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Abstract—The paper studies the freshness of information with
the aid of age of information (AoI) in the Industrial Internet of
Things (IIoT) which plays a vital role to ensure quality and timely
delivery of data services. To reduce the AoI, we leverage mobile
edge computing (MEC) to partially offload information to the
mobile edge server. Aiming to cope with the packet error in the
setting of short packet communication (SPC) in IIoT, we consider
the standard automatic repeat request (ARQ) protocol with two
policies, i.e., either retransmitting an out-of-date packet (RO) or
transmitting a freshest packet (TF), when a packet error occurs.
We derive the closed-form of average AoI under these two policies
respectively, and then formulate the average AoI minimization
problem by jointly optimizing the short packet blocklength and
MEC offloading ratio. Due to the nonconvexity nature of the
problem, we tackle it by employing block coordinate descent
(BCD) and successive convex approximation (SCA) methods and
then prove their convergence. Our extensive numerical results
show that the optimal average AoI yielded by our proposed
approach is almost identical to that from the high-complexity
exhaustive search method, and has significant improvement over
the benchmark methods. From the AoI perspective, it is revealed
that the optimal strategy tends to offload all information to mobile
edge server when the computing capacity of local device is less
than a threshold. Furthermore, it is found that the RO policy
is suitable for the relatively small bandwidth and large local
computing capability scenario, whilst the TF policy is better for
the large bandwidth and small local computing capability case.

Index Terms—Age of Information, Mobile Edge Computing,
Short Packet Communication, Block Coordinate Descent, Suc-
cessive Convex Approximation.

I. INTRODUCTION

In recent years, the Industrial Internet of Things (IIoT)

rapidly emerges as an instrumental component for the “Indus-

trial 4.0”. In IIoT, massive number of communication devices

(e.g., machines, tablets, and sensors) are densely deployed

over certain area for continuous environmental monitoring,

surveillance, and data exchanges/analysis [2], [3]. Based on

the real-time urgency levels of the collected data from various
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scenarios, different actions may take place. For example,

super-rapid intervention is needed in a disastrous event (such

as fire, earthquake, and flood), thus requiring ultra-reliable and

low-latency communication (one of the major use cases in 5G-

and-beyond networks).

Numerous research attempts have been made on IIoT. For

instance, whilst [4] considers energy-effective resource alloca-

tion policy in a wireless power transfer system, [5] introduces

the related security and privacy challenges as well as potential

solutions in IIoT systems. However, besides the aspects above,

one of the utmost requirements in IIOT is the data freshness.

For instance, fresh temperature and humidity updates from

sensors can help better predict and prevent industrial accidents

in contrast to those obsolete updates which should be avoided

in mission critical communications. Also, fresh knowledge

of robots (e.g., moving direction, speed, and balance status)

can better assist central monitoring system for necessary

decisions/actions in a timely and accurate manner. Actually,

in IIoT, fresh status data or information are widely required

to ensure the accuracy of detection, prediction and decision

making. In order to characterize the status updating and its

impact to the system performance, a new metric, called age-

of-information (AoI), has been proposed. Specifically, AoI,

concerning the timeliness/freshness of certain data, is defined

as the time elapsed since the latest correct delivery of the

status update (that arrived at its intended destination) has been

generated at its source [6].

Unlike the traditional quality of services (QoS) metrics such

as communication latency, which represents the time that an

information packet travels from the source to the destination,

AoI reflects the freshness of the delivered status information

from the destination’s perspective. An AoI of certain status

update at the destination can be divided into two parts:

• The first part is the time interval between when the

source generates the information and when the destination

correctly extracts the information from this packet. This

part may be regarded as the communication delay of up-

of-date successfully delivered packet, and hence AoI can

be decreased by reducing the communication delay.

• The second part refers to the time interval from when

the destination extracts the message to the current time

before a new update information is received. The second

part changes over time and AoI can be possibly cut down

to the value of communication delay of a new update (at

the time when it is correctly received by the destination).

Thus, AoI can be reduced by reasonably speeding up the

updating frequency.
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Since AoI is a more comprehensive concept than traditional

QoS metrics, the existing techniques for minimizing commu-

nication delay or maximizing throughput may not be directly

applied. Against this background, this paper aims to minimize

the AoI with the aid of mobile edge computing (MEC).

A. Related Works

In [6], the authors derived the general expression of AoI

with the information packets forwarded based on first-come-

first-served (FCFS) principle, and obtained the optimal uti-

lization factors of M/M/1, M/D/1, D/M/1 queuing models,

respectively. Since the status update carries the Markov state

of the source, the transmission of the youngest state packet

can eliminate the need for transmission of the older packets in

the queue. Therefore, the lossy last-come-first-served (LCFS)

queuing discipline is reasonable for decreasing the age at the

destination [7], [8]. The above papers concentrate on the model

that the update packets are stochastically generated at the

source. Another model is called generate-at-will model [9],

[10], in which the status updates of certain process of interest

can be sampled and generated at any time by the source node.

Such a model is adopted in our work.

Moreover, there have been studies aiming for reducing AoI

from its aforementioned two parts respectively. [6], [10] and

[11] adopt the so-called zero-wait policy, also known as work-

conserving policy in queuing theory, i.e., the source submits

a fresh update once the transmitter or destination is free. In

[12], the authors have shown that the zero-wait policy can

achieve the minimum average delay and pointed out there exist

better policies (e.g., waiting a moment) towards minimum AoI.

Besides, non-orthogonal multiple access is also a promising

technology to reduce the system AoI when multiple sources

communicate over certain resource nodes [13]. In [14], the

problem of reducing AoI has been studied with bandwidth

and power constraints in multi-state time-varying channels. A

comprehensive survey on AoI can be found in [15].

The above references only take into account the influence of

queueing and data transmission delay with no consideration of

the effect of data processing on AoI. In IIoT, the status data,

which are generated via continuous environmental monitoring

or detecting, may be large-sized and computation-intensive [3].

As a result, it could take a relatively long time to process the

data due to the limited computational capacity of a local pro-

cessor. In recent years, MEC has attracted tremendous research

attention owing to its potential for significantly reducing the

long processing time by offloading the data to a mobile edge

server with adequate computational capacity. Motivated by

this, in this work, we leverage the MEC technique and adopt

the partial offloading model whose applications are composed

of multiple fine-grained processes/components, such as aug-

mented reality and fault detection. [11], [16] and [17] studied

the AoI minimization problem in MEC or fog computing

assisted network.

Considering that wireless channel may be unreliable and

packet transmission may suffer from failure, standard auto-

matic repeat request (ARQ) and hybrid ARQ are considered to

minimize AoI [10], [18]. Furthermore, it is noted that sporadic

short packet communication (SPC) is the dominant traffic in

IIoT [19], in which finite blocklength codes are adopted due to

the stringent latency requirement and normally a small amount

of information (e.g., environment data) to be transmitted in

IIoT [20]–[23]. In SPC, the communication capacity is also

dependent on the blocklength of short packet [24]. The effect

of packet blocklength on AoI has been investigated in [18] by

leveraging the results of [24].

B. Our Contributions

In this work, we minimize the AoI by advocating the use

of MEC to lower the data processing time. In particular,

under SPC, we consider the standard ARQ protocol with two

policies, i.e., either retransmitting an out-of-date packet (RO)

or transmitting a freshest packet (TF), once a decoding failure

occurs.1 The main contributions of this paper are summarized

as follows:

• We reduce the average AoI by partially offloading the

data to mobile edge server and derive a closed-form

average AoI as a function of the packet blocklength and

the ratio of the local processing data, respectively.

• Due to the non-convexity of the average AoI, we take

advantage of the block coordinate descent (BCD) and

successive convex approximation (SCA) methods to ob-

tain the optimal blocklength and offloading ratio. Besides,

the convergence of the proposed approach is also proved.

• Numerical results show that our algorithm leads to rapid

convergence rate, while the resultant optimal average

AoI is almost identical as that by the exhaustive search

method. An intriguing finding is that, regardless of the

RO or TF policy, the optimal strategy inclines to offload

all information bits to mobile edge server when the

computing capacity/frequency of local device is less than

certain threshold. Moreover, by comparing the average

AoIs under these two policies and unlike the existing

research results, we show that transmitting a freshest

packet is not always better than retransmitting an older

packet. In addition, whilst we observe that the RO policy

is suitable for the relatively small bandwidth and large

local computing capability scenario, whilst the TF policy

is preferred in the case of large bandwidth and small local

computing capability.

The rest of this paper is organized as follows. The system

model and problem formulation are introduced in section II. In

section III and IV, we analyse and solve the optimal average

AoI under ARQ protocol and traditional protocol, respectively.

In section V, we design an algorithm and prove its conver-

gence. In section VI, the analysis of AoI and performance

of algorithm are validated, and the RO policy and TF policy

are compared through numerical results. Finally, section VII

draws the conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a status monitoring and control network as

depicted in Fig. 1, where a sensor samples and generates

1Our previous work [1] is based on TF policy only. In this work, we analyze
both RO and TF policies respectively and provide more insights with different
system configurations.
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Fig. 1. System model

status update information first, then send it to the receiver by

transmitter via wireless channel. Before each transmission, a

portion of information is processed at the local device. Subse-

quently, the produced result (from local processing), together

with the remaining part of the information are encoded into

short packets and then forwarded to mobile edge server for

further processing. Besides, the size of the produced result at

the local device is neglected since it is normally very small.

In this system, if the destination (i.e., mobile edge server)

fails to decode a packet, it will send out an NACK feedback

to the source. Otherwise, an ACK feedback will be sent back.

Regardless of whether RO policy or TF policy, once the source

receives an ACK feedback, it would generate and forward

a freshest status update. However, if the source receives an

NACK feedback, in RO policy, it would retransmit the failed

outdated packet. On the other hand, in TF policy, it would

generate and forward a new status update instead. Moreover,

to simplify our model, zero-wait policy is chosen, i.e., the

source submits a/an fresh/old update once the destination is

free.

Remark 1: In this work, we consider the zero-wait model

where the source generates a new status packet only when the

system is free. Therefore, there is no queueing delay during

the transmission of status update. On the other hand, if there

are multiple status packets in the network at the same time,

they would queue and wait to be processed by local processor

(and then forwarded to destination). Many existing works on

AoI in queue-theoretic systems can be found in [6], [8] and

[25].

A. AoI Model

The evolution of AoI under RO policy is illustrated in Fig.

2(a). Without loss of generality, we assume that the system

starts at t = 0 and the age is ∆(0) = ∆0. The AoI increases

over time and drops down sharply once the destination receives

the freshest status update. Since packet error exists in SPC, the

system may utilize up to ni transmission attempts for the i-th
update, meaning that the first ni − 1 transmitted packets are

failed to be decoded until the ni-th packet.

Let gi denote the generation time of the i-th update. At

time ci,L, a part of information bits has been computed by the

local device and the output is forwarded to wireless channel.

A copy of the output is also stored in the local device until

mobile edge server decodes update packet correctly. At time

d
(j)
i , the destination receives and checks the packet for the j-th

time, j ∈ {1, 2, ..., ni}. If the packet is corrupted, the source

will retransmit the (locally processed) old packet such as d
(1)
i+1
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∆0
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1
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Fig. 2. The evolution of AoI. (a) RO policy. (b) TF policy.

in Fig. 2(a). At time ci,M , the mobile edge server extracts the

information of the i-th update correctly and finishes the i-th
update, at the same time the sensor generates a new sample

for the (i + 1)-th update.

To characterize the process of update, we divide the time

interval Ti for the i-th update into three type of time-slots. The

local computing time-slot and mobile edge computing time-

slot for the i-th update are denoted as Ai,L and Ai,M , respec-

tively. For the i-th update, the transmission time-slot of its j-th

attempt is denoted as B
(j)
i . Thus, the update interval can be

expressed as Ti = gi+1 − gi = Ai,L +
∑ni

j=1 B
(j)
i + Ai,M .

We explain the characteristics of AoI based on RO policy as

follows:

• We assume that the initial AoI ∆0 is equal to T0 and

the sensor generates the first status sample at t = 0, i.e.,

g1 = 0.

• The AoI increases linearly from t = gi to t = gi+1.

• The value of AoI drops down to Ti at t = gi+1.

The evolution of AoI based on TF policy is illustrated

in Fig. 2(b). Different from RO policy, once an update is
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corrupted, a freshest sample is generated by sensor and then

processed by local device before being transmitted to wireless

channel. Therefore, an update under TF policy requires ni

local processing rounds. By contrast, it takes only one round

in RO policy. Let g
(j)
i denote the generation time of the j-

th status sample for the i-th update. At time c
(j)
i,L, a part of

the j-th sample information bits has been processed by the

local device. Besides, denote by A
(j)
i,L the local computing

time-slot of the j-th attempt for the i-th update, and the

update interval can be formulated as Ti = g
(1)
i+1 − g

(1)
i =

∑ni

j=1(A
(j)
i,L +B

(j)
i )+Ai,M . We explain the characteristics of

AoI based on TF policy as follows:

• We assume that the initial AoI ∆0 is equal to T0 and the

sensor generates the first packet at t = 0, i.e., g
(1)
1 = 0.

• The AoI increases linearly from t = g
(1)
i to t = g

(1)
i+1.

• The value of AoI drops down to Si at t = g
(1)
i+1 , where

Si = A
(ni)
i,L +B

(ni)
i +Ai,M .

B. MEC Model

Considering the dependency and bit-wise correlation of

data [26] [27], it is unpractical to partition the information

into two independent parts and process them parallelly at the

local device and the mobile edge server respectively [11].

In this paper, we consider the partial computing in tandem,

where the local device firstly computes a part of information

bits generated by sensor and the output, together with the

remaining information bits, are transmitted to the mobile edge

server for further processing. We denote the local processing

ratio as θ, θ ∈ [0, 1]. Moreover, the following analysis is

based on the assumption that the size of sample information is

identical at each update, namely K bits message, as depicted

in Fig. 1. Thus, we omit the superscript (j) and subscript i of

Ai,L, A
(j)
i,L and Ai,M hereafter. Hence for each update, there

are θK bits processed at the local device and (1 − θ)K bits

are transmitted to the mobile edge server (we omit the output

size of local processing).

We adopt a linear computation partitioning model [11], the

computing time at the local device and the mobile edge server

are expressed as

AL = Ai,L = A
(j)
i,L =

θCK

fL
, ∀i, j, (1a)

AM = Ai,M =
(1− θ)CK

fM
, ∀i, (1b)

where C is the number of central process unit (CPU) cycles

to process one bit information. The computing frequency (i.e.,

the CPU processing speed) of the local device and the mobile

edge server are denoted as fL and fM , respectively.

C. Short Packet Model

We consider a delay-constrained communication system

where the duration of packet transmission is smaller than

the coherence time of channel. That is, the channel is quasi-

static in that it remains constant over each packet transmission

duration and varies independently among different packet

transmission durations [19], [28]. Considering the small-scale

fading and large-scale loss, the wireless channel is modeled

as the Rayleigh fading model and the channel gain from the

transmitter to the receiver is set as h = d−αX0h̃, where d
represents the distance between transmitter and receiver, α
denotes the path-loss exponent, X0 is the channel power gain

at the reference distance, h̃ is an exponentially distributed

random variable with unit mean that represents the short-term

fading. Moreover, due to the short-term fading, we assume

that only statistic channel state information (CSI) is available

at the source.

According to [24], for a quasi-static Rayleigh channel, the

maximum coding rate R at finite packet blocklength is given

by

R ≈ ln(1 + γ)−
√

V

m
Q−1(ε). (2)

In (2), γ refers to the signal-to-noise ratio (SNR), i.e., γ =
hP
N0

, where P denotes the transmission power of transmitter

and N0 represents the noise power seen at the receiver. V
is the channel dispersion and given by V = 1 − 1

(1+γ)2 , ε
is packet decoding error rate, m is packet blocklength and

Q−1(x) is the inverse function of Q(x) =
∫∞
x

1
2π e

− t2

2 dt.
After local computing, (1 − θ)K bits are encoded into a

short packet whose blocklength is m channel uses. Therefore,

the coding rate R can be expressed as
(1−θ)K ln 2

m
npcu (nat

per channel use). Equation (2) can be rewritten as

ε ≈ Q





√
m
(
ln(1 + γ)− D

m

)

√

1− 1
(1+γ)2



 , (3)

where D = (1−θ)K ln 2 nats. Since the channel varies among

different packet duration, the transmission error rate of each

packet is different and we denote the packet error rate of the

j-th packet for the i-th update as ε
(j)
i . The random variables

ε
(j)
i are independent and identically distributed (i.i.d.), which

are identically distributed with ε.

When ni = L, meaning that the destination receives a

correct packet for the first time after L − 1 attempts of

transmissions from the source, the distribution law of ni is

expressed as

P (ni = L) = ε
(1)
i ε

(2)
i ···ε(L−1)

i (1−ε
(L)
i ) =

L−1∏

q=1

ε
(q)
i (1−ε

(L)
i ).

(4)

Lemma 1: The expectation of ni and n2
i are given by

equations (5) and (6), where E(ε) denotes the expectation of

ε.

E(ni) =
1

1− E(ε)
. (5)

E(n2
i ) =

1 + E(ε)

(1− E(ε))2
. (6)

Proof: Please refer to Appendix A.

D. Long-term Average AoI

The duration of packet transmission corresponds to B =

B
(j)
i = mσ seconds, where σ is the symbol duration that is

equal to 1/W with W as the channel bandwidth [19].
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In RO policy, as depicted in Fig. 2(a), during the i-th update,

the area of rectangular trapezoid surrounded by AoI curve and

time axes is calculated as 1
2 (2Ti−1+Ti)Ti. Combining former

discussions, we set the length of the observation interval as

τ = gN+1. Then the long-term average AoI is derived as

∆RO = lim
τ→∞

1

τ

∫ τ

0

∆(t) dt

= lim
N→∞

1

gN+1

∫ gN+1

0

∆(t) dt

= lim
N→∞

∑N
i=1

(2Ti−1+Ti)Ti

2
∑N

i=1 Ti

= lim
N→∞

1
N

∑N
i=1

(2Ti−1+Ti)Ti

2
1
N

∑N

i=1 Ti

(a)
=

E
2(T ) + 1

2E(T
2)

E(T )

= E(T ) +
E(T 2)

2E(T )
,

(7)

where (a) holds, since in RO policy, Ti = AL + niB + AM

and Ti−1 are i.i.d.

In TF policy as illustrated in Fig. 2(b), the area of rectan-

gular trapezoid is formulated as 1
2 (2S + Ti)Ti, where S =

AL + B + AM . Set the length of the observation interval

τ = g
(1)
N+1, the long-term average AoI is written as

∆TF = lim
τ→∞

1

τ

∫ τ

0

∆(t) dt

= lim
N→∞

1

g
(1)
N+1

∫ g
(1)
N+1

0

∆(t) dt

= lim
N→∞

∑N
i=1

(2S+Ti)Ti

2
∑N

i=1 Ti

= lim
N→∞

1
N

∑N
i=1

(2S+Ti)Ti

2
1
N

∑N

i=1 Ti

=
SE(T ) + 1

2E(T
2)

E(T )

= S +
E(T 2)

2E(T )
.

(8)

III. AOI ANALYSIS FOR RO POLICY

In this section, we aim to minimize the long-term average

AoI based on RO policy by jointly optimizing the offloading

ratio and packet blocklength. Since E(ni) and E(n2
i ) are

unrelated to i, we omit the subscript of ni hereafter, i.e.,

E(ni) = E(n) and E(n2
i ) = E(n2). E(T ) and E(T 2) are

expressed as

E(T ) =E(AL + nB +AM )

=
θCK

fL
+

m

W (1− E(ε))
+

(1− θ)CK

fM
,

(9)

E(T 2) =E(AL + nB +AM )2

=(AL +AM )2 + E(n2)B2 + 2E(n)(AL +AM )B

=(AL +AM + E(n)B)
2
+
(
E(n2)− E

2(n)
)
B2

=E
2(T ) +

m2
E(ε)

W 2 (1− E(ε))
2 .

(10)

The approximation of E(ε) is presented by (11), which is

accurate especially when the coding rate R is not very large

[18, eq.(23)], where δ = exp(D
m
)− 1 and γ is the expectation

of SNR γ, i.e., γ = X0d
−αP

N0
, since E(h) = X0d

−α.

E(ε) ≈ 1− exp(−δ −
√
πD
m

γ
). (11)

Replacing E(ε) in (9) and (10) with (11), then the average

AoI minimization problem under RO policy can be represented

by

P1 : min
{θ,m}

∆RO =
3

2

(
θCK

fL
+

(1 − θ)CK

fM
+

mµ

W

)

+
m2(µ2 − µ)

2W 2
(

θCK
fL

+ (1−θ)CK

fM
+ mµ

W

) ,

(12a)

s.t. 0 ≤ θ ≤ 1, (12b)

m1 ≤ m ≤ m2, (12c)

m ∈ N, (12d)

where m1 and m2 are the minimum and maximum values of

packet blocklength respectively, and N is the set of natural

numbers. Besides,

µ = E(n) =
1

1− E(ε)
= exp

(

exp(D
m
)− 1−

√
πD
m

γ

)

,

which is a function of θ and m, standing for the expectation

of transmission attempts for an update.

Problem P1 is nonconvex since the objective function

is nonconvex and the constraint (12d) is discrete, which is

difficult to solve directly. We first relax the integer variable

m into real numbers, i.e, m ∈ R, and then leveraging the

BCD method [29] (also known as the alternative optimization

method) to solve the relaxed P12.

A. Offloading Ratio Optimization

For any given blocklength m, the relaxed P1 is still a

nonconvex optimization problem. By introducing a new slack

variable ω = m
W
µ, the relaxed P1 can be reformulated as [30]:

min
{θ,ω}

3

2
(θν1 + ν2 + ω) +

ω2 − m
W
ω

2(θν1 + ν2 + ω)
, (13a)

s.t.
m

W
µ ≤ ω, (13b)

0 ≤ θ ≤ 1, (13c)

2We refer to problem P1 with m ∈ R as the relaxed P1.



6

where ν1 = ( 1
fL

− 1
fM

)CK and ν2 = CK
fM

, and inequality

(13b) holds because of Lemma 2.

Lemma 2: The inequality constraint (13b) is active at the

optimum of relaxed P1.

Proof: Please refer to Appendix B.

Furthermore, problem (13) can be expressed as

min
{θ,ω}

3

2
(θν1 + ν2 + ω) +

(ω − m
2W )2

2(θν1 + ν2 + ω)
︸ ︷︷ ︸

h1(θ,ω)

− m2

8W 2(θν1 + ν2 + ω)
︸ ︷︷ ︸

h2(θ,ω)

, (14a)

s.t.
m

W
µ− ω ≤ 0, (14b)

0 ≤ θ ≤ 1, (14c)

where h1(θ, ω) is convex since
(ω− m

2W )2

θν1+ν2+ω
is quadratic-over-

linear composition with affine function [31], h2(θ, ω) is con-

cave and µ is a convex function of θ as well.

Problem (14) is a DC programming problem, which can be

represented as a difference of two convex functions [32]. To

deal with non-convexity, the successive convex approximation

(SCA) technique can be applied at each iteration. We know

that concave function is globally upper-bounded by its first-

order Taylor expansion [31] with given local point (θ(r), ω(r))
at the r-th iteration, the upper bounds of ∆RO can be

represented as

min
{θ,ω}

∆
ub,θ

= h1(θ, ω) + h2(θ
(r), ω(r))

+∇h2(θ
(r), ω(r))T

[
θ − θ(r)

ω − ω(r)

]

,

s.t. (14b) − (14c),

(15)

where ∇h2(θ
(r), ω(r)) is the gradient of h2(θ, ω) at point

(θ(r), ω(r)) which is given by

∇h2(θ
(r), ω(r)) =

m2

8W 2(θ(r)ν1 + ν2 + ω(r))2

[
ν1
1

]

. (16)

Problem (15) is convex which can be efficiently solved by

standard convex optimization solvers such as CVX [31].

B. Short Packet Blocklength Optimization

For any given offloading ratio θ, the relaxed P1 is also

nonconvex. Similar to the previous subsection, by introducing

a new slack variable ω = m
W
µ, the relaxed P1 can be

expressed as

min
{m,ω}

3

2
(ν3 + ω) +

ω2 − m
W
ω

2(ν3 + ω)
, (17a)

s.t.
m

W
µ ≤ ω, (17b)

m1 ≤ m ≤ m2, m ∈ R, (17c)

where ν3 = ( 1
fL

− 1
fM

)θCK+ CK
fM

, and constraint (17b) holds

similarly due to Lemma 2.

Similarly, we can write further problem (17) as

min
{m,ω}

3

2
(ν3 + ω) +

(ω − m
2W )2

2(ν3 + ω)
︸ ︷︷ ︸

h3(m,ω)

− m2

8W 2(ν3 + ω)
︸ ︷︷ ︸

h4(m,ω)

, (18a)

s.t.
e

D
m − 1

γ
− log(ω)

︸ ︷︷ ︸

h5(m,ω)

+ log(
m

W
)−

√
πD

mγ
︸ ︷︷ ︸

h6(m,ω)

≤ 0, (18b)

m1 ≤ m ≤ m2, m ∈ R, (18c)

where h3(m,ω) is convex and h4(m,ω) is concave since
(ω− m

2W )2

ν3+ω
and m2

ν3+ω
are quadratic-over-linear composition with

affine function [31]. Besides, h5(m,ω) is convex and h6(m,ω)
is concave. Problem (18) is also a DC programming problem,

SCA technique is applied at each iteration as well. With given

local point (m(r), ω(r)) at the r-th iteration, the upper bounds

of ∆RO and constraint (18b) which are received by their first-

order Taylor expansions [31] can be expressed as

min
{m,ω}

∆
ub,m

= h3(m,ω) + h4(m
(r), ω(r))

+∇h4(m
(r), ω(r))T

[
m−m(r)

ω − ω(r)

]

,

s.t. h5(m,ω) + h6(m
(r), ω(r))

+

(

1

m(r)
+

√
πD

(m(r))
2
γ

)

(m−m(r)) ≤ 0,

m1 ≤ m ≤ m2, m ∈ R,

(19)

where ∇h4(m
(r), ω(r)) is the gradient of h4(m,ω) at point

(mr, ω(r)) which is written as

∇h4(m
(r), ω(r)) = − 1

8W 2

[
2m(r)

ν3+ω(r)

− (m(r))2

(ν3+ω(r))2

]

. (20)

At this point, the relaxed P1 is transformed to convex

optimization problem (19) which also can be efficiently solved

by toolboxes.

IV. AOI ANALYSIS FOR TF POLICY

In this section, we investigate further the long-term average

AoI based on TF policy. First, E(T ) and E(T 2) are formulated

as

E(T ) =E (n(AL +B) +AM )

=

(
θCK

fL
+

m

W

)
1

1− E(ε)
+

(1 − θ)CK

fM
,

(21)

E(T 2) =E (n(AL +B) +AM )2

=A2
M + (AL +B)2E(n2) + 2AM (AL +B)E(n)

= ((AL +B)E(n) +AM )
2

+ (AL +B)2
(
E(n2)− E

2(n)
)

=E
2(T ) +

(
θCK

fL
+

m

W

)2
E(ε)

(1− E(ε))
2 .

(22)

Substituting E(ε) in (11) into (21) and (22), thus the average

AoI minimization problem can be formulated as



7

P2 : min
{θ,m}

∆TF =
1

2

(
θCK

fL
+

m

W

)

µ+ ϕ1θ +
m

W
+ ϕ2

+

(
θCK
fL

+ m
W

)2

(µ2 − µ)

2
((

θCK
fL

+ m
W

)
µ+ (1−θ)CK

fM

) ,

(23)

s.t. 0 ≤ θ ≤ 1,

m1 ≤ m ≤ m2,

m ∈ N,

where ϕ1 = ( 1
fL

− 3
2fM

)CK and ϕ2 = 3CK
2fM

. Since problem

P2 is nonconvex, the same approach to problem P1 can also

be adopted in this section. We first relax problem P2 and refer

to problem P2 with m ∈ R as the relaxed P2.

A. Offloading Ratio Optimization

For any given blocklength m, the relaxed P2 is still a

nonconvex optimization problem. By introducing a new slack

variable s = ( θCK
fL

+ m
W
)µ, relaxed P2 can be reformulated

as

min
{θ,s}

1

2
s+ ϕ1θ + ϕ2 +

m

W
+

s2 − s
(

θCK
fL

+ m
W

)

2
(

s+ (1−θ)CK

fM

) , (24a)

s.t.

(
θCK

fL
+

m

W

)

µ ≤ s, (24b)

0 ≤ θ ≤ 1, (24c)

where inequality (24b) holds because of Lemma 3.

Lemma 3: The inequality constraint (24b) is active at the

optimum of relaxed P2.

Proof: Please refer to Appendix C.

Equation (24) can be transformed into the difference be-

tween two convex functions as follows:

min
{θ,s}

1

2
s+ ϕ1θ + ϕ2 +

m

W
+

(

s− θCK
2fL

− m
2W

)2

2
(

s+ (1−θ)CK

fM

)

︸ ︷︷ ︸

f1(θ,s)

−

(
θCK
fL

+ m
W

)2

8
(

s+ (1−θ)CK

fM

)

︸ ︷︷ ︸

f2(θ,s)

, (25a)

s.t.
e

D
m − 1−

√
πD
m

γ
− log(s)

︸ ︷︷ ︸

f3(θ,s)

+ log

(
θCK

fL
+

m

W

)

︸ ︷︷ ︸

f4(θ,s)

≤ 0,

(25b)

0 ≤ θ ≤ 1, (25c)

where f1(θ, s) and f3(θ, s) are convex, f2(θ, s) and

f4(θ, s) are concave since
(s− θCK

2fL
− m

2W )2

s+ (1−θ)CK

fM

and
( θCK

fL
+ m

W
)2

s+ (1−θ)CK

fM

are

quadratic-over-linear composition with affine function [31].

Problem (25) is a DC programming problem as well, similar

to the previous section, the SCA technique is applied to

approximate the ∆TF and constraint at each iteration. With

given local point (θ(r), s(r)) at the r-th iteration, the upper

bounds of ∆TF and constraint (25b) can be expressed as

min
{θ,s}

∆
ub,θ

= f1(θ, s) + f2(θ
(r), s(r))

+∇f2(θ
(r), s(r))T

[
θ − θ(r)

s− s(r)

]

,

s.t. f3(θ, s) + f4(θ
(r), s(r)) +

1

θ(r) + mfL
CKW

(θ − θ(r)) ≤ 0,

0 ≤ θ ≤ 1,
(26)

where ∇f2(θ
(r), s(r)) is the gradient of f2(θ, s) at point

(θ(r), s(r)) which is given by

∇f2(θ
(r), s(r))

=








−
( θ(r)CK

fL
+ m

W
)

(

2CK
fL

(s(r)+
(1−θ(r))CK

fM
)+( θ(r)CK

fL
+ m

W
)CK
fM

)

8(s(r)+ (1−θ(r))CK

fM
)2

( θ(r)CK
fL

+ m
W

)2

8(s(r)+ (1−θ(r))CK

fM
)2







.

(27)

Ultimately, relaxed P2 is transformed into convex problem

(26) which can be solved efficiently by convex optimization

solvers.

B. Short Packet Blocklength Optimization

For any given offloading ratio θ, the relaxed P2 is noncon-

vex as well. Similar to the previous subsection, by introducing

a new slack variable s = ( θCK
fL

+ m
W
)µ, the relaxed P2 is

written as

min
{m,s}

1

2
s+

m

W
+ ϕ1θ + ϕ2 +

s2 − s
(

θCK
fL

+ m
W

)

2(s+ ϕ3)
, (28a)

s.t.

(
θCK

fL
+

m

W

)

µ ≤ s, (28b)

m1 ≤ m ≤ m2, m ∈ R, (28c)

where ϕ3 = (1−θ)CK

fM
, and constraint (28b) holds similarly as

Lemma 3. Also, we are able to reformulate problem (28) as

min
{m,s}

1

2
s+

m

W
+ ϕ1θ + ϕ2 +

(

s− θCK
2fL

− m
2W

)2

2(s+ ϕ3)
︸ ︷︷ ︸

f5(m,s)

−

(
θCK
fL

+ m
W

)2

8(s+ ϕ3)
︸ ︷︷ ︸

f6(m,s)

, (29a)

s.t.
e

D
m − 1

γ
− log(s)

︸ ︷︷ ︸

f7(m,s)

+ log

(
θCK

fL
+

m

W

)

−
√
πD

mγ
︸ ︷︷ ︸

f8(m,s)

≤ 0,

(29b)

m1 ≤ m ≤ m2, m ∈ R, (29c)
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where f5(m, s) is convex and f6(m, s) is concave since
(s− θCK

2fL
− m

2W )2

s+ϕ3
and

( θCK
fL

+ m
W

)2

s+ϕ3
are quadratic-over-linear com-

position with affine function [31]. Besides, f7(m, s) is convex

and f8(m, s) is concave. Problem (29) is a DC programming

problem as well, the same technique to problem (25) also

applies to this problem. Hence, at the r-th iteration with known

local point (m(r), s(r)), we need to solve the following convex

problem:

min
{m,s}

∆
ub,m

= f5(m, s) + f6(m
(r), s(r))

+∇f6(m
(r), s(r))T

[
m−m(r)

s− s(r)

]

,

s.t. f7(m, s) + f8(m
(r), s(r))

+

(

1
θCKW

fL
+m(r)

+

√
πD

(m(r))2γ

)

(m−m(r)) ≤ 0,

m1 ≤ m ≤ m2, m ∈ R,
(30)

where ∇f6(m
(r), s(r)) is the gradient of f6(m, s) at point

(m(r), s(r)) which is given by

∇f6(m
(r), s(r)) =







−
θCK
fL

+m(r)

W

4W (s(r)+ (1−θ)CK

fM
)

( θCK
fL

+m(r)

W
)2

8(s(r)+ (1−θ)CK

fM
)2






. (31)

Now, the problem (28) is converted into a series of convex

optimization problems which also can be solved by toolboxes

efficiently.

V. ALGORITHM AND CONVERGENCE

The proposed BCD approach to solve the relaxed P1 and

relaxed P2 is summarized in Algorithm 1.

Algorithm 1 Block Coordinate Descent Algorithm for solving

relaxed P1 or P2.

1: Initialize θ(0) and m(0), let r = 0
2: repeat

3: Solving problem (15) or (26) for given m(r), and

obtaining θ(r+1).

4: Solving problem (19) or (30) for given θ(r+1), and

obtaining m(r+1).

5: Update r = r + 1.

6: until The convergence achieves.

7: Output (θ(r),m(r)) as (θ∗, m̂).

Theorem 1: Algorithm 1 is convergent.

Proof: For brevity, we omit the subscript of ∆RO and

∆TF , and denote them as ∆. First, in Step 3 of Algorithm 1,

for given m(r), one has

∆(θ(r),m(r))
(b)
= ∆

ub,θ
(θ(r),m(r))

(c)

≥ ∆
ub,θ

(θ(r+1),m(r))

(d)

≥ ∆(θ(r+1),m(r)),

(32)

where (b) in (32) holds since ∆(θ,m(r)) is expanded to

∆
ub,θ

(θ,m(r)) at point θ(r) by applying first-order Taylor

expansion in (15) or (26), which means that they have same

objective value at θ(r); (c) holds since the optimal solution of

∆
ub,θ

(θ,m(r)) is θ(r+1); (d) holds since ∆
ub,θ

(θ,m(r)) is the

upper bound of ∆(θ,m(r)). Second, in Step 4 of Algorithm

1, for given θ(r+1), we can know

∆(θ(r+1),m(r)) = ∆
ub,m

(θ(r+1),m(r))

≥ ∆
ub,m

(θ(r+1),m(r+1))

≥ ∆(θ(r+1),m(r+1)),

(33)

where (33) holds similarly as (32). Based on (32) and (33), it

follows that

∆(θ(r),m(r)) ≥ ∆(θ(r+1),m(r+1)), (34)

which reveals that the objective value of relaxed P1 and P2

are non-increasing after each iteration. Moreover, since ∆ is

always larger than zero, the convergence of Algorithm 1 is

hence proved.

Finally, since Algorithm 1 only produces the blocklength

m ∈ R, to find out the optimal blocklength m∗ ∈ N for

problem P1 and P2, the following step should be performed

after the convergence of Algorithm 1:

m∗ = argmin
m∈{⌊m̂⌋,⌈m̂⌉}

∆
ub,m

(θ∗,m), (35)

where (θ∗, m̂) is the output from Algorithm 1. In consequence,

the optimal solution for problem P1 or P2 is (θ∗,m∗).

VI. NUMERICAL ANALYSIS

In this section, we present the numerical results to validate

the effectiveness of our proposed approach. As suggested in

[11], [17], we assume path-loss exponent α = 2, channel

power gain at reference distance X0 = 10−3, channel band-

width W = 180 kHz, noise power N0 = 10−9 Watt, transmit

power P = 0.02 Watt, and the distance between the transmitter

and the receiver d = 100 m. We set the CPU cycles to

process one bit information C = 104 cycles/bit, the computing

frequency of mobile edge server fM = 9× 109 cycles/s. The

packet blocklength can vary in the range of m1 = 100 to

m2 = 1000 channel uses. Besides, our BCD algorithm tried

two different initial values, i.e., θ = 0 and m = m2, and θ = 1
and m = m1. And we choose the better one as our result of

BCD approach.

We first show the convergence behaviour of the proposed

Algorithm 1 under K = 400 bits and fL = 1 × 108 cycles/s.

As illustrated in Fig. 3, the algorithm converges very fast, i.e,

no more than 10 iterations.

To validate the performance of our proposed BCD based ap-

proach to find out (θ∗,m∗), we compare it with the following

benchmark algorithms:

• Exhaustive Search (ES) method: the optimal inte-

ger packet blocklength is searched inside the interval

[m1,m2].
• None Offloading (NO) strategy: All K information bits

are processed at the local device. In this strategy, we let
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Fig. 3. Convergence behaviour of the proposed Algorithm 1. (a) RO policy.
(b) TF policy.

m = m1 since no information bits (other than the output)

need to be transmitted and the optimal blocklength here

is just m1.

• All Offloading (AO) strategy: All K information bits are

offloaded to the mobile edge server. In this strategy, we let

m = m2 since the amount of information bits need to be

transmitted is K , a much higher error rate and bigger AoI

will be incurred if we choose a small m, i.e., m = m1.

• Minimizing Delay (MD) method: Only the communica-

tion delay is considered and the corresponding offloading

ratio and blocklength are obtained by minimizing the

expectation of delay.

The change of average AoI under RO and TF policies

by different amount of information are shown in Fig. 4. As

illustrated, the minimum average AoI ∆ obtained by our

proposed algorithm overlaps with that by the ES method,

and it is smaller than those from the NO and AO strategies

and MD method. Combining with the convergence rate as

illustrated in Fig. 3, we verify the effectiveness of Algorithm 1.

Furthermore, it can be observed that the average AoI increases

with K grows, which verifies our intuition that the more

information, the bigger AoI. In the mean time, we find that

when the local device has sufficient computing capacity (e.g.,

fL = 1.5 × 109 cycles/s), the average AoI based on MD

method is close to the optimal AoI (produced from ES). In

addition, there is a cross between AO and NO strategies in

Fig. 4(b). The reasons are: when K is small, the local server

has the ability to process all information bits, thus NO is

better than AO strategy; Nevertheless, as K increases, the local

server with small computing frequency (e.g., fL = 1 × 109

cycles/s) cannot process all information bits in time and then

AO becomes better than NO strategy. Besides, based on TF

policy in Fig. 4(b), when fL = 1 × 109 cycles/s (low local

computing frequency), the AoI of NO strategy is large than

that of BCD approach; while at fL = 1.5× 109 cycles/s (high

local computing frequency), the AoI of NO strategy is close

to that of BCD approach optimal. The reasons are:

• If the local device has adequate computing capacity, the

optimal scheme is that local device processes as many

information bits as possible and the optimal blocklength

is m = m1 which is similar to Fig. 5(b).

• Otherwise, less information bits are processed by local

device and we need to find the optimal blocklength to

400 500 600 700 800 900 1000

5

10

15

20

880

9.262
9.2631

(a)

880

9.59

9.63
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880

9.6333

9.5937
9.5947

880

10.631
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(b)

Fig. 4. Average AoI versus amount of information. (a) RO policy. (b) TF
policy.

encode all K information bits.

Fig. 5 describes the optimal blocklength and offloading ratio

for different system configurations. We set W = 180 kHz

and fL = 1 × 108 cycles/s in Fig. 5(a), W = 20 kHz and

fL = 1 × 109 cycles/s in Fig. 5(b) and W = 180 kHz and

fL = 1× 109 cycles/s in Fig. 5(c), respectively. As illustrated

in Fig. 5(a), whether RO or TF policy, the optimal offloading

ratio is almost zero, namely the optimal strategy inclines to

offload all information bits to the mobile edge server since the

low local computing frequency and large channel bandwidth

make it more suitable to process all the information bits at

mobile edge server. Nevertheless, as depicted in Fig. 5(b),

the optimal strategies under RO and TF policies both tend

to process as many bits as possible at local device and the

rest of information bits are encoded into short packet with

minimal blocklength since it is more appropriate to process

many bits at local device when the channel bandwidth is small

and local device has enough computing capacity. Besides, in

Fig. 5(c), we draw the optimal blocklength and offloading ratio

under both high local computing frequency and large channel

bandwidth.

Fig. 6 compares RO and TF policies when local device has

a certain computing capacity. As illustrated in Fig. 6(a), it can

be observed that when W is small, a slight increase of W
gives rise to rapid decrease of AoI. Moreover, as illustrated in

Fig. 6(b), when W is smaller than a certain threshold, ∆RO is

less than ∆TF , i.e., RO policy is better than TF policy from

the AoI perspective.

Fig. 7 shows AoI comparison between RO and TF policies

when local device has no computing capacity, i.e., local device

does not process any data. As depicted in Fig. 7(b), TF policy



10

0

2

4

6

8

10
10
-6

400 500 600 700 800 900 1000
0

200

400

600

800

1000

(a)

0.99

0.992

0.994

0.996

0.998

1

400 500 600 700 800 900 1000
0

50

100

150

(b)

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900 1000
0

50

100

150

200

250

300

(c)

Fig. 5. Optimal blocklength and offloading ratio. (a) W = 180 kHz and
fL = 1 × 108 cycles/s. (b) W = 20 kHz and fL = 1 × 109 cycles/s. (c)
W = 180 kHz and fL = 1× 10

9 cycles/s.
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Fig. 6. (a) Average AoI and (b) difference value between AoI based on RO
and TF policies versus bandwidth when K = 400 bits.

always outperforms RO policy when fL = 0 cycles/s, meaning

that there is no point in retransmitting a (failed) old status

packet since the age of old status packet is larger than the age

of freshest status packet [10].
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Fig. 7. (a) Average AoI and (b) difference value between AoI based on RO
and TF policies versus bandwidth when fL = 0 cycles/s.
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Fig. 8. Average AoI versus transmit power. (a) RO policy. (b) TF policy.

In Fig. 8, we evaluate how the transmit power P affects av-

erage AoI (produced by our proposed approach). As shown in

Fig. 8, the average AoI decreases with growing P . Moreover,

it can be observed that regardless of whether RO policy or

TF policy, when P is less than a threshold, the average AoI

generated from the one with high local computing frequency

is smaller than that from low local computing frequency.

However, when P is greater than the threshold, the two curves

overlap as in this case, the optimal offloading strategy prefers

offloading all K information bits to mobile edge server so that

fL has no influence on average AoI.

Fig. 9 depicts average AoI versus local computing fre-

quency. It can be observed that, when fL is small, the average

AoI is not affected by fL since if local device has no adequate

computing capacity, the optimal offloading strategy tends to

offload all information bits to mobile edge server as well.

Moreover, when fL is small, TF policy outperforms RO policy

from the AoI perspective.

To conclude, if the system bandwidth is large and the local

computing capacity is insufficient, TF policy is better, since

the optimal offloading strategies under the two policies both

incline to offload all information bits to mobile edge server

and it makes no sense to retransmit a (failed) old packet when

an update is failed; If the system bandwidth is small and the

local computing capacity is sufficient, RO policy is better,

since whether RO or TF policy, the optimal strategy inclines

to process many information bits at the local device, and

an update under TF policy requires multiple local processing

rounds but RO policy requires only one round.
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Fig. 9. Average AoI versus local computing frequency.

VII. CONCLUSIONS

In this paper, we have studied the problem of AoI mini-

mization in MEC empowered IIoT where status packets may

be wrongly decoded in the destination. Once a packet cannot

be decoded correctly, the system retransmits an older update

packet or a freshest update packet. We have devised the closed-

form average AoIs under RO and TF policies respectively and

minimized them by considering the blocklength and offloading

ratio jointly. We have adopted the BCD and SCA techniques

in order to tackle the formulated AoI minimization problem

which is non-convex by nature. The numerical results show

that our proposed algorithm enjoys stable convergence and out-

performs the benchmark algorithms. Moreover, by comparing

the typical RO and TF policies, we have identified the better

policy for different system configurations through numerical

results.

As a future work, we will extend this work to the mul-

tiple sensors scenario which is subject to certain resource

constraints. Moreover, since AoI cannot reflect the content of

a packet, an advanced information freshness metric is worthy

of a closer investigation similar to [33], [34].

APPENDIX A

PROOF OF LEMMA 1

The ni is the compound random variable of ε
(j)
i , thus we

can calculate the E(ni) and E(n2
i ) as in equation (36) and

equation (37), respectively.
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i
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i

,...,ε
(∞)
i
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(∞)
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i

,ε
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i

,...,ε
(∞)
i

( ∞∑

l=1

l(1− ε
(l)
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ε
(q)
i
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(2)
i
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(∞)
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(
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(l)
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ε
(q)
i

)

(e)
=
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l=1

l (1− E(ε))El−1(ε)

= (1− E(ε))
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l=1

(
E
l(ε)
)′

=
1

1− E(ε)
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ε
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(f)
=
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l=1

l2 (1− E(ε))El−1(ε)
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(37)

where (e) and (f) holds since the ε
(q)
i , q ∈ {1, 2, ...}, are i.i.d.

and identically distributed with ε.

APPENDIX B

PROOF OF LEMMA 2

Equation (13a) can be rewritten as

∆RO = 2ω +
(θν1 + ν2)(

m
W

+ θν1 + ν2)

2(θν1 + ν2 + ω)
+ θν1 + ν2 −

m

2W
︸ ︷︷ ︸

G1(ω)

,

where G1(ω) is the function of ω. By taking the derivative of

G1(ω), it can be know that when ω ≥ ω0, G1(ω) increases

monotonically, where

ω0 =

√
(θν1 + ν2)(θν1 + ν2 +

m
W
)

2
− (θν1 + ν2)

(g)

≤ 2(θν1 + ν2) +
m
W

4
− (θν1 + ν2) ≤

m

W
µ,

where (g) holds because of the arithmetic-geometric mean

inequality
√
ab ≤ a+b

2 . Thus, problem (13) obtains optimum
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when constraint (13b) reaches equality, otherwise we can

always decrease ω without increasing the objective value

∆RO .

APPENDIX C

PROOF OF LEMMA 3

Equation (24a) can be reformulated as

∆TF =s+

(
CK(1−θ)

fM

)2

+ CK(1−θ)
fM

(
CKθ
fL

+ m
W

)

2
(

s+ CK(1−θ)
fM

)

+ (
1

2fL
− 1

fM
)CKθ +

m

2W
+

CK

fM
. (38)

We regard ∆TF as the function of s and denote ∆TF as

G2(s). By taking the derivative of G2(s), it can be obtained

that when s ≥ s0, G2(s) increases monotonically, where

s0 =

√

CK(1−θ)
fM

(
CK(1−θ)

fM
+ CKθ

fL
+ m

W

)

√
2

− CK(1− θ)

fM

(h)

≤
2CK(1−θ)

fM
+ CKθ

fL
+ m

W

2
√
2

− CK(1− θ)

fM

≤
(
CKθ

fL
+

m

W

)

µ,

where (h) holds due to the arithmetic-geometric mean in-

equality
√
ab ≤ a+b

2 . Therefore problem (24) attains optimal

solution when constraint (24b) meets with equality, otherwise

s can be cut down without increasing the objective value ∆TF .
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