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ABSTRACT

We consider the operation of debt transfer in interbank networks.

In particular, assuming a financial system that is represented by a

network of banks and their bilateral debt contracts, we consider the

setting where a bank can transfer the right to claim a debt to one

of its lenders, under some assumptions. Perhaps surprisingly, such

an operation can benefit the banks involved, and potentially the

entire network as well, in terms of maximizing natural objectives

related to financial well-being, like total assets and equity.

We consider debt transfers in both a centralized and a distributed

(game-theoretic) setting. First, we examine the computational com-

plexity of computing debt transfer combinations that maximize

total payments or total equity, or satisfy other desirable proper-

ties. We then study debt transfer operations from a game-theoretic

standpoint. We formally define games that emerge when banks

can be strategic about choosing whether or not to transfer their

debt claims. We prove theoretical results on the existence and qual-

ity of pure Nash equilibria in debt transfer games, as well as the

computational complexity of relevant problems. We complement

our theoretical study with an empirical analysis involving different

heuristics about computing debt transfer combinations, as well as

game-playing dynamics of debt transfer operations on synthetic

data.
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1 INTRODUCTION

Loan assignments are means by which a lender can transfer its

interest in a loan to another lender. For example, if someone has

a right, e.g., to claim damages, against someone else, they can

transfer that right to a third party. In this paper, we consider loan

assignments that can be used to cancel out other debts and study

their potential to improve the well-being of financial systems.

A financial system is represented by a network, where nodes

correspond to banks, or other institutions that engage in financial

transactions. Bilateral financial obligations between banks can be

captured by directed labeled edges, where the label corresponds to

the amount of the actual debt/liability. The total assets of each bank

consist of a fixed amount of external assets (not affected by the

network) and potential incoming payments. Banks utilize their total

assets to cover their liabilities by making payments to their lenders.
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If a bank’s assets are not enough to cover its liabilities, that bank

will be in default and the value of its assets will be decreased (e.g.,

by liquidation); the extent of this decrease is captured by default

costs and essentially implies that the corresponding bank will have

only a part of its total assets available for making payments. For any

financial network, it is possible to compute clearing payments, i.e.,

payments that satisfy the following three principles of bankruptcy

law (see, e.g., [7]): i) absolute priority, i.e., banks with sufficient

assets pay their liabilities in full, ii) limited liability, i.e., banks

with insufficient assets to pay their liabilities are in default and

pay all of their assets to lenders, subject to default costs, and iii)

proportionality, i.e., in case of default, payments to lenders are made

in proportion to the respective liability.

We use the term debt transfer to refer to an operation where a

bank can choose to transfer the right it has to claim a debt to one

of its lenders, if that would alleviate its own debt to that lender. In

particular, if a bank B is owed a certain amount and at the same time

B owes the same amount to some other bank, then B can decide

to replace these two loans with a single loan from its borrower to

its lender. Loan assignments are governed by law and have been

considered extensively in the legal literature (see e.g., [1, 4]). To the

best of our knowledge, loan assignments have not been considered

in the scientific literature. Motivating examples can be encountered

commonly in the retail/supply chain market where purchasing with

credits is very common: if A buys something from B with credit and

then B buys something from C with credit, then these purchasing

activities can result in a single payment obligation from A to C

(assuming that both purchases have the same monetary value).

Another example is using vouchers to repay a debt: Consider for

example an Amazon voucher as a right to claim products of a certain

amount from Amazon. In other words, an Amazon voucher can be

thought of as a debt obligation from Amazon to some party B that

has purchased the voucher. Now if B has another debt towards some

third party C, they can repay that debt by offering the voucher, i.e.,

B transfers to their lender C, their right to claim from Amazon.

There are several cases where debt transfers can be beneficial to

the corresponding bank. This might seem counterintuitive, as a debt

transfer directly reduces a bank’s income and, at best, the bank will

just write off an equivalent debt. It is, however, true that transferring

one’s debt can improve the well-being of the entire network, which

may lead to fewer banks in default incurring associated costs. This

may lead to an increased cash flow through the network that will

benefit many banks, including the one that made the original debt

transfer. In this paper we aim to get a better understanding of

the potential of debt transfer operations towards improving the

well-being of a financial system.

Debt transfer operations can be meaningful from a regulator’s

perspective who can potentially enforce them in order to achieve

some objectives. In this context the goal would be to compute a

collection of debt transfers that achieve certain objectives related

to the financial well-being of the system. Natural metrics of the



system’s financial well-being include sum of total assets (equivalent

to sum of total payments also known as total liquidity) and total

equity, where the equity of a bank reveals the assets that it has

available after making payments, if any (and is equal to zero for

banks in default). Debt transfer operations can also be meaningful

from a game theoretic perspective as banks can be strategic about

transferring their debt claims. Our work considers both the cen-

tralized and distributed approach and performs a theoretical and

empirical analysis of related questions.

Roadmap and summary of results. We study debt transfer opera-

tions in financial networks, where banks can transfer their right

to claim debts to their lenders. We begin with some preliminary

definitions in Section 2. In Section 3 we consider the computational

complexity of selecting a collection of debt transfers that optimizes

certain objectives, e.g., maximizing total payments or equity. In Sec-

tion 4 we introduce debt transfer games that emerge when banks

can strategically transfer their debt claims. Our game-theoretic anal-

ysis considers two different definitions of utility motivated by the

financial literature, namely total assets, or equity, respectively. We

analyze each variant with respect to the existence, computational

complexity and quality of the Nash equilibria that arise. Specifically,

we show a network without pure Nash equilibria when banks wish

to maximize their total assets and default costs are applied, while

there always exists a Nash equilibrium in games where players

wish to maximize their equity and no default costs apply. In terms

of quality, we prove that Nash equilibria can have arbitrarily worse

social welfare than the optimal state, while they can have arbitrarily

better social welfare than the initial network. We also investigate

the computational aspects of equilibrium related problems at debt

transfer games. In Section 5 we complement our theoretical results

with an empirical analysis on synthetic networks. In particular, we

examine the performance of simple heuristics for finding a collec-

tion of debt transfers according to various performance measures,

and we also study the dynamics of game-playing and the quality of

associated equilibria.

Overall, our analysis provides evidence supporting the use of

debt transfers for improving the financial well-being of a system.

Related work. Eisenberg and Noe [7] introduced a seminal model

for financial systems with debt contracts and proportional pay-

ments. This base model was later extended by Rogers and Veraart

[23] to include default costs, and further additional features have

since been introduced, such as cross-ownership relations ([8, 27])

and credit default swaps ([16, 26]).

A large body of recent work considers game-theoretic aspects

in financial networks. Papp and Wattenhofer [20] consider the

incentives of banks to remove incoming edges, redefine the se-

niorities of liabilities, as well as to donate external assets, while in

[21] they consider the impact of debt swapping in mitigating risk.

Kanellopoulos et al. [14] study a game where banks can remove

incoming edges and also allow for bailout from a central authority.

Bertschinger et al. [3] and Kanellopoulos et al. [13] study strategic

behavior under payment schemes other than the proportional one.

In very recent work, Hoefer and Wilhelmi [10] consider clearing

games with different seniorities. Bertschinger et al. [2] study the

existence and structure of equilibria in a game modeling fire sales,

as well as the convergence of best-response dynamics. Additionally,

Schuldenzucker et al. [24] study the impact of portfolio compres-

sion in financial network and derive sufficient conditions leading

to a Pareto improvement for all banks.

Schuldenzucker et al. [25] consider the complexity of finding

clearing payments when credit default swaps are allowed. In a

similar spirit, Ioannidis et al. [11] examine the complexity of the

clearing problem in financial networks with derivatives and priori-

ties among creditors, while in [12] they study the clearing problem

from the point of view of irrationality and strength of approxima-

tion. Papp and Wattenhofer [22] study which banks are in default,

and how much of their liabilities these can pay.

Previous studies on simulating financial networks have assumed

that the amount of liabilities and the edge degrees in such networks

follow a power-law distribution, while the recovery rate and the

bank assets follow a bimodal distribution (as in [15]) or the normal

distribution (as in [28]). Leventides et al. [17] simulated contagion

dynamics in fully random networks based on the uniform distri-

bution, while in [18] a similar approach is followed in terms of

liabilities and external assets. Finally, Chen et al. develop a dynamic

model to study systemic risk [5].

2 PRELIMINARIES

Financial networks. A financial network 𝑁 = (𝑉 , 𝐸) comprises

a set 𝑉 = {𝑣1, . . . , 𝑣𝑛} of 𝑛 banks, where each bank 𝑣𝑖 initially has

some non-negative external assets 𝑒𝑖 ; these correspond to income

received from entities that are outside the financial system. Banks

have liabilities, that is, payment obligations due to debt contracts,

among themselves. In particular, bank 𝑣𝑖 (the borrower) has a lia-

bility of 𝑙𝑖 𝑗 to bank 𝑣 𝑗 (the lender), with 𝑙𝑖 𝑗 ≥ 0 and 𝑙𝑖𝑖 = 0; note

that 𝑙𝑖 𝑗 > 0 and 𝑙 𝑗𝑖 > 0 may both hold simultaneously. We denote

by 𝐿𝑖 =
∑

𝑗 𝑙𝑖 𝑗 the total liabilities of 𝑣𝑖 . Banks that are able to pay

their obligations in full are solvent, while those that cannot are in
default or, also, insolvent.

We use 𝑝𝑖 𝑗 to denote the actual payment from 𝑣𝑖 to 𝑣 𝑗 and note

that 𝑝𝑖 𝑗 need not equal the liability 𝑙𝑖 𝑗 ; we assume that 𝑝𝑖𝑖 = 0.

Let P = (𝑝𝑖 𝑗 ) with 𝑖, 𝑗 ∈ [𝑛]1 be the induced payment matrix and

𝑝𝑖 =
∑

𝑗∈[𝑛] 𝑝𝑖 𝑗 be the total outgoing payments of 𝑣𝑖 . A bank in

default may need to liquidate its external assets or make payments

to entities outside the financial system (e.g., to pay wages). This

is modeled using default costs 𝛼 ∈ [0, 1]. That is, a bank in default

may only use an 𝛼 fraction of its external assets and incoming

payments. By the absolute priority and limited liability regulatory

principles, discussed in the introduction, a solvent bank must fully

pay all its obligations to all its lenders, while a bank in default

must repay as much of its debt as possible, taking default costs also

into account, and each partial payment is proportional to its total

liabilities. Summarizing, it must hold that P = Φ(P), where

Φ(x)𝑖 𝑗 =
{

𝑙𝑖 𝑗 , if 𝐿𝑖 ≤ 𝑒𝑖 +
∑𝑛

𝑗=1 𝑥 𝑗𝑖

𝛼 ·
(
𝑒𝑖 +

∑𝑛
𝑗=1 𝑥 𝑗𝑖

)
· 𝑙𝑖 𝑗
𝐿𝑖
, otherwise.

Payments P that satisfy these constraints are clearing payments;
these need not be unique. Maximal clearing payments, i.e., ones

that point-wise maximize all corresponding payments, are known

to exist [7, 23] and can be computed in polynomial time.

1 [𝑛] stands for the set of integers {1, . . . , 𝑛}.



Given P, the total liquidity (or systemic liquidity) equals the sum
of payments, while for each bank 𝑣𝑖 , its total assets 𝑎𝑖 (P) are its
external assets and incoming payments, i.e., 𝑎𝑖 (P) = 𝑒𝑖 +

∑
𝑗∈[𝑛] 𝑝 𝑗𝑖 ,

and its equity 𝐸𝑖 (P) is defined as 𝐸𝑖 (P) = max{0, 𝑎𝑖 (P) −𝐿𝑖 }. When

P is clear from the context, we will simply use 𝑎𝑖 and 𝐸𝑖 instead.

Debt transfer. A debt transfer <𝑣 𝑗 , 𝑣𝑖 , 𝑣𝑘> is an operation, in-

volving three banks, 𝑣𝑖 (the broker), 𝑣 𝑗 (the borrower), and 𝑣𝑘 (the

lender) with 𝑙 𝑗𝑖 = 𝑙𝑖𝑘 , where liabilities from 𝑣 𝑗 to 𝑣𝑖 and from 𝑣𝑖 to

𝑣𝑘 are replaced by a single liability (of equal claim) from 𝑣 𝑗 to 𝑣𝑘 .

An example is presented in Figure 1. Let 𝛼 = 1, observe that

𝑙12 = 𝑙23 and consider the financial network arising when these

liabilities are replaced by a new one between 𝑣1 and 𝑣3. The clearing

payments in the initial network (before the debt transfer) are 𝑝12 =

1, 𝑝23 = 2, 𝑝24 = 1, 𝑝42 = 1 with total assets 𝑎1 = 1, 𝑎2 = 3, 𝑎3 = 2,

𝑎4 = 1 and equities 𝐸1 = 𝐸2 = 𝐸4 = 0, and 𝐸3 = 2. After the debt

transfer, we have 𝑝′
13

= 1, 𝑝′
24

= 4, 𝑝′
42

= 7/2 with 𝑎′
1
= 1, 𝑎′

2
= 9/2,

𝑎′
3
= 1, 𝑎′

4
= 4 and 𝐸′

1
= 0, 𝐸′

2
= 1/2, 𝐸′

3
= 1 and 𝐸′

4
= 1/2. We

conclude that 𝑣2 is better off after the debt transfer in terms of both

total assets and equity.
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Figure 1: The left subfigure shows the initial network, while

the right subfigure shows the network after the debt transfer

by 𝑣2. Nodes correspond to banks, edges are labeled with

the respective liabilities, while external assets appear in a

rectangle near the relevant bank.

Note that a debt transfer <𝑣 𝑗 , 𝑣𝑖 , 𝑣𝑘> either creates a new liability

between 𝑣𝑖 and 𝑣𝑘 or increases the existing liability. The latter might

lead to new possible debt transfers involving 𝑣 𝑗 , 𝑣𝑘 and another

bank, where 𝑣𝑘 would now be the broker.

Debt transfer games. Given a financial network 𝑁 , a bank can

select to transfer some debt claims to maximize its utility (either

total assets or equity). That is, bank 𝑣𝑖 can transfer a debt claim

from bank 𝑣 𝑗 to another bank 𝑣𝑘 provided that 𝑙 𝑗𝑖 = 𝑙𝑖𝑘 . Given 𝑣𝑖 ’s

possible debt transfers, its strategy 𝑠𝑖 consists in selecting which

debt claims to transfer and which to preserve.

Recall that clearing payments are not necessarily unique and it

is standard practice (see, e.g., [7, 23]) to focus on maximal clearing

payments to avoid this ambiguity. A strategy profile s is a Nash
equilibrium if no bank can increase its utility by deviating; again,

assuming that the maximal clearing payments will be realized every

time. We limit our study to pure Nash equilibria.

Given clearing payments P, the social welfare 𝑆𝑊 (P) is the sum
of the banks’ utilities; the particular utility notion (total assets or

equity) will be clear from the context. The optimal social welfare is

denoted by 𝑂𝑃𝑇 .

Let Peq be the set of clearing payments consistent with Nash

equilibrium strategy profiles. The price of anarchy (PoA) of a par-

ticular instance is defined as the worst-case ratio of the optimal

social welfare over the social welfare achieved at any equilibrium

at the instance, PoA = maxP∈Peq
𝑂𝑃𝑇
𝑆𝑊 (P) . In contrast, the price of

stability (PoS) of a given instance of a game measures how far the

highest social welfare that can be achieved at equilibrium is from

the optimal social welfare, i.e., PoS = minP∈Peq
𝑂𝑃𝑇
𝑆𝑊 (P) . We also

study the effect of anarchy (EoA) and the effect of stability (EoS)

that measure the discrepancy between the social welfare 𝑆𝑊𝑁 of

the original network (no debt transfers) and that of the worst (best,

respectively) Nash equilibrium; see also [14]. These are defined as

EoA = maxP∈Peq
𝑆𝑊𝑁

𝑆𝑊 (P) and EoS = minP∈Peq
𝑆𝑊𝑁

𝑆𝑊 (P) . The Price of
Anarchy of a game is the maximum PoA of any instance of the

given game; similar definitions apply to the Price of Stability, Effect

of Anarchy, and Effect of Stability of a game.

3 COMPUTING OPTIMAL DEBT TRANSFERS

In this section, we study how a financial authority (such as a reg-

ulator) can exploit debt transfers to affect financial networks. In

particular, we are interested in how a suitable collection of debt

transfers can lead to systemic solvency (i.e., all banks are solvent),

or to an increased total liquidity.

We begin with the objective of achieving systemic solvency.

Although a series of debt transfers could reduce significantly the

number of banks in default (see Figure 2), our first result states

that the financial authority cannot use debt transfers to transform

a financial network, with at least one bank in default, so that it

becomes systemic solvent.
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v3 v5
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1

2

1 · · ·
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Figure 2: The number of banks in default is reduced from

𝑛 − 2 to 1 after 𝑣2 transfers its debt claim.

Theorem 3.1. Afinancial network with at least one bank in default
cannot be made systemic solvent by debt transfers.

Wenow focus on increasing total liquidity, i.e., the total payments

that travel through the financial network, and prove that computing

an optimal collection of debt transfers is NP-hard, even when there

are effectively no default costs. Note that this implies hardness of

maximizing the sum of total assets as well, as the latter equals total

liquidity plus the (fixed) sum of external assets.

Theorem 3.2. In networks without default costs, i.e., 𝛼 = 1, it is
NP-hard to compute a collection of debt transfers that maximizes total
liquidity.

Proof. The proof relies on a reduction from the NP-complete

problem Restricted Exact Cover by 3-Sets (RXC3) [9], a variant of



Exact Cover by 3-Sets (X3C). In RXC3, we are given an element set

𝑋 , with |𝑋 | = 3𝑘 for an integer 𝑘 , and a collection 𝐶 of subsets of

𝑋 where each such subset contains exactly three elements. Further-

more, each element in 𝑋 appears in exactly three subsets in 𝐶 , that

is |𝐶 | = |𝑋 | = 3𝑘 . The question is if there exists a subset 𝐶′ ⊆ 𝐶 of

size 𝑘 that contains each element of 𝑋 exactly once.

Given an instance I of RXC3, we construct an instance I′
as

follows. We add bank 𝑡𝑖 for each element 𝑖 of 𝑋 , banks 𝑣𝑖 , 𝑣
′
𝑖
and

𝑣 ′′
𝑖
for each subset 𝑖 in 𝐶 , as well as another bank 𝑇 . Each bank 𝑣𝑖 ,

corresponding to set (𝑥,𝑦, 𝑧) ∈ 𝐶 , has external assets 𝑒𝑖 = 3 and

liability 1 to each of the three banks 𝑡𝑥 , 𝑡𝑦 , and 𝑡𝑧 corresponding to

the three elements 𝑥,𝑦, 𝑧 ∈ 𝑋 , as well as liability𝑀 to 𝑣 ′′
𝑖
, where𝑀

is an arbitrarily large number. Furthermore, each 𝑣 ′
𝑖
has an external

asset of 1 and liability of𝑀 to 𝑣𝑖 , while all 𝑡𝑖 ’s have liability 1 to 𝑇 ;

see also Figure 3. Note that this construction requires polynomial

time.
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Figure 3: The reduction used in the proof of Theorem 3.2. All

edges with missing labels correspond to liability 1.

We first argue that, when systemic liquidity is maximized, no

𝑡𝑖 , for 𝑖 ∈ {1, 2, . . . , 𝑘}, makes any debt transfers, as keeping its

own debt claim unchanged is weakly better in terms of systemic

liquidity. Next, we show that the maximal systemic liquidity of 20𝑘

can be achieved if and only if instance I is a ‘yes’-instance for

problem RXC3.

Let instance I be a ‘yes’-instance for RXC3 and let 𝐶′
be the

solution to I. We claim that I′
admits a solution with systemic

liquidity 20𝑘 . Indeed, it suffices to let all 𝑣𝑖 ’s with 𝑖 ∈ 𝐶′
make the

debt transfer from 𝑣 ′
𝑖
to 𝑣 ′′

𝑖
, while all other 𝑣𝑖 ’s keep their debt claims

unchanged. This choicemakes each edge (𝑡𝑖 ,𝑇 ) for 𝑖 = {1, 2, . . . , 3𝑘}
saturated with the following payments. We have

∑
𝑖∈𝐶′ 𝑝𝑣′

𝑖
,𝑣′′
𝑖
= 𝑘

due to the debt transfers, while each 𝑣𝑖 , with 𝑖 = (𝑥,𝑦, 𝑧) ∈ 𝐶′
,

has total outgoing payments of 3 to 𝑡𝑥 , 𝑡𝑦 and 𝑡𝑧 , which, taking

into account also the external assets in 𝑡𝑥 , 𝑡𝑦 and 𝑡𝑧 , lead to a total

payment of 6 to 𝑇 . Overall, the liquidity emanating from these 𝑘

𝑣𝑖 ’s with 𝑖 ∈ 𝐶′
is 9𝑘 . Finally, the payments to and from banks 𝑣𝑖

that do not transfer their debt claims are 10𝑘 , as each of the 2𝑘 such

banks receives a payment of 1 and pays 4 to its direct neighbors;

hence, the systemic liquidity is 20𝑘 .

It suffices to show that any collection of debt transfers that

generates liquidity of at least 20𝑘 can lead to a solution for instance

I. Let 𝜒 be the number of agents 𝑣𝑖 whose debt claim from 𝑣 ′
𝑖
is

transferred. We first show that if the liquidity is at least 20𝑘 , then

it must be 𝜒 = 𝑘 .

Note that the total liquidity starting from the 𝑣 ′
𝑖
’s to their neigh-

bors is 3𝑘 , while the total liquidity from all 𝑣𝑖 ’s to their direct

neighbors is 3𝜒 + 4(3𝑘 − 𝜒) = 12𝑘 − 𝜒 . When 𝜒 < 𝑘 , note that the

total payments from 𝑣𝑖 ’s to 𝑡𝑖 ’s equal 3𝜒 + 4 · 3

𝑀+3 (3𝑘 − 𝜒) < 3𝜒 + 1
as 𝑀 is arbitrarily large. Therefore, the total liquidity from 𝑡𝑖 ’s

to 𝑇 is at most 3𝜒 + 1 + 3𝑘 and the systemic liquidity is at most

3𝑘 + 12𝑘 − 𝜒 + 3𝜒 + 1 + 3𝑘 = 18𝑘 + 2𝜒 + 1 < 20𝑘 as 𝜒 < 𝑘 . Similarly,

when 𝜒 > 𝑘 , the systemic liquidity is at most 3𝑘 + 12𝑘 − 𝜒 + 6𝑘 =

21𝑘 − 𝜒 < 20𝑘 where 3𝑘 and 12𝑘 − 𝜒 are the exact liquidity from

𝑣 ′
𝑖
’s and 𝑣𝑖 ’s to their own outgoing neighbors respectively, while

the liquidity from 𝑡𝑖 ’s to 𝑇 is at most 6𝑘 .

It remains to argue about the case 𝜒 = 𝑘 . If these 𝑘 banks can

cover all 𝑡𝑖 ’s, then we obtain a solution to RXC3; a contradiction.

So, there exists at least one bank 𝑡𝑖 that receives payment from at

least two 𝑣𝑖 ’s and the total liquidity from the 𝑡𝑖 ’s to 𝑇 would be

at most 6𝑘 − 1. The total liquidity in that case would be at most

3𝑘 + 11𝑘 + 6𝑘 − 1 < 20𝑘 . The proof is complete. □

When focusing on the objective of maximizing the total equity,

we make use of the following lemma.

Lemma 3.3 ([13, 26]). In any financial network without default
costs, the total equity, after clearing, equals the sum of external assets,
that is,

∑
𝑖 𝐸𝑖 =

∑
𝑖 𝑒𝑖 .

As, according to Lemma 3.3, the sum of equities is always equal

to the sum of external assets when there are no default costs, it holds

that any collection of debt transfers maximizes the total equity.

Corollary 3.4. Given a financial network without default costs,
any collection of debt transfers maximizes total equity.

The situation changes drastically, however, when non-trivial

default costs apply.

Theorem 3.5. In financial networks with default costs 𝛼 ∈ (0, 1),
the following problems are NP-hard:

a) computing a collection of debt transfers maximizing the total
equity;

b) computing a collection of debt transfersminimizing the number
of banks in default;

c) computing a collection of debt transfers that guarantees that a
given bank is no longer in default and minimizes the amount
of debt claims transferred.



4 DEBT TRANSFER GAMES

In this section we consider the distributed, game-theoretic variant,

where each bank may decide to transfer some of its debt claims, if

applicable, in order to increase its utility. We first consider the case

where banks care about their total assets and then we consider the

equity; recall that, as the example in Figure 1 shows, a debt transfer

can indeed lead to increased utility.

4.1 Maximizing total assets

We consider the utility function of total assets and observe that,

when non-trivial default costs apply, there exist debt transfer games

that do not admit Nash equilibria.

Theorem 4.1. There exists a debt transfer game with default costs
𝛼 ∈ (0, 1) that does not admit Nash equilibria, when banks wish to
maximize their total assets.

We now investigate the quality of equilibria. Although, the social

welfare at an equilibrium could be arbitrarily lower than the optimal

one, we find that the quality could be much better than that in the

initial network in terms of social welfare.

Theorem 4.2. The Price of Stability in debt transfer games with
default costs 𝛼 ∈ [0, 1] where banks wish to maximize their total
assets is unbounded.

Theorem 4.3. The Effect of Anarchy in debt transfer games with
default costs 𝛼 ∈ [0, 1] where banks wish to maximize their total
assets is arbitrarily close to 0.

Proof. Consider the network 𝑁 represented in Figure 4 and

observe that 𝑣2 is the only bank that can transfer a debt claim. In the

M + 1

M + 1
M − 1

M

v1 v2

v3

v4 1

1

Figure 4: A debt transfer game with default costs 𝛼 ∈ [0, 1]
that yields Effect of Anarchy arbitrarily close to 0 when play-

ers wish to maximize their total assets.

clearing state of the original network, when 𝑣2 has not transferred

its debt claim, it is in default as the payment it receives from 𝑣1 is

𝛼 . In effect, 𝑣4 will also be in default so the payments will satisfy

𝑝12 = 𝛼 , 𝑝42 = 𝛼 (𝑝24 + 1), 𝑝23 = 𝛼 (𝑝12 + 𝑝42)𝑀+1
2𝑀

and 𝑝24 =

𝛼 (𝑝12 + 𝑝42)𝑀−1
2𝑀

. In particular, the payments are 𝑝12 = 𝛼 , 𝑝42 =

(𝑀−1)𝛼3+2𝑀𝛼

2𝑀−(𝑀−1)𝛼2
, 𝑝23 =

2(𝑀+1)𝛼2

2𝑀−(𝑀−1)𝛼2
and 𝑝24 =

2𝛼2 (𝑀−1)
2𝑀−(𝑀−1)𝛼2

. The

sum of total assets equals

𝑆𝑊𝑁 =
2𝑀𝛼 + (𝑀 − 1)𝛼3 + 4𝑀𝛼2

2𝑀 − (𝑀 − 1)𝛼2
+ 2 + 𝛼

≤ 7𝑀 − 1

𝑀 + 1

+ 3

< 10,

where the first inequality holds since the expression is an increasing

function of 𝛼 ∈ [0, 1].
If 𝑣2 transfers its debt claim, then we get clearing payments

𝑝13 = 𝛼 , 𝑝24 = 𝑀 − 1 and 𝑝42 = 𝑀 , yielding a sum of total assets

equal to 2𝑀 + 1 + 𝛼 . As this is the unique Nash equilibrium, we

obtain that the Effect of Anarchy is at most
10

2𝑀+1+𝛼 , i.e., it can
become arbitrarily close to 0 for sufficiently large𝑀 . □

We now consider further questions regarding the complexity of

computing equilibria and of deciding on their existence.

Theorem 4.4. In debt transfer games with default costs 𝛼 ∈ (0, 1),
where banks wish to maximize their total assets, the following prob-
lems are NP-hard:

a) computing a Nash equilibrium when one is guaranteed to exist;
b) computing the best response;
c) deciding if there exists a pure Nash equilibrium.

4.2 Maximizing equity

We now shift our focus on the utility function being the bank’s

equity; we begin by proving existence of Nash equilibria for the

setting without default costs.

Theorem 4.5. In debt transfer games without default costs, where
banks wish to maximize their equity, the strategy profile where all
banks transfer their debt claims is a Nash equilibrium.

Proof. Consider a debt transfer game on a financial network

𝑆 with banks 𝑣𝑞 for 𝑞 = 1, . . . , 𝑛. Let 𝑆∗ denote a state where all

eligible debt claims are transferred.
2
Assume for a contradiction

that some bank 𝑣𝑖 can increase its equity by deviating from 𝑆∗ to
a strategy where 𝑣𝑖 does not transfer the set of debts C, which
contains at least one of its debt claims that is transferred under 𝑆∗;
denote the resulting state by 𝑆∗−𝑖 .

Our proof uses two auxiliary networks, 𝐴∗
and 𝐴∗

−𝑖 , that are
constructed as follows; Figures 5 and 6 show how we can adapt

particular parts of 𝑆∗ and 𝑆∗−𝑖 , respectively to get 𝐴∗
and 𝐴∗

−𝑖 .

vj vi

vk

pjk

lji

vj vi

vk

u pjk

v

Figure 5: The figure shows how to construct auxiliary net-

work 𝐴∗
from 𝑆∗ by focusing on the relevant part.

2
Note that the set of identified eligible debt transfers at the original network 𝑆 might

not be identical to the set of debt transfers that are implemented in 𝑆∗ , as it is possible
that transferring a debt might make another one ineligible or might create a new

eligible one. This does not contradict the fact that 𝑆∗ is the network that will be

reached starting from 𝑆 , if the strategy of each bank is to transfer all eligible debts.
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lji
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U p′ik + p′ji

V
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Figure 6: The figure shows how to construct auxiliary net-

work 𝐴∗
−𝑖 from 𝑆∗−𝑖 by focusing on the relevant part.

𝐴∗
is constructed by 𝑆∗ as follows. For each debt <𝑣 𝑗 , 𝑣𝑖 , 𝑣𝑘> ∈ C

(i.e., that 𝑣𝑖 decides not to transfer), we remove edge (𝑣 𝑗 , 𝑣𝑘 ) and add
banks 𝑢 and 𝑣 with one edge from 𝑣 𝑗 to 𝑣 having liability 𝑙𝑣𝑗 𝑣 = 𝑙 𝑗𝑖
as well as one edge from 𝑢 to 𝑣𝑘 having liability 𝑙𝑢𝑣𝑘 = 𝑝 𝑗𝑘 , where

𝑝 𝑗𝑘 is the payment from 𝑣 𝑗 to 𝑣𝑘 in the clearing state of 𝑆∗. The new
banks have external assets 𝑒𝑢 = 𝑙𝑢𝑣𝑘 = 𝑝 𝑗𝑘 and 𝑒𝑣 = 0. Observe

that by construction, under the clearing state of 𝐴∗
, each bank 𝑣𝑞 ,

𝑞 = 1, . . . , 𝑛, will have the exact same equity as they did under 𝑆∗.
Our second auxiliary network 𝐴∗

−𝑖 is constructed by 𝑆∗−𝑖 if for
each debt claim <𝑣 𝑗 , 𝑣𝑖 , 𝑣𝑘> ∈ C we do the following. We remove

edges (𝑣 𝑗 , 𝑣𝑖 ) and (𝑣𝑖 , 𝑣𝑘 ) and add banks 𝑈 and 𝑉 with one edge

from 𝑣 𝑗 to𝑉 having liability 𝑙𝑣𝑗𝑉 = 𝑙 𝑗𝑖 , one edge from 𝑣𝑖 to𝑉 having

liability 𝑙𝑣𝑖𝑉 = 𝑙𝑖𝑘 , one edge from𝑈 to 𝑣𝑖 having liability 𝑙𝑈 𝑣𝑖 = 𝑝′
𝑗𝑖
,

as well as one edge from 𝑈 to 𝑣𝑘 having liability 𝑙𝑈 𝑣𝑘 = 𝑝′
𝑖𝑘
, where

𝑝′
𝑗𝑖
and 𝑝′

𝑖𝑘
are the corresponding payments in the clearing state of

𝑆∗−𝑖 . The new banks have external assets 𝑒𝑈 = 𝑙𝑈 𝑣𝑖 +𝑙𝑈 𝑣𝑘 = 𝑝′
𝑗𝑖
+𝑝′

𝑖𝑘

and 𝑒𝑉 = 0. Since, by assumption, bank 𝑣𝑖 ’s deviation from 𝑆∗ to
𝑆∗−𝑖 is profitable, it holds that 𝐸𝑖 (𝑆

∗
−𝑖 ) > 𝐸𝑖 (𝑆∗) ≥ 0, hence 𝑣𝑖 fully

repays its obligations at the clearing state of 𝑆∗−𝑖 and 𝑝′
𝑖𝑘

= 𝑙𝑖𝑘
for each 𝑣𝑘 appearing in C. Similarly to before, we observe that

by construction, under the clearing state of 𝐴∗
−𝑖 , each bank 𝑣𝑞 ,

𝑞 = 1, . . . , 𝑛, will have the exact same equity as they did under 𝑆∗−𝑖 .
By Lemma 3.3, and since no default costs apply, we know that the

total equity under the clearing state of both networks 𝑆∗ and 𝑆∗−𝑖
equals the sum of the corresponding external assets, hence it is the

same. By construction of the two auxiliary networks we conclude

that the sum of equities of all banks 𝑣𝑞 , 𝑞 = 1, . . . , 𝑛, in 𝐴∗
and in

𝐴∗
−𝑖 is also the same, i.e.,∑︁

𝑞

𝐸𝑞 (𝐴∗
−𝑖 ) =

∑︁
𝑞

𝐸𝑞 (𝐴∗) =
∑︁
𝑞

𝑒𝑞 . (1)

By assumption of the profitable deviation of 𝑣𝑖 from 𝑆∗ to 𝑆∗−𝑖 ,
i.e., 𝐸𝑖 (𝑆∗−𝑖 ) > 𝐸𝑖 (𝑆∗), and the equivalence between the equities

of respective banks between 𝑆∗ and 𝐴∗
as well as 𝑆∗−𝑖 and 𝐴∗

−𝑖
we have that 𝐸𝑖 (𝐴∗

−𝑖 ) > 𝐸𝑖 (𝐴∗) ≥ 0. This implies that 𝑣𝑖 has

positive equity and, thus, is solvent and can repay all its liabilities

(𝑝′
𝑖𝑘

= 𝑙𝑖𝑘 ≥ 𝑝 𝑗𝑘 ). So, the incoming payments in𝐴∗
−𝑖 of each 𝑣𝑘 that

appears in C are at least equal to the ones in𝐴∗
. By considering the

propagation of the assets of 𝑣𝑖 and the assets of each 𝑣 𝑗 that appears

in C, to the otherwise equivalent networks 𝐴∗
−𝑖 and 𝐴∗

, we can

conclude that 𝐸𝑞 (𝐴∗
−𝑖 ) ≥ 𝐸𝑞 (𝐴∗) for each 𝑞 = 1, . . . , 𝑛 (recall that

the inequality is strict for 𝑞 = 𝑖). This implies that

∑
𝑞 𝐸𝑞 (𝐴∗

−𝑖 ) >∑
𝑞 𝐸𝑞 (𝐴∗); a contradiction to Equality (1). We conclude that no

bank can increase its equity by deviating from 𝑆∗, so the strategy

profile where all banks transfer their debt claims is a pure Nash

equilibrium as desired. □

Recall that, by Lemma 3.4, when 𝛼 = 1 the sum of equities is

independent of the bank strategies and, hence, the Price of Anarchy

and Stability, as well as the Effect of Anarchy and Stability, is 1.

When 𝛼 < 1, however, we obtain results on the quality of equilibria

that are similar to those when maximizing total assets.

Theorem 4.6. The Price of Stability in debt transfer games with
default costs 𝛼 ∈ [0, 1) where banks wish to maximize their equity is
unbounded.

Theorem 4.7. The Effect of Anarchy in debt transfer games with
default costs 𝛼 ∈ [0, 1) where banks wish to maximize their equity is
arbitrarily close to 0.

5 EMPIRICAL ANALYSIS

We now present our empirical analysis of debt transfers on syn-

thetic networks. Due to lack of space some parts have been omitted

from the main text; the complete analysis is presented in the sup-

plementary material.

5.1 Empirical analysis of the centralized case

We examine the performance of different algorithms for computing

debt transfer combinations on synthetic networks. Recall that, in

Section 3 we saw that it is NP-hard to compute collections of debt

transfers that maximize the sum of total assets (or, equivalently,

the total liquidity, Theorem 3.2) even in the case without default

costs, while for the case with default costs it is NP-hard to compute

collections of debt transfers that maximize the total equity or that

minimize the number of banks in default (Theorem 3.5). We here

check how a rather straightforward approach performs on a set of

randomly generated networks, in terms of all the aforementioned

objectives and for different values of default costs.

5.1.1 Experimental setup for the centralized case.

Network generation. As is common in the literature (see, e.g.,

[17]), and for simplicity reasons, we have chosen to work with the

uniform distribution in various ranges. We construct 1000 networks

of 𝑁 = 25 nodes each, corresponding to banks. We consider each

of these networks for each of the following default costs values:

𝛼 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. For each bank, we

select its number of outgoing edges (that correspond to liabilities)

from a uniform distribution in [0, 24] and create outgoing edges to

that many randomly picked other banks. To capture heterogeneity

among debts and, in particular, the existence of small, medium and

large loans in a financial network, we follow the approach in [17]

and randomly pick among ranges [0, 10], [0, 20], and [0, 35] for each
liability; we then select a number from the corresponding range as

the amount of the corresponding liability. Regarding the external

assets each bank holds, we pick a number 𝑠 uniformly at random

from the range [0, 25] and set the externals of 𝑠 (randomly picked)

banks to zero. The amount of external assets of each remaining bank

in the network is drawn from a uniform distribution in the range



𝑈 (0, 100). This approach simulates an external shock to 𝑠 banks

after the creation of the network, as is common in the literature (see,

e.g., [17]); it helps us keep realistic aspects like random external

assets at financially weak networks.

Our algorithms. We consider the following algorithms/heuristics.

We note that the distinction between the two classes of algorithms

below is that the latter only allows initially insolvent banks (banks

in default) to perform debt transfers.

Random Banks (RB𝑥 ): Identify all banks with eligible debt

transfers. Randomly pick a fraction of 𝑥% of them and execute their

debt transfers in an arbitrary order. If a debt transfer is no longer

eligible after the execution of previous ones, we skip it. This is

defined for 𝑥 ∈ {25, 50, 75, 100}.
Random Insolvent Banks (RIB𝑥 ): Identify all insolvent

banks with eligible debt transfers. Randomly pick a fraction of

𝑥% of them and execute their debt transfers in an arbitrary order. If

a debt transfer is no longer eligible after the execution of previous

ones, we skip it. This is defined for 𝑥 ∈ {25, 50, 75, 100}.
All Insolvent Banks (AIB): Run RIB100 repeatedly until no

eligible debt transfer among insolvent banks exists. Keep the order

in which the banks are considered consistent across rounds.

Evaluation metrics. We evaluate the performance of the above

algorithms according to four different criteria, namely total liquidity,

total equity, number of insolvent banks, and total recovery rate.

The ratios R𝑇𝐿 , R𝑇𝐸 , R𝐼𝐵 , and R𝑅𝑅 compare the corresponding

values at the original network 𝑁 , and the network 𝑁 ′
that emerges

after the execution of the algorithm. Formal definitions appear at

the supplementary material.

5.1.2 Results. In our results, we display the trimmed mean of cor-

responding datasets, that is, we calculate the mean of the data after

discarding outliers. This widely-used approach (e.g., see [6, 19])

allows us to measure the average level of data with eliminating

the influence of outliers. Regarding our definition of outliers, we

follow the standard approach (e.g., Boxplot) where we calculate the

interquartile range (𝐼𝑄𝑅) between the first (𝑄1) and third (𝑄3) quar-

tile, and all data outside of the range [𝑄1 − 1.5 · 𝐼𝑄𝑅,𝑄3 + 1.5 · 𝐼𝑄𝑅]
are considered as outliers.

Figure 7 displays our results on total liquidity, total equity, num-

ber of insolvent banks and total recovery rate for each of the algo-

rithms RB𝑥 and RIB𝑥 , for 𝑥 ∈ {25, 50, 75, 100}, and for each value

of default costs 𝛼 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
Recall that our metrics are expressed as ratios, so values below 1

represent an improvement compared to the original network, and

the lower the value, the bigger the improvement.

A detailed discussion on our findings appears at the supplemen-

tary material. Overall, our findings imply that debt transfers can

effectively improve the well-being of a financial system regarding

total liquidity, total equity, number of insolvent banks and total

recovery rate, for a wide range of 𝛼 values; total liquidity improves

for 𝛼 ≤ 0.6 but each other metric improves for almost all values of 𝛼 .

By comparing the various algorithms, it seems that RIB100, which

performs all eligible debt transfers of insolvent banks, outperforms

the others. Moreover, with the exception of the number of banks in

default, the other plots seem to demonstrate an upward trend as

𝛼 increases which implies that debt transfers have a better effect
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Figure 7: Performance comparison between RB𝑥 and RIB𝑥 ,

for 𝑥 ∈ {25, 50, 75, 100}.

in systems with high costs of default (𝛼 is low), where there is less

money flow through the network.

We now consider AIB, a repeated variant of RIB100 whichwas the

best performing algorithm among RB𝑥 and RIB𝑥 for𝑥 ∈ {25, 50, 75, 100}.
In the supplementary material we compares the (one-round) RIB100

with AIB in terms of total liquidity, total equity, number of insolvent

banks and total recovery rate for each value of default costs. Overall,

AIB shows a better performance which supports even further the

assumption that debt transfers of insolvent banks can improve the

well-being of a financial system in several aspects.

5.2 Empirical analysis of debt transfer games

In this section, we examine debt transfer games in practice. We are

interested in observing how fast an initial network 𝑁 will converge

to a “stable” network, i.e., one with no more eligible debt transfers,

if banks are allowed to transfer their debt claims strategically. We

examine whether such observed outcomes demonstrate improved

properties compared to𝑁 with respect to total liquidity, total equity,

number of insolvent banks and total recovery rate, and also compare

them to the best outcomes that emerge in our experiment.

5.2.1 Experimental setup for debt transfer games.

Network generation. Our choice of parameters regarding gen-

erating a set of random networks is shown in Table 1; see the

supplementary material for a more detailed discussion.

Game details. We consider the game that emerges when the

banks in the aforementioned network structures behave strategi-

cally about transferring their debt claims. Each bank/player selects

between two strategies: transfer all eligible debt claims or do not

perform any debt transfers at all. We consider two game variations

with respect to how the utility of the players is calculated, namely

the individual utility is equal to the equity or the total assets of the



Table 1: Debt transfer Game Setup

Parameters

Number of Banks 10

Outgoing Edge Degree 𝑈 (0, 9)
External Assets 𝑈 (0, 40)

Liabilities 𝑈 (0, 𝑥), 𝑥 ∈ {10, 20, 35}
Number of Banks with no External Assets 𝑈 (0, 10)

corresponding bank. In each case, we consider the game played in

rounds. In Round 1, we consider the initial network 𝑁 and iden-

tify banks that have eligible debt transfers. Using the game_theory
module in QuantEcon.py3, we determine all “stable” outcomes and

corresponding networks, where the banks that have been identified

in this round are at equilibrium, and randomly pick one of them,

call that 𝑁1. If a bank 𝑣𝑖 transfers their debt claim from 𝑣 𝑗 to 𝑣𝑘 in

𝑁1 and and edge (𝑣 𝑗 , 𝑣𝑘 ) already existed in 𝑁 , then its liability is

increased by 𝑙 𝑗𝑖 as a result of the debt transfer; note that this might

create additional eligible debt transfers. Each following round 𝑖 ≥ 2

repeats round 𝑖 − 1 while considering 𝑁𝑖−1 in place of the initial

network. The process stops when the network under consideration

at a given round has no additional eligible debt transfers.

Evaluation metrics. We evaluate the performance of the out-

comes of the game defined above according to four criteria, namely

total liquidity, total equity, number of insolvent banks, and total re-

covery rate. In the supplementary material we also discuss metrics

relevant to the quality of Round 1 “stable” outcomes.

5.2.2 Results. Similarly to the centralized case, in our results, the

trimmed mean of corresponding datasets is displayed, where we cal-

culate the mean of the data after discarding outliers; see beginning

of Section 5.1.2 for justification and exact definition of outliers.

We run experiments on debt transfer games when banks wish to

maximize their total assets and we observed that for a big majority

of them (i.e., 7051 out of 11000), the initial network 𝑁 is identified

as the unique “stable” outcome of Round 1. This means that these

games do have eligible debt transfers in their initial network, but

banks strategically chose not to execute them. This is not surprising

as doing a debt transfer implies giving up an incoming debt which

directly reduces a bank’s total assets. Compensating for that loss in

utility through the network would be uncommon, so in most cases

a bank would prefer to not transfer its debt claims.

In what follows, we turn our attention to debt transfer games

where each bankwants to maximize its equity and the social welfare

is defined as the total equity of all banks. Intuitively, banks are more

likely to improve their equity by transferring their debt claims,

because the loss of the actual incoming payment they are foregoing

is always no more than the nominal liability they will avoid.

Our analysis, in the supplementary material, demonstrates that,

although the “stable” outcome of the game in the final round is

not always strictly better than the initial network, it holds that

approximately 75% of all networks are at least as good as the initial

network in terms of total equity.

3
https://github.com/QuantEcon/QuantEcon.py

Figure 8 compares the change identified in the total liquidity, the

total equity, the number of insolvent banks, and the total recovery

rate, between the initial network and the final “stable” outcome

of the game; a detailed discussion appears at the supplementary

material.
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Figure 8: Effect of strategic debt transfers when banks want

to maximize their equity.

Recalling the fact that the debt transfer game, for a big majority

of the networks considered, terminated at Round 1 implies that

results on the quality of “stable” outcomes of Round 1 can offer

some intuition with respect to the quality of all “stable” outcomes.

Relevant results are discussed in the supplementary material.

Overall, our results support the assumption that debt transfers

can be a beneficial operation to both individual banks as well as

the entire network.

6 CONCLUSION

We considered the impact of debt transfers on financial networks.

Our results indicate that it is computationally hard to identify the

optimal collection of debt transfers to maximize systemic liquidity,

or to achieve similar objectives related to the well-being of financial

networks. Furthermore, we studied the strategic games arising

from such operations and focused on the existence, computation,

and quality of Nash equilibria. Our theoretical investigations were

complemented with experimental study on synthetic networks,

both for the centralized and the distributed setting.

Our work leaves some interesting open questions for further

study. Regarding Nash equilibria, do they always exist in debt trans-

fer games where banks wish to maximize their total assets and

𝛼 ∈ {0, 1}? Similarly, when banks wish to maximize their equity, do

equilibria always exist when 𝛼 ∈ [0, 1)? Focusing on approximation

algorithms is another interesting direction.
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