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Finite-Length Performance Analysis of LDPC Coded
Continuous Phase Modulation

Md. Noor-A-Rahim, Zilong Liu, Yong Liang Guan, Lajos Hanzo

Abstract—Serial concatenation of LDPC codes and continuous
phase modulation (CPM) has recently gained significant attention
due to its capacity-approaching performance, efficient detection
as well as owing to its constant-envelope nature. Most of the
previous contributions on LDPC coded CPM were devoted to
the design of LDPC codes and their asymptotic performance
analysis. However, there is a paucity of work on the finite-
length performance estimation of LDPC coded CPM, primarily
because existing performance estimation techniques cannot be
readily applied to the LDPC coded CPM. To fill this gap, we
conceive an analytical bit error probability estimation technique
for finite-length LDPC coded CPM in the waterfall region.
Numerical results are provided both for regular and irregular
LDPC codes having different codeword lengths, demonstrating
that the estimated performances are closely matched by the
simulated ones.

Keywords—Low-density parity check (LDPC) code, Continuous
phase modulation (CPM), Density evolution, Waterfall region.

I. INTRODUCTION

Continuous phase modulation (CPM) is an attractive non-
linear modulation scheme whose signals exhibit constant en-
velope (i.e., high power efficiency) and tight spectrum con-
finement [1], [2]. Hence CPM has been used in many areas
such as military and satellite communications [3], the 2nd-
generation global system of mobile communications (GSM),
and in millimeter communications [4]. In most applications
CPM is serially concatenated with different channel codes
(e.g., convolutional codes and BCH codes) [6]. At the receiver,
typically iterative turbo decoding is used for exchanging soft
extrinsic information between the CPM (inner) decoder and
the channel (outer) decoder.

Low-density parity check (LDPC) codes are also eminently
suitable for concatenation with CPM as a benefit of their near-
capacity performance and efficient message-passing decod-
ing [7–9], given their superiority over other coding schemes.
Apart from simulations, the performance of LDPC coded CPM
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has also been evaluated for sufficiently long codewords using
EXIT charts [10] and density evolution [11]. However, their
finite-length performance has only been studied by Monte-
Carlo simulations. To elaborate a little further, the prediction of
finite-length behavior of LDPC codes was investigated in [12–
14], but most of them considered phase shift keying (PSK)
modulation. To the best of our knowledge, however, the finite-
length performance estimation of LDPC coded CPM has not
been considered before.

To fill this gap, we conceive a finite-length performance
estimation technique for LDPC-coded binary CPM schemes
in the waterfall region1 by exploiting the inherent properties
of CPM. In the impressive treatises of [13], [14] the pseudo-
random occurrence of errors was exploited for the associated
performance estimation. However, their techniques are not
applicable to our LDPC coded CPM scheme, which has dis-
tinctive turbo equalization properties owing to the intentional
intersymbol interference imposed by partial-response CPM.
Moreover, the performance prediction schemes of [13], [14]
are based on density evolution analysis, but density evolution
of LDPC coded CPM is not available in the open literature. We
will present simulation results for both regular and irregular
LDPC codes having different codeword lengths and then com-
pare them to the results obtained by the proposed estimation
algorithm. It is shown that the estimation algorithm conceived
closely matches the finite-length BER of LDPC coded CPM
schemes.

II. PRELIMINARIES

A. Low-Density Parity Check (LDPC) Codes

LDPC codes are often represented by their Tanner graph,
which consists of N variable nodes (N is also known as
the codeword length) and M check nodes. An LDPC code
is said to be (dv, dc)-regular, when each variable node has
dv edges to connect with check nodes and each check node
has dc edges to connect with the variable nodes. We refer
to dv as the variable node degree and dc as the check node
degree. By contrast, an LDPC code with non-uniform variable
node degrees and/or non-uniform check node degrees is known
as an irregular LDPC code. Formally, an LDPC code can be
characterized by the edge perspective degree distribution poly-
nomials λ(x) =

∑dvmax
i=2 λix

i−1 and ρ(x) =
∑dcmax
i=2 ρix

i−1,
where λi is the fraction of edges that are connected to degree
i variable nodes, ρi is the fraction of edges that are connected

1In general, the LDPC code’s bit error ratio (BER) curve can be divided into
two regions, namely the waterfall and the error-floor region. In the waterfall
region, the BER decreases rapidly, as the Signal-to-Noise Ratio (SNR) is
increased. By contrast, in the error floor region imposed by short cycles [11]
in the code’s structure, the BER only decays gracefully.
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to degree i check nodes and the maximum degrees of variable
and check nodes are denoted by dvmax and dcmax , respectively.
The code rate with these degree distributions is given by
R = 1−

∑
j ρj/j∑
j λj/j

.

Fig. 1. Structure of LDPC-coded CPM’s iterative receiver

B. LDPC-coded CPM Structure

Let x = [x0, x1, · · · , xK−1] be the message vector to be
coded, where K denotes the message length. After LDPC en-
coding, we obtain y = [y0, y1, · · · , yN−1] (where N = K/R)
which will be sent to a random interleaver (with size N ). By
applying the mapping operation of 1→ +1, 0→ −1 to y, the
input vector at the CPM modulator is I = [I0, I1, · · · , IN−1]
which leads to the CPM signal s(t) using the following
modulation method. Specifically, an equivalent lowpass binary
CPM waveform s(t) is expressed as s(t) = exp [iφ(t; I)],
where

φ(t; I) = 2πh

n∑
k=−∞

Ikψ(t− kT ), nT ≤ t ≤ (n+ 1)T, (1)

is the time-varying phase depending on the information se-
quence I = {Ik}nk=−∞ with Ik ∈ {−1, 1}, h is the modulation
index, and T is the symbol duration. The phase-shaping
waveform ψ(t) is defined as the integral of g(t), a frequency
pulse of duration LT , i.e., g(t) = 0 for t < 0 and t ≥ LT ,
where L is a positive integer. When L = 1, we have a full-
response CPM, and for L > 1, a partial-response CPM. After
passing through an AWGN channel, the received signal is
r(t) = s(t)+n(t), where n(t) is a circularly-symmetric white
Gaussian process with n(t) ∼ N (0, σ2

n), σ2
n = N0/2. The

CPM soft-input soft-output (SISO) decoder has two inputs,
namely the received signal r(t) and the a priori information of
the CPM symbols, i.e., β(Ik) = logP (Ik = +1)/P (Ik = −1)
for k = 0, 1, · · · , N − 1. In fact, β(Ik) is the interleaved
extrinsic information βExt(k) gleaned from the LDPC de-
coder. In this paper, the CPM decoder relies on the BCJR
algorithm [15] for maximum a posteriori (MAP) detection,
whereas the LDPC decoder employs the message-passing
based sum product algorithm (SPA). As seen from Fig. 1, the
LDPC SISO decoder only has one a priori input, namely the
deinterleaved extrinsic information from αExt(k), shown as
α(yk) = logP (yk = 1)/P (yk = 0) for k = 0, 1, · · · , N − 1.
Let us define r = [r0, r1, · · · , rN−1], where rk = {r(t) : kT ≤
t < (k + 1)T} and N is the total number of CPM symbols.
In addition to βExt(k) arriving from the LDPC SISO decoder,
we also obtain the a posteriori probability (APP) of xk as
β(xk|r) = logP (xk = 1|r)/P (xk = 0|r). After a number of
iterations the receiver will then carry out detection based on
the sign of β(xk|r).

Before we proceed to the next section, it should be pointed
out that there are two types of iterations in the iterative
LDPC-coded CPM receiver: internal iterations refers to the
SPA iterations in the LDPC decoder, whereas turbo iterations
refers to the iterations between the CPM detector and LDPC
decoder (as shown in Fig. 1). Albeit a higher computational
complexity is incurred compared to the non-iterative receiver,
turbo decoding leads to significantly improved error rate
performance and hence it has been widely used in many
communication scenarios where a low BER is desired (e.g.,
satellite communication channels with low SNR).

III. FINITE-LENGTH PERFORMANCE ESTIMATION

It is widely recognized that the per-codeword BER fluctuates
from codeword to codeword when the codeword length is
limited [13]. By exploiting this observation and taking into
account the properties of CPM, we now proceed to propose our
estimation technique to predict the finite-length performance
of LDPC coded binary CPM.

Since we consider unity signal power, the SNR Es/N0

solely depends on the standard deviation σn of the noise. For a
given SNR Es/N0 and codeword length of N , the procedure
to predict the BER of LDPC coded CPM is summarized in
Algorithm 1, where the following notations are used for a
sample value of noise standard deviation (s.d.) q:

• z
(Γ)
q is the mean of LLR passed from the CPM to

the LDPC decoder at turbo iteration Γ, i.e., z(Γ)
q =

E[α(yk)], where α(yk) is shown in Fig. 1.
• u

(Γ)
q is the mean of LLR passed from the LDPC decoder

to the CPM at turbo iteration Γ, i.e., u(Γ)
q = E[β(Ik)]

[see Fig. 1 for β(Ik)].
• V

(Γ,`)
q is the mean of LLR passed from the variable node

to the check node in the LDPC decoder at turbo iteration
Γ and internal iteration `.

• C
(Γ,`)
q is the mean of LLR passed from a check node

to a variable node of the LDPC decoder during a turbo
iteration Γ and internal iteration `.

• Pb|q is the asymptotic bit error probability returned by
the LDPC coded iterative CPM detector.

• δq is the bit error probability of CPM when the noise
s.d. is q.

Explanation of Algorithm 1: In Step 1, we first take samples
of the noise standard deviation (s.d.) from a feasible range, so
that the resultant SNR limits vary from very high to very low
values2. For each sample, we find the corresponding analytical
error probability of the CPM-LDPC decoder (Steps 2-6) for
a predefined maximum number of turbo iterations. At each
turbo iteration, we utilize the Gaussian approximated density

2Quantitatively, the samples of the noise standard deviation are obtained
from the range 0 to 5 relying on a sampling interval of 0.01.
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evolution3 technique [16] for evaluating the performance of
the LDPC decoding process, while assuming that the code
is cycle free. Although the Gaussian approximated density
evolution is a well established technique, there is no study in
the open literature on how to carry out density evolution for
LDPC coded CPM schemes, to the best of our knowledge.
In Steps 3-6, we exploit the properties of the CPM-LDPC
turbo-receiver in the density evolution update equations. To
initialize the density evolution in Step 3, we set the initial
mean LLR (equivalent to the channel output mean LLR used in
the traditional density evolution) equal to the mean LLR value,
which is a function of the sampled noise standard deviation and
the previous mean LLR obtained from the density evolution
(i.e., the mean LLR obtained from Step 5) using

z(Γ)
q = 2Q−1

[
PCPM

(
u(Γ−1)
q , q

)]
.

Since deriving an analytical expression of the error probability
PCPM(·) is an open challenge, PCPM(·) can be evaluated numer-
ically (please see Fig. 4). For a predefined maximum number
of LDPC decoding iterations and with the initial mean LLR,
we iteratively update the density evolution equations associated
with the variable nodes and the check nodes in Step 4. In Step
5, we calculate the LLR returned by the LDPC decoder (which
is used in Step 3) by considering all the edges connected
to the variable nodes. Once the maximum number of turbo
iterations is reached, we find the conditional error probability
(i.e., for a given sample of noise standard deviation assigned in
Step 2) in Step 6 by using the tail distribution function of the
normal distribution. To obtain the decoded error probability
at the target SNR, we marginalize all the conditional error
probabilities (obtained in Step 6) with appropriate distribution
of the observed bit error probability. As mentioned earlier, the
bit error probability observed varies from one codeword to
another for a finite codeword length. The distribution of the
bit error rate experienced in an AWGN channel may be readily
approximated by N (pc, pc(1− pc)/N) [13], where pc is the
probability of receiving a bit in error and N is the codeword
length. Thus, to marginalize the conditional error probabilities,
first we find pc for a given SNR Es/N0 (i.e., for a given σn)
in Step 7 and then perform marginalization in Step 8 to obtain
the BER at a given SNR.

Note that in this algorithm, an all-zero codeword is assumed
in the density evolution, while the performance of CPM is
evaluated using random input sequences.

3Since we aim for predicting the performance of finite-length LDPC coded
CPM schemes in the waterfall region (the region which is independent of
cycles in LDPC code), we consider the density evolution technique in the
proposed algorithm. Briefly, density evolution constitutes a popular analytical
tool of analysing the performance of iterative decoding of a particular code
ensemble assuming that the code ensemble is cycle-free. Density evolution
tracks the evolution of probability density functions (pdfs) of the messages
(that are exchanged between the variable and the check nodes) throughout the
decoding process and characterizes the decoding behaviour for a given code
ensemble. The rationale behind choosing the Gaussian approximated density
evolution technique is that it allows the tracking of the mean of LLR in the
evolution process instead of tracking the actual pdfs, and hence reduces the
computational complexity.

Algorithm 1 Finite-length performance estimation of LDPC
coded CPM
1: Take samples of noise standard deviation σn and repeat Steps 2-6 for

each sample.
2: For a sample q, repeat Steps 3-6 for a predefined maximum number of

turbo iteration Γm:
3: Find ztq from z

(Γ)
q = 2Q−1

(
PCPM

(
u

(Γ−1)
q , q

))
, where Q−1(·) is the

inverse Q-function with

Q(g) =
1

2π

∫ ∞
g

exp(−w2/2)dw

and PCPM(·) is a function that characterizes the SISO CPM demodulator
and returns the error probability based on the observation gleaned from
the channel with noise s.d. q and mean of LLR obtained from the LDPC
decoder. We initialize u(Γ)

q by u(0)
q = 0.

4: For ` = {1, 2, . . . , `m}, where `m is the maximum number of internal
iterations, compute V (Γ,`)

q and C(Γ,`)
q by the following recursive equa-

tion:

V
(Γ,`)
q =

dvmax∑
i=2

λi
(
z

(Γ)
q + (i− 1)C

(Γ,`−1)
q

)
,

C
(Γ,`)
q =

dcmax∑
j=2

ρjφ
−1

1−
(

1−
dvmax∑
i=2

λiφ
(
z

(Γ)
q +

(i− 1)C
(Γ,`−1)
q

))j−1
,

where y(Γ,0)
q = 0 and

φ(g) =

1− 1√
4πg

∫∞
−∞

(
tanh f

2

)
e
− (f−g)2

4g df, if g > 0

1, if g = 0

5: Find u(Γ)
q by

u
(Γ)
q = φ−1

 dvmax∑
i=2

viφ
(
z

(Γ)
q + (i− 1)C

(Γ,`m)
q

).
6: Compute the asymptotic bit error probability Pb|q by

Pb|q =

dvmax∑
i=2

viQ


√
z

(Γm)
q + (i− 1)C

(Γm,`m)
q

2

 ,

where vi =
λi/i∑
j λj/j

.

7: With realized noise variance σ2
n, find pc = PCPM(σn, 0).

8: Compute the bit error probability Pb =
∑
q Pr(δq)Pb|q , where δq =

PCPM(q, 0). Pr(δq) is obtained from the quantized approximation of the
Gaussian distribution N (pc, pc(1− pc)/N).

IV. VALIDATION OF ESTIMATED RESULTS

Let us now compare the results obtained from the pro-
posed estimation technique to the simulated results. We set
the codeword lengths to N = {500, 2000, 10000}. All the
codes were constructed using the progressive edge growth
(PEG) algorithm [17] and the girths were 4, 6, and 8 for the
codeword lengths of 500, 2000, and 10000, respectively. The
corresponding simulated and estimated results are compared
in Fig. 2 for regular LDPC codes. We show the results for the
LDPC codes ((2, 4) and (3, 6)) having a maximum of `m = 20
internal iterations and Γm = 10 turbo iterations. The binary
CPM with h = 1/2 and L = 1 (also called CFPSK) is con-
sidered. Note that all codes are randomly constructed and the
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Fig. 2. Simulated and estimated performance comparison for (2, 4) and
(3, 6)-regular LDPC coded CPFSK system.

results are averaged over 5000 transmission frames. Observe
the close match between the estimated and simulated results
in the waterfall region. However, the estimation results start
to deviate from the simulation results when the performance
curves approache the error floor region. However, estimation of
the error-floor region (caused by having short cycles) is beyond
the scope of this paper, which we might consider in our future
research. We also notice that the gap between the estimated
and simulated results reduces as the codeword length increases.
For example, we observe a gap of 0.2 dB at a BER of 10−4

for the (2, 4)-LDPC codes associated with N = 2000, while
the gap is reduced to less than 0.1 dB for N = 10000. This is
due to the fact that upon increasing the codeword length, the
number of short cycles is reduced. Note that for an LDPC-
coded PSK scheme, the (3, 6)-LDPC code performs better
than other rate-1/2 regular LDPC codes. By contrast, (2, 4)-
LDPC codes outperform all other rate-1/2 regular LDPC codes
concatenate with CPM schemes. In Fig. 3, we compare the
simulated and estimated performance of the irregular LDPC
codes presented in [18], while considering the GSM GMSK
scheme of (L = 3, BT = 0.3, h = 1/2). We show our perfor-
mance comparison for the rate R = 0.75 (degree distribution
pairs λ(x) = 0.496x + 0.083x11 + 0.198x12 + 0.223x49 and
ρ(x) = 0.4x13 + 0.6x14) and rate R = 0.333 (degree distri-
bution pairs λ(x) = 0.597x+ 0.142x8 + 0.085x9 + 0.176x49

and ρ(x) = 0.35x3 + 0.65x4). For two different codeword
lengths, the simulated and estimated performances are com-
pared. Similar to the regular LDPC codes, a close match is
observed between the simulated and estimated performances.
Our experiments show that the gap between the estimated
and simulated performance of LDPC coded CPM schemes is
slightly wider than for the LDPC-coded BPSK scheme [13].
This may be because the error probability of CPM is influenced
by many factors (e.g., modulation index, frequency pulse shape
and length, and the non-linearity of CPM) which makes the
performance prediction less tractable. Additionally, for low
variable node degrees, the Gaussian approximation slightly
loses its accuracy, and hence the prediction performance is

less accurate for such cases. Finally, Fig. 4 presents our
numerical simulations of PCPM (used in Step 3 of Algorithm
1), which is a function of the mean LLR and of the noise
s.d. q ∈ {0.75, 1.00, 1.25, 1.50, 1.75, 2.00} for both CPFSK
and GMSK. Note that deriving a closed-form expression for
PCPM is challenging, since it depends on numerous parameters,
such as the minimum Euclidean distance of CPM signals, the
number of turbo iterations, the interleaver size and the outer
code used (LDPC code in this paper). It is found that for a
fixed value of q, the PCPM in the function of the “mean of
LLR” for GMSK exhibits similar behavior to that of CPFSK.
Interestingly, when the “mean of LLR” is higher than 3, the
PCPM of GMSK is slightly better than that of CPFSK.
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Fig. 3. Simulated and estimated performance comparison for irregular LDPC
([18]) coded GMSK system.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

q: 0.75-->2

GMSK

CPFSK

Fig. 4. Numerical evaluation of PCPM as a function of mean of LLR and
noise s.d. q for both CPFSK and GMSK.

V. SUMMARY AND CONCLUSIONS

An LDPC-coded and turbo-detected CPM scheme was in-
vestigated. Explicitly, we have proposed an estimation algo-
rithm for predicting the finite-length performance of LDPC
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coded binary CPM schemes in the waterfall region. The results
obtained by our estimation technique have been confirmed by
the simulated results for different codes and different codeword
lengths. Our numerical results have demonstrated that the
proposed estimation technique accurately predicts the finite-
length performance of LDPC coded CPM schemes in the
waterfall region. We have also observed that the gap between
the estimation and simulation results reduces upon increasing
the codeword length.
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