncommon to find large potholes on these roads. Also, the 

current sampling rate is restricted to 100 Hz, which will not be 

sufficient to capture a pattern in accelerometer data at those 

speeds. These possible potholes will not have had a significant 

impact on this study. The smartphone (iPhone Xs Max, iOS) 

used in this study can record 4K video at 60 frames per second.  

B. Data Processing 

The processing of data is a prerequisite for obtaining good 

results. The processing for the image and accelerometer data is 

broken down into three stages: resampling, labelling and 

augmentation. This study aimed to use CNN to process raw data 

as they are derived from the smartphone without applying many 

data processing methods. The images and video frames 

obtained from the smartphone camera had different sizes 

depending upon their makeup and model. In this paper, we used 

128x128 size images for training the CNNs. The following 

steps were taken to prepare the training dataset. 

1) Resampling: Resampling was applied to the accelerometer 

data as it was observed that the smartphone was unable to 

sample the accelerometer data at the fixed frequency uniformly. 

The sampling rate in the iOS app's accelerometer was set at 

100Hz, however it was noted that the accelerometer was 

sampled in the range of 70-100Hz. The 1D CNN uses fixed-

length data and, hence, to have a consistent sampling rate at 100 

Hz, the data with lower sampling rates would normally have to 

be deleted. For this study, data was resampled at 100 Hz, and 

missing values were filled by interpolating the data uniformly. 

2) Labelling: The proposed fusion model takes imagery and 

accelerometer data as inputs. The accuracy of a deep learning 

supervised model depends upon the accuracy of data labelling. 

Douangphachanh & Oneyama have discussed how the accuracy 

of object detection depends on how correctly the data were 

labelled [47]. The collected video (MOV) data was converted 

to a suitable image format, namely jpg using a small script in 

Python. The images obtained were examined manually and 

images with unwarranted features were discarded. The images 

were then divided into two classes: No pothole (DM00) and 

pothole (DM01) based on manual inspection and annotation. 

Table I shows the number of images in the final dataset. Figures 

4a and 4b show the images of normal road surface and potholes, 

respectively, captured from the dashboard camera. 

             
                               (a)                                (b) 

Fig. 4: a) Normal Road surface (no pothole) b) Damaged Road 

surface (pothole) 

 

    A software script was used to match location and time from 

the photos and videos to the sensor data's location and time for 

labelling the sensor data. GPS location and timestamp was used 

to tag the dataset and produce tuples of 100 samples (sampling 

rate). The accelerometer data was recorded at the sampling rate 

of 100 Hz on all three axes (X, Y, Z). A one-second data sample 

has 100x3 timestamps. Figure 5 shows the accelerometer 

reading on the Y axis representing a significant movement 

compared to the reading on X and Z axes.  Figure 5 shows a 4 

second data sample with pothole detection in the 3rd sec 

(timestamps 200-300). It can be noticed that the accelerometer 

reading on Y axis had a significant dip during timestamps 200-

300 when the pothole was detected. The whole 1-sec window 

was labelled as a pothole. 

 

 
Fig. 5: Labelling of a pothole on accelerometer data 

 

3) Data augmentation: Data augmentation methods, such as 

permutation and scaling, were applied to increase the 

accelerometer dataset size. The scaling factors +/-5% were 

applied to accommodate variation in the data collected from 

different types of vehicles. The permutation on the dataset was 

applied to increase the number of potholes detected samples. 

The data set of images was prepared carefully to include images 

from various weather conditions such as dry road and potholes 

filled with water and at different times to accommodate 

brightness variation. Due to the limitation of time and 

geographical reach, data augmentation was performed on the 

images to increase the number of images in the data set. The 

image processing library NumPy was used to flip the images 

horizontally and vertically. The brightness of the images in the 
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dataset was adjusted in the range of 0.2 to 1 to replicate images 

with brightness variations to emulate differences in brightness 

conditions as shown in figure 6. 

 

    
                   (a)                                               (b) 

Figure 6: a) A pothole image to be augmented b) Pothole images with 

adjusted brightness 

A canny edge detector [48] was used to extract edges in an 

image when selecting the area of interest. Before applying this 

method, a gaussian blur was applied to smoothen the images. 

Figure 7(a) shows an image with a Canny edge detector, and 

Figure 7(b) shows an image with the area of interest, which is 

within the marked lane in which the vehicle was moving. As we 

want to record potholes on-road only, the black part of the 

image is masked in Figure 7(b) to mark the area of interest 

between the white lines delimiting the road clearer.           

 

 
                       (a)                                              (b) 

Fig. 7: a) Image with canny edge detector b) area of interest 

within the canny edges (road lane) 

C. CNN Model Training for Classification 

Yamashita et al. discuss how CNN, a class of Artificial 

Neural Networks, is inspired by the visual cortex of animals 

[49]. CNNs were mainly designed to be used when performing 

the identification and classification of images. CNN can learn 

features of two-dimension images to produce efficient results. 

The CNN architecture comprises of three main layers: 

Convolution Layer, Pooling Layer and Fully Connected layer. 

CNNs reduce the model's learning complexity by sharing the 

weights during training [50]. The model's capacity and 

complexity can be changed by changing the number of CNN 

layers and their organization. This study used a fusion of two-

dimensional Convolution Neural Networks (2D-CNN) and one-

dimensional Convolution Neural Networks (1D-CNN). The 

1D-CNN, takes accelerometer data as input and the 2D-CNN 

takes images as input. Further down the layer hierarchy of the 

Deep Neural Networks (DNN), outputs of 1D-CNN and 2D-

CNN are concatenated, and dense layers are used to produce the 

final result. The 2D-CNN models with hidden layers of non-

linear transformation ranging from three to five layers were 

used to obtain the classification results. 1D-CNN models with 

multiple non-linear transformation layers ranging from two to 

seven layers were used to get the classification results. It was 

observed that the 2D-CNN model with five hidden layers and 

1D-CNN networks with two hidden layers were able to produce 

the most satisfactory results. The activation function used on 

hidden layers was ReLu (Rectified Linear Unit), and the 

SoftMax activation function was used on the output layer. The 

CNN used categorical cross-entropy loss function and Adam 

optimizer.   

 

𝐿(𝑥, 𝑦; 𝜃)  = −
1

𝑁
 ∑ (−𝑦𝑝

𝑁
1 . 𝑙𝑜𝑔 (𝑦𝑖−𝑝

^ ) − 𝑦𝑛 . 𝑙𝑜𝑔(𝑦𝑖−𝑛 
^ ))     (1) 

                                𝜃 =  𝜃 − 𝜂. 𝛻𝜃𝐿(𝑥𝑖 , 𝑦𝑖 , 𝜃)                      (2)                                  

 

Where 𝜃 is a weight parameter. The training aims to 

minimize loss (1) and get optimal value for the weight 

parameter 𝜃  (2). For the sample 𝑥𝑖, the predicted negative 

probability is denoted by 𝑦𝑖−𝑛
^ , and positive probability by 𝑦𝑖−𝑝

^ . 

The algorithm used to train the model is shown in algorithm 1. 

 

Algorithm 1: To train fusion Convolutional Neural Networks model   

Input: Labelled dataset: {X, Y} 

Output: Optimal 𝜃∗;  
Initial 𝜃 , epoch = 0, learning rate α 

repeat 

1. Sampling labelled data batch {𝑥𝑖 , 𝑦𝑖} from {X, Y} 

2. Performing forward propagation of the network and compute 

[𝑦𝑖−𝑛
^ , 𝑦𝑖−𝑝

^ ]  

3. Compute loss L by  

4. Compute adaptive gradient by SDG (Eq:2)  

5. Update parameter 𝜃 ←  𝜃 − 𝛼
𝜕𝐿

𝜕𝜃
 

6. epoch = epoch + 1 

until (epoch > Epochs) 

 

IV. RESULTS DISCUSSION 

The data set was split into 70% for training, 15% for testing 

and 15% for validation. To evaluate the performance of each 

model we used standard measures such as: classification 

accuracy, precision, recall and F1 score.  Initially, the dataset 

was used to train and test the 2D-CNN model that used image 

data and the 1D-CNN model that used accelerometer data in 

isolation with various combinations of hyperparameters. For 

the 2-D CNN model that used image data the training was 

conducted with batch size 10 and over 50 epochs. During the 

experiments we varied the number of layers of the CNN.  For a 

two hidden layer CNN the testing accuracy was in the range of 

56% and 66%, with a median of 60.50%. This model achieved 

62% precision, 51% recall and 56% F1-Score. For a 2D-CNN 

model with the number of hidden layers set to five the testing 

accuracy was in the range of 66% and 100%, with a median of 

97%. The model achieved 84.80% precision, 92.40% recall and 

88.44% F1-Score. 

    For the 1D-CNN model that used accelerometer data we 

tested several models with a varying number of layers from 1 

to 7. Given the lower computational resources needed for the 

accelerometer data, the training of each model was conducted 

with batch size 100 and over 500 epochs. It was found that the 
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1D-CNN model with just two hidden layers was able to achieve 

the highest performance 95% testing accuracy, 93% precision, 

98% recall and F1-Score of 91%. Figure 8 summarizes the 

results for the best configuration for each CNN in isolation. 

 

 
Fig. 8: Accuracies of the best 1D CNN (accelerometer data) and 2D 

CNN (image data) models in isolation 

 

    Based on the obtained results we used two combinations of 

hidden layers in the 1D and 2D CNNs respectively to test the 

performance of the fusion CNN model. The choice was made 

based on the best performance and the lower complexity for 

both CNNs. The first combination used was with two hidden 

layers in both 1D-CNN and 2D-CNN (1D-2L-2D-2L) and was 

chosen based on the lower complexity for both topologies; the 

second combination evaluated had two layers in 1D-CNN and 

five layers in 2D-CNN. The latter combination demonstrated 

the best performance during the previous phase. The accuracy 

and performance are shown in detail in Figure 9.  The fusion 

model with two hidden layers in the 1D-CNN and five hidden 

layers in the 2D-CNN had the highest testing accuracy, 95.71% 

compared to a testing accuracy of 80.84% for the model 

topology that utilized two layers in both CNNs. This 1D 2L-2D 

5L model had an average precision rate of 87.2%, average recall 

rate of 92.7% and F1-Score of 90%. It is important to highlight 

that while not the best fusion model the 1D 2L-2D 2L model 

had considerably better accuracy compared to the 2D-2L model 

that achieved 60.50% testing accuracy. While the accelerometer 

CNN model appears to have better performance in some of the 

measures it fails to provide a timely warning to the driver and 

only identifies the pothole after the vehicle goes over it. 

 

 
Fig. 9: Accuracies for all models. 

As demonstrated by the results the proposed fusion model 

achieves state of the art performance in identifying potholes. 

Moreover, by utilizing both accelerometer and image data the 

fusion model can overcome the disadvantages of other modern 

techniques that utilize each data input separately. By using 

accelerometer data, the proposed fusion approach can 

overcome the difficulty of modern computer vision methods to 

differentiate between potholes and other similar visual patterns. 

By utilizing image data, the proposed approach goes beyond 

current vibration-based methods by providing a proactive 

solution that protects both the driver and the vehicle. 

V. SMART CITY POTHOLE DETECTION IOT FRAMEWORK 

As per most DL models the accuracy of the one proposed in 

this paper is only expected to increase with the size of the data 

set and when the training data have potholes of different sizes, 

shapes and reflect diverse environmental conditions. In modern 

cities almost all vehicles on the road are equipped with a 

smartphone while CAV are expected to be a prominent 

technology in the near future [57]. These vehicles can 

potentially be data collection hubs for our methodology. Every 

vehicle on the road running the application can contribute to the 

creation of a more intelligent model. This is achieved through a 

hierarchical architecture where the end user in the vehicle 

constantly performs pothole identification using an edge-based 

DL model, while capturing new image and accelerometer data 

and updating the local model. The captured data used to train 

the local models should remain private so the individual drivers 

positions or routes are not stored centrally. The local model 

updates can then be aggregated in an intermediate step in a local 

embedded server existing on smart road signs creating new 

locally aggregated models which in turn are transmitted to a 

global server where all local models are aggregated to create a 

new smarter global model. The global model is then 

disseminated to the end users in a backward process in fixed 

time intervals. 6G supports this intensive multi bi-directional 

communication. The process can be seen in figure 10. 

Figure 10: Hierarchical model architecture. 
 

To exploit the potential of this framework, tackle the training 

challenges and develop a model that is constantly improving 

using immense amounts of new data captured by the road users, 

we suggest Federated Learning (FL) as a method for retraining 

and optimizing the global pothole detection algorithm. FL is a 

collaborative ML framework that can support the training of a 

global ML model without accessing edge devices’ privately 

held raw data. The FL approach features align perfectly with 

the needs of our framework. As argued in [54], FL is designed 

for multiple users that collaborate to solve a complicated ML 
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problem [54]. In our case, numerous smart devices within the 

vehicles roaming the roads, will contribute in developing an 

optimal classification algorithm. Additionally, by incorporating 

the local computing and model transmission concepts, the 

federated learning approach contributes to the privacy and 

security of the data captured by these devices. Strengthening of 

data privacy and security is a key feature of FL as demonstrated 

by recent research efforts [55]. Understandably, this is very 

important for our framework where sensitive location and 

image information are collected and used to develop the model. 

Here dedicated edge servers are responsible for aggregating 

local learning model updates and disseminating global learning 

model updates [51]. The proposed FL approach involves 

learning an optimal DL model for pothole detection that will be 

continuously optimised from the data captured by the end users’ 

smart phones. The models used by these devices will be updated 

based on the optimised global model to provide pothole 

identification. The training and updating process will involve a 

bi-directional 6G communication where local model updates 

will be communicated and aggregated to smart road sign 

servers, which in turn will be used to update the model existing 

in the global cloud-based server. At the same time model 

updates will be communicated periodically from this central 

server to the smart road sign servers which in turn will 

communicate the updates to the user smart phone or integrated 

infotainment systems (IIS). In our framework, the end 

user/driver is running the local edge-based DL model, through 

a smartphone. By using this algorithm, the end device identifies 

the pothole on the road and the information concerning the 

identified pothole is securely transmitted to the corresponding 

local smart road sign server. The proposed infrastructure may 

also include second generation traffic sign technology such as 

LED sign boards where the pothole warning can be displayed. 

In our framework the local server will wirelessly transmit the 

warning back to receiver/smart phone or IISs residing inside the 

vehicles approaching an intersection monitored by a smart road 

sign or notify available maintenance teams to proceed with the 

necessary actions as shown in figure 11.  

 

Figure 11: Pothole identification and warning process 
 

The proposed edge training task faces considerable 

challenges concerning limited bandwidth and resources in the 

available wireless networks. Large scale deployment of the 

proposed framework results in a huge number of edge devices 

uploading the local model updates for global aggregation. In 

turn the updated model updates and potential generated 

warnings will need to be transmitted efficiently and in real time 

to a large number of vehicles on the road. An approach able to 

accommodate the needs of the proposed framework is Aircomp 

[52]. AirComp is a promising multiple access approach that is 

excellent for low-latency model aggregation [8]. As suggested 

by recent review studies, by concurrently transmitting the 

locally updated models, AirComp is able to harness interference 

to decrease communication bandwidth consumptions. Aircomp 

can support simultaneous transmission so that a dedicated 

access point is able to receive and estimate a summation-form 

function of the distributed data by exploiting the waveform- 

superposition property of multi-access channels [53]. This 

process can directly support the proposed FL approach.   

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a unique hierarchical framework 

that exploits the latest communication, DL and edge AI training 

technologies providing a paradigm architecture for developing 

intelligent 6G enabled Intelligent Autonomous Transport 

applications that can use input from multiple CAV. This 

framework is a scalable large-scale solution where every 

vehicle utilizing the road can efficiently contribute to data 

collection and model optimization for automated pothole 

detection systems. Our experimental work demonstrated that 

the proposed CNN fusion model produced state of the art 

results, with 87.2% precision, 92.7% recall and an F1 score of 

89.9% and can be effectively used to detect potholes of varying 

sizes, and shapes, under different environmental and lighting 

conditions. While the model’s accuracy is already high, the FL 

architecture of the presented framework provides a promising 

base for continuously updating and optimizing the automated 

pothole detection model in a secure, efficient, and scalable way. 

The framework proposed in this paper will enable the 

corresponding authorities to be notified in real time concerning 

potholes on the road network and prioritise essential 

maintenance work. This will tackle the challenge of carrying 

out necessary maintenance work in a timely and cost-effective 

manner and optimise the distribution and scheduling of services 

and resources. The companies that provide route planning 

services can also use the collected road-pothole data to optimise 

suggested traffic routes. Insurance companies may also utilize 

the application to support legal claims for damages caused by 

potholes to their customers’ vehicles. Our future work will 

augment the database with more images /videos and sensory 

data. We will also use optimization algorithms to determine 

optimal parameters for the model and refine the proposed DL 

approach to improve its accuracy and explainability. Due to the 

usage of low-cost equipment, the sampling rates used in our 

experiments are not considered optimal. Future work will 

consider having better hardware to increase these rates. 
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