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Abstract

Sparse code multiple access (SCMA) is a promising code-domain non-orthogonal multiple access (NOMA)
scheme for the enabling of massive machine-type communication. In SCMA, the design of good sparse codebooks
and efficient multiuser decoding have attracted tremendous research attention in the past few years. This paper aims
to leverage deep learning to jointly design the downlink SCMA encoder and decoder with the aid of autoencoder. We
introduce a novel end-to-end learning based SCMA (E2E-SCMA) design framework, under which improved sparse
codebooks and low-complexity decoder are obtained. Compared to conventional SCMA schemes, our numerical
results show that the proposed E2E-SCMA leads to significant improvements in terms of error rate and computational
complexity.
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I. INTRODUCTION

T HE wireless networks are rapidly evolving towards a paradigm shift from connecting people to
networking everything. A pressing challenge of future wireless network design is how to develop

a highly efficient multiple access scheme to meet various stringent requirements such as lower access
latency, and higher spectral efficiency. A disruptive technique for addressing such a challenge is called
non-orthogonal multiple access (NOMA). In a NOMA system, multiple users are able to communicate
simultaneously to achieve overloading factor larger than 1. Existing NOMA techniques can be largely
categorized into two classes: power-domain NOMA and code-domain NOMA (CD-NOMA) [1], [2]. In
this paper, we focus on an emerging CD-NOMA scheme called sparse code multiple access (SCMA) in
which multiple users are separated by adopting different sparse codebooks [3], [4]. Over the past decade,
SCMA has attracted tremendous research attention from both academia and industry [5]–[8].

In SCMA, two fundamental research problems are the design of good sparse codebooks and efficient
multi-user decoding [5], [6], [9], [10]. Existing known SCMA codebook constructions mostly follow
a multi-stage sub-optimal design for rapid generation [5], [6], [10], albeit it is unclear how far the
obtained SCMA codebooks are from the optimal ones. By taking advantage of the codebook sparsity, low-
complexity MPA has been developed for SCMA decoding. For a downlink SCMA system where multiple
user devices (e.g., sensors, tablets, machines) are constrained by their limited computation capability and
battery life, however, the current MPA may not be affordable, especially when a large number of MPA
iterations is needed [9], [11].

In recent years, deep learning (DL) has been extensively studied in wireless networks, thanks to
its capability in solving very complicated optimization problem [12]. A comprehensive introduction
on autoencoder for end-to-end communication system was contributed by O’shea and Hoydis in [12].
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Following [12], a denoising autoencoder (DAE) for SCMA was reported in [13]. The core idea of [13] is
to model the entire SCMA system as a DAE by implementing both the encoder and decoder with fully
connected neural networks (NNs). Subsequently, a similar structure was studied in [11], [14] by jointly
considering the sparse and dense mapping of CD-NOMA. It is noted that [11], [13], [14] considered
the decoder as a single learning task implemented with fully connected layers. However, the bit error
performances of these systems may not beat an SCMA system with the aforementioned sparse codebooks
that are obtained from a multi-stage sub-optimal design. Very recently, a deep neural network (DNN) with
multi-task structure was proposed in [15] for SCMA detection. However, [15] has not touched the sparse
codebook design with the aid of DNN, and hence a good error rate performance may not be guaranteed.

In this letter, we introduce a novel multi-task learning empowered end-to-end SCMA (E2E-SCMA)
design framework. The main novelty of this work stems from the proposed architecture of E2E-SCMA
and the unique training scheme. Building upon a new SCMA mapping design with linear encoding,
we first propose an efficient SCMA encoder, which can reduce the depth of the network and thereby
helping prevent the gradient from vanishing. Unlike existing works [11], [13], [14], where the decoding
is conducted by viewing J users as a single learning task, we view each user as a single learning task
and then design the decoder in a task-specific fashion. The advantages of using the multi-task learning
structure are twofold: 1) it can improve learning efficiency and reduce over-fitting [16]; 2) it can avoid the
curse of dimensionality while using one-hot encoding. Specifically, for an multi-task learning structure of
J tasks, if each task has a M -dimensional input vector, the corresponding input dimension of single task
learning structure will increase to MJ . Finally, we propose to train the E2E-SCMA in a range of signal-
to-noise ratios (SNRs) instead of over a fixed SNR. Consequently, this enables the proposed E2E-SCMA
to work over a wide range of SNR values with a low error rate performance. The remainder of the letter
is organized as follows. Section II briefly describes the system model of SCMA. We present the proposed
E2E-SCMA framework in Section III. The numerical results and conclusion are presented in Sections IV
and V, respectively.

II. SYSTEM MODEL

In this paper, we consider a downlink SCMA system with J users communicating over the K orthogonal
resources, where J > K. Let us define the overloading factor as λ = J

K
> 1. At the transmitter side, the

SCMA encoder maps log2 (M) binary bits toa length-K codeword drawn from codebook Xj ∈ CK with
size M . The mapping process is defined as fj : Blog2 M → Xj ∈ CK , where Xj = {xj,1,xj,2, . . . ,xj,m} is
the codebook set for the jth user with cardinality of M . All the K-dimensional complex codewords of
each SCMA codebook are sparse vectors with N non-zero elements1 and N < K. Let cj be a length-N
vector drawn from Cj ⊂ CN , where Cj is obtained by removing all the zero elements in Xj . We further
define the mapping from Blog2 M to Cj as

gj : Blog2 M×1 7→ Cj , i.e., cj = gj(bj), (1)

where bj = [bj,1, bj,2, . . . , bj,log2 M ]T ∈ {1,−1}log2 M stands for jth user’s instantaneous input binary
message vector. By collecting all the bj according to their corresponding integer values in ascending
order, we form a log2(M)×M binary matrix B. For example, when M = 4, we have

B =

[
−1 +1 −1 +1
−1 −1 +1 +1

]
. (2)

Thus, the corresponding SCMA mapping fj can be expressed as

fj :≡ Vjgj , i.e., xj = Vjgj(bj), (3)

where Vj ∈ BK×N is an mapping matrix that maps the N -dimensional vector to a K-dimensional sparse
SCMA codeword. The sparse structure of the J SCMA codebooks can be represented by the indicator
(sparse) matrix F = [f1, . . . , fJ ] ⊂ BK×J where fj = diag(VjV

T
j ).

1For user j, the N non-zero element positions remain unchanged from one codeword to another.
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For a fixed Vj , the task of SCMA codebook design is to find the J mapping functions gj, j = 1, 2, . . . , J ,
according to certain criteria, such as minimum Euclidean distance (MED). Specifically, by viewing the
mapping function gj as a N × log2M complex codebook generator matrix times the jth user’s bit vector
bj , we have

cj = Gjbj , (4)

where Gj ∈ CN×log2M is the codebook generator matrix of the jth user. Therefore, the codebook for user
j is Xj = VjGjB.

The received signal of user j in downlink channel after the multiplexing can be expressed as

rj = diag (hj)

J∑
u=1

VuGubu + nj , (5)

where hu = [hj,1, hj,2, . . . , hj,K ]T ∈ CK×1 is the channel coefficient vector between the base station and
the jth user, diag(·) denotes the diagonalization of a matrix and nj = [nj,1, nj,2, . . . , nj,K ]T is the complex
Gaussian vector with the variance with zero mean and variance N0, i.e., nj,k ∼ CN (0, N0).

In the next section, we will design the near optimal generating matrices Gj, j = 1, 2, . . . , J to improve
the error rate performance with the proposed novel autoencoder.

III. PROPOSED NOVEL AUTOENCODER

In this section, a novel autoencoder is presented for downlink SCMA systems. We first present the
SCMA mapping, i.e., the signal model in (4), inspired encoder designed. Then, the multi-user detection
with deep multi-task learning is elaborated. In addition, training procedure and complexity analysis will
be discussed.

A. Autoencoder
Autoencoder is a special class of neural networks which is trained to produce an output data that

matches with their input data. It is composed of a basic DNN unit formed of multiple repetitive hidden
layers. Each hidden layer is an affine mapping followed by a nonlinearlity operator. The output of the lth
hidden layer is given by

xl = σl (Wlxl−1 + zl) , (6)

where W l, zl, and σl denote the weight matrix, bias vector and the activation function for the lth layer,
respectively. The encoder first transforms the input vector x into hidden representation y through a
deterministic mapping eθ, i.e., y = eθ (x), where θ denotes the parameter set with all the weight matrices
and bias vectors. The resulting representation y is then mapped back to reconstruct the input vector, i.e.,
x̂ = dθ′ (y). The mapping dθ is called decoder and θ′ is the corresponding parameter set. The DAE is
a type of autoencoder that learns to produce original denoised samples from the inputs contaminated by
noise. In an DAE, the parameter set θ and θ′ are trained to minimize the reconstruction error [16]

θ∗,θ′
∗
= argminL

θ,θ′
(x, dθ′ (eθ (x))) , (7)

where L is a loss function, such as the squared error loss L (x, x̂) = ‖ x− x̂ ‖2. Another commonly
used loss function is the cross-entropy loss LCE (x, x̂) = −

∑D
d=1 xd log(x̂d), where D is the length of the

output vector, xd ∈ x and x̂d ∈ x̂. Note that for cross-entropy loss, x and x̂ are in the form of the bit
vector and bit probability, respectively.
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Fig. 1. The system structure of the proposed E2E-SCMA.

B. Signal Model Inspired Encoder Design
In our proposed E2E-SCMA, the mapping from the jth data stream to the jth user’s constellation, i.e.,

cj = gj(bj) is implemented with neural networks. Note that the SCMA encoding in (4) has the same
expression with neural network in (6) when the activation function is linear with basis z = 0T . Therefore,
the codebook generation process, i.e., gj , can be implemented with a simple neural network, which only
consists of the input layer and output layer. The weight matrix in the neural network is equivalent to the
generator matrix Gj . Since the proposed network operates in real domain, the output is separated into
real and imaginary parts. Hence, (4) is re-written as

c̄j = Ḡjbj , (8)

with
c̄j =

[
<(cj)
=(cj)

]
, Ḡj =

[
(G R

j )T (GI
j)

T
]T
, (9)

where GR
j and GI

j are the generator matrices of the real and imaginary parts, respectively. Based on
the above analysis, the proposed model based E2E-SCMA with J users is shown in Fig. 1, where the
proposed E2E-SCMA is composed of J codebook generators, a signature mapping module, a channel
module, and a multi-user detection module. The structure of codebook generator is inspired by the signal
model and only consists two layers, i.e., the input layer and the output layer. In addition, the number of
nodes for input layer and output layer are log2(M) and 2N , respectively.

In the forward-propagation phase, source message vector bj first flows through codebook generator
network, parameterized by Ḡj to derive the multi-dimensional complex symbol c̄j , and then the symbols
are mapped to SCMA resources according to Vj . After that, J users’ data symbols are superimposed
before passing through a Gaussian channel2. Finally, the superimposed signal is decoupled to accurately
recover source messages based on task-specific sub-networks in the decoder, which will be elaborated in
the next subsection.

C. Decoder Design with Multi-task Learning
At the decoder part, deep multi-task learning is adopted to design the multi-user detector. The proposed

decoder consists of one shared network and J user specific sub-networks, where the shared network
is designed for exchanging the information between the subcarriers and the jth task is responsible for
recovering the jth user’s data. We employ one-hot vector to represent the input binary message vector
bj , namely, each message bj,m,m ∈ {1, 2, . . . ,M} is represented by an M -dimensional one-hot vector

2In this paper, we focus on the Gaussian channel case as in [11], [13], [14] in order to give a clear comparison with other benchmarks.
The fading channel will be investigated in future work.
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mm
j , which is the mth column of the identity matrix IM . For example, for M = 4, the one-hot mapping

is defined as
bj,1 = [−1,−1]T ↔m1

j = [1, 0, 0, 0],

bj,2 = [−1,+1]
T ↔m2

j = [0, 1, 0, 0],

bj,3 = [+1,−1]T ↔m3
j = [0, 0, 1, 0],

bj,4 = [+1,+1]
T ↔m4

j = [0, 0, 0, 1].

(10)

The decoder can be expressed as dP
θ
dU
θj

: rj → pj , where dP
θ

and dU
θj

are the non-linear mapping of the
forward DNN for the shared network and the jth user’ sub-network, respectively. pj is the output messages,
θ and θj are the parameter sets of the shared network and the jth user’ sub-network, respectively. In our
implementation, we choose fully-connected DNN with LP and LU layers for both shared network and
user sub-network. The above process can be expressed as

pj = dU
θj

(xP) = σU
j,LU

(
W

(LU)
j

(
σU
j,LU−1 · · ·

σU
j,1

(
Wj

(1)xP + zj
(1)
)
· · ·+ z

(LU−1)
j

)
+ zj

(LU)
)
,

xP = dP
θ
(r) = σP

LP

(
W

(LP)
(
σP
LP−1 · · ·

σP
1

(
W

(1)
rj + z(1)

)
· · ·+ z(LP−1)

)
+ z(LP)

)
,

(11)

where xP is the output of the shared layer, σP
l and σU

j,l denote the activation function of the lth layer

of shared network and the jth sub-network, respectively. θj =
{

W
(1)
j , z

(1)
j , . . . ,W

(LU)
j , z

(LU)
j

}
, and θ ={

W
(1)
, z(1), . . . ,W

(LP)
, z(LP)

}
are the parameters to be learned.

Observing that the task of SCMA detection is to recover the source messages in a limited search space,
such a problem is equivalent to a typical classification problem in the machine learning field. Hence,
this motivates us to employ the widely used softmax activation for output layer. To facilitate the network
convergence, ReLU activation function is adopted for hidden layers. Assume that the input of softmax
is a vector wj of dimension M , and wj,m is the mth entry of wj . Then, the softmax activation function
takes the following expression:

pj,m =
exp(wj,m)∑M

m′=1 exp(wj,m′)
, (12)

where pj,m is the mth entry of the output pj with
∑M

m=1 pj,m = 1. All hidden layers adopt ReLU activation
function, which can facilitate the network convergence during the training process. As for the loss function,
we consider the corresponding softmax cross-entropy loss for each user. Let p = [pT

1 ,p
T
2 , . . . ,p

T
J ]T and

m = [mT
1 ,m

T
2 , . . . ,m

T
J ]T , where mj is the one hot representation of bj . The overall loss function is the

summation over J users, which can be expressed as

LE2E-SCMA(p,m) = −
J∑

j=1

M∑
m=1

qj,m log(pj,m), (13)

where qj,m denotes the mth entry of mj . The loss function measures the difference between predicted
probability p diverges from the actual label m. Therefore, we aim to seek the model parameters Gj,θ,θj
to minimize the overall loss:

{Gj
∗
,θ
∗
,θ∗j} = argmin

[Gj]
J

j=1
,θ,[θj ]

J
j=1

LE2E-SCMA(p,m). (14)

D. Training Algorithm
The encoder and decoder are jointly optimized with gradient decent based method using forward and

backward propagation, such as adaptive moment estimation (ADAM). Algorithm 1 demonstrates the
detailed training of the proposed E2E-SCMA system. Ḡj, j = 1, 2, . . . , J are first initialized with Huawei
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Algorithm 1 Training of E2E-SCMA.
Initialization: Set J , K, Vj , α0, β, D, Eb/N0min, Eb/N0max, IT and initialize the network parameters

Gj,θ, θj, j ∈ {1, 2, . . . , J}.
1: repeat
2: t← 1
3: Randomly generate training samples bj and transfer bj to one-hot vector mj

4: Froward Propagation
5: SNR← U (Eb/N0min, Eb/N0max), αt ← α0β

(t/D)

6: c̄j ← bj according to (8) and (9)
7: r← Obtain r after resource mapping and pass channel
8: pj ← dP

θ
·dU

θj
(r) according to (11)

9: Lt
batch ← LE2E-SCMA(p,m) according to (13)

10: Backward Propagation
11: Gj , θj,θ ← Update θj,θ with αt, ∇θj ,θ

Lt
batch, and Gj with αt and ∇Gj ,θ,θj

Lt
batch with gradient-

based optimizer
12: t← t+ 1
13: until reaching the maximum iteration number IT

codebook [17]. Specifically, we first obtain Gj = CjB
T (BBT )−1, where Cj denotes the jth user’s

codebook in [17] by removing the zero dimensions. Then, Ḡj is obtained by concatenating the real
and imaginary parts of Gj . The weights of the decoder, i.e., θ̄, and θj , are initialized with a normal
distribution with mean 0 and variance 1. In the forward propagation, the randomly generated input data
first flows through the encoder and decoder to obtain an estimation of the input message. Then, during the
backward propagation, the parameters Gj,θ, and θj are updated by minimising the total loss. In addition,
the learning rate αt decays exponentially at each iteration t with a decay factor of β and decay step
of D. With respect to the training Eb/N0, the authors in [11], [13]–[15] obtained SCMA codebooks by
training the system at a fixed Eb/N0. However, in our implementation, the training SNR for each iteration
was randomly generated so that the SNR will be uniformly distributed on U (Eb/N0min, Eb/N0max). This
approach allows us to train an SCMA system to work over a wide range of SNR values while maintaining
a low error rate performance.

E. Complexity Analysis
The main differences between E2E-SCMA and convention SCMA in terms of complexity is the decoder

part, i.e., DNN decoder and MPA. Hence, we main focus on analyze the complexity of DNN decoder and
MPA. The complexity of MPA is given by O

(
NiterKd

2
fM

df
)

[9], where Nitr is defined as the iteration
number of MPA. For E2E-SCMA, we are concerned about the complexity of online deployment. The
main computation in E2E-SCMA is matrix multiplication, which is dominated by the two consecutive
layers with the largest number of neural nodes. Therefore, we can simply the computation complexity as
O (L1L2), where L1 and L2 are the largest number of neural nodes of two consecutive layers.

IV. NUMERICAL RESULTS

In this section, we evaluate the error rate performance of the proposed E2E-SCMA system in Gaussian
channel. The following indicating matrix with J = 6, K = 4, N = 2 is given by

F4×6 =


0 1 1 0 1 0
1 0 1 0 0 1
0 1 0 1 0 1
1 0 0 1 1 0

 . (15)
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Fig. 2. System performance of E2E-SCMA trained by various Eb/N0.
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Fig. 3. BER performance comparison with different decoders.

The initial learning rate, decay step and decay factor are set to be α0 = 0.001, D = 500 and β = 0.9,
respectively. The batch size for each iteration is set to be 1000 for a trade-off between convergence rate
and computational efficiency. The maximum iteration number is IT = 2000. Therefore, the total number of
training samples is 2×106. We choose a wide range of training Eb/N0, specifically, we set Eb/N0min = 5
dB and Eb/N0max = 11 dB. The codebook generator is implemented with log2(M) input nodes and 2×K
output nodes. For the decoder, the number of nodes and hidden layers for shared network are {128, 64}
and LP = 2, respectively, whereas the two parameters for user sub-network are {64, 32, 16} and LU = 3,
respectively. Therefore, the complexity of the E2E-SCMA is O (L1L2), where L1 = 128 and L2 = 64.

Since the values of Eb/N0 in training influence the BER performance, we investigate how training
samples generated by different Eb/N0 can affect the system performance in Fig. 2. We first train the
system at the fixed Eb/N0 values, which were set to be Eb/N0 = 2 dB, 7 dB and 10 dB, respectively.
Then, the system was also trained in the Eb/N0 range U (5, 11) dB. It is clearly shown that the low Eb/N0

trained network only performs well in the low Eb/N0 range, whereas the high Eb/N0 trained network
will degrade the performance in the low Eb/N0 range. A better way is to train the network in a wide
Eb/N0 range, thus the trained system can harvest the good performance over a wide range Eb/N0 .

In Fig. 3, we compare the BER performance of the proposed E2E-SCMA scheme with the AE-SCMA
scheme [11], the D-SCMA scheme [13], and the conventional SCMA scheme with Huawei codebook [17].
The MPA decoder is employed for conventional SCMA scheme to compare with deep learning designed
SCMA system. The results show that the proposed scheme significantly outperforms all conventional
SCMA schemes. Specifically, the proposed E2E-SCMA achieves 3.5 dB gain and 1.8 dB gain over D-
SCMA, AE-SCMA scheme at SER = 10−5, respectively.
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TABLE I
A COMPARISON OF MEDS OF DIFFERENT CODEBOOKS

Codebook MED

Huawei [17] 0.56
Yu [6] 0.90
Chen [5] 1.07
Learned codebook 1.17

To evaluate the codebook obtained by E2E-SCMA scheme, we compare the MED and corresponding
BER performance with MPA decoder with the state of art codebooks. The MED is obtain by calculating
MJ

(
MJ − 1

)
/2 mutual distances between MJ superimposed codewords, which constitute a superimposed

constellation Φ. Hence, the MED can be expressed as
min

{
‖ vn − vm ‖2,∀vn,vm ∈ Φ,∀m,n ∈ ZMJ ,m 6= n

}
,

where ZMJ stands for the integer set
{

1, 2, . . . ,MJ
}

. Specifically, the MED of learned codebook is
compared with Huawei codebook [17], Chen codebook [5] and Yu codebook [6]. The results are presented
in Table I. It can be seen that the learned codebook owns MED = 1.17 and is higher than other codebooks.
Then, BER comparisons of different codebooks with MPA decoder are shown in Fig. 4. The proposed
codebook achieves 4.8 dB gain over the Huawei codebook at BER = 10−5, about 1.8 dB gain over the
Yu codebook, and 1 dB gain over the Chen codebook at BER = 10−5. The proposed codebook and the
codebooks employed for comparison are all available at our GuitHub project3.

V. CONCLUSION

In this paper, we have proposed an E2E-SCMA by joint optimization of SCMA encoder and decoder
with the aid of DAE. Our key idea is to design the SCMA encoder by taking into account of the mapping
procedure and then optimize the decoder with multi-task learning approach. Simulation results showed that
the use of multi-task learning technique enables efficient derivation of codebook and decoding strategy
for a sparse and multidimensional superimposed signal. In addition, our proposed scheme outperforms
conventional schemes and existing autoencoder SCMA in terms of both error rate and computational
complexity.
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