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Abstract—In this paper, a novel multiple-input
multiple-out (MIMO) transmission scheme, called gen-
eralized polarized enhanced spatial modulation (G-
PESM), is proposed for dual-polarized land mobile
satellite (LMS) communications. We first introduce
the enhanced spatial modulation (ESM) technique for
dual-polarized LMS communications, in which polar-
ization dimension, spatial dimension and multiple sig-
nal constellations are used to transmit information
and obtain substantial performance gain. Meanwhile,
the theoretical upper bound for the average bit error
probability (ABEP) of the proposed GPESM scheme
is derived. In order to further improve the reliability of
the system, we also propose two novel power allocation
(PA) algorithms for GPESM system, which are the
optimization-driven approximated max-min distance
(AMMD)-based PA algorithm and the data-driven
deep neural network (DNN)-based PA algorithm. To
achieve an enhanced spatial diversity gain, we consider
to apply a reconfigurable intelligent surface (RIS) to
the GPESM system as a relay to assist in transmitting
information. In this way, the user can receive the
information transmitted by the satellite on one hand,
and the information sent by the satellite via the RIS
relay on the other hand. We also extend the above-
mentioned two PA algorithms to the RIS-assisted G-
PESM systems. Our simulation results show that the
RIS-assisted GPESM systems are capable of obtaining
high bit error rate (BER) performance gain (up to 10
dB) compared to the standard GPESM system and two
PA algorithms can further improve the performance to
the systems.

Index Terms—Deep neural network, land mobile
satellite, polarized modulation, power allocation, re-
configurable intelligent surfaces.

I. Introduction
As the fifth generation mobile networks (5G) becomes

commercially available, the research community has start-
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ed to investigate the 6G. The latter will be not only limited
to the ground, but also extended to the space and the sea
to achieve ubiquitous and seamless connections between
the ground, satellite and airborne networks [1]–[3]. Driven
by this trend, in recent years, satellite communications
have gained renewed interest with reduced satellite de-
ployment costs and breakthroughs in materials and an-
tenna technology [2]. Space-earth integration network has
become a key issue in future 6G wireless networks. While
the existing terrestrial cellular network technologies may
be vulnerable to disasters and terrorist attacks, satellite
platforms have a wide range of coverage and broadcast
capabilities and can compensate the weakness of terrestrial
platforms [2]–[4]. More notably, with commercial satel-
lite companies investing heavily in the satellite industry,
satellite platforms have become an important part of the
internet-to-things (IoT) [1], [5]. In [3], unmanned aerial
vehicle (UAV)-based low-altitude platforms (LAP) can
be quickly deployed and flexibly adjusted to the optimal
communication environment to achieve better bit error
rate (BER) performance and energy efficiency in short-
range communications. To address the large amount of
data satellites in future, edge intelligent computing has
been proposed in [5] for satellite IoT.

Future satellite platforms are promising, yet the capabil-
ities of individual satellites are very limited. On the other
hand, MIMO has become a mature technology in terrestri-
al communication networks, which provides high channel
capacity and significant performance improvements [6].
By bringing the MIMO idea to satellite communication
platforms, [7] and [8] investigated how to construct a
capacity-optimized MIMO channel between two geosta-
tionary satellites and ground antennas, which is geomet-
rically and optimally arranged to obtain multiplexed gain
from the antennas. [9] and [10] examined the possible
capacity of a dual-satellite diagonal MIMO system for
frequencies above 10 GHz under correlated rainfall fading.
A technique aimed at mitigating interference by using
linear precoding of the transmitted signal was proposed
in [11]. However, in the satellite communication scenario,
the line-of-sight (LOS) propagation, the lack of multipath
factors and the absence of scatters may lead to highly
correlated spatial components, which further results in an
inherent rank deficiency of the MIMO channel matrix.

To address these difficulties, polarization modulation
(PMod) was proposed to exploit the dimension of po-
larization in [12], [13]. For example, the authors of [13]
investigated the application of PMod to improve the
throughput of mobile satellite communication transmis-
sions, and proved that PMod can achieve 100% through-



IEEE 2

put improvement relative to existing deployments. In [14],
based on accurate experimental results, the statistical
modeling of dual-polarized satellite MIMO fading channels
was addressed, which is useful for the design and perfor-
mance assessment of MIMO-land mobile satellite (LMS)
transmission systems. The model given in [14] was further
developed in [15] by considering more critical channel
aspects. Recently, [16] introduced orthogonal space-time
block coding (OSTBC) into PMod MIMO-LMS commu-
nications to achieve a high spatial diversity. In [17], a
novel multi-dimensional PMod scheme was proposed by
employing the 3-D constellations, rather than the classic
approach of 2-D. In [18], the PMod scheme was combined
with the directional polarization modulation method to
enhance the transmission security in MIMO-LMS commu-
nications.

Most recently, the concept of index modulation (IM),
i.e., spatial modulation (SM)-MIMO, has been applied to
dual-polarized satellite MIMO systems [19], [20]. Specifi-
cally, in [19], the polarization domain was used to represent
information and only a single polarized antenna was acti-
vated in each time slot. It is shown in [19] that the pro-
posed polarized modulation (PM) is capable of avoiding
cross polarization interference (CPI) and mitigating the
possibility of inter-beam interference. [20] further present-
ed two SM schemes for dual-polarized MIMO-LMS sys-
tems, namely generalized polarized modulation (GPMod)
and polarized spatial modulation (PMod-SM), aiming at
circumventing the CPI while maintaining a high transmit
rate. Moreover, in [21], a novel multi-domain modula-
tion architecture was proposed, where the polarization
dimension was added to conventional SM mappings, by
considering the generalized spatially correlated Rayleigh
and Rician fading channel models. A novel PMod scheme,
namely dual-polarized spatial media-based modulation
was proposed in [22], which combines the benefits of the
media-based modulation (MBM), spatial modulation (S-
M), and dual-polarized (DP) antennas. Among the promis-
ing PMod design alternatives for MIMO-LMS communica-
tions, the enhanced spatial modulation (ESM) techniques
constitute an attractive multi-dimensional PMod regime
[23], which extends the conventional SM by introducing
a series of signal constellations and uses antenna indices
and multiple signal constellations to transfer information.
In ESM, the properly designed primary and secondary
constellations bring an improvement of BER performance
compared to conventional SM-based designs. To the best
of our knowledge, none of the existing studies on ESM for
MIMO-LMS communications have been reported.

Power allocation (PA) is a common method of enhanc-
ing system performance in MIMO systems, while providing
the flexibility to allocate power resources based on the
available channel information. Recently, various PA algo-
rithms were proposed for the SM-based communication
systems. For example, [24] proposed two PA algorithms for
receive spatial modulation (RSM) MIMO systems, which
are designed based on the error vector reduction (EVR)
method and iterative optimization algorithm, respectively.
In [25], the PA algorithm was combined with the trans-
mit antenna selection algorithm for SM, where the deep
neural networks (DNN) was employed as the problem

solver. Compared to these link adaption algorithms, recent
studies have shown that reconfigurable intelligent surfaces
(RIS) can accurately control the communication propa-
gation environment to greatly enhance signal quality at
the receiver [26]–[28]. RIS is an artificial electromagnetic
surface that can change the phases, amplitudes, and po-
larizations of propagation signals. This technology advo-
cates the concept of “smart radio environments”, which
is distinctively different from the current uncontrolled
communication environment. RIS is widely conceived as a
potential technology for enhanced communication systems
in 6G.

Against the above background, we summarize the main
contributions of this paper as follows:

1) We introduce the ESM technology into the dual-
polarized dual-satellite MIMO-LMS communication
systems, and propose a novel PMod scheme, namely
generalized polarized enhanced spatial modulation
(GPESM). To reduce the CPI, the two transmitting
antennas of the two satellites choose as different po-
larization methods as possible. This means that only
one antenna with one polarization per time slot is
selected to transmit the signal or two antennas with
different polarizations are selected to transmit the
signal. Meanwhile, the theoretical upper bound for
average bit error probability (ABEP) of the proposed
GPESM scheme is derived. Simulation results have
verified the advantages of GPESM.

2) In order to further improve the reliability of the
GPESM scheme, we propose two PA methods for
GPESM, which are based on optimization-driven ap-
proximated maximum minimum distance (AMMD)
and data-driven DNN, respectively. We provide BER
performance and complexity comparison for these
two PA methods.

3) To maximize the use of the freedom provided by RIS,
we introduce a novel GPESM transmission scheme
for dual-polarized MIMO-LMS communications. In
our proposed scheme, the RIS takes discrete ampli-
tude and phase values from a fixed set of reflec-
tion parameters, which does not need to know the
transmitter information. Moreover, we also apply
the proposed two PA algorithms to the RIS-assisted
GPESM systems. Numerical results show that the
proposed RIS-assisted GPESM systems are capable
of achieving considerable performance gains (up to
10 dB) compared to conventional GPESM systems.

The organization of this paper is as follows: The s-
tatistical dual-polarized LMS MIMO channel model is
presented in Section II. In Section III, the concepts of
GPMod and GPESM are introduced, and the maximum-
likelihood (ML) detection and BER performance analysis
are also provided. Two PA strategies for GPESM and RIS-
assisted GPESM schemes are provided in Section IV. The
simulation results and BER performances are presented in
Section V. Section VI concludes this paper.

Notation: Boldface capital and lowercase symbols rep-
resent matrices and column vectors, respectively. The (·)T
and (·)H operations represent transpose and Hermitian
transpose, respectively. The real number field is repre-
sented by R. The complex number field is represented by
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C. real(·) is the real-part operator. ∥ · ∥ stands for the
Frobenius norm. diag{·} refers to the diagonal operation.
Tr(·) returns the trace of a square matrix. E(·) represents
the expectation operator. vec(·) refers to the vectorization
of a matrix, which is a linear transformation of converting
the matrix into a column vector. Q(·) is the Q-function.
Pb(·) denotes the average bit error probability operator.
P (·) denotes the probability operator. ⊙ represents the
Hadamard product. d(·) is Hamming distance. D(·) is
minimum squared Euclidian distance.

II. Statistical Dual-Polarized LMS MIMO
Channel Model

In this paper, MIMO LMS channel scenarios are consid-
ered, where a single satellite uses a dual circularly polar-
ized antenna with a right- and left-hand circular polarized
(R/LHCP) element and the mobile user terminal (UT) is
also fitted with a similar dual circularly polarized antenna.
We stipulate Nt = 1 and Nr = 1 in the transceiver system
of a single dual circular polarized antenna. Since each dual
circularly polarized antenna has two polarization modes,
the transceiver system of a single dual circularly polarized
antenna can be regarded as a 2× 2 MIMO system. For each
dual-polarized MIMO LMS channel (each transmitter to
receiver link), it can be modeled by a 2× 2 MIMO channel
matrix H = [hi j ] (i, j = 1, 2), where hi j (i, j = 1, 2)
represent the fading components of the SISO LMS sub-
channel formed between the transmit and receive sides,
which incorporate both the large-scale fading effects and
the small-scale fading effects. Under these assumptions,
each LMS MIMO channel can be expressed as

H = [hi j ] =
√

K
1+K [h̄i j ] +

√
1

1+K [h̃i j ]

=
√

K
1+K H̄ +

√
1

1+K H̃,
(1)

where K is the Rician factor, H̄ and H̃ are the static line-
of-sight (LOS) component and the variable non-LOS com-
ponent, respectively. In (1), the elements of the channel
matrix H can be expressed as

hi j = |hi ,j | exp(jϕi j)
=
√

K
1+K |hi, j | exp(jϕi j) +

√
1

1+K |h̃i, j | exp(jϕ̃i j),
(2)

where the phases ϕ̄i j and ϕ̃i j are uniformly distributed
over the range of [0, 2π], while the magnitudes |h̄i, j |
are log-normally distributed determined by specific dis-
tribution parameters (α, ψ) (α is the mean and ψ is
the standard deviation) and the magnitudes |h̃i, j | are
Rayleigh distributed with the multipath power parame-
ter ω. Different environments, polarizations and elevation
angles θ are capable of affecting the values of (α, ψ, ω). In
general, for some classic models, these parameters can be
selected based on the experimental results given in [15].

In 2×2 dual-polarized LMS MIMO systems, as shown in
Fig. 1 (a), the spatial correlation of the large scale fading
component H̄ is given by

vec(H̄) = 10[vec(H̄w)·(ψ/20)·C̄1 /2+(α/20)], (3)

where H̄w is the 2 × 2 channel matrix with spatial uncor-
related, identically distributed, circularly symmetric com-
plex Gaussian elements of zero mean and unit variance and

C̄ is the 4 × 4 positive semi-definite Hermitian covariance
matrix of large scale fading components.

On the other hand, the spatial correlation of small scale
fading component H̃ is generated as [34]

H̃ = R̃1/2
rx · H̃w ·R1/2

tx , (4)

where H̃w is the 2 × 2 channel matrix with spatial un-
correlated, identically distributed, circularly symmetric
complex Gaussian elements of zero mean and ω variance.
R̃rx and R̃tx denote the receive covariance matrix and
transmit covariance matrix, respectively. R̃rx and R̃tx can
be expressed as

R̃rx = E[H̃HH̃]

= ω ·
[

1 2ρ̃rx
√

(1 − γ)γ
2ρ̃rx

√
(1 − γ)γ 1

]
,

(5)

R̃tx = E[H̃HH̃]

= ω ·
[

1 2ρ̃tx
√

(1 − γ)γ
2ρ̃tx

√
(1 − γ)γ 1

]
,

(6)

where ρ̃rx and ρ̃tx are the small-scale polarization corre-
lation coefficients at the receiver and transmitter, respec-
tively. The value of γ can be formulated as

γ = βant(1 − βenv) + (1 − βant)βenv, (7)

where ωant = 10log10[(1 − βant)/βant] is the cross-polar
discrimination of transmit antennas (TA) and ωenv =
10log10[(1 − βenv)/βenv] is the cross-polar coupling in the
transmission environment. In general, the ranges of the
parameters βant and βenv are [0, 1] and their suitable values
depend on ωant and ωenv.

Note that based on the model given in (1)-(7), when
multiple satellites (such the system shown in Fig. 1 (b))
are considered, the LMS channel matrix H, can be further
defined as

H = [H1 · · · HN ], (8)

where Hk , k = 1, · · ·, N is the independent 2 × 2 channel
matrix from the kth satellite to the user terminal.

III. System Model
A. GPMod Preview

In the GPMod structure, M1 + M2 bits are sent over
one GPMod symbol, where the first M1 bits are utilized
to select a specific PSK/QAM constellation point, while
the remaining M2 bits are used to select the specific
polarizations of the transmit antennas (For dual-polarized
LMS systems, each transmit antenna has two states). For
example, for the dual-polarized two-antenna (Nt = 2 and
Nr = 1) LMS-MIMO system with BPSK modulation,
the number of bits conveyed by each GPMod symbol is
log2(2Nt) + log2(2) = 3. All possible three-bit combina-
tions {000, 001, 010, 011, 100, 101, 110, 111} are mapped to
the indices of transmit antenna polarization (i.e., LHCP
or RHCP) and to the BPSK constellation {+1,−1}, e.g.
the LHCP state of the first TA is activated to transmit
the BPSK constellation point “-1”, when the input bits
are {000}.

According to the above concept, the general system
model of GPMod can be formulated by

y = Hcs+ n, (9)
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Fig. 1. Dual-polarized LMS MIMO system.

TABLE I
GPMod mapping rule for 3 bits/s/Hz transmission using BPSK for dual polarized dual satellite systems, where “X”

denotes one bit conveyed by PSK symbols.

Transmit bits Satellite1-LHCP Satellite1-RHCP Satellite2-LHCP Satellite2-RHCP
X00 BPSK 0 BPSK 0
X01 BPSK 0 0 BPSK
X10 0 BPSK BPSK 0
X11 0 BPSK 0 BPSK

where y ∈ C2Nr × 1 is the received signal, H ∈ C2Nr × 2Nt

is the dual-polarized MIMO-LMS channel matrix, and
c ∈ R2Nt×1 is the transmit signal matrix (namely state
active matrix) corresponding to the selection of the trans-
mit antenna polarization, which can be given by

c =


1 − c1
c1

1 − c2
c2

 , (10)

where the legitimate values of c1 and c2 are in the binary
set of {0, 1}. In (9), s is the transmitted PSK/QAM
constellation point and n ∈ C2Nr × 1 is the zero mean
vector of additive complex Gaussian noise (AWGN) with
i.i.d. elements and variance of σ2. Thus, when the total
number of transmit antennas is two, i.e., for the case of one
satellite having two TAs or two satellites equipped with a
single TA, the system model can also be re-formulated to

[
y1
y2

]
=
[
h11 h12 h13 h14
h21 h22 h23 h24

] 
1 − c1
c1

1 − c2
c2

 s+
[
n1
n2

]
.

(11)
where y1 and y2 are the elements of y, n1 and n2 are
the elements of n, while hi,j , i = 1, 2, j = 1, 2, 3, 4 are the
elements of the channel matrix H. The mapping rule of
GPMod scheme for dual-satellite system is shown in Table
I.

B. GPESM System Model
In this subsection, we introduce the ESM concept to

the above GPMod system. Let us use a 4 × 2 dual-
polarized MIMO system shown in Fig. 1 (b) for example,

where we have a total of Nt = 2 transmit antennas and
Nr = 1 receive antenna. As noted in [23], the number
of the active TAs can be one or two in ESM-MIMO.
Specifically, when only one TA is active, only a single
symbol from the primary signal constellation (such as
QPSK) is transmitted, while when two TAs are active,
two data symbols from the secondary constellation (such
as BPSK) are transmitted simultaneously in parallel. In
ESM-MIMO, the transmission with two active TAs leads
to a rate increase and the numerical simulation and exper-
imental results have confirmed the BER benefits of ESM
compared to other SM-type schemes, e.g., the conventional
SM and the generalized SM (GSM).

In the received symbol vector y ∈ C2Nr × 1 at each
instant transmission can be expressed as

y = H Bs︸︷︷︸
x

+n, (12)

where H ∈ C2Nr × 2Nt is dual-polarized MIMO LMS
channel matrix, B is the transmit antenna polarization
selection matrix similar to (10), and s ∈ C2Nt × 1 is the
transmit ESM symbol vector. For example, for two anten-
nas and QPSK as primary modulation, the transmitted
ESM symbol vector is of the form:

s ∈
{[

C4
0

]
,

[
0
C4

]
,

[
B0

2
B0

2

]
,

[
B1

2
B1

2

]}
, (13)

where C4 denotes the QPSK signal constellation used
as primary constellation, and B0

2 and B1
2 represent t-

wo secondary BPSK constellation given by B0
2 ∈ {±1}

and B1
2 ∈ {±i}. In (12), we have the equivalent trans-

mit symbol x = Bs, whose elements implicitly containing
satellite indices, polarization mode and modulated sym-
bols. Moreover, in (12) n ∈ C2Nr × 1 is the zero mean
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vector of AWGN with i.i.d. elements and variance of
σ2. The total transmitting power is normalized to one
(i.e., T r(E[xHx]) = 1). Similar to (11), the received signal
can also be expressed as[

y1
y2

]
=
[
h11 h12 h13 h14
h21 h22 h23 h24

]
x +

[
n1
n2

]
. (14)

Taking the dual-satellite system and QPSK as primary
modulation as an example, the transceiver structure of
GPESM is shown as Fig. 2.

Note that when two transmit antennas choose the
same polarization mode simultaneously for transmission,
the cross-polarization interference will be introduced [20].
Thus, these cases are removed in the structure presented.
Each symbol contains 5 bits, where the two bits are
4QAM modulation bits and the last three are used to
select a combination of ESM symbols containing satellite
indices, polarization mode and modulation information.
More specifically, the mapping rule of GPESM scheme for
dual-satellite system is shown in Table II. Based on the
mapping rule given in Table II, the transmitted GPESM
symbol vector can be expressed as

C. ML Detection and BER Performance Analysis
Assuming that the system’s transmission rate is m

bits/s/Hz. At the receiver, the transmitted bit steam is
reconstructed by jointly detecting the conventional mod-
ulated symbol, the satellite indices and the polarization
mode (LHCP or RHCP). Based on the system model given
in (12), the optimal 3-D maximum-likelihood detector for
the proposed GPESM scheme can be given by

(u, v)M L = arg max
u,v

fY (y|x,H)

= arg min
u,v

D (y,huxv) ,
(15)

where fY (y|x,H) is the conditional probability density
function for (12), xv is the v−th element of the transmit-
ting signal codebook S for v = 1, · · · , 2m and hu indicates
which column or columns of H the xv corresponds to.
For example, in Table II, corresponding to each transmit
vector x = Bs, hu can be given by

hu ∈ {[h1], [h2], [h3], [h4], [h1h4], [h2h3]} , for u = 1, ···, 6.
(16)

Moreover, in (15), D (y,huxv) is the minimum squared
Euclidian distance between the received vector y and
huxv, which is given by

D (y,huxv) = ∥huxv∥2 − 2Re
{

yHhuxv
}
. (17)

According to the theory of union bound [35], the BER
upper bound of the proposed GPESM is given by

Pb ≤ 1
m 2m

2m∑
i=1

2m∑
j=1
j ̸=i

d(xi,xj)P (xi → xj), (18)

where d(xi,xj) is the Hamming distance between xi and
xj . P (xi → xj) is the average pairwise error probability
(APEP), which is formulated as

P (xi → xj)=Q

√ ||H(xi − xj)||2
2N0

 . (19)

Considering that Q(x) = 1
π

∫ π/2
0 exp(−x2/2sin2θ)dθ,

thus

P (xi → xj) = E

{
1
π

∫ π/2

0
exp(−||H(xi − xj)||2

4N0sin2θ
)dθ

}
.

(20)
Using the moment generating function (MGF) approach

[20], the unconditional APEP is obtained as in (21), where
ki,j is the rank of the distance matrix (xi−xj)(xi − xj)H ,
and the λi,j,1,···,λi,j,ki,j are the no-zero eigenvalues of (xi−
xj)(xi − xj)H .

Averaging (21) over the channel matrix H, the APEP is
obtained as in (22), where K is the Rician factor.

IV. Reliability Improvement Technology For
GPESM

To better improve the reliability of the GPESM system,
we first apply the optimization-driven AMMD-based PA
approach. Then, considering that there may be no per-
fect channel state information (CSI) in practice and the
complexity of the conventional PA approach is too high,
we apply the data-driven DNN-based PA approach to the
system. As a potential new technology, we also consider
to use RIS to assist the GPESM system so as to further
enhance the system reliability.

A. AMMD-Based PA Aided GPESM
By adding the power diagonal matrix P ∈ R2Nt×2Nt ,

which is given by
P = diag(p)

=


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · p2Nt

 , (23)

where p = {p1, · · ·, pq, · · ·, p2Nt}T represents the pow-
er vector at the transmitter and its elements satisfy∑2Nt

q=1 p
2
q = PT (PT is the total power constraint), the re-

ceived signal of the PA-aided GPESM can be re-expressed
as

y = HPx + n, (24)

where y ∈ C2Nr × 1 denotes the received signal vector,
H ∈ C2Nr × 2Nt denotes the channel matrix, x ∈ C2Nt × 1

denotes the transmit GPESM symbol vector, and n ∈
C2Nr × 1 is the zero mean vector of AWGN with i.i.d.
elements and variance of σ2.

At the receiver, the ML detector is formed as

x̃ = arg min
x∈S

||y − HPx||2. (25)

By the theory of nearest neighbor bound, the APEP of
our PA-aided GPESM is approximated to

P (xi → xj) ≈ λ ·Q
(

1
2N0

dmin (p)
)
, (26)

where Q (·) denotes the Q-function, λ is the number
of neighbor constellation, and dmin (p) is the minimum
squared Euclidian distance between two GPESM symbols
xi and xj , which can be obtained by

dmin(p) = min
∀i,j,
i ̸=j

di,j(p) = min
xi,xj∈S,
xi ̸=xj

||HP(xi − xj)||2. (27)
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Fig. 2. The transceiver structure of the proposed GPESM scheme.

x = Bs ∈



C4
0
0
0

 ,


0
C4
0
0

 ,


0
0
C4
0

 ,


0
0
0
C4

 ,

B0

2
0
0
B0

2

 ,


0
B0

2
B0

2
0

 ,

B1

2
0
0
B1

2

 ,


0
B1

2
B1

2
0


 .

TABLE II
GPESM mapping rule for 5 bits/s/Hz transmission using QPSK for dual polarized dual satellite systems, where “XX”

denotes two bits conveyed by PSK symbols.

Transmit bits Satellite1-LHCP Satellite1-RHCP Satellite2-LHCP Satellite2-RHCP
000XX C4 0 0 0
001XX 0 C4 0 0
010XX 0 0 C4 0
011XX 0 0 0 C4
100XX B0

2 0 0 B0
2

101XX 0 B0
2 B0

2 0
110XX B1

2 0 0 B1
2

111XX 0 B1
2 B1

2 0

Since the error bits mainly occur in the nearest neigh-
bors, the maximization of dmin (p) is capable of reducing
the probability of error events, especially at high signal-
to-noise ratio (SNR) regions. Based on this observation,
thus we can formulated the PA algorithm to improve the
BER of the proposed GPESM as the following maximum
minimum distance (MMD) problem

max
p

dmin (p) ,
s.t. ||p||2 ≤ PT .

(28)

To solve this optimization problem, we can first transform

the objective function di,j (p) to a simple form, given by

di,j (p) = ∥HP(xi − xj)∥2

= (xi − xj)HPHHHHP(xi − xj)
= Tr(PHHHHP(xi − xj)(xi − xj)H)

= pH
(

HHH ⊙
(

(xi − xj)(xi − xj)H
))

p

= pHRijp,

(29)

where Rij = HHH ⊙
[
(xi − xj) (xi − xj)H

]
. Based on

(29), the challenging optimization problem (28) can be

P (xi → xj) = 1
π

∫ π/2

0

(
1

1 + λi,j,1
4N0sin2θ

)2Nr

×

(
1

1 + λi,j,2
4N0sin2θ

)2Nr

× · · ·×

 1

1 + λi,j,ki,j

4N0sin2θ

2Nr

dθ, (21)

P (xi → xj) = 1
π

∫ π/2

0

{
(1 +K)sin2θ

(1 +K)sin2θ + λi,j,1
exp[− Kλi,j,1

(1 +K)sin2θ + λi,j,1
]
}2Nr

×{
(1 +K)sin2θ

(1 +K)sin2θ + λi,j,2
exp[− Kλi,j,2

(1 +K)sin2θ + λi,j,2
]
}2Nr

× · · ·

×
{

(1 +K)sin2θ

(1 +K)sin2θ + λi,j,ki,j

exp
[
−

Kλi,j,ki,j

(1 +K)sin2θ + λi,j,ki,j

]}2Nr

dθ.

(22)
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Algorithm 1 Proposed AMMD-based PA Algorithm
Input: Initialize pα = p0 = I2Nt×1, ε = 0.01, k = 1
Output: pk+1

Step1: pk = pα;
Step2: Solve the problem by the interior point method
to get pk+1;
Step3: pk = pk+1;
Step4: k = k + 1.
Repeat Step2 to Step4
Until ∥pk+1 − pk∥ ≤ ε
Return result

simplified to

max
p

min pHRijp ∀i, j, i ̸= j

s.t. ∥p∥2 ≤ PT .
(30)

To solve this QCQP problem given in (30), we can in-
troduce the auxiliary scalar variable t and the AMMD
problem is finally given by [33]

max
p

t

s.t. Re
{

2pHk Rijp − pHk Rijpk
}

≥ t, ∀i, j, i ̸= j
||p||2 ≤ PT .

(31)

Since Re
{

2pHk Rijp − pHk Rijpk
}

is an affine function of p,
(31) is a convex problem. Therefore, the AMMD problem
can be solved by classic convex solvers. The procedure of
the AMMD-based PA method is detailed in Algorithm 1.

B. DNN-Based PA Aided GPESM
In this section, compared to the above optimization-

driven PA algorithm, we introduce the concept of machine
learning to carry out the PA matrix optimization, since
it have been viewed as a key enabler for beyond 5G
communications. Specifically, a feed-forward DNN based
multi-label classifier is proposed for PA-aided GPESM,
since DNN is an important branch in machine learning
and is a promising and powerful tool for optimization.

Unlike the AMMD method, we need to generate a PA
codebook beforehand in DNN-based PA algorithm, which
is available to both the transmitter and receiver before
transmission. Let Pp be the codebook for the DNN-based
PA-aided GPESM scheme, which is given by

Pp= {P1, · · ·,Pq, · · ·,PQ} , (32)

where Q is the total number of selection candidates.
Similar to the AMMD method, the optimization problem
is also maximum the minimum squared Euclidian distance
between two GPESM symbols.

Based on (32) and (27), the PA matrix optimization
problem can be considered as a classification problem,
which can be efficiently solved by using DNN architecture.
To be specific, in general, we can consider to steps in DNN
for this problem, namely the training step and the learning
step. The specific procedures of the training step include
the training data generation, the feature vector extraction,
the key performance indicator (KPI) design and labeling.
Next, we briefly introduce these procedures as follows:

1) Training Data Generation: In DNN, we can directly
use the channel matrices to train the neural network

nodes. For this propose, a set of training data can be
generated by M random channel matrices Hm,m =
1, ···,M based on the channel model given in (1)-(7),
i.e.,

H =
{

H1,H2, · · ·,Hm, · · ·,HM
}
. (33)

2) Feature Vector Extraction: For achieving better
training performance and fast convergence, we joint
consider the modulus (i.e., (hmi )Hhmi , i = 1 · · · , Nt)
and correlations (i.e., (hmi )Hhmj , i ̸= j) of channel
vectors, which determine the BER performance of
the conventional PSK/QAM bits and the error per-
formance of the bits mapped to the satellite indices
and the polarization mode, respectively. Specifically,
we consider the following feature vector

f=
[
|(hm1 )Hhm1 |,· · ·, |(hmi )Hhmj |, |(hm2Nt

)Hhm2Nt

]
,

(34)
where hi, i = 1, · · ·, Nt is the i-th column of H. to
avoid the bias problem in the learning phase, the
feature vector of (34) can be further normalized to,

f̃(n) = (f(n) − E[f ])/(max(f) − min(f)), (35)

where f(n) is the n-th element of the feature vector
f .

3) KPI Design: Similar to the PA algorithm introduced
in Section IV-A, we adopt the maximum value of
dmin in (27) all possible power candidates given in
(32) as the KPI, in order to improve the attainable
BER performance. Based on the KPI, we can classify
the training samples, i.e., the generated training
channel matrices, to different sets.

4) Labeling: In our design, each power candidate has its
index number. The labels for training matrices can
be calculated by following steps:
Step 1: Input the m-th training sample Hm, and
compute the KPI dmin for all possible power can-
didates Pp, p ∈ {1, · · ·, Q}.
Step 2: Obtain the power candidate Pq∗ with
the maximum dmin and its index label q∗, q∗ ∈
{1, · · ·, Q}. The index label of the final obtained
optimal power candidate is converted to one-hot
code, denoted as rc.
Step 3: Repeat Steps 1 and Steps 2 until all training
samples’ labels are found.

We consider DNN as a “black box” and utilize it to
explore the nonlinear mapping relationship between the
feature vector f and one-hot code rc. Once all the training
data is ready, assume that we have L layers in the feed-
forward DNN and the mapping relationship of the DNN
layers is given by

rLc=FL−1(FL−2(· · ·(F1(r0
c ; θ1), · · ·); θL−2); θL−1),

l = 1, · · ·, L,
(36)

where Fl(rl−1
c ; θl) = ∆(Wlrl−1

c + bl), l = 1, · · ·, L, and
rLc is the output vector through L iterative precessing
steps. In this paper, we employ the fully connected layers
and θl = {Wl,bl} , Wl and bl are the weight and bias
parameter vectors of l-th layer, and ∆(·) is an activation
function. In our design, we consider stochastic gradient
decent (SGD) as the optimization method and categorical
cross-entropy as the loss function. The procedure of the
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Algorithm 2 Proposed DNN-based Classification PA
Algorithm
Input: Training set: ftrain and rc−train, testing set: ftest

and rc−test, prediction set: fpred, power candidates set:
Pp, i = 1, epochs = 128, accuracy threshold: τ = 70%

Output: Pq∗−pred
Step1: Enter ftrain and rc−train into the initial DNN
network;
Step2: For 1 ≤ i ≤ epochs, update DNN network
parameters θk using SGD optimization method and
set i = i+ 1;
Step3: Get testing accuracy τc by entering ftest and
rc−test into DNN network;
Step4: If τc ≤ τ , change the number of nodes and
layers of the DNN network, then go to Step2; Others
go to Step5;
Step5: Enter fpred into the DNN network to get
rc−pred;
Step6: Get Pq∗−pred according to power candidates
set Pp and rc−pred.
Return result

Algorithm 3 Proposed DNN-based Regression PA Algo-
rithm
Input: Training set: ftrain and rr−train, prediction set:

fpred, i = 1, epochs = 128
Output: Pr−pred

Step1: Enter ftrain and rr−train into the initial DNN
network;
Step2: For 1 ≤ i ≤ epochs, update DNN network
parameters θk using Adam optimization method and
set i = i+ 1;
Step3: Enter fpred into the DNN network to get
rr−pred;
Step4: Get Pr−pred according to rr−pred.
Return result

DNN-based classification PA method is given in Algorithm
2.

In addition to this, the power allocation problem can
also be considered as a regression problem, due to the
continuity nature of the channel state information and
the allocated power. The difference between the regression
problem and the classification problem is that the training
output vector rr in the regression problem is the power set
derived by iterating using Algorithm 1. Suppose we have
obtained the power vector pr = {p1, · · ·, pq, · · ·, p2Nt}T ,
the first 2Nt elements of training output vector rr are 2Nt
power values in pr. Besides, rr also contains a sum of 2Nt
power values to satisfy the power constraint and increase
the estimation accuracy [36]. Therefore, rr is a vector of
2Nt + 1 columns. The input data of DNN in regression
problem is the same as that of classification problem.

Assuming that we also have L layers in the feed-forward
DNN, the mapping relationship of the DNN layers in
regression problem is similar to (36). We consider mean
square error as the loss function and Adam optimizer.
The procedure of the DNN-based regression PA method
is given in Algorithm 3.

User terminal

Satellite

HSD

HSR

HRD

RIS

Controller

Wireless control link

Fig. 3. The proposed RIS-assisted GPESM scheme.

C. RIS-Assisted GPESM System Model
Compared to PA algorithms, recent studies have shown

that reconfigurable intelligent surfaces can provide attrac-
tive performance improvements under various application
scenarios. In this paper, in order to achieve an enhanced s-
patial diversity gain, we consider to apply a reconfigurable
intelligent surface to the proposed GPESM system as a
relay to assist in transmitting information. To be specific,
we propose a RIS-assisted GPESM system depicted in Fig.
3, where the signal is sent by satellite and assisted by
RIS to mobile users. The number of units in each RIS is
set to be Ns. Although the current hardware designs only
contain discrete phase shifters [29], RIS with low resolution
and few units may appear in the future, which is suitable
for LMS scenarios. Therefore, we still assume that each
reflecting unit can reconstruct the phase and amplitude of
the incident signal via a software controller. According to
[30], RIS units are taken as a certain number of discrete
phase and module values. We denote the coefficients of the
RIS reflection unit by a vector, which is given by

v = [µ1e
jθ1 , µ2e

jθ2 , · · · , µNejθN ]T, (37)

where µk and θk are the reflection amplitude and phase of
the reflecting unit on the RIS, respectively [29]. Suppose
that

U =
{

0, 1
2Qα − 1

,
2

2Qα − 1
, · · · , 1

}
, (38)

G =
{

0, 2π
2Qθ

, · · · , 2π(2Qθ − 1)
2Qθ

}
, (39)

where U is the set of reflection amplitudes and G is the
set of reflection phases. 2Qα and 2Qθ denote the number
of legitimate reflection amplitudes and phases in each RIS
unit, respectively. Hence,

v[n] ∈ Φ =
{
µne

jθn |µn ∈ U, θn ∈ G
}
, n = 1, · · ·, Ns.

(40)
Based on the proposed GPESM system model given in

Section III-B, the received symbol vector y ∈ C2Nr × 1 of
the RIS-assisted GPESM can be formulated as

y = (HSD + HRDVHSR)x + n1, (41)

where HSD ∈ C2Nr × 2Nt , HRD ∈ C2Nr × Ns and HSR ∈
CNs × 2Nt denote the MIMO LMS channel matrices be-
tween satellite and UT, RIS and UT, satellite and RIS, re-
spectively. V = diag(v) denotes the diagonal matrix of v.
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x ∈ C2Nt × 1 is the GPESM symbol vector. n1 ∈ C2Nr × 1

is the zero mean vector of AWGN with i.i.d. elements and
variance of σ2.

In this paper, we consider exhaustively searching all the
values of v, and then find an optimal v∗, which equals to
the following problem

max
v∗

min
i ̸=j

∥(HSD + HRDVHSR)(xi − xj)∥2
, (42)

where xk is the k−th element of the transmit GPESM
signal codebook S for k = 1, · · · , 2m.

At the receiver, the ML detection is similar to (15),
which is formulated as

x̂ = arg min
x∈S

∥y − (HSD + HRDVHSR)x∥2
. (43)

Moreover, for the RIS-assisted GPESM system given in
(41), we can also employ the PA algorithm for achieving
further performance improvement and the detector can be
given by changing (43) to

x̂ = arg min
x∈S

∥y − (HSD + HRDVHSR)Px∥2
, (44)

where P = diag(p) = diag({p1, · · ·, pq, · · ·, p2Nt}T ).
According to (44), the conditional PEP is obtained as

P (xi → xj |H)

=Q

√ ||(HSD + HRDVHSR)P(xi − xj)||2
2N0

 .
(45)

From (45), it can be observed that the APEP of this
system depends on the design of v and P. Therefore,
our problem is translated to the design of the reflection
coefficients value of the RIS units and the precoding
power matrix to minimize the APEP of the system. By
maximizing minimum Euclidean distance criterion for the
design of v and P, our optimization problem can be
expressed as:

max
v,P

min
∀i ̸=j

{
||(HSD + HRDVHSR)P(xi − xj)||2

}
s.t. ||p||2 ≤ PT ,

v[n] ∈ Φ, n = 1, · · ·, NS .
(46)

For the sake of simplicity, we can employ the iteration
algorithm and our proposed PA algorithms to solve the
problem of (46). Specifically, let’s assume that we fix v
by using (42) in an iteration step and then update P.
Thus, the optimization problem in (46) is reduced to the
following question:

max
P

min
∀i ̸=j

{
||(HSD + HRDVHSR)P(xi − xj)||2

}
s.t. ||p||2 ≤ PT ,

(47)

It is noted that the above problem in (47) is identical to
that in (28). Later we can use the AMMD or DNN method
to get P. The procedure of the PA algorithm for RIS-
assisted GPESM system is given in Algorithm 3.

D. Complexity Comparison For Different Optimization
Algorithms For GPESM

By recalling the complexity order for solving
the MMD convex problem given in [33], the
complexity order of the AMMD-based PA algorithm
is O(8N2

tM
2Nr)+O(16N4

tM
4). By contrast, based on the

Algorithm 4 Proposed PA Algorithm for RIS-assisted
GPESM system
Input: Channel matrix HSD, HRD, HSR

Output: P
Step1: Fix v by using (42);
Step2: Use Algorithm 1 to solve problem (47) or use
Algorithm 2 or 3 to get P;
Return result
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Fig. 4. The BER performance comparison of the proposed GPESM
and GPMod schemes with different CPI.

model given in Section IV-B, most of the computation
of the DNN-based PA algorithm is consumed in the
generation of the training set. In particular, the training
set of the classification PA algorithm needs to exhaustively
search the pre-defined power sets under all channels to
find the optimal power set labels, and the training set
of the regression PA algorithm needs to use the AMMD-
based PA algorithm to derive the optimal assigned power
under all channels. If we assume that the training sets
have been generated, then the complexity order of the
DNN-based PA algorithm will be greatly reduced to
O(64N4

t + 4N2
t ) [25]. For RIS-assisted GPESM scheme,

there are 2Qa+Qθ possible values for the RIS unit and
(2Qa+Qθ )Ns possible candidate sets for RIS with Ns
units. Therefore, the complexity order of the RIS-assisted
GPESM is O(4(2Qa+Qθ )NsN2

tM
2).

In summary, the RIS method requires an exhaustive
search over (2Qa+Qθ )Ns candidate sets, and its complexity
order increases exponentially with increasing number of
Ns and quantization levels. The AMMD approach intro-
duces additional complexity during the computation of the
convex optimization problem, while the DNN method is
quite simple compared to it, when the training sets are
all generated. Table III is the complexity comparison for
different optimization algorithms for GPESM.

V. Simulation Results And Discussion
In this section, we apply the the LMS channel param-

eters in [14]. For GPESM and GPMod, the number of
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TABLE III
Comparison of complexity orders of different optimization algorithms for PA-GPESM chemes

PA-GPESM schemes Complexity order Configuration
(4 × 2, QPSK, Qα = 2, Qθ = 2, Ns = 3)

Proposed AMMD-based PA-GPESM O(8N2
t M2Nr)+O(16N4

t M4) 66048
Proposed DNN-based PA-GPESM O(64N4

t + 4N2
t ) 1088

Proposed RIS-assisted GPESM O(4(2Qa+Qθ )Ns N2
t M2) 1048576

TABLE IV
Layouts of the DNN structures

Classification Regression
Size Activation function Size Activation function

Input 16 Relu 16 -
Layer1(Dense) 32 Relu 32 Relu
Layer2(Dense) 32 Relu 32 Relu
Layer3(Dense) 64 Relu 64 Relu
Layer4(Dense) 32 Relu 32 Relu
Layer5(Dense) 32 Relu 16 Relu
Layer6(Dense) 16 Softmax 5 Relu
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Fig. 5. Simulation and theoretical performance comparison of the
proposed GPESM and GPMod schemes.

training data sets is 80000, the number of testing data
sets is 20000 and the number of power candidates is 16.
Layouts of the DNN structures are shown in Table IV.
Due to the performance of the simulation computer and
time constraints, we generate 1000 RIS channel matrices.
The number of realizations is 2 × 106 at each SNR. For
the sake of discussion, this paper only discusses the good
state cases in suburban areas for 4×2 dual polarized LMS
MIMO channel with dual satellites. Here, for comparison,
serval conventional schemes, such as the PMod-SM of [19]
and the GPMod of [20] are utilized as the benchmarkers.

In order to show that the proposed GPESM system is
resilient to CPI, we first compare the BER performance
of systems with different CPI in Fig. 4. First, the PMod-
SM with QPSK modulation in the Fig. 4 refers to the
structure in Table II where only the first four combinations
are selected. The transmit antenna activates only one
polarization at each moment to transmit the signal, thus
completely eliminating the CPI. We can see that PMod-
SM with QPSK modulation has a 3 dB BER performance
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Fig. 6. BER performance comparison of the proposed RIS-assisted
GPESM scheme with different numbers of reflection units.

gain than the GPMod with QPSK modulation. Then,
as shown in the Fig. 4, the proposed GPESM with 5
bpcu achieves nearly 6 dB gain over GPMod with 8PSK
at BER = 10−2, which demonstrates that the proposed
GPESM scheme not only mitigates the impact of CPI,
but also achieves the benefits of multiple constellation
ensembles. To further confirm the performance of the
proposed GPESM scheme, we also compare it with the
GPESM-CPI scheme, which refers to the GPESM scheme
with full CPI by replacing the first four combinations in
Table II with combinations that simultaneously activate
the same polarization in both satellites using multiple
signal constellations. In Fig. 4, the proposed GPESM
scheme still achieves 5 dB BER gain over the GPESM-CPI
scheme in the high SNR case. Moreover, the GPESM-CPI
with 5bpcu has almost the same performance as GPMod
with QPSK modulation, which proves the powerful benefit
of using multiple constellations on the other hand.

Fig. 5 provides the simulated and theoretical BER
performance curves for the GPESM and GPMod schemes.
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Fig. 8. BER performance comparison of the GPESM scheme with
DNN-based classification PA algorithm and regression PA algorithm.

As shown in the Fig. 5, the theoretical line becomes closer
to the simulation line as the SNR increases.

In Fig. 6, we compare the BER performance of RIS-
assisted GPESM schemes with different numbers of units.
For the sake of simplification, assume that RIS has perfect
known CSI for all channels and Qα = 2, Qθ = 2.
All RIS-assisted GPESM systems have substantial BER
performance gains compared to the standard GPESM.
In particular, the RIS-assisted GPESM with Ns = 5
has a BER performance gain of more than 10 dB when
SNR = 15 dB or more. From Fig. 6, it can be learned
that as the number of Ns increases, the better the BER
performance of the system will be.

To further enhance the reliability of the system, in
Fig. 7, we apply the AMMD-based PA algorithm to the
GPMod, GPESM and RIS-assisted GPESM systems. As-
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Fig. 9. BER performance comparison of the GPMod and GPESM
schemes with DNN-based PA algorithm.
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Fig. 10. BER performance comparison of the GPMod and GPESM
schemes with AMMD-based PA algorithm in the presence of CSI
errors.

sume that CSI is perfectly known at the transmitter and
Ns = 5. We can observe BER performance improvements
in all three systems after applying the AMMD-based PA
algorithm. In particular, GPMod with 8PSK modulation
achieves a gain of 6 dB at SNR = 12 dB. Overall, after
applying the AMMD-based PA algorithm, RIS-assisted
GPESM performs much better than GPESM and GPMod,
followed by GPESM and finally GPMod.

To explore whether classification or regression is more
appropriate when utilizing DNN for power allocation, we
compare the BER performance of the two method in the
GPESM with 5bpcu system in Fig. 8. From Fig. 8, it can
be found that the regression method consistently has a
better BER performance than the classification method
for SNR = 9 dB or more. At BER = 10−2, the regression
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Fig. 11. BER performance comparison of the GPMod and GPESM
schemes with DNN-based PA algorithm in the presence of CSI errors.

method has a 5 dB higher performance gain than the
classification method. We find that the accuracy of the
classification method is not good when a large number of
power combinations are preset. No matter how to adjust
the structure of DNN during simulation, the accuracy of
multi-category classification is bad, even less than 60%.
Therefore, the classification method of DNN cannot be
well applied in GPESM power allocation system. The ad-
vantages of the regression method are reflected in the fact
that the training set is generated by the AMMD method,
which has a higher KPI compared to the classification
method. Secondly, the regression method can better reflect
the continuity of channel information and allocated power,
and better reflect the mapping relationship between the
two. The DNN power allocation methods considered in
the subsequent articles are all regression method.

Fig. 9 shows a comparison of the BER performance
of GPMod, GPESM and RIS-assisted GPESM with the
DNN-based PA algorithm applied. Assume that CSI is
perfectly known at the transmitter and Ns = 3. Un-
der this algorithm, the crossover between GPMod and
GPESM schemes still occurs and GPESM can highlight
its own performance advantages for SNR = 15 dB or
more. Both systems perform better than the standard
GPESM and GPMod systems. However, the performance
of RIS-assisted GPESM with DNN-based PA is not as
good as RIS-assisted GPESM itself. It can be seen that the
power allocation with DNN will instead have a negative
impact on the RIS-assisted GPESM, which is a high
precision system. It is worth noting that our proposed RIS-
assisted GPESM with DNN-based PA still has better BER
performance than the other two systems with DNN-based
PA.

Fig. 10 and Fig. 11 show the BER performance of var-
ious GPESM schemes in the case of Gaussian-distributed
CSI errors, which is modelled as the zero mean vector of
AWGN with i.i.d. elements and variance of σ2

err. Assume
that the value of σ2

err decreases with SNR increasing and

Ns = 5 in Fig. 10 and Ns = 3 in Fig. 11. From Fig. 10
and Fig. 11, we can observe that the BER performance
of the RIS-assisted GPESM schemes drops very sharply
compared to the GPESM schemes in the presence of CSI
errors. We can also learn that RIS is very sensitive to CSI.
In the case of SNR ≤ 15 dB, the RIS-assisted GPESM
system does not have a great BER performance advantage,
which will instead cause a large computing overhead. With
SNR ≥ 20 dB, the RIS-assisted GPESM system still
performs well compared to other standard systems due
to the reduced CSI errors. In particular, the RIS-assisted
GPESM system has a similar performance to the AMMD
power allocation method in the presence of CSI errors in
Fig. 10. Considering that RIS has a higher overhead than
AMMD power allocation method, it is more suitable to
apply AMMD power allocation method directly in this
case. The difference in performance between the GPESM
system and the GPESM system with the addition of the
DNN power allocation method is also not significant in the
presence of CSI errors in Fig. 11.

VI. Conclusion
In this paper, a novel satellite scheme called GPESM has

been proposed for MIMO satellite communication systems.
Our simulation results show that GPESM or RIS-assisted
GPESM enjoys better BER performance than the conven-
tional GPMod scheme. In addition, we have also proposed
two PA strategies for GPESM, namely the AMMD-based
PA method and DNN-based PA method, where AMMD-
based PA method enjoys the best BER performance with
high complexity and DNN-based PA method is suboptimal
with low complexity. These two PA strategies have led to
improved BER performance compared to that of GPESM.
It is also noted that RIS-assisted GPESM is able to meet
or exceed the BER performance of PA-based GPESM
systems, thus demonstrating the reliability that RIS can
provide to the system. Considering both the BER versus
complexity trends, we conclude that the proposed RIS-
assisted GPESM with DNN-based PA method provides
an improved BER performance at a modest complexity
cost. In addition to this, we will investigate low-complexity
RIS algorithms in our subsequent work. Our future work
will also focus on more realistic channels and attempt to
combine the proposed scheme with a multi-UAVs system.

References
[1] L. Zhang, Y. Liang, and D. Niyato, “6G visions: Mobile ultra-

broadband, super internet-of-things, and artificial intelligence,”
China Commun., vol. 16, no. 8, pp. 1-14, Aug. 2019.

[2] M. Giordani and M. Zorzi, “Satellite communication at millime-
ter waves: A key enabler of the 6G era,” in IEEE International
Conference on Computing, Networking and Communications
(ICNC), Big Island, HI, USA, Feb. 2020, pp. 383-388.

[3] T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, and D. Zhang, “A
survey on green 6G network: Architecture and technologies,”
IEEE Access, vol. 7, pp. 175758-175768, Dec. 2019.

[4] P. Chini, G.Giambene, and S. Kota, “A survey on mobile
satellite systems,” Int. J. Commun. Syst. Network., vol. 28, no.
1, pp. 29-57, Jan. 2010.

[5] J. Wei and S. Cao, “Application of edge intelligent computing in
satellite internet of things,” in IEEE International Conference
on Smart Internet of Things (SmartIoT), Tianjin, China, Aug.
2019, pp. 85-91.

[6] P. D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P.
Cottis, and R. De Gaudenzi, “MIMO over satellite: A review,”
IEEE Commun. Surveys and Tuts., vol. 13, no. 1, pp. 27-51,
Mar. 2011.



IEEE 13

[7] R. T. Schwarz, A. Knopp, D. Ogermann, C.A. Hofmann, and
B. Lankl, “Optimum-capacity MIMO satellite link for fixed and
mobile services,” in 2008 International ITG Workshop on Smart
Antennas, Vienna, Austria, Feb. 2008, pp. 209-216.

[8] R.T. Schwarz, A. Knopp, B. Lankl, D. Ogermann, and C.A. Hof-
mann, “Optimum-capacity MIMO satellite broadcast system:
Conceptual design for LOS channels,” in 2008 4th Advanced
Satellite Mobile Systems, Bologna, Italy, Aug. 2008, pp. 60-65.

[9] C. I. Oh, S. H. Choi, D. I. Chang, and D.-G. Oh, “Analysis of the
rain fading channel and the system applying MIMO,” in 2006
International Symposium on Communications and Information
Technologies, Bangkok, Thailand, 2006, pp. 507-510.

[10] G. Alfano, A. De Maio, and A. M. Tulino, “A theoretical frame-
work for LMS MIMO communication systems performance anal-
ysis,” IEEE Trans. Inf. Theory., vol. 56, no. 11, pp. 5614-5630,
Nov. 2010.

[11] F. Lombardo, A. Vanelli-Coralli, E.A. Candreva, and G.E.
Corazza, “Multi-gateway interference cancellation techniques
for the return link of multi-beam broadband satellite systems,”
in 2012 IEEE Global Communications Conference (GLOBE-
COM), Anaheim, CA, 2012, pp. 3425-3430.

[12] P. King, Modeling and measurement of the land mobile satellite
MIMO radio propagation channel, Ph. D. dissertation, Univer-
sity of Surrey, UK, Jun. 2007.

[13] P. Henarejos and A. I. Perez-Neira, “Dual polarized modulation
and reception for next generation mobile satellite communica-
tions,” IEEE Trans. Commun., vol. 63, no. 10, pp. 3803-3812,
Oct. 2015.

[14] K. P. Liolis, J. G. Vilardebo, E. Casini, and A. P. Neira, “Sta-
tistical modeling of dual-polarized MIMO land mobile satellite
channels,” IEEE Trans. Commun., vol. 58, no. 11, pp. 3077-
3083, Sept. 2010.

[15] R. P. Cerdeira, F. Perez Fontan, P. Burzigotti, A. Bolea Ala-
manac, and I. Sanchez Lago, “Versatile two-state land mobile
satellite channel model with first application to DVB-SH analy-
sis,” Int. J. Satell. Commun. Netw., vol. 28, no. 5, pp. 291-315,
Dec. 2010.

[16] Y. Dhungana, N. Rajatheva, and C. Tellambura, “Dual hop
MIMO OSTBC for LMS communication,” IEEE Wireless Com-
mun. Lett., vol. 1, no. 2, pp. 105-108, Apr. 2012.

[17] P. Henarejos and A. I. Pĺęrez-Neira, “3-D polarized modulation:
System analysis and performance,” IEEE Trans. Commun., vol.
66, no. 11, pp. 5305-5316, Nov. 2018.

[18] Z. Luo, Z. Pei and B. Zou, “Directional polarization modulation
for secure dual-polarized satellite communication,” in 2019 In-
ternational Conference on Communications, Information Sys-
tem and Computer Engineering (CISCE), Haikou, China, 2019,
pp. 270-275.

[19] B. Zuo, K. Zhao, W. Li, and N. Zhang, “Polarized modulation
scheme for mobile satellite MIMO broadcasting,” in 2015 IEEE
International Wireless Symposium (IWS 2015), Shenzhen, Chi-
na, 2015, pp. 1-4.

[20] J. Zhu, P. Yang, Y. Xiao, M. Di Renzo, and S. Li, “Dual
polarized spatial modulation for land mobile satellite commu-
nications,” in 2018 IEEE Globecom Workshops (GC Wkshps),
Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1-6.

[21] G. Zafari, M. Koca and H. Sari, “Dual-polarized spatial modu-
lation over correlated fading channels,” IEEE Trans. Commun.,
vol. 65, no. 3, pp. 1336-1352, Mar. 2017.

[22] X. Chen, M. Wen, Q. Li, Y. Wu and T. A. Tsiftsis, “Dual-
polarized spatial media-based modulation,” IEEE J. Sel. Topics
Signal Process., vol. 13, no. 6, pp. 1258-1269, Oct. 2019.

[23] C. Cheng, H. Sari, S. Sezginer, and Y. T. Su, “Enhanced spatial
modulation with multiple signal constellations,” IEEE Trans.
Commun., vol. 63, no. 6, pp. 2237-2248, Jun. 2015.

[24] P. Yang, Y. Xiao, M. Xiao, J. Zhu, S. Li, and W. Xiang, “En-
hanced receive spatial modulation based on power allocation,”
IEEE J. Sel. Topics Signal Process., vol. 13, no. 6, pp. 1312-
1325, Oct. 2019.

[25] P. Yang, Y. Xiao, M. Xiao, Y. L. Guan, S. Li, and W. Xiang,
“Adaptive spatial modulation MIMO based on machine learn-
ing,” IEEE J. Sel. Areas Commun., vol. 37, no. 9, pp. 2117-2131,
Sept. 2019.

[26] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioanni-
dis, and I. Akyildiz, “A new wireless communication paradig-
m through software-controlled metasurfaces,” IEEE Commun.
Mag., vol. 56, no. 9, pp. 162-169, Sept. 2018.

[27] M. D. Renzo et al.,“Smart radio environments empowered by re-
configurable intelligent surfaces: How it works, state of research,
and road ahead,” IEEE J. Sel. Areas Commun., 2020, in press,
DoI: 10.1109/JSAC.2020.3007211.

[28] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini,
and R. Zhang, “Wireless communications through reconfig-
urable intelligent surfaces,” IEEE Access, vol. 7, pp. 116753-
116773, Aug. 2019.

[29] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent
reflecting surface aided wireless communicatiuons: A tutorial,”
arXiv preprint arXiv: 2007.02759, 2020.

[30] T. Hou, Y. Liu, Z. Song, X. Sun and Y. Chen, “MIMO-NOMA
networks relying on reconfigurable intelligent surface: A signal
cancellation-based design,” IEEE Trans. Commun., vol. 68, no.
11, pp. 6932-6944, Nov. 2020.

[31] E. Lagunas, S. K. Sharma, S. Maleki, S. Chatzinotas, and B.
Ottersten, “Resource allocation for cognitive satellite commu-
nications with incumbent terrestrial networks,” IEEE Trans.
Cogn. Commun. Netw., vol. 1, no. 3, pp. 305-317, Sept. 2015.

[32] Y. Ruan, Y. Li, C. Wang, R. Zhang, and H. Zhang, “Power
allocation in cognitive satellite-vehicular networks from energy-
spectral efficiency tradeoff perspective,” IEEE Trans. Cogn.
Commun. Netw., vol. 5, no. 2, pp. 318-329, Jun. 2019.

[33] M. Lee, W. Chung, and T. Lee, “Generalized precoder design
formulation and iterative algorithm for spatial modulation in
MIMO systems with CSIT,” IEEE Trans. Commun., vol. 63,
no. 4, pp. 1230-1244, Apr. 2015.

[34] D. S. Shiu, G. Foschini, M. Gans, and J. Kahn, “Fading cor-
relation and its effect on the capacity of multielement antenna
systems,” IEEE Trans. Commun., vol. 48, no. 3, pp. 502-513,
Mar. 2000.

[35] M. Di Renzo and H. Haas,“Bit error probability of SM-MIMO
over generalized fading channels” IEEE Trans. Veh. Technol.,
vol. 61, no. 3, pp. 1124-1144, Mar. 2012.

[36] L. Sanguinetti, A. Zappone and M. Debbah, “Deep learning
power allocation in massive MIMO,” in Proc. Asilomar Conf.
Signals, Syst., Comput., Pacific Grove, CA, USA, Oct. 2018,
pp. 1257-1261.

Liangxin Qian received his bachelor’s de-
gree in communication engineering in 2019
from the University of Electronic Science and
Technology of China, Chengdu, China, where
he is working toward the masterąŕs degree.
His research interests include multiple-input,
multiple-output, machine learning, and index
modulation technologies.

Ping Yang [M’13, SM’16] received the B.S.
(with first class Hons.), M.S. and Doctor of
Philosophy (Ph.D.) degrees from the Univer-
sity of Electronic Science and Technology of
China (UESTC), Sicuan, China, in 2006, 2009,
and 2013, respectively. From 2012 to 2013,
he was a visiting student at the School of
Electronics and Computer Science, Universi-
ty of Southampton, United Kingdom. From
2014 to 2016, he was a research fellow at the
School of Electrical and Electronic Engineer-

ing, Nanyang Technological University, Singapore. Currently, he is
a full professor at UESTC. His research interests include machine
learning, life science and communication signal processing. He has
authored over more than 100 papers in IEEE journals and conference
proceedings as well as a book “Spatial Modulation for Multiple
Antennas Systems”. Also, he holds 12 CN and 2 US patents and co-
authored another 20+ patent applications on 5G technologies and
machine learning. He has been Co-Chair /TPC member of several
IEEE top-tier conferences. He received Exemplary Reviewer of IEEE
Communications Letters and IEEE Transactions on Communications
in 2015 and 2020, respectively. He is currently an editor of IEEE
Communications Letters and Transactions on Emerging Telecom.
Technologies (Wiley). He was the Lead Guest Editor of IEEE JSTSP
and the Guest Editor of Frontiers in Communications and Networks.



IEEE 14

Yong Liang Guan received his Ph.D. de-
gree from the Imperial College of Science,
Technology and Medicine, University of Lon-
don, in 1997, and B.Eng. degree with first
class honors from the National University
of Singapore in 1991. He is now an asso-
ciate professor at the School of Electrical and
Electronic Engineering, Nanyang Technologi-
cal University. His research interests include
modulation, coding and signal processing for
communication, information security and stor-

age systems. The authorąŕs homepage is available online at http:
//www3.ntu.edu.sg/home/eylguan.

Zilong Liu is a Lecturer (Assistant Professor)
at the School of Computer Science and Elec-
tronics Engineering, University of Essex. He
received his PhD (2014) from School of Elec-
trical and Electronic Engineering, Nanyang
Technological University (NTU, Singapore),
Master Degree (2007) in the Department of
Electronic Engineering from Tsinghua Univer-
sity (China), and Bachelor Degree (2004) in
the School of Electronics and Information En-
gineering from Huazhong University of Science

and Technology (HUST, China). From Jan. 2018 to Nov. 2019, he
was a Senior Research Fellow at the Institute for Communication
Systems (ICS), Home of the 5G Innovation Centre (5GIC), University
of Surrey. Prior to his career in UK, he spent nine and half years
in NTU, first as a Research Associate (Jul. 2008 to Oct. 2014)
and then a Research Fellow (Nov. 2014 to Dec. 2017). His PhD
thesis “Perfect- and Quasi- Complementary Sequences”, focusing
on fundamental limits, algebraic constructions, and applications of
complementary sequences in wireless communications, has settled
a few long-standing open problems in the field. His research lies
in the interplay of coding, signal processing, and communications,
with a major objective of bridging theory and practice as much as
possible. Recently, he has developed an interest in applying machine
learning for wireless communications. He is a Senior Member of
IEEE and an Associate Editor of IEEE Wireless Communications
Letters, IEEE Access, Frontiers in Communications and Networks,
and Frontiers in Signal Processing. He is a General Co-Chair of
the 10th International Workshop on Signal Design and its Appli-
cations in Communications (IWSDA’2022) and a TPC Co-Chair
of the 2020 IEEE International Conference on Advanced Networks
and Telecommunications Systems (ATTS’2020). Besides, he was/is
a TPC member of a number of IEEE Conferences/Workshops (e.g.,
ICC, WCSP, GLOBECOM, ICCS, SETA). Details of his research can
be found at: https://sites.google.com/site/zilongliu2357.

Yue Xiao received a Ph.D degree in com-
munication and information systems from the
University of Electronic Science and Tech-
nology of China in 2007. He is now an full
professor at University of Electronic Science
and Technology of China. He has published
more than 80 international journals and been
involved in several projects in Chinese Beyond
3G Communication R&D Program. His re-
search interests are in the area of wireless and
mobile communications.
Ke Jiang received his B.E. degree (with first
class Hons.) in Communications Engineering
from the School of Computer Science of China
West Normal University (CWNU), Sichuan,
China in 2016, and MA.Eng degree in Digi-
tal and Communication Engineering from the
National Key Laboratory of Science and Tech-
nology on Communications of University of
Electronic Science and Technology of China
(UESTC), Sicuan, China in 2020. His research
interests are in the areas of signal processing,

signal detection, and performance analysis of MIMO-OFDM wireless
communications, index modulation technologies.

Ming Xiao (S’2002-M’2007-SM’2012) re-
ceived Bachelor and Master degrees in En-
gineering from the University of Electronic
Science and Technology of China, ChengDu in
1997 and 2002, respectively. He received Ph.D
degree from Chalmers University of technolo-
gy, Sweden in November 2007. From 1997 to
1999, he worked as a network and software
engineer in ChinaTelecom. From 2000 to 2002,
he also held a position in the SiChuan com-
munications administration. From November

2007 to now, he has been in the department of information science
and engineering, school of electrical engineering and computer sci-
ence, Royal Institute of Technology, Sweden, where he is currently
an Associate Professor. Since 2012, he was an Editor for IEEE
Transactions on Communications (2012-2017), IEEE Communica-
tions Letters (Senior Editor Since Jan. 2015) and IEEE Wireless
Communications Letters (2012-2016), and has been an Editor for
IEEE Transactions on Wireless Communications since 2018. He was
the lead Guest Editor for IEEE JSAC Special issue on “Millimeter
Wave Communications for future mobile networks” in 2017.


