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Abstract

Envelope models were first proposed by Cook et al. [10] as a method to reduce estimative and predictive variations
in multivariate regression. Sparse reduced-rank regression, introduced by Chen and Huang [4], is a widely used
technique that performs dimension reduction and variable selection simultaneously in multivariate regression. In this
work, we combine envelope models and sparse reduced-rank regression method to propose an envelope-based sparse
reduced-rank regression estimator, and then establish its consistency, asymptotic normality and oracle property in
high-dimensional data. We carry out some Monte Carlo simulation studies and also analyze two datasets to demon-
strate that the proposed envelope-based sparse reduced-rank regression method displays good variable selection and
prediction performance.
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1. Introduction

In this work, we consider the following multivariate linear regression model:

Yi = βXi + εi, i ∈ {1, . . . , n}, (1)

where Yi ∈ Rr denotes a multivariate response vector, Xi ∈ Rp denotes a non-stochastic vector of predictors, εi is an
error vector having mean 0, covariance matrix Σ and is independent of Xi, and β ∈ Rr×p is the regression coefficient
matrix in which we are primarily interested in. If Xi is a vector of random quantities during sampling, then the model
is conditional on the observed values of Xi. Let X and Y denote (X1, . . . , Xn) and (Y1, . . . ,Yn), respectively. Without
loss of generality, let us assume that the data are centered, so that the intercept can be excluded from the regression
model. Then, model (1) can be re-expressed as

Y = βX + ε, (2)

where ε is (ε1, . . . , εn).

1.1. Notation and definitions
For positive integers r and p, Rr×p represents the class of all real matrices of dimension r × p, and Sr×r denotes

the class of all symmetric r × r matrices. Given a matrix A ∈ Rn×n, tr(A) stands for the trace of A. For B ∈ Rr×p,
span (B) stands for the subspace of Rr spanned by the columns of B, the Frobenious norm of B is denoted by
∥B∥F =

√
tr

(
BT B

)
. B+ denotes the Moore–Penrose inverse of B. For a column vector X, the Euclidean norm is

represented as ∥X∥2 =
√

XT X. A basis matrix for a subspace S is any matrix whose columns form a basis for S. A
subspace R of Rr is a reducing subspace of M ∈ Rr×r if MR ⊆ R and MR⊥ ⊆ R⊥.
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1.2. Review of envelope models
Envelope method was developed for the multivariate linear model by Cook et al. [10]. It is built on a key assump-

tion that the linear combination of some response variables is irrelevant as the predictors vary. The goal of this method
is then to reduce the dimension of variables and improve efficiency. More specifically, let PξY denote the projection
of Y onto a subspace ξ ⊆ Rr with the following two properties: (i) The distribution of QξY|X does not depend on X,
where Qξ = Ir − Pξ, and (ii) PξY is independent of QξY, given X. The two conditions, when combined, imply that
the distribution of QξY is not affected marginally by X or through an association with PξY. As a result, changes in X
influence this distribution only through PξY. Furthermore, conditions (i) and (ii) hold if and only if (a) B ≜ span(β) is
the subspace of ξ and (b) ξ is a reducing subspace of Σ. The Σ-envelope of B, denoted by ξΣ(B), is defined formally as
the intersection of all reducing subspaces of Σ that contain B. Let u=dim{ξΣ(B)} and (Γ,Γ0) ∈ Rr×r be an orthogonal
matrix with Γ ∈ Rr×u being a column orthogonal matrix and span(Γ)=ξΣ(B). This then leads directly to the following
envelope version of model (1):

Yi = βXi + εi, Σ = ΓΩΓ
T + Γ0Ω0Γ

T
0 , i ∈ {1, . . . , n}, (3)

where β = Γγ with γ ∈ Ru×p representing the coordinates of β corresponding to the basis Γ, Ω ∈ Su×u and Ω0 ∈

S(r−u)×(r−u) are both positive definite matrices, γ, Ω and Ω0 depend on the basis Γ. It should be mentioned that the
parameters β and Σ depend only on ξΣ(B) rather than on the basis. The estimators of the parameters in (3) can be
achieved by maximum likelihood estimation, and dimension u of the envelope can be determined based on likelihood
ratio test, information criteria, and cross-validation. The envelope estimator β̂en of β, denoted by β̂en = Pξ̂β̂OLS , is
just the projection of the ordinary least-squares estimator β̂OLS of β onto the estimated envelope. A detailed review of
envelope models can be found in Cook et al. [8] and Cook [7].

1.3. Review of reduced-rank regression
From model (2), the ordinary least-squares (OLS) estimator of β is

β̂OLS = YXT (XXT )−1. (4)

It is clear that the OLS estimator of multiple responses is equivalent to performing separate OLS estimation for each
response variable, and so the estimator does not make use of the likely correlation existing between the multiple re-
sponses. It will, of course, be useful to consider the correlation between response variables. One way of incorporating
possible interrelationships between response variables is to consider reduced-rank regression (RRR) model (Reinsel
and Velu [20]). The reduced-rank regression would allow the rank of β to be less than min(p, r), and so the model
parametrization can be expressed as β = AB, where A ∈ Rr×d, B ∈ Rd×p, and rank(A)=rank(B)=d. The decomposi-
tion β = AB is non-unique since for any orthogonal matrix O ∈ Rd×d, A∗ = AO and B∗ = OT B will result in other
valid decompositions satisfying β = A∗B∗ = AB. Nevertheless, the parameter β of interest is identifiable, as well as
span(A)=span(β) and span(BT )=span(βT ) (Cook et al. [9]). Under some constraints on A and B, such as BBT = Id

or AT A = Id, Anderson [1] and Reinsel and Velu [20] derived the maximum likelihood estimators of the RRR pa-
rameters. As there are some linear constraints on the regression coefficients, the number of effective parameters gets
reduced and the prediction accuracy may therefore get improved. In high-dimensional data, a large number of predic-
tor variables will be typically available, but some of them may not be useful for predictive purpose. For this reason,
Chen and Huang [4] proposed sparse reduced-rank regression for simultaneous dimension reduction and variable se-
lection in multivariate regression with fixed dimension of parameters in terms of penalty functions. Lian and Kim
[17] provided sufficient conditions to guarantee the oracle estimator to be a local minimizer, and stronger conditions
to guarantee that it is a global minimizer in an ultra-high dimensional setting for a class of nonconvex penalties. Chen
et al. [2] made use of sparse singular value decomposition (SVD) of the coefficient matrix β to propose a regularized
reduced-rank regression approach improving predictive accuracy and also facilitating good interpretations. Chen et al.
[3] proposed an adaptive nuclear norm penalization approach for low-rank matrix approximation, and then used it to
develop a new reduced-rank estimation method for high-dimensional multivariate regression. Cook et al. [9] incor-
porated the idea of envelopes into reduced-rank regression by proposing a reduced-rank envelope model, which has a
total number of parameters to be no more than either of the reduced-rank regression or the envelope regression. The
reduced-rank envelope estimator is at least as efficient as the two estimators mentioned above, but it is not sparse.
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In many regression problems, we are often interested in finding important predictor variables for predicting the
response variable, where each predictor variable may be represented by a group of derived input variables. For this
reason, Yuan and Lin [26] proposed model selection and estimation in a general regression problem with grouped
variables in terms of LASSO penalty. Nardi and Rinaldo [18] established asymptotic properties of the group LASSO
estimator for general linear models. Zhao and Yu [27] studied model selection consistency of LASSO in the classical
fixed p setting as well as in the setting when p grows with sample size n. For the classical linear regression model,
Zou and Zhang [29] studied the model selection and estimation when the number of parameters diverges with sample
size, in terms of the adaptive elastic-net penalty function. Guo et al. [13] established the oracle property of the group
SCAD estimator in linear regression model under high-dimensional setting when the number of groups grows at a
certain polynomial rate. Su et al. [24] proposed a sparse envelope model that performs response variable selection
efficiently under the envelope model. In their model, it is assumed that the number of predictors p is fixed and is
smaller than the sample size n, but r can be greater than n.

In the present work, we propose a sparse reduced-rank regression method based on the envelope model with
adaptive group LASSO for multivariate linear model, which performs the tasks of dimension reduction of response
and predictor variables, as well as group variable selection simultaneously. The proposed method is suitable for all
n and p. Moreover, the cases when r and p are fixed, and r and p grow simultaneously with n, are also considered.
We then establish the consistency, asymptotic normality and oracle property of the envelope-based sparse reduced-
rank regression estimation developed here. Finally, with the use of Monte Carlo simulation studies as well as two
datasets, we demonstrate that the method developed here displays good variable selection and prediction performance
as compared to some well-known existing methods.

2. Envelope-based sparse reduced-rank regression estimator and its properties

From model (3), with β having a low rank structure, we have

ΓT Y = ηBX + ΓTε, (5)

where β = AB, β = Γγ and β = ΓηB represent the reduced-rank method, the standard envelope method and the
reduced-rank envelope method, respectively. Also, η ∈ Ru×d, u ≥ d, denotes the coordinates of A with respect to Γ.
If Γ is unknown, we can obtain an estimator Γ̂ of Γ by using the method described in Section 3. Then, the standard
envelope estimator is obtained as

β̂en = Γ̂Γ̂
T YXT (XXT )−1. (6)

Using singular value decomposition, we have

ηB = UDVT , (7)

where U ∈ Ru×d and V ∈ Rp×d are both rank-d matrices with orthogonal columns, and D is a d × d nonnegative
diagonal matrix. Then, (5) can be re-expressed as

ΓT Y = UFX + ϵ, (8)

where F = DVT and ϵ = ΓTε. Next, we consider the optimization over F. Because U has orthogonal columns, let

U⊥ be any column orthogonal matrix such that (U
...U⊥) is an orthogonal matrix. We then have

∥ΓT Y − UFX∥2F = ∥(U
...U⊥)T (ΓT Y − UFX)∥2F = ∥U

TΓT Y − FX∥2F + ∥(U
⊥)TΓT Y∥2F . (9)

Note that the second term on the right side of (9) does not include F and U⊥ only exists in the second term, and
so the choice of U⊥ does not matter. If Γ and U are given, we can then achieve an estimator of F, by minimizing the
objective function

Q(F) =
1
2n
∥UTΓT Y − FX∥2F + λn

p∑
j=1

ω j(∥F j∥2)

=
1

2n
tr((UTΓT Y − FX)T (UTΓT Y − FX)) + λn

p∑
j=1

ω j(∥F j∥2), (10)
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where F j denotes the jth column of F, and ∥ · ∥2 denotes the standard Euclidean norm. Also, λn denotes the parameter
of penalty function and ω j is the adaptive weight. Their choices are discussed later in Section 5.

Combining (5) and (8), we have the coefficient matrix to be β = ΓUF. By minimizing the objective function in
(10), a sparse estimator F̂ is achieved. We then have the following proposition.
Proposition 1. If Γ and U are given, the proposed estimator β̂ = ΓUF̂ incorporates the envelope method, the reduced-
rank method and the adaptive group LASSO penalty technology.
Remark 1: λn

∑p
j=1 ω j(∥F j∥2) is the adaptive group LASSO penalty function. By using the penalty function, we may

obtain a sparse estimator F̂ in which some column vectors of F̂ are exactly zero vectors. As the coefficient matrix is
β = ΓUF, it follows that some column vectors of the estimator β̂ (corresponding to those column vectors of F̂) are
also zero vectors. In this way, we achieve a sparse estimator β̂. Moreover, if Γ and U are given, the estimator β̂ can
have good properties that are consistent with the estimator F̂, which is established in Theorems 1 and 3.

Assume that the penalty function λn
∑p

j=1 ω j(∥F j∥2) is equal to 0, as well as U and Γ are known. Then, by
minimizing the function

Q(F) = tr((UTΓT Y − FX)T (UTΓT Y − FX)), (11)

we obtain F̂ = UTΓT YXT (XXT )−1. Hence, β̂ = ΓUF̂ = ΓUUTΓT YXT (XXT )−1, which degenerates to the reduced-
rank envelope estimator. Furthermore, if r > u = d, then β̂ = ΓΓT YXT (XXT )−1, which is the standard envelope
estimator. If r = u > d, then the estimator degenerates to the reduced-rank regression estimator. If r = u = d, then
the estimator is an ordinary least-squares estimator, which is the case when there is no immaterial information to be
reduced.

For minu ∥Γ
T Y −UFX∥2F with UT U = Iu, if F is fixed, the optimization of U is an orthogonal Procrustes problem

(Chen and Huang [4], Gower and Dijksterhuis [12]). The solution is Û = U∗VT
∗ , where U∗ and V∗ are achieved from

the singular value decomposition ΓT YXT FT = U∗D∗VT
∗ . For fixed U, motivated by the works of Yuan and Lin [26]

and Chen and Huang [4], we can make use of the subgradient method (Friedman et al. [11]) to derive the optimal
solution of (10) as

F j =
1

X jX jT

(
1 −

nλnω j

∥L jX jT ∥2

)
+

L jX jT , (12)

where L j = UTΓT Y −
∑p

i, j FiXi, X j and Xi denote the jth and ith rows of X, respectively, and the subscript “+”
denotes the positive part of a real number.

We now propose the following estimation algorithm by using the subgradient method.
Algorithm:
(a) Get Γ̂ by the method in Section 3;
(b) Give an initial value for F ;
(c) By SVD Γ̂T YXT F̂T = U∗D∗VT

∗ , update Û = U∗VT
∗ ;

(d) Given U = Û, obtain F̂ from (12);
(e) Repeat steps (c) and (d) until β̂ = Γ̂ÛF̂ converges, i.e., ∥β̂new − β̂old∥/∥β̂old∥ < ν, where β̂new and β̂old denote the
newly estimated and previously estimated values, respectively, and ν is the level of tolerance, say, ν = 10−6.

Let A =
{
j : ∥F j∥2 , 0, j ∈ {1, . . . , p}

}
, Ac =

{
j : ∥F j∥2 = 0, j ∈ {1, . . . , p}

}
, Â =

{
j : ∥F̂ j∥2 , 0, j ∈ {1, . . . , p}

}
,

q = |A| and p − q = |Ac|. Without loss of generality, let F = (FA, FAc ). Then, we have βAc = ΓUFAc = 0.

2.1. Case when r and p are fixed

In this section, we show that the proposed estimator has the oracle property when the sample size n increases, when
r and p remain fixed. The following regularity conditions are assumed for establishing the asymptotic properties:
(A1) There exists a positive definite matrix M such that XXT /n→ M, as n→ ∞;
(A2) There exists a positive constant C1 such that ω j ≤ C1, for all j ∈ A.
Lemma 1. Under regularity condition (A1), the model selection in (10) is consistent, that is, P(Â = A) → 1, as
n→ ∞, only if for any j ∈ Ac

√
nλnω j → ∞.

4



The proof is similar to that of Proposition 3.1 of Nardi and Rinaldo [18], and so we do not present it here.
Theorem 1. Under regularity conditions (A1) and (A2), suppose Γ̂ and Û are

√
n-consistent estimators of Γ and U,

respectively, and that the errors are normally distributed. If
√

nλn → 0 as n → ∞, then there exists a local minimizer
F̂ of Q(F) such that β̂ is a

√
n-consistent estimator of β, that is, ∥β̂ − β∥F = Op

(
n−1/2

)
, and that this β̂ must satisfy

(a) Sparsity: P(β̂Ac = 0)→ 1,

(b) Asymptotic normality:
√

n(vec(β̂A) − vec(βA))
D
−→ N(0,ΣβA ),

where ΣβA is the upper-left pq × pq block of ΣRE , which is the asymptotic covariance matrix of the reduced-rank
envelope estimator [Proposition 8 of Cook et al. [9]].

2.2. Case when p and r grow with n

In this section, we show the consistency of model selection when p, r and q increase with the sample size n. For
this reason, in the following, we use pn, rn and qn instead of p, r and q to indicate that they can grow with n. Assume
the following regularity conditions:
(B1) There exists a positive constant C2 such that 1

n X jX jT ≤ C2, for all j ∈ {1, . . . , pn}, and all n;

(B2) There exists a positive constant C3 such that αT R11α ≥ C3, for all ∥α∥22 = 1, where R11 =
XAXT

A

n ;
(B3) qn = Op(nc1 ) for some 0 < c1 < 1;
(B4) There exist positive constants c2 and C4 such that c1 < c2 ≤ 1 and n(1−c2)/2 min

j∈A
||β j||2 ≥ C4.

The regularity conditions (B1)–(B4) stated above were first used by Zhao and Yu [27] for establishing the model
selection consistency of the LASSO estimator, and by Kim et al. [14] for showing the oracle property of the SCAD
estimator. The same conditions were also used by Guo et al. [13] for discussing the oracle property of the group
SCAD estimator under the high-dimensional setting where the number of groups can grow at a certain polynomial
rate.

To show the consistency of model selection when p and r increase with sample size n, we first introduce the
following theorem.
Theorem 2. Suppose E(∥ε∥F)2k < ∞ for an integer k ≥ 1 and pn(

√
nλnω)−2k → 0, where ω = min

j∈Ac
ω j. Let

F = (FA, 0), and define

F̂A = arg min
F

 1
2n
∥ÛT Γ̂T Y − FXA∥2F + λn

∑
j∈A

ω j(∥F j∥2)

 . (13)

Then, with probability tending to 1, (F̂A, 0) is the solution of (10).
Theorem 3. Under the regularity conditions (B1)–(B4), provided λn = o(n−(1−c2+c1)/2) and rn = o(nc2/2), then P({ j :
∥β̂ j∥2 , 0} = A)→ 1.
Remark 2: When ε has all moments, pn is allowed to grow much faster than n (up to nθ, for any θ > 0). Moreover, rn

can grow slower than nc2/2.

3. Estimation of the envelope

To achieve the estimation of the envelope ξΣ(B), Cook et al. [8] and Su et al. [24] developed an iterative algorithm
which is fast and effective. Let

Γ =

(
Γ1
Γ2

)
=

(
Iu

N

)
Γ1 ≜ QNΓ1,

where Γ1 consists of the first u rows of Γ, and suppose it is nonsingular, and N represents Γ2Γ
−1
1 which depends on Γ

only through the space formed by the column vectors of Γ. This is so because, for any orthogonal matrix P ∈ Ru×u, if
Γ∗ = ΓP, then Γ∗1 = Γ1 P, Γ∗2 = Γ2 P, and N∗ = Γ2 PP−1Γ−1

1 = N. The optimization problem estimating ξΣ(B) is then

N̂ = arg min
N∈R(r−u)×u

−2log|QT
NQN | + log|QN(YQXYT /n)QN | + log|QN(YYT /n)−1QN |, (14)

5



where QX = In − XT (XXT )+X. For the convenience of the following statement, let Σ̂Y and Σ̂res denote YYT /n and
YQXYT /n, respectively.

If n > r + p, it follows that rank(Σ̂res) = rank(Σ̂Y ) = r with probability 1. Therefore, QNΣ̂resQN and QNΣ̂
−1
Y QN are

nonsingular. But, if p > n, then Σ̂res is singular. If r > n, then both Σ̂res and Σ̂Y are singular. In both these cases,
optimization in (14) is not solvable as it depends on the inverse of Σ̂Y . At the same time, the optimization algorithm
for solving (14) needs the inverse of Σ̂res. But, Σ−1

res and Σ−1
Y can be directly estimated by using methods such as

positive definite estimators of large covariance matrices (Rothman [21]) and sparse permutation invariant covariance
estimation (Rothman et al. [22]). Yet another suitable method is to use the ridge-type covariance estimators proposed
by Ledoit and Wolf [16] for Σres and ΣY . In this work, we use positive definite estimators of large covariance matrices
and sparse permutation invariant covariance estimation for estimating Σ̂−1

res and Σ̂−1
Y , respectively. Once we obtain N̂,

then we have ξΣ(B) = span(Q̂N).

4. Selection of u

In the above discussion, we have assumed that u, the dimension of the envelope, is known. In practice, however,
u will be unknown. There are a few ways to choose u such as cross-validation (CV), likelihood-ratio test (LRT) and
information criterion such as AIC or BIC. Cook [7] has provided an elaborate discussion on all these methods. The
AIC tends to select a model that contains the true model, and so it tends to overestimate u. The BIC tends to select the
correct u with probability getting close to 1 as n goes to ∞, but, it can be slow to respond in case of small samples.
The LRT method performs the best in case of small samples, but asymptotically the error probability is equal to the
significance level. The cross-validation method tends to balance bias and variance when selecting u, which may lead
to choices that are different from those provided by LRT and information criteria. Here, we use the cross-validation
method for selecting u.

5. Tuning

The rank d can be selected by cross-validation (CV). The parameter of adaptive LASSO penalty function is
denoted by λn. We set ω j = 1/∥β j∥δ2 as the adaptive weight. Let ω̃ j = 1/∥β̃ j∥δ2 be an estimator of ω, where β̃ j is a
consistently estimated value of β j. When n ≥ p, the reduced-rank envelope method can be used to estimate β j. When
p > n, by setting ω j’s all equal to ωn, a reasonable estimator can be the solution of (10) with single penalty parameter
λnωn. In this paper, we use fivefold CV procedure to estimate λn. The fivefold CV procedure is as follows: Let D
denote the full dataset, as well as D −Dτ and Dτ denote training and test set, respectively, τ = 1, . . . , 5. For each λn

and τ, we derive the estimator β̂ of β using the training setD−Dτ. The fivefold CV criterion is defined as

CV(λn) =
5∑
τ=1

∑
(Yt ,Xt)∈Dτ

∥∥∥Yt − β̂
(τ)(λn)Xt

∥∥∥2
F .

We obtain a λ̂n by minimizing CV(λn).

6. Simulation study

6.1. Simulation Setups and Methods

Scenario I. We generated data with p and r being smaller than n, taking Ω = Iu and Ω0 = 10Ir−u. We assumed
that elements of the first s columns in η were independent uniform (0, 10) variables, and the remaining elements of
p − s columns were all zeros. Then, β = Γη, Xi follows multivariate normal distribution with mean 0 and covariance
matrix Ip, and (Γ, Γ0) was obtained by standardizing an r × r matrix of independent uniform (0, 1) variables. The
error covariance matrix was generated from Σ = ΓΩΓT +Γ0Ω0Γ

T
0 . The prediction mean squared error (PMSE) is then

defined as

PMSE = E||β̂X − Y||2/nr. (15)
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Table 1: Prediction comparisons of these methods based on PMSE using 100 simulation runs with p and r being smaller than
n. PMSE denotes prediction mean squared error. OLS, ENV and ENRRR denote the ordinary least-squares estimator, standard
envelope estimator and envelope-based reduced rank regression estimator, respectively. Further, SPLS denotes the sparse partial
least-squares estimator, SRRR and aSRRR denote the sparse reduced-rank regression estimator with group LASSO penalty and
adaptive group LASSO penalty, respectively; ENSRRR and aENSRRR denote the envelope-based sparse reduced-rank regression
estimator with group LASSO penalty and adaptive group LASSO penalty, respectively.

PMSE

n=200, u = 10, s = 20, d = 5

p=30, r=20 p=50, r=30 p=100, r=50 p=50, r=100

OLS 1.661 2.331 4.142 3.074
ENV 1.474 1.843 2.331 2.365

ENRRR 1.440 1.780 2.163 2.341
SPLS 1.841 2.148 2.245 2.476
SRRR 1.465 1.821 2.238 2.402
aSRRR 1.459 1.798 2.129 2.367

ENSRRR 1.438 1.775 2.168 2.347
aENSRRR 1.436 1.771 2.127 2.335

Table 2: Variable selection comparisons of these methods based on ACR using100 simulation runs with p and r being smaller
than n. ACR denotes the average correct ratio between the number of correct selection and the total number of relevant variables.
SPLS denotes the sparse partial least-squares estimator, SRRR and aSRRR denote the sparse reduced-rank regression estimator
with group LASSO penalty and adaptive group LASSO penalty, respectively; ENSRRR and aENSRRR denote the envelope-based
sparse reduced-rank regression estimator with group LASSO penalty and adaptive group LASSO penalty, respectively.

ACR

n=200, u = 10, s = 20, d = 5

p=30, r=20 p=50, r=30 p=100, r=50 p=50, r=100

SPLS 0.79 0.65 0.94 0.82
SRRR 0.67 0.60 0.20 0.40
aSRRR 1.00 0.99 0.96 0.98

ENSRRR 0.69 0.65 0.30 0.55
aENSRRR 1.00 0.99 0.97 0.99
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Table 3: Prediction comparisons of these methods based on PMSE using 100 simulation runs with p and r being greater than
n. PMSE denotes prediction mean squared error. SPLS denotes the sparse partial least-squares estimator, SRRR and aSRRR
denote the sparse reduced-rank regression estimator with group LASSO penalty and adaptive group LASSO penalty, respectively;
ENSRRR and aENSRRR denote the envelope-based sparse reduced-rank regression estimator with group LASSO penalty and
adaptive group LASSO penalty, respectively.

PMSE

n = 60, p = 70, r = 70, d = 5 n = 100, p = 150, r = 150, d = 5

u = 10, s = 20 u = 20, s = 40 u = 10, s = 20 u = 20, s = 40

SPLS 3.324 5.435 2.472 3.090
SRRR 2.687 4.915 2.525 3.173
aSRRR 2.658 4.055 2.506 3.044

ENSRRR 2.524 4.764 2.392 2.950
aENSRRR 2.446 3.882 2.381 2.930

Table 4: Variable selection comparisons of these methods based on ACR based on 100 simulation runs with p and r being greater
than n. ACR denotes the average correct ratio between the number of correct selection and the total number of relevant variables.
SPLS denotes the sparse partial least-squares estimator, SRRR and aSRRR denote the sparse reduced-rank regression estimator
with group LASSO penalty and adaptive group LASSO penalty, respectively; ENSRRR and aENSRRR denote the envelope-based
sparse reduced-rank regression estimator with group LASSO penalty and adaptive group LASSO penalty, respectively.

ACR

n = 60, p = 70, r = 70 n = 100, p = 150, r = 150

u = 10, s = 20 u = 20, s = 40 u = 10, s = 20 u = 20, s = 40

SPLS 0.83 0.68 0.96 0.76
SRRR 0.77 0.76 0.93 0.68
aSRRR 0.97 0.97 0.97 0.86

ENSRRR 0.82 0.80 0.95 0.70
aENSRRR 0.98 0.98 0.97 0.88

We compared prediction accuracy of all the methods in terms of PMSE. We also compared the accuracy of variable
selection of these methods in terms of average correct ratio (ACR) between the number of correct selection and the
total number of relevant variables, which measures the ability of selecting relevant variables.

Scenario II. We generated data with p and r being greater than n, taking Ω = Iu and Ω0 = 10Ir−u. We assumed
that elements of the first s columns in η were independent uniform (0, 10) variables, and the remaining elements of
p − s colomns were all zeros. Then, β = Γη, Xi follows multivariate normal distribution with mean being 0 and
covariance matrix 0.1Ip, and (Γ, Γ0) was obtained by standardizing an r × r matrix of independent uniform (0, 1)
variables. The error covariance matrix was generated by Σ = ΓΩΓT + Γ0Ω0Γ

T
0 .

6.2. Simulation Results

When p and r are smaller than n, the results in Table 1 show that all methods outperform least-squares estimator in
terms of prediction mean squared error. But, the PMSEs of aENSRRR are the smallest compared to all other estimators
in all the cases considered. From the variable selection viewpoint, OLS, ENV and ENRRR have no variable selection
provision. Table 2 shows that aENSRRR and aSRRR achieve the best performance in terms of the average correct
ratio among all the methods considered, and the two methods are more stable and accurate when parameters change.
Also, the technique with adaptive group LASSO can identify almost all correct zero groups.

When p and r are greater than n, since the OLS, ENV and ENRRR methods do not exist, we compare other
methods in terms of PMSE and ACR. Table 3 shows that the PMSEs of aENSRRR are still the smallest and are also
the most stable ones in all the cases considered when the parameters become larger. Similarly, Table 4 shows that the
performance of aENSRRR based on ACR is still the best among all the methods considered. These results demonstrate
the proposed method possesses good stability, good variable selection and prediction performance compared to some
existing methods.
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Table 5: Prediction comparisons of these methods based on PMSE using data split at random 100 times. PMSE denotes prediction
mean squared error. OLS, ENV and ENRRR denote the ordinary least-squares estimator, standard envelope estimator and envelope-
based reduced rank regression estimator, respectively. Further, SPLS denotes the sparse partial least-squares estimator, SRRR and
aSRRR denote the sparse reduced-rank regression estimator with group LASSO penalty and adaptive group LASSO penalty,
respectively; ENSRRR and aENSRRR denote the envelope-based sparse reduced-rank regression estimator with group LASSO
penalty and adaptive group LASSO penalty, respectively.

OLS ENV ENRRR SPLS SRRR aSRRR ENSRRR aENSRRR

PMSE 0.534 0.512 0.490 0.416 0.466 0.415 0.401 0.399

7. Real-life Examples

7.1. Example 1: Yeast cell cycle data
A yeast cell cycle data set was first used by Spellman et al. [23], which is available in the R package spls. The

response matrix Y consists of 542 cell-cycle-regulated genes. The cell cycle was measured by taking RNA levels
on genes at 18 time points using the α-factor arrest method. The 542×106 predictor matrix X contains the binding
information of the target genes for a total of 106 transition factors (TFs). This data set has been analyzed by some
other authors including Chun and Keleş [6], Chen and Huang [4], Kong et al. [15] and Zhu and Su [28] in the context
of reduced-rank regression. Our main goal here is to identify the TFs that contribute to the variation of the RNA
transcript levels in cell cycles. We utilize approximately 2/3 of the data as training set and the remaining as testing set,
and also repeat such splitting at random 100 times. In this case, we have n = 360, r = 18 and p = 106 in the training
dataset. We centered and scaled both the predictor matrix X and response matrix Y. By using fivefold cross-validation,
we selected the number of factors d = 4 for SRRR, aSRRR, ENSRRR and aENSRRR. Similarly, the dimension of the
envelope, u, was selected to be 6 by fivefold CV. For SPLS, we selected K = 8 as the number of hidden components.

To compare prediction accuracy of the methods, we use the training dataset to build models, and then use the
testing dataset to assess the models. Table 5 shows average prediction errors from 100 random splits. From Table
5, we can see that OLS performs poorly in this case, and the proposed aENSRRR method has the lowest prediction
error among all the methods considered. To compare the stability of selection of variables, we calculated numbers
of selected predictors in the 100 splits and medians for all the methods. As Table 6 shows, the numbers of selected
predictors of the aENSRRR method range from 48 to 81, and the fluctuation difference is 33, which is similar to those
of SPLS and aSRRR methods. The performance of SPLS, aSRRR, and aENSRRR methods are all similar, and better
than those of the other two methods in terms of stability of variable selection in this case.

Table 6: Variable selection comparisons of these methods based on MNSP and RNSP using data split at random 100 times. MNSP
and RNSP denote median and range of the numbers of selected predictors in the 100 splits, respectively. SPLS denotes the
sparse partial least-squares estimator, SRRR and aSRRR denote the sparse reduced-rank regression estimator with group LASSO
penalty and adaptive group LASSO penalty, respectively; ENSRRR and aENSRRR denote the envelope-based sparse reduced-rank
regression estimator with group LASSO penalty and adaptive group LASSO penalty, respectively.

SPLS SRRR aSRRR ENSRRR aENSRRR

MNSP 30 77 64 76 64
RNSP [19, 53] [45, 89] [46, 80] [47, 88] [48, 81]

7.2. Example 2: Breast cancer data
In this section, we consider a breast cancer dataset from Chin et al. [5], which consists of gene expression and

DNA copy number measurements with 89 samples. The dataset is available in the R package PMA. This dataset
has been earlier used by Witten et al. [25] and Chen et al. [3]. Peng et al. [19] showed that some types of cancer
have the characteristics of abnormal alterations of DNA copy number. Our goal here is to identify the relationship
between DNA copy numbers and the RNA expression levels. It is meaningful to regress gene expression profile on
copy number changes, because amplification or deletion of DNA part corresponding to a given gene may lead to
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corresponding increase or decrease of gene expression (Chen et al. [3]). In this case, we analyze chromosome 21 in
which we have r = 227, p = 44 and n = 89. We centered and scaled both X and Y. For comparison of prediction
accuracy and variable selection performance, the data were randomly split into a training set of size 70 and a test
set of size 19. As in Example 1, by using five-fold CV, we selected the parameters as d = 3, u = 4 and K = 1.
From Table 7, we observe that the proposed aENSRRR method still performs the best as compared to all others in
terms of prediction accuracy in this case. Moreover, as Table 8 reveals, SPLS and aENSRRR methods have similar
performance in terms of stability of variable selection, being better than all other methods in this case.

Table 7: Prediction comparisons of these methods based on PMSE using data split at random 100 times. PMSE denotes prediction
mean squared error. OLS, ENV and ENRRR denote the ordinary least-squares estimator, standard envelope estimator and envelope-
based reduced rank regression estimator, respectively. Further, SPLS denotes the sparse partial least-squares estimator, SRRR and
aSRRR denote the sparse reduced-rank regression estimator with group LASSO penalty and adaptive group LASSO penalty,
respectively; ENSRRR and aENSRRR denote the envelope-based sparse reduced-rank regression estimator with group LASSO
penalty and adaptive group LASSO penalty, respectively.

OLS ENV ENRRR SPLS SRRR aSRRR ENSRRR aENSRRR

PMSE 0.751 0.278 0.271 0.258 0.268 0.262 0.257 0.249

Table 8: Variable selection comparisons of these methods based on MNSP and RNSP using data split at random 100 times. MNSP
and RNSP denote median and range of the numbers of selected predictors in the 100 splits, respectively. SPLS denotes the
sparse partial least-squares estimator, SRRR and aSRRR denote the sparse reduced-rank regression estimator with group LASSO
penalty and adaptive group LASSO penalty, respectively; ENSRRR and aENSRRR denote the envelope-based sparse reduced-rank
regression estimator with group LASSO penalty and adaptive group LASSO penalty, respectively.

SPLS SRRR aSRRR ENSRRR aENSRRR

MNSP 28 26 6 27 8
RNSP [19, 32] [16, 37] [3, 23] [18, 36] [5, 17]

Appendix

Proof of Theorem 1: Let αn = n−
1
2 +an. It is then sufficient to show that, for any given υ, there exists a large constant

C such that

P
{

inf
∥W∥F=C

Q(F + αnW) ≥ Q(F)
}
≥ 1 − υ, (16)

where W is a r × p constant matrix. This implies, with probability at least 1 − υ, that there exists a local minimum in
the ball {F + αnW : ∥W∥F ≤ C}. Hence, there exists a local minimizer such that ∥F̂ − F∥F = Op(αn). Let

Dn(W) = Q(F + αnW) − Q(F). (17)

We then have

Dn(W) =
1
2n

tr((ÛT Γ̂T Y − (F + αnW)X)T (ÛT Γ̂T Y − (F + αnW)X))

−
1

2n
tr((ÛT Γ̂T Y − FX)T (ÛT Γ̂T Y − FX)) + λn

p∑
j=1

ω j(∥F j + αnW j∥2 − ∥F j∥2),

(18)
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where W j denotes the jth column of W. By simple calculation, we obtain

1
2n

tr((ÛT Γ̂T Y − (F + αnW)X)T (ÛT Γ̂T Y − (F + αnW)X)) −
1
2n

tr((ÛT Γ̂T Y − FX)T (ÛT Γ̂T Y − FX))

=
α2

n

2n
tr(XT WT WX) −

αn

n
tr(XT WT (ÛT Γ̂T Y − FX)). (19)

Under regularity condition (A1), we know that XXT /n = O(1), and so

α2
n

2n
tr(XT WT WX) = O(α2

nC2) = O(n−1/2αnC2). (20)

As we assume Γ̂ and Û to be
√

n-consistent estimators of Γ and U, respectively, and εXT /
√

n = Op(1), it follows that
(ÛT Γ̂T Y − FX)XT /n = Op(n−1/2), and so

αn

n
tr(XT WT (ÛT Γ̂T Y − FX)) = Op(n−1/2αnC). (21)

The first term dominates the second term on the RHS of (19) by choosing a sufficiently large C. Next, let D3 =

λn
∑p

j=1 ω j(∥F j + αnW j∥2 − ∥F j∥2). Now, upon using Cauchy-Schwarz inequality and regularity condition (A2), we
obtain

D3 = λn

p∑
j=1

ω j(∥F j + αnW j∥2 − ∥F j∥2) ≥ λn

∑
j∈A

ω j(∥F j + αnW j∥2 − ∥F j∥2)

≥ −λn

∑
j∈A

ω j(∥F j + αnW j − F j∥2) ≥ −λn

(
max
j∈A
ω j

)
αn
√

q∥W∥F

= −
√

nλn

(
max
j∈A
ω j

)
αn
√

n
√

q∥W∥F ≥ −Op(n−1/2αnC). (22)

It then follows that D3 is also dominated by α
2
n

2n tr(XT WT WX) for a sufficiently large C. Upon combining (18)–(22),
we get

Dn(W) ≥ O(n−1/2αnC2) − Op(n−1/2αnC) − Op(n−1/2αnC). (23)

Thus, by choosing a sufficiently large C, (16) holds true; that is, F̂ is a
√

n-consistent estimator of F. Moreover, Γ̂
and Û are

√
n-consistent estimators of Γ and U, respectively. As β̂=Γ̂ÛF̂, then β̂ is a

√
n-consistent estimator of β.

Next, we will establish that this β̂ has sparsity and asymptotic normality properties stated in (a) and (b). In fact, if
(a) is true, by the oracle property of adaptive LASSO penalty function, the asymptotic normality of β̂ can be directly
deduced from the asymptotic normality property of the reduced-rank envelope estimator (Cook et al. [9]). Therefore,
we only need to prove that β̂ has sparsity, the property in (a). In the following, we assume that ∥F̂ j∥2 , 0, for some
j ∈ Ac. Then, we have

1
√

n
(UT TT Y − F̂X)X jT =

√
nλnω j

F̂ j

∥F̂ j∥2
. (24)

Further,

∥
1
√

n
(UT TT Y − F̂X)X jT ∥2 =

√
nλnω j. (25)

The LHS of (25) is equal to Op(1), which implies that
√

nλnω j = Op(1), which is in contradiction with
√

nλnω j → ∞

in Lemma 1. Thus, P(∥F̂ j∥2 = 0) → 1, for all j ∈ Ac. It then follows that β̂Ac = 0. This completes the proof of the
theorem.
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Proof of Theorem 2: To simplify the proof, let us use the notations ĤA = F̂A − FA, K(1) = εXT
A√
n , K j(2) = εX jT

√
n ,

R j
12 =

XAX jT

n , j ∈ Ac, and S =
[
ω1

F̂1

∥F̂1∥2
, . . . , ωqn

F̂qn

∥F̂qn ∥2

]
.

By the definition of F̂A, it is sufficient to show that

P
(
∀ j ∈ Ac| ∥

1
n

(ÛT Γ̂T Y − F̂AXA)X jT ∥2 ≤ λnω j

)
→ 1,

which is equivalent to showing that

P
(
∃ j ∈ Ac| ∥

1
n

(ÛT Γ̂T Y − F̂AXA)X jT ∥2 > λnω j

)
→ 0. (26)

Because F = (FA, 0), ĤA = F̂A − FA, K j(2) = εX
jT
√

n , R j
12 =

XAX jT

n , j ∈ Ac, (26) can be re-expressed as

P
(
∃ j ∈ Ac| ∥

√
nĤAR j

12 − ÛT Γ̂T K j(2)∥2 >
√

nλnω j

)
→ 0. (27)

Note that, by the definition of F̂A, we have

−
1
n

(ÛT Γ̂T Y − F̂XA)X jT + λnω j
F̂ j

∥F̂ j∥2
= 0⇔

1
n

(F̂XA − FXA − ÛT Γ̂Tε)X jT + λnω j
F̂ j

∥F̂ j∥2
= 0, j ∈ A.

It then follows that
√

nĤAR11 − ÛT Γ̂T K(1) +
√

nλnS = 0. (28)

Using (28), ∥
√

nĤAR j
12 − ÛT Γ̂T K j(2)∥2 >

√
nλnω j, j ∈ Ac, is implied by

∥ÛT Γ̂T K(1)R−1
11 R j

12 − ÛT Γ̂T K j(2)∥2 ≤
√

nλn(ω j − ∥SR−1
11 R j

12∥2), j ∈ Ac.

Let ζ j = ÛT Γ̂T K(1)R−1
11 R j

12− ÛT Γ̂T K j(2). By the regularity conditions (B1) and (B2) and the fact that E(∥ε∥F)2k < ∞,
we obtain E(∥ζ j∥2)2k < ∞, j ∈ Ac. Moreover, for any t > 0 and j ∈ A, we have P(∥ζ j∥2 > t) = O(t−2k) by Markov
inequality. Consequently, we have

P(∃ j ∈ Ac| ∥
√

nĤAR j
12 − ÛT Γ̂T K j(2)∥2 >

√
nλnω j) ≤

∑
j∈Ac

P(∥
√

nĤAR j
12 − ÛT Γ̂T K j(2)∥2 >

√
nλnω j)

≤
∑
j∈Ac

P(∥ζ j∥2 >
√

nλnω j) ≤ (pn − qn)O(
1

(
√

nλnω)2k
) = O(

pn

(
√

nλnω)2k
)→ 0,

which completes the proof of the theorem.

Proof of Theorem 3: In Theorem 2, we have proved that the proposed estimator is equal to (F̂A, 0) with probability
tending to 1. Therefore, to establish consistency of the model selection, it suffices to show that P(min

j∈A
∥F̂ j∥2 > 0)→ 1.

Note that ∥F̂ j∥2 ≥ ∥F j∥2 − ∥F̂ j − F j∥2. According to the regularity condition (B4), we have min
j∈A
∥F j∥2 = O(n−(1−c2)/2).

As λn = o(n−(1−c2+c1)/2), it is sufficient to show that max
j∈A
∥F̂ j − F j∥2 ≤ op(n−(1−c2)/2), that is, ∥

√
nĤ j∥2 ≤ op(nc2/2).

From (28), we obtain

∥
√

nĤ j∥2 ≤ ∥ÛT Γ̂T ∥F∥εX jT /
√

n∥2 +
√

nλnω j ≤ rn∥εX jT /
√

n∥2 +
√

nλnω j, j ∈ A.

Upon combining the facts that rn = o(nc2/2), ∥εX jT /
√

n∥2 = o(1), ω j’s are bounded and
√

nλn = o(n(c2−c1)/2), we obtain
max
j∈A
∥
√

nĤ j∥2 = o(nc2/2)+o(n(c2−c1)/2) = op(nc2/2). Therefore, P(min
j∈A
∥F̂ j∥2 > 0)→ 1. Moveover, by using the fact that

∥β j∥2 = ∥ΓUF j∥2 = ∥F j∥2 for any j, we have min
j∈A
∥β̂ j∥2 = min

j∈A
∥F̂ j∥2. Thus, P(min

j∈A
∥β̂ j∥2 > 0) = P(min

j∈A
∥F̂ j∥2 > 0)→ 1,

which completes the proof of the theorem.
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