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A Direct and Generalized Construction of
Polyphase Complementary Sets with Low PMEPR

and High Code-Rate for OFDM System
Palash Sarkar, Sudhan Majhi, and Zilong Liu

Abstract—A major drawback of orthogonal frequency divi-
sion multiplexing (OFDM) systems is their high peak-to-mean
envelope power ratio (PMEPR). The PMEPR problem can be
solved by adopting large codebooks consisting of complementary
sequences with low PMEPR. In this paper, we present a new
construction of polyphase complementary sets (CSs) using gen-
eralized Boolean functions (GBFs), which generalizes Schmidt’s
construction in 2007, Paterson’s construction in 2000 and Golay
complementary pairs (GCPs) given by Davis and Jedwab in
1999. Compared with Schmidt’s approach, our proposed CSs
lead to lower PMEPR with higher code-rate for sequences
constructed from higher-order (≥ 3) GBFs. We obtain polyphase
complementary sequences with maximum PMEPR of 2k+1 and
2k+2 − 2M where k,M are non-negative integers that can be
easily derived from the GBF associated with the CS.

Index Terms—Complementary set (CS), code-rate, Golay com-
plementar pair (GCP), generalized Boolean function (GBF),
orthogonal frequency-division multiplexing (OFDM), peak-to-
mean envelope power ratio (PMEPR), Reed-Muller (RM) code.

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) is a
multicarrier technique which has been widely used in many
high rate wireless communication standards such as Wire-
less Fidelity (Wi-Fi), Mobile Broadband Wireless Access
(MBWA), Worldwide Interoperability for Microwave Access
(WiMax), terrestrial digital TV systems, 3GPP Long Term
Evolution (LTE), etc. A major drawback of OFDM is its large
peak-to-mean envelope power ratio (PMEPR) for the uncoded
signals. PMEPR reduction through a coding perspective can
be achieved by designing a large codebook whose codewords,
e.g., in the form of sequences, have low PMEPR values. In
practice, OFDM signals with lower PMEPRs lead to smaller
input back-off (IBO) of the power amplifier (PA) at the RF
end, thus yielding higher transmit power efficiency and larger
communication range. This paper aims to reduce PMEPR via
codebooks consisting of complementary sequences which will
be introduced in the sequel.

Golay complementary pair (GCP), introduced by M. J. E.
Golay in [1], refers to a pair of sequences whose aperiodic
autocorrelation functions (AACFs) diminish to zero at each
non-zero time-shift when they are summed. Either sequence

Palash Sarkar is with Department of Mathematics and Sudhan Ma-
jhi is with the Department of Electrical Engineering, Indian Institute
of Technology Patna, India, e-mail: palash.pma15@iitp.ac.in;
smajhi@iitp.ac.in.

Zilong Liu is with the School of Computer Science and Electronics En-
gineering, University of Essex, UK, e-mail:zilong.liu@essex.ac.uk.

from a GCP is called a Golay sequence. The idea of GCP
was extended to complementary sets (CSs) by Tseng and Liu
in [2] where each CS consisting of two or more constituent
sequences, called complementary sequences. A PMEPR re-
duction method was introduced by Davis and Jedwab in
[3] to construct standard 2h-ary (h is a positive integer)
Golay sequences of length 2m (m is a positive integer) using
second-order generalized Boolean function (GBF), comprising
second-order cosets of generalized first-order Reed-Muller
(RM) codes RM2h(1,m). By applying the constructed Golay
sequences to encode OFDM signals with a PMEPR of at
most 2, Davis and Jedwab obtained m!

2 2h(m+1) codewords,
called Golay-Davis-Jedwab (GDJ) code in this paper, for the
phase shift keying (PSK) modulated OFDM signals with good
error-correcting capabilities, efficient encoding and decoding.
Subsequently, Paterson employed complementary sequences
to enlarge the code-rate by relaxing the PMEPR of OFDM
signal in [4]. Specifically, Paterson showed that each coset of
RMq(1,m) inside RMq(2,m) (q is an even number no less
than 2) can be partitioned into CSs of size 2k+1 (where k
is a non-negative integer depending only on G(Q), a graph
naturally associated with the quadratic form Q in m variables
which defines the coset) and provided an upper bound on the
PMEPR of arbitrary second-order cosets of RMq(1,m). The
construction given in [4, Th. 12]* was unable to provide a
tight PMEPR bound for all the cases. By giving an improved
version of [4, Th. 12] in [4, Th. 24]†, Paterson left the
following question:
“What is the strongest possible generalization of [4, Th. 12]?”.

In [4, Th. 24], it was shown that after deleting k vertices in
G(Q), if the resulting graph contains a path and one isolated
vertex, then Q + RMq(1,m) can be partitioned into CSs of
size 2k+1 instead of 2k+2, i.e., there is no need to delete the
isolated vertex. Later, a generalization of [4, Th. 12] was made
by Schmidt in [5] to establish a construction of complementary
sequences that are contained in higher-order generalized RM
codes. Schmidt showed in [5] that a GBF gives rise to a
CS of a given size if the graphs of all restricted Boolean
functions‡ of the GBF are paths. In Schmidt’s construction,

*Full statement of [4, Th. 12] is given in Lemma 5.
†Full statement of [4, Th. 24] is given in Lemma 6.
‡A restricted Boolean function of a GBF is obtained by fixing some

variables of the GBF to some constants. If we restrict a GBF of m variables
over k (k < m) fixed variables, the restriction can be done in 2k ways.
Corresponding to the 2k restricted Boolean functions, there are 2k graphs if
the restricted Boolean functions are of order 2.
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however, CS cannot be generated corresponding to a GBF if
there is at least one restricted Boolean function whose graph
is not a path (among all the restricted Boolean functions of
the GBF). In this case, further restrictions need to be carried
out until the graphs of all restricted Boolean functions become
path. As a result, the CS set size increases and so does the
PMEPR. Because of this, a reasonable number of sequences
were excluded from the Schmidt’s coding scheme. Hence, an
improved version of [5, Th. 5]§ or a more generalized version
of [4, Th. 12] is expected to extend the range of coding options
with good PMEPR bound for practical applications of OFDM.

More constructions of CSs with low PMEPR have been
proposed in the literature. In [6], a framework has been
presented to identify known Golay sequences and pairs of
length 2m (m > 4) over Z2h in explicit algebraic normal
form. [7] presents a lower bound on the PMEPR of a constant
energy code as a function of its rate, distance, and length. The
results in [6] and [7] provide better upper bound of PMEPR
than the results in [4] and [5]. For multi-carrier code division
multiple access (MC-CDMA), Liu et al presented in [8] a new
class of mutually orthogonal CSs whose column sequences
have PMEPR of at most 2, when each CS is arranged to be
a two dimensional matrix (called a complementary matrix)
whose rows constitute all of its complementary sequences
in order. The low PMEPR property in Liu’s construction is
achieved by designing CSs such that every column sequence
of a complementary matrix is a Golay sequence. Nowadays,
besides polyphase complementary sequences, the design of
quadrature amplitude modulation (QAM) complementary se-
quences with low PMEPR is also an interesting research topic.
In [9], QAM Golay sequences were introduced based on
quadrature phase shift keying (PSK) GDJ-code. Later, Liu et al
constructed QAM Golay sequences by using properly selected
Gaussian integer pairs [10]. Recently, numerous constructions
of complementary and quasi-/near-complementary sequences
have been reported in [10]–[25]. These sequences may also
be applicable in OFDM systems to deal with the PMEPR
problem, in addition to their applications in scenarios such
as asynchronous communications and channel estimation.

In this paper, we propose a construction to generate new
polyphase CSs with low PMEPR and high code-rate for
OFDM systems by allowing both path and isolated vertices
in the graphs of certain restricted versions of higher order
GBFs. In our proposed construction, we restrict a few number
of vertices to obtain tighter PMPER. For example, we obtain
CS with maximum PMEPR of 2k+1 and 2k+2 − 2M in
the presence of isolated vertices whereas the PMEPR upper
bound obtained from Schmidt’s construction for the same
sequences is at least 2k+p+1 (where p is the number of
isolated vertices present in the graphs of certain restricted
Boolean functions). The introduction of “isolated vertices” is
essential as it gives rise to higher sequence design flexibility
and hence more complementary sequences for larger code-
rate, as compared to Schmidt’s construction. By moving to
higher order RM code, we not only provide a partial answer
to the aforementioned question raised by Paterson, but also

§Full statement of [5, Th. 5] is given in Lemma 7.

extend the range of coding options for practical applications
of OFDM. It is shown that our proposed construction includes
Schmidt’s construction, Paterson’s construction, and the GDJ
code construction as special cases. Part of this work has
been presented in 2019 IEEE International Symposium on
Information Theory [26]¶.

The remainder of the paper is organized as follows. In
Section II, some useful notations and definitions are given.
In Section III, a generalized construction of CS is presented.
Section IV contains some results which are obtained from our
proposed construction. We have presented a graphical analysis
of our proposed construction in Section V. Then we compare
our proposed construction with [4], [5] in Section VI. Finally,
concluding remarks are drawn in Section VII.

II. PRELIMINARY

A. Notations

The following notations will be used throughout this paper:
• J = {j0, j1, . . . , jk−1} ⊂ {0, 1, . . . ,m− 1}.
• xJ = (xj0 , xj1 , . . . , xjk−1

).
• c = (c0, c1, . . . , ck−1) ∈ {0, 1}k.
• d = (d0, d1, . . . , dk−1) ∈ {0, 1}k.
• ωq = exp(2π

√
−1/q), q ≥ 2, 2|q.

B. Definitions of Correlations and Sequences

Let a = (a0, a1, . . . , aL−1) and b = (b0, b1, . . . , bL−1) be
two complex-valued sequences of equal length L and let τ be
an integer. Define

C(a,b)(τ) =


∑L−1−τ
i=0 ai+τ b

∗
i , 0 ≤ τ < L,∑L+τ−1

i=0 aib
∗
i−τ , −L < τ < 0,

0, otherwise,
(1)

and A(a)(τ) = C(a, a)(τ). The above mentioned functions
are called the aperiodic cross-correlation function between a
and b and the AACF of a, respectively.

Definition 1: A set of n sequences a0, a1, . . . , an−1, each
of equal length L, is said to be a CS if

A(a0)(τ)+A(a1)(τ)+. . .+A(an−1)(τ)=

{
nL, τ = 0,

0, otherwise.
(2)

A CS of size two is called a GCP.

C. PMEPR of OFDM signal

For q-PSK modulation, the OFDM signal for the word a =
(a0, a1, . . . , aL−1) (where ai ∈ Zq) can be modeled as the
real part of

S(a)(t) =
L−1∑
α=0

ωaαq exp
(
2π
√
−1(f0 + αfs)t

)
,

¶ In [26], we have presented Theorem 1 and some preliminary results
derived from it. Based on [26], we further provide a graphical analysis of
our proposed construction. Moreover, we construct codes with maximum
PMEPR 4, 6, and 8, and compare the proposed code-rates with the existing
constructions [4] and [5].
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where 0 ≤ t < T (where T denotes the OFDM symbol
duration), f0 denotes the center carrier frequency, and fs
the subcarrier spacing. We define the instantaneous envelope
power of the OFDM signal as [4]

P (a)(t) = |S(a)(t)|2.

From the above expression, it is easy to derive that

P (a)(t) =
L−1∑

τ=1−L
A(a)(τ) exp(2π

√
−1τfst)

=A(a)(0)+2·Re

{
L−1∑
τ=1

A(a)(τ) exp(2π
√
−1τfst)

}
,

(3)

where Re{x} denotes the real part of a complex number x.
We define the PMEPR of the signal S(a)(t) as

PMEPR(a) =
1

L
sup

0≤fst<1
P (a)(t). (4)

The peak amplitude of an L-subcarrier OFDM signal is L.

D. Generalized Boolean Functions

Let f be a function of m variables x0, x1, . . . , xm−1 over
Zq . A monomial of degree r is defined as the product
of any r distinct variables among x0, x1, . . . , xm−1. There
are 2m distinct monomials over m variables listed below:
1, x0, x1, . . . , xm−1, x0x1, x0x2, . . . , xm−2xm−1, . . . ,
x0x1 . . . xm−1. A function f is said to be a GBF of order
r if it can be uniquely expressed as a linear combination
of monomials of degree at most r, where the coefficient of
each monomial is drawn from Zq . A GBF of order r can be
expressed as

f = Q+

m−1∑
i=0

gixi + g′, (5)

where

Q=

r∑
p=2

∑
0≤α0<α1<...<αp−1<m

aα0,α1,...,αp−1
xα0

xα1
. . . xαp−1

, (6)

and gi, g′, aα0,α1,...,αp−1
∈ Zq .

E. Quadratic Forms and Graphs

Let f be a rth order GBF of m variables over Zq .
Then f


xJ=c is obtained by substituting xjα = cα (α =

0, 1, . . . , k − 1) in f . If f


xJ=c is a quadratic GBF, then
G(f


xJ=c) denotes a graph with V = {x0, x1, . . . , xm−1} \

{xj0 , xj1 , . . . , xjk−1
} as the set of vertices. The G(f


xJ=c)

is obtained by joining the vertices xα1
and xα2

by an edge
if there is a term qα1α2xα1xα2 (0 ≤ α1 < α2 < m, xα1 ,
xα2 ∈ V ) in the GBF f


xJ=c with qα1α2 6= 0 (qα1α2 ∈ Zq).

For k = 0, G(f


xJ=c) is nothing but G(f).

F. Sequence Corresponding to a Generalized Boolean Func-
tion

Corresponding to a GBF f , we define a complex-valued
vector (or sequence) ψ(f), as follows.

ψ(f) = (ωf0q , ω
f1
q , . . . , ω

f2m−1
q ), (7)

where fi = f(i0, i1, . . . , im−1) and (i0, i1, . . . , im−1) is the
binary vector representation of integer i (i =

∑m−1
α=0 iα2

α).
Throughout the paper, even q not less than 2 will be consid-
ered.

Again, we define ψ(f


xJ=c) as a complex-valued sequence

with ω
f(i0,i1,...,im−1)
q as ith component if ijα = cα for each

0 ≤ α < k and equal to zero otherwise.
Definition 2 (Effective-Degree of a GBF [5]): The effective-

degree of a GBF f : {0, 1}m → Z2h , is defined as follows.

max
0≤i<h

[deg
(
f mod 2i+1

)
− i]. (8)

Let F(r,m, h) be the set of all GBFs f : {0, 1}m →
Z2h . Also, let |F(r,m, h)| denote the number of GBFs in
F(r,m, h) which is given by [5]

log2 |F(r,m, h)| =
r∑
i=0

h

(
m

i

)
+

h−1∑
i=1

(h− i)
(

m

r + i

)
. (9)

Definition 3 (Effective-Degree RM Code [5]): For 0 ≤ r ≤
m, the effective-degree RM code is denoted by ERM(r,m, h)
and defined as

ERM(r,m, h) = {ψ(f) : f ∈ F(r,m, h)}. (10)

Definition 4 (Lee Weight and Squared Euclidean Weight):
Let a = (a0, a1, . . . , aL−1) be a Z2h -valued sequence. The
Lee weight of a is denoted by wtL(a) and defined as follows.

wtL(a) =
L−1∑
i=0

min{ai, 2h − ai}. (11)

The squared Euclidean weight of a (when the entries of a
are mapped onto a 2h-ary PSK constellation) is denoted by
wt2E(a) and given by

wt2E(a) =
L−1∑
i=0

|ωaiq − 1|2. (12)

Let dL(a,b) = wtL(a − b) and d2E(a,b) = wt2E(a − b) be
the Lee and squared Euclidean distance between a,b ∈ ZL2h ,
respectively. The symbols dL(C) and d2E(C) will be used to
denote minimum distances (taken over all distinct sequences)
of a code C ∈ ZL2h .

Next, we present some lemmas which will be used in our
proposed construction.

Lemma 1 ( [4]): Let f, g be two GBFs of m variables.
Consider 0 ≤ i0 < i1 < · · · < il−1 < m, which is a list of l
indices and the set {i0, i1, . . . , il−1} has no intersection with
J . Let y = (xi0 , xi1 , . . . , xil−1

), then

C (ψ(f |xJ=c), ψ(g|xJ=d)) (τ)

=
∑
c1,c2

C (ψ(f |xy=cc1), ψ(g|xy=dc2)) (τ).
(13)
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Lemma 2 ( [27]): Suppose that there are two GBFs f and
f ′ of m-variables x0, x1, . . . , xm−1 over Zq , such that for k ≤
m− 3, f


xJ=c and f ′


xJ=c are given by

f


xJ=c = P + L+ glxl + g,

f ′


xJ=c = P + L+ glxl +
q

2
xa + g,

(14)

where L =
∑m−k−2
α=0 giαxiα , {i0, i1, · · · , im−k−2} =

{0, 1, . . . ,m− 1} \J ∪{l}, both G(f


xJ=c) and G(f ′


xJ=c)

consist of a path over m− k− 1 vertices, given by G(P ), xa
is an either end vertex, xl is an isolated vertex, and gl, g ∈ Zq .
Then for fixed c and d1 6= d2 (d1, d2 ∈ {0, 1}),

C(f


xJxl=cd1
,f


xJxl=cd2
)(τ)+C(f ′


xJxl=cd1

,f ′


xJxl=cd2
)(τ)

=

{
ω
(d1−d2)gl
q 2m−k, τ = (d2 − d1)2l,

0, otherwise.
(15)

Lemma 3 ( [28]): Let c1, c2 ∈ {0, 1}k. If c1 6= c2,∑
d

(−1)d·(c1+c2) = 0.

Lemma 4 ( [3]): Suppose that f : {0, 1}m → Zq is a
quadratic GBF of m variables. Suppose further that G(f) is a
path with 2h−1 being the weight of every edge. Then for any
choice of c, c′ ∈ Z2h , the pair(

f + c, f + 2h−1xa + c′
)

forms a GCP.
Lemma 5 ( [4, Th. 12]): Suppose that f : {0, 1}m → Zq is a

quadratic GBF of m variables. Suppose further that G(f) con-
tains a set of k distinct vertices labeled j0, j1, . . . , jk−1 with
the property that deleting those k vertices and corresponding
their edges results in a path. Then for any choice of gi, g′ ∈
Zq , where gi is the coefficient of xi and g′ is a constant term
in f , we have{

f +
q

2

(
k−1∑
α=0

dαxjα + d′′xa

)
: dα, d

′′ ∈ {0, 1}

}
(16)

is a CS of size 2k+1.
Lemma 6 ( [4, Th. 24]): Suppose that f : {0, 1}m → Zq is a

quadratic GBF of m variables. In addition, suppose that G(f)
contains a set of k distinct vertices labeled j0, j1, . . . , jk−1
with the property that deleting those k vertices and all their
edges results in a path on m− k − 1 vertices and an isolated
vertex. Suppose further that all edges in the original graph
between the isolated vertex and the k deleted vertices are
weighted by q/2. Let xa be the either end vertex in this path.
Then for any choice of gi, g′ ∈ Zq{

f +
q

2

(
k−1∑
α=0

dαxjα + d′′xa

)
: dα, d

′′ ∈ {0, 1}

}
(17)

is a CS of size 2k+1.
Lemma 7 ( [5, Th. 5]): Let f : {0, 1}m → Zq be a GBF

of m variables. Suppose further that for each c ∈ {0, 1}k,
G(f


xJ=c) is a path in m − k vertices. Suppose further that

q/2 is the weight of each edge of the path G(f


xJ=c). Then
for any choice of gi, g′ ∈ Zq{

f +
q

2

(
k−1∑
α=0

dαxjα + d′′e1

)
: dα, d

′′ ∈ {0, 1}

}
(18)

is a CS of size 2k+1 and hence ψ(f) lies in a CS of size 2k+1.
In (18), e1 is a function given by

e1 =
∑

c∈{0,1}k
xπc(0)

k−1∏
α=0

xcαjα (1− xjα)
(1−cα),

where πc, c ∈ {0, 1}k, are 2k permutaions of {0, 1, . . . ,m −
1} \ J , which may or may not be distinct. Note that
e1|xJ=c = xπc(0) is one of the end vertices in the path
G(f


xJ=c), where G(f


xJ=c) is identified by the quadratic

form

(
q

2

m−k−2∑
α=0

xπc(α)xπc(α+1)

)
. It is also noted that for

given πc, we have e1|xJ=c = xπc(m−k−1) if the reversed
permutation of πc is chosen.

Lemma 8 ( [5, Th. 9]):

dL(ERM(r,m, h)) = 2m−r,

d2E(ERM(r,m, h)) = 2m−r+2 sin2
( π
2h

)
.

(19)

III. PROPOSED CONSTRUCTIONS

In this section, we present a generalized construction of
CS. For ease of presentation, whenever the context is clear, we
use C(f, g)(τ) to denote C(ψ(f), ψ(g))(τ) for any two GBFs
f and g. Similar changes are applied to restricted Boolean
functions as well.

Theorem 1: Let f be a GBF of m variables over Zq with
the property that there exist M number of such c for which
G(f


xJ=c) is a path over m − k vertices and there exist Ni

number of such c for which G(f


xJ=c) consists of a path
over m− k − 1 vertices and one isolated vertex xli such that

M,Ni ≥ 0,M +

p∑
i=1

Ni = 2k. Suppose further that all the

relevant edges in G(f


xJ=c) (for all c) have identical weight
of q/2. Then for any choice of gi, g′ ∈ Zq , ψ(f) lies in a set
S of size 2k+1 with the following aperiodic auto-correlation
property.

A(S)(τ)=



2m+k+1, τ = 0,

ω
gli
q 2m

∑
c∈SNi

ωL
li
c

q , τ=2li , i=1, 2, . . . , p,

ω
−gli
q 2m

∑
c∈SNi

ω−L
li
c

q , τ = −2li , i=1, 2,. . ., p,

0, otherwise,
(20)

where gli ∈ Zq , i = 1, 2, . . . , p, is the coefficient of xli in f ,
SNi contains all those c for which G(f


xJ=c) consists of a

path over m−k−1 vertices and one isolated vertex labeled li
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(li ∈ {0, 1, . . . ,m− 1} \ J , and l1, l2, . . . , lp are all distinct),
and

Llic =

k∑
r=1

∑
0≤i1<i2<···<ir<k

%lii1,i2,...,irci1ci2 · · · cir (%
li
i1,i2,...,ir

’s ∈Zq),

where Llic is obtained by setting xJ = c in LlixJ
which is a function and associated with the variables
xj0 , xj1 , . . . , xjk−1

and xli . The term LlixJ can be expressed

as
k∑
r=1

∑
0≤i1<i2<···<ir<k

%lii1,i2,...,irxi1xi2 · · ·xir .

Proof: See Appendix A.
We have introduced M and Ni (i = 1, 2, . . . , p) in Theorem 1

with the condition M +

p∑
i=1

Ni = 2k, M,Ni ≥ 0. Therefore,

M and Ni’s range from 0 to 2k.
Remark 1 (Explicit Form of GBFs and the set S as Defined

in Theorem 1): The GBF f , as defined in Theorem 1, can be
expressed as

q

2

∑
c∈SM

m−k−2∑
i=0

xπc(i)xπc(i+1)

k−1∏
α=0

xcαjα (1− xjα)
(1−cα)

+
q

2

p∑
δ=1

∑
c∈SNδ

m−k−3∑
i=0

xπδc (i)xπδc (i+1)

k−1∏
α=0

xcαjα (1− xjα)
(1−cα)

+

p∑
δ=1

k∑
r=1

∑
0≤i1<i2<···<ir<k

%lδi1,i2,...,irxji1xji2 · · ·xjirxlδ

+

k∑
r=2

∑
0≤i1<i2<···<ir<k

αi1,i2,...,irxji1xji2 · · ·xjir+
m−1∑
i=0

gixi + g′,

(21)

where πδc are Nδ permutations of {0, 1, . . . ,m− 1} \J ∪{lδ}
(δ = 1, 2, . . . , p), πc are M permutations of {0, 1, . . . ,m−1}\
J , and αi1,i2,...,ir ’s belong to Zq . The set S can be expressed
as

S =
{
f +

q

2
(d · xJ + d′′e2) : d ∈ {0, 1}k, d′′ ∈ {0, 1}

}
,

(22)

where d · xJ =

k−1∑
α=0

dαxjα . In (22), e2 is the function given

by

e2 =
∑

c∈SM

xπc(0)

k−1∏
α=0

xcαjα (1− xjα)
(1−cα)

+

p∑
δ=1

∑
c∈SNδ

xπδc (0)

k−1∏
α=0

xcαjα (1− xjα)
(1−cα).

(23)

It is to be noted that e2|xJ=c = xπc(0) which is one of the
end vertices in the path G(f |xJ=c) for c ∈ SM . Similarly,
e2|xJ=c = xπδc (0) which is one of the end vertices of the path
lying in G(f |xJ=c) for c ∈ SNδ (δ = 1, 2, · · · , p).
From the expression of the GBF f given in (21), we have the
following observations:

For c ∈ SM , G(f


xJ=c) is a path over m − k ver-
tices and the path is identified by the quadratic term

q
2

∑m−k−2
i=0 xπc(i)xπc(i+1). As the size of SM is M , c has

M choices in SM . We assume that c0, c1, . . . , cM−1 are
the M choice of c in SM , i.e., SM = {c0, c1, . . . , cM−1}.
For M vectors in SM , we get M restricted Boolean
functions f


xJ=ci

, i = 0, 1, . . . ,M − 1, which may or
may not be distinct and corresponding to each restricted
Boolean function, we get a path. Therefore, the term
q
2

∑
c∈SM

∑m−k−2
i=0 xπc(i)xπc(i+1)

∏k−1
α=0 x

cα
jα
(1 − xjα)

(1−cα),
present in f , generates the paths G(f


xJ=c) for c ∈ SM .

Similarly, q2
∑

c∈SNδ

∑m−k−3
i=0 xπδc (i)xπδc (i+1)

∏k−1
α=0 x

cα
jα
(1−

xjα)
(1−cα) generates Nδ graphs, denoted by G(f


xJ=c),

c ∈ SNδ , where each of Nδ graphs contains one path
and one isolated vertex xlδ . It is noted that the paths
in Nδ graphs may or may not be distinct, it depends
on the permutations πδc , c ∈ SNδ . Therefore, the term
q
2

∑p
δ=1

∑
c∈SNδ

∑m−k−3
i=0 xπδc (i)xπδc (i+1)

∏k−1
α=0 x

cα
jα
(1 −

xjα)
(1−cα) generates

∑p
i=1Ni graphs, where each of

Ni graphs contains a path and one isolated vertex xli ,
i = 1, 2, . . . , p.

From the expression of f , it can easily be ob-
served that xj0 , xj1 , . . . , xjk−1

are the restricted vari-
ables. Below we have listed 2k − 1 distinct monomi-
als over the k + 1 variables xj0 , xj1 , . . . , xjk−1

and xlδ :
xj0xlδ , xj1xlδ , . . . , xjk−1

xlδ , xj0xj1xlδ , xj0xj2xlδ , . . . ,
xjk−2

xjk−1
xlδ , . . . , xj0xj1 · · ·xjk−1

xlδ . Now, we consider the
following term:

k∑
r=1

∑
0≤i1<i2<···<ir<k

%lδi1,i2,...,irxji1xji2 · · ·xjirxlδ

From the above expression, it is clear that
k∑
r=1

∑
0≤i1<i2<···<ir<k

%lδi1,i2,...,irxji1xji2 · · ·xjirxlδ represents

the linear combination of 2k − 1 above listed monomials
with constant coefficients %lδi1,i2,...,ir which is the coefficient
of the monomial xji1xji2 · · ·xjirxlδ (r = 1, 2, . . . , k,
0 ≤ i1 < i2 < · · · < ir < k). It is also noted that
k∑
r=1

∑
0≤i1<i2<···<ir<k

%lδi1,i2,...,irxji1xji2 · · ·xjir is the variable

coefficient, of xlδ , depends on the variables xj0 , xj1 , . . . , xjk−1

and it is denoted by LlδxJ in Theorem 1.
Therefore, the term

p∑
δ=1

k∑
r=1

∑
0≤i1<i2<···<ir<k

%lδi1,i2,...,irxji1xji2 · · ·xjirxlδ

present in f produces LlδxJ for δ = 1, 2, . . . , p.

The term
k∑
r=2

∑
0≤i1<i2<···<ir<k

αi1,i2,...,irxji1xji2 · · ·xjir

presents in f represents the linear combination of
the monomials of degree 2 to k over the variables
xj0 , xj1 , . . . , xjk−1

with constant coefficients. The term
αi1,i2,...,ir (r = 2, 3, . . . , k, 0 ≤ i1 < i2 < · · · < ir < k)
represents the coefficient of the monomial xji1xji2 · · ·xjir .∑m−1

i=0 gixi + g′ represents the linear combination of
the monomials of degree 0 to 1 over the variables
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x0, x1, . . . , xm−1 with constant coefficients gi, g′, where i =
1, 2, . . . ,m− 1.

Below, we have provided an example to illustrate the GBF
given in (21).

Example 1: Let f be a GBF of 6 variables over Z4 given
by

f =2 (x0x1(x2x4 + x4x3 + x3x5)

+(1− x0)(1− x1)(x2x3 + x3x4 + x4x5)

+x0(1− x1)(x2x4+x4x5)+(1− x0)x1(x2x3+x3x5))
+ (x0 + x0x1)x3 + 3x0x1 + 2x1x4 + x0 + 2x3 + 2.

(24)

The above given function can be obtained from (21)
by setting k = 2, p = 2, j0 = 0, j1 = 1, l1 =
3, l2 = 4, SM = {(0, 0), (1, 1)}, SN1

= {(1, 0)}, SN2
=

{(0, 1)}, (π(0,0)(0), π(0,0)(1), π(0,0)(2), π(0,0)(3)) =
(2, 3, 4, 5), (π(1,1)(0), π(1,1)(1), π(1,1)(2), π(1,1)(3)) =
(2, 4, 3, 5), (π1

(1,0)(0), π
1
(1,0)(1), π

1
(1,0)(2)) = (2, 4, 5),

(π2
(0,1)(0), π

2
(0,1)(1), π

2
(0,1)(2)) = (2, 3, 5), %30 = 1, %31 =

0, %30,1 = 1, %40 = 0, %41 = 2, %40,1 = 0, α0,1 = 3, g0 =
1, g3 = 2, , g′ = 2, g1 = g2 = g4 = g5 = 0. We can
easily varify that G(f |(x0,x1)=(0,0)) and G(f |(x0,x1)=(1,1))
are paths over the vertices x2, x3, x4, x5 and the paths are
identified by the quadratic forms x2x3 + x3x4 + x4x5 and
x2x4 + x4x3 + x4x5, respectively. We can also varify that
G(f |(x0,x1)=(1,0)) contains a path which is identified by
the quadratic form x2x4 + x4x5 and one isolated vertex
x3. Similarly, G(f |(x0,x1)=(0,1)) contains a path which is
identified by the quadratic form x2x3+x3x5 and one isolated
vertex x4.

From the expression of the GBF f , it is also clear that the
only term associated with x0, x1 and x3 is given by x0 +
x0x1. Hence, Ll1xJ = L3

(x0,x1)
= x0 + x0x1. Similarly, Ll2xJ =

L4
(x0,x1)

= 2x1.
From (23), we have

e2 = xπ(0,0)(0)(1− x0)(1− x1) + xπ(1,1)(0)x0x1

+ xπ1
(1,0)

(0)x0(1− x1) + xπ2
(0,1)

(0)(1− x0)x1
= x2(1− x0)(1− x1) + x2x0x1 + x2x0(1− x1)
+ x2x1(1− x0).

(25)

We illustrate Theorem 1 by the example given below.
Example 2: Let f be a GBF of 5 variables over Z4 given

by

f = 2x1(x0x2 + x2x4 + x4x3) + 2(1− x1)(x2x0 + x0x4)

+ 3x1x3 + x0 + 2x1 + 1.
(26)

The above given function can be obtained from (21) by
setting k = 1, p = 1, j0 = 1, l1 = 3, SM =
{1}, SN1 = {0},

(
π(1)(0), π(1)(1), π(1)(2), π(1)(3)

)
=

(0, 2, 4, 3) ,
(
π1
(0)(0), π

1
(0)(1), π

1
(0)(2)

)
= (2, 0, 4) , %30 =

3, g0 = 1, g1 = 2, g2 = g3 = g4 = 0, and g′ = 1. From
(26), we have

f |x1=0 = 2(x2x0 + x0x4) + x0 + 1,

f |x1=1 = 2(x0x2 + x2x4 + x4x3) + 3x3 + x0 + 3.
(27)

 

x2 x4 x3 x0 

x2 x0 x4 

x3 

(a) 

(b) 

Fig. 1. The G(f

x1=1

) and G(f

x1=0

) of Example 2.

Hence, G(f |x1=1) is a path over the vertices x0, x2, x3, x4
and G(f |x1=0) contains a path over the vertices x0, x2, x4
and one isolated vertex x3. Fig. 1 (a) and Fig. 1 (b) represent
G(f


x1=1

) and G(f

x1=0

), respectively. Using (23), we have

e2 = x0x1 + x2(1− x1). (28)

Therefore, e2|x1=0 = x2 which is a end vertex of the path
in G(f |x1=0) and e2|x1=1 gives the end vertex x0 of the
path G(f |x1=1). Following Theorem 1, we obtain the set S
corresponding to the GBF f as follows:

S = {f + 2 (d0x1 + d′′e2) : d0 ∈ {0, 1}, d′′ ∈ {0, 1}}

=


12301032122310211030121010011221
12121010120110031012123210231203
12323230122132231032301210033023
12103212120332011010303010213001

 (29)

In the expression of the GBF f , the only term associated with
the restricting variable x1 and xl1 (= x3) is 3x1x3. Therfore,
following Theorem 1, we have Ll1xJ = L3

x1
= 3x1 and the

AACF of S is given by

A(S)(τ) =


128, τ = 0,

32ω
L3

0
4 , τ = 8,

32ω
−L3

0
4 , τ = −8,

0, otherwise.

(30)

Since, L3
0 = 0, we have

A(S)(τ) =


128, τ = 0,

32, τ = ±8,
0, otherwise.

(31)

Remark 2: Let f be a quadratic GBF with the property that
for all c ∈ {0, 1}k, G(f


xJ=c) is a path in m − k vertices.

Then from Therorem 1, we have M = 2k and

A(S)(τ) =

{
2m+k+1, τ = 0,

0, otherwise.
(32)

Hence, S is a CS of size 2k+1 and therefore, Paterson’s
construction [4, Th. 12] turns to be a special case of our
proposed one.

Remark 3: From Remark 2, for k = 0, S is a CS of size 2,
i.e., S is a GCP and thus the GDJ code in [3] is also a special
case of Theorem 1.
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Remark 4: Let f be a quadratic GBF with the property that
for all c ∈ {0, 1}k, G(f


xJ=c) contains a path in m− k − 1

vertices and one isolated vertex xl1 . We also assume that all
edges in the original graph between the isolated vertex and the
k deleted vertices are weighted by q/2. Then, from Therorem
1, we have N1 = 2k, SN1 = {0, 1}k, Ll1c = q

2

∑k−1
α=0 cα, and

A(S)(τ) =



2m+k+1, τ = 0,

ω
gl1
q 2m+k

∑
c∈SN1

ωL
l1
c

q , τ = 2l1 ,

ω
−gl1
q 2m+k

∑
c∈SN1

ω−L
l1
c

q , τ = −2l1 ,

0, otherwise,

=

{
2m+k+1, τ = 0,

0, otherwise.,

(33)

Therefore, ψ(f) lies in a CS of size 2k+1 and the result given
by Paterson in [4, Th. 24] turns to be a special case of Theorem
1.

Remark 5: Let f be a GBF with the property that for all
c ∈ {0, 1}k, G(f


xJ=c) is a path in m − k vertices. Then

from Therorem 1, we have M = 2k and

A(S)(τ) =

{
2m+k+1, τ = 0,

0, otherwise.
(34)

From (34), it is clear that ψ(f) lies in a CS of size 2k+1

and hence the PMEPR of ψ(f) is atmost 2k+1. Therefore,
the result given by Schmidt in [5, Th. 5] is a special case of
Theorem 1.

IV. PROPOSED CONSTRUCTIONS OF COMPLEMENTARY
SEQUENCES WITH LOW PMEPR

In this section, we present two constructions of CSs which
are derived from Theorem 1 to provide tighter PMEPR up-
per bound than the PMEPR bound introduced in Schmidt’s
construction [5, Th. 5].

Corollary 1: Let f be a GBF as defined in Theorem 1 with
the property that Ni ≡ 0(mod 2) (i = 1, 2, . . . , p) and there
exist Ni/2 number of c in SNi for which Llic ≡ 0(mod q),
and Llic ≡

q
2 (mod q) for the rest Ni/2 number of c in SNi .

Then for any choice of gi, g′ ∈ Zq ,{
f +

q

2
(d · xJ + d′′e2) : d ∈ {0, 1}k, d′′ ∈ {0, 1}

}
, (35)

is a CS of size 2k+1.
Proof: Let

S =
{
f +

q

2
(d · xJ + d′′e2) : d ∈ {0, 1}k, d′′ ∈ {0, 1}

}
.

(36)

By Theorem 1, we have

A(S)(τ)=



2m+k+1, τ = 0,

ω
gli
q 2m

∑
c∈SNi

ωL
li
c

q , τ=2li , i=1, 2, . . . , p,

ω
−gli
q 2m

∑
c∈SNi

ω−L
li
c

q , τ = −2li , i=1, 2,. . ., p,

0, otherwise.
(37)

Since there exist Ni/2 number of c in SNi for which Llic ≡0(
mod q), ωL

li
c

q takes the value 1 for Ni/2 times. Similarly, ωL
li
c

q

takes the value −1 for Ni/2 times. Therefore,
∑

c∈SNi
ωL

li
c

q =

0. In the same way, we can show that
∑

c∈SNi
ω−L

li
c

q = 0.
Hence, from (37), we have

A(S)(τ) =

{
2m+k+1, τ = 0,

0, otherwise.
(38)

From (38), we have S is a CS of size 2k+1 and hence at most
PMEPR of each sequences lying in S is 2k+1 [4].

Remark 6 (Explicit Form of GBFs as Defined in Corollary
1): To construct the GBFs as defined in Corollary 1, we only
need to take care of the following term in (21):

p∑
δ=1

k∑
r=1

∑
0≤i1<i2<···<ir<k

%lδi1,i2,...,irxji1xji2 · · ·xxirxlδ ,

or
∑p
δ=1 L

lδ
xJxlδ . In this Remark, we define LlδxJ , so that

the GBFs associated with LlδxJ , meet the condition given in
Corollary 1. To define LlδxJ , first we need to define some vec-
tors which are as follows: clδφt = (clδ0,φt , c

lδ
1,φt

, . . . , clδk−1,φt) ∈
SNδ , where t = 1, 2, . . . , Nδ/2, δ = 1, 2, . . . , p. Therefore,
clδφ1

, clδφ2
, . . . , clδφNδ/2 are any Nδ/2 distinct elements in SNδ .

Let us define

LlδxJ =
q

2

Nδ/2∑
t=1

k−1∏
α=0

x
c
lδ
α,φt
jα

(1− xjα)
(1−clδα,φt ). (39)

From the above equation, it is clear that LlδxJ = 1 for xJ = clδφt ,
t = 1, 2, . . . , Nδ/2 and for the remaining of Nδ/2 elements
in SNδ , LlδxJ = 0. Therefore, the GBFs whose LlδxJ terms are
as defined as in (39), satisfy the conditions given in Corollary
1.

Remark 7: The construction of CSs given in Corollary 1 is
based on GBFs of any order. It is observed that Corollary 1
can provide tighter upper bound of PMEPR than that given
by Schmidt [5, Th. 5] for a sequence corresponding to a GBF
which satisfies the property given in Corollary 1. Below, we
present an example to illustrate Corollary 1.

Example 3: Let f be a GBF of 5 variables over Z4, given
by

f = 2 (x0x1x2 + x0x1x3 + x1x3 + x3x2 + x0x4)

+ x1 + 2x2 + 2x3 + 2x4 + 3

≡ 2x0(x3x2 + x2x1) + 2(1− x0)(x2x3 + x3x1)

+ 2x0x4 + x1 + 2x2 + 2x3 + 2x4 + 3.

(40)

The GBF f can be obtained from (21) by substitut-
ing k = 1, p = 1, M = 0, N1 = 2, SN1 =

{0, 1}, j0 = 0,
(
π1
(0)(0), π

1
(0)(1), π

1
(0)(2)

)
= (2, 3, 1),(

π1
(1)(0), π

1
(1)(1), π

1
(1)(2)

)
= (3, 2, 1), l1 = 4, %40 = 2, g0 = 0,

g1 = 1, g2 = g3 = g4 = 2, and g′ = 3.
From the GBF f , we obtain the restricted Boolean functions

as follows.
f

x0=0

= 2(x2x3 + x3x1) + x1 + 2x2 + 2x3 + 2x4 + 3,

f

x0=1

= 2(x3x2 + x2x1) + x1 + 2x2 + 2x3 + 3.

(41)
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From (41), it is observed that G(f

x0=0

) and G(f

x0=1

) both
contain a path over the vertices x1, x2, x3 and one isoltaed
vertex x4.

We can easily varify that 2x0x4 is the only term present in
f and associated with the restricting variable x0 and isolated
vertex x4. Therefore, L4

x0
= 2x0, L4

0 = 0, and L4
1 = 2. From

(23), we have e2 = x2(1− x0) + x3x0. Using Corollary 1,

S={2 (x0x1x2+x0x1x3+x1x3+x3x2+x0x4)+x1+2x2

+2x3 + 2x4 + 3 + 2(d0x0 + d′′e2) : d0, d
′′ ∈ {0, 1}}

=


33001120110211001320310031223120
31021322130013021122330233203322
33003100130033221320112033201302
31023302110231201122132231221100

 .
(42)

is a CS of size 4. Therefore, the PMEPR of ψ(f) is at most
4 and from Schmidt’s construction, the PMEPR upper bound
of ψ(f) is 8.

Corollary 2: Let f be a GBF as defined in Theorem 1 and
unlike the GBF as defined in Corollary 1. Then for any choice
of gi, g′ ∈ Zq ,

{
f+

q

2

(
d·xJ+d′

p∑
i=1

xli+d
′′e2

)
:

d∈{0, 1}k, d′, d′′∈{0, 1}
}
,

(43)

is a CS of size 2k+2 with at most PMEPR 2k+2 − 2M .

Proof: The set S can be expressed as S = S1∪S2, where

S1=
{
f+

q

2
(d·xJ+d′′e2) : d∈{0, 1}k, d′′∈{0, 1}

}
,

S2=

{
f+

q

2

(
d·xJ+

p∑
i=1

xli+d
′′e2

)
:d∈{0, 1}k, d′′∈{0, 1}

}
.

(44)

By Theorem 1, we have

A(S1)(τ)=



2m+1

p∑
i=1

Ni + 2m+1M, τ = 0,

ω
gli
q 2m

∑
c∈SNi

ωL
li
c

q , τ=2li , i=1, 2, . . . , p,

ω
−gli
q 2m

∑
c∈SNi

ω−L
li
c

q , τ=−2li , i=1, 2,. . ., p,

0, otherwise,
(45)

and

A(S2)(τ)=



2m+1

p∑
i=1

Ni + 2m+1M, τ = 0,

ω
q
2+gli
q 2m

∑
c∈SNi

ωL
li
c

q , τ=2li , i=1, 2, . . . , p,

ω
−( q2+gli )
q 2m

∑
c∈SNi

ω−L
li
c

q , τ=−2li , i=1, 2,. . ., p,

0, otherwise.

=



2m+1

p∑
i=1

Ni + 2m+1M, τ = 0,

−ωgliq 2m
∑
c∈SNi

ωL
li
c

q , τ=2li , i=1, 2, . . . , p,

−ω−gliq 2m
∑
c∈SNi

ω−L
li
c

q , τ=−2li , i=1, 2,. . ., p,

0, otherwise.
(46)

From (45) and (46), we have

A(S1)(τ) +A(S2)(τ) =

{
2m+k+2, τ = 0,

0, otherwise.
(47)

Therefore, S is a CS of size 2k+2. Let us assume that S1 =
{a0, a1, . . . , a2k+1−1}. From (3) and (45), we have

P (aα)(t) ≤
2k+1−1∑
β=0

P (aβ)(t)

≤ 2m+k+1 + 2m
p∑
i=1

∑
c∈SNi

[
|ωL

li
c

q |+ |ω−L
li
c

q |
]

= 2m+k+1 + 2m+1

p∑
i=1

Ni,

(48)

where α = 0, 1, . . . , 2k+1 − 1. From (48), we have

P (aα)(t)
2m

≤ 2k+1 + 2

p∑
i=1

Ni

= 2k+2 − 2M.

(49)

From (4) and (49), it is clear that the PMEPR of aα is upper
bounded by 2k+2 − 2M for all α = 0, 1, . . . , 2k+1 − 1.
Similarly, we can show that the PMEPRs of the sequences
in S2 are upper bounded by 2k+2− 2M . Since S is the union
of sets S1 and S2, the PMEPR of S is at most 2k+2 − 2M .

Remark 8: It is observed that Corollary 2 can provide
more tight upper bound of PMEPR than that of [5, Th. 5]
for a sequence corresponding to a GBF which satisfies the
properties introduced in Corollary 2.

Example 4: Let f be a GBF of 5 variables x0, x1, x2, x3, x4
over Z4, given by

f = 2(x0x1x3 + x0x3x4 + x1x3 + x3x2)

≡ 2x0(x4x3 + x3x2) + 2(1− x0)(x1x3 + x3x2).
(50)
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The above GBF can be obtained from (21) by substituting
k = 1, j0 = 0, p = 2, M = 0, N1 = 1, N2 = 1, SN1

=

{0}, SN2
= {1},

(
π1
(0)(0), π

1
(0)(1), π

1
(0)(2)

)
= (1, 3, 2),(

π2
(1)(0), π

2
(1)(1), π

2
(1)(2)

)
= (4, 3, 2), l1 = 4, l2 = 1, %40 = 0,

%10 = 0 and g0 = g1 = g2 = g3 = g4 = g′ = 0.
The restricted Boolean functions f


x0=0

and f

x0=1

are

f

x0=0

= 2(x1x3 + x3x2),

f

x0=1

= 2(x4x3 + x3x2),
(51)

respectively. From (51), it is clear that G(f

x0=0

) contains
one path over the vertices x1, x2, x3 and x4 as isolated vertex,
and G(f


x0=1

) contains one path over the vertices x2, x3, x4
and x1 as isolated vertex. We can easily verify that there is
no term, present in f , associated with x0 and isolated vertices
x1, x4. Therefore, L1

x0
= 0 and L4

x0
= 0. From (23), we have

e2 = x1(1− x0) + x4x0. Using Corollary 2, the set

{f + 2 (d0x0 + d′(x1 + x4) + d′′e2) : d0, d
′, d′′ ∈ {0, 1}}

=



00000000002022020000000002222000
02020202022220000202020200202202
00220022000222202200220020220200
02200220020020222002200222200002
00200020000022220222022200002222
02220222020220200020002002022020
00020002002222002022202222000022
02000200022020022220222020020220


(52)

is a CS of size 8. Hence, by using Corollary 2, the PMEPR
upper bound for ψ(f) is 8 whereas Schmidt’s construction
provides a PMEPR upper bound of 16.

Example 5: Let f be a GBF of 6 variables over Z4, given
by

f =2(x0x2x3 + x0x3x4 + x0x4x5 + x0x2x4 + x0x1x4

+ x0x1x3 + x0x3x5 + x2x4 + x4x1 + x1x3 + x3x5)

≡2x0(x2x3 + x3x4 + x4x5)

+ 2(1− x0)(x2x4 + x4x1 + x1x3 + x3x5).
(53)

The above GBF can be obtained from (23) by substituting
k = 1, j0 = x0, p = 1, M = 1, N1 = 1, SM = {0},
SN1

= {1},
(
π(0)(0), π(0)(1), π(0)(2), π(0)(3), π(0)(4)

)
=

(2, 4, 1, 3, 5),
(
π(0)(0), π(0)(1), π(0)(2), π(0)(3)

)
= (2, 3, 4, 5),

l1 = 1, %10 = 0 and g0 = g1 = · · · = g5 = g′ = 0.
The restricted Boolean functions f


x0=0

and f

x0=1

are
given by

f

x0=0

= 2(x2x4 + x4x1 + x1x3 + x3x5),

f

x0=1

= 2(x2x3 + x3x4 + x4x5),
(54)

respectively. It is clear that G(f

x0=0

) is a path and
G(f


x0=1

) contains a path and the isolated vertex x1. From
the expression of the GBF f , we can easily varify that there
is no term associated with the variables x0 and x1. Therefore,
L1
x0

= 0. From (23), we have e2 = x2(1− x0) + x2x0 = x2.

 

 

𝑥2  𝑥4  𝑥1  𝑥3  𝑥5  

 

𝑥2  𝑥3  𝑥4  𝑥5  

𝑥1  

 

(a)

    

      (b)

 

 

𝑥2  𝑥4  𝑥3  𝑥5  

(c)

 

 

𝑥2  𝑥3  𝑥4  𝑥5  

(d)

𝑥2  𝑥4  

(e)

𝑥2  𝑥4  

(g)

Fig. 2. The graphs of the restricted Boolean functions obtained from f .

Using Corollary 2, the set

S = {f + 2(d0x0 + d′x1 + d′′x2) : d0, d
′, d′′ ∈ {0, 1}}

=


0000000000200222002020000202202000000000200022020222220220200202
0202020202220020022222020000222202020202220220000020200022220000
0022002200020200000220220220200200220022202222200200222020020220
0220022002000002020022200022220002200220222020220002202222000022
0000222200202000002002220202020200002222200000200222002020202020
0202202002222202022200200000000002022020220202220020022222222222
0022220000022022000202000220022000222200202200020200000220022002
0220200202002220020000020022002202202002222002000002020022002200

 .
(55)

is a complementary set of size 8 and the PMEPR upper
bound of the sequences lying in S is 6. The G(f


x0=0

)

and G(f

x0=1

) are represented by Fig. 2 (a) and Fig. 2 (b)
respectively. Since, G(f


x0=1

) contains the isolated vertex x1,
Schmidt’s construction suggests to delete the isolated vertex
x1. After deleting the isolated vertex or restricting x1, we ob-
tain the following restricted Boolean functions f


(x0,x1)=(0,0)

,
f

(x0,x1)=(0,1)

, f

(x0,x1)=(1,0)

and f

(x0,x1)=(1,1)

. The
G(f


(x0,x1)=(0,0)

), G(f

(x0,x1)=(0,1)

), are represented by
Fig. 2 (c) and G(f


(x0,x1)=(1,0)

), G(f

(x0,x1)=(1,1)

) are rep-
resented by Fig. 2 (d). Again, deletion needs to be performed
by following Scmidt’s construction. After performing another
deletion of vertices, the resulting graphs of restricted Boolean
functions will be represented by Fig. 2 (e) and Fig. 2 (g).
The deletion process can continue until the graph of every
restricted Boolean function is a path or consists of a single
vertex.

Therefore, from Schmidt’s construction, the PMEPR upper
bound of ψ(f) is 64 whereas from Corollary 2, the PMEPR
upper bound of ψ(f) is 6. Note that 4-PSK is considered in
this example.

V. GRAPHICAL ANALYSIS OF THE PROPOSED
CONSTRUCTIONS

In this section, we interpret our proposed construction with
graphical analysis.

A graph can be represented by a pair of sets (V,E), where
V is the set of verices and E is the set of edges present
in the graph. As an example, the graph given in Fig. 1 (a)
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can also be expressed by (V,E), where V = {x1, x2, x3}
and E = {x1x3, x2x3}. The term x1x3 represents the edge
between the vertices x1 and x3. Similarly, x2x3 represents the
edge between the vertices x2 and x3. We say a graph (V,E)
is a path if the edges in E form a path over all the vertices
presented in V . If there exist some vertices in V which are
not associated with any edges presented in E, we call them
isolated vertices in the graph (V,E). As an example, in Fig.
1 (b), V = {x1, x2, x3} and E = {x1x2}, where the set E
does not contain any such edges which include the vertex x3.
Hence, for Fig. 1 (b), we call (V,E), a graph containing a
path and an isolated vertex. As a generalization, in Fig. 3,

(𝑉𝑀 , 𝐸𝐜
𝑀) 

(𝑉𝑁1 , 𝐸𝐜
𝑁1) 

(𝑉𝑁𝑝 , 𝐸𝐜
𝑁𝑝 ) 

𝑥𝜋𝐜(0) 𝑥𝜋𝐜(1) 𝑥𝜋𝐜(2) 𝑥𝜋𝐜(𝑚−𝑘−2) 𝑥𝜋𝐜(𝑚−𝑘−1) 

𝑥𝜋𝐜1(0) 𝑥𝜋𝐜1(1) 𝑥𝜋𝐜1(𝑚−𝑘−3) 𝑥𝜋𝐜1(𝑚−𝑘−2) 

𝑥𝑙1  

𝑥𝜋𝐜
𝑝
(0) 𝑥𝜋𝐜

𝑝
(1) 𝑥𝜋𝐜

𝑝
(𝑚−𝑘−3) 

𝑥𝑙𝑝  

𝑥𝜋𝐜
𝑝
(𝑚−𝑘−2) 

Fig. 3. The graphs of the restricted Boolean functions corresponding to GBF
given in (21).

(VM , EMc ) = G(f |xJ=c), where f is a GBF given in (21),
c ∈ SM , VM = {x0, x1, . . . , xm−1} \ {xj0 , xj1 , . . . , xjk−1

},
and EMc = {xπc(i)xπc(i+1) : i = 0, 1, . . . ,m − k − 2}.
For any two distinct c1, c2 ∈ SM , the graphs (VM , EMc1 )
(=G(f |xJ=c1)) and (VM , EMc2 ) (=G(f |xJ=c2)) will be the
same if the permutations πc1 and πc2 are equal. Otherwise,
EMc1 6= EMc2 , and hence (VM , EMc1 ), (VM , EMc2 ) represent
two different graphs. Similarly, (V Nδ , ENδc ) = G(f |xJ=c),
c ∈ SNδ (δ = 1, 2, . . . , p), V Nδ = {x0, x1, . . . , xm−1} \
{xj0 , xj1 , . . . , xjk−1

, xlδ}, and ENδc = {xπδc (i)xπδc (i+1) : i =

0, 1, . . . ,m− k − 3}, where πδc , c ∈ SNδ , δ = 1, 2, . . . , p are
defined in (21).

If a GBF has the same graphical property as given in Fig.
3 and also satisfies the conditions given in Corollary 1, the
sequence corresponding to the GBF lies in a CS of size 2k+1

and hence the PMEPR is upper bounded by 2k+1. Similarly,
if a GBF meets the condition given in Corollary 2 and also
has the same graphical property as in Fig. 3, the sequence
corresponding to the GBF lies in a CS of size 2k+2 with at
most PMEPR 2k+2 − 2M .

Now, we define the set of vertices as follows:
PMc = {xπc(0), xπc(m−k−1)}, c ∈ SM and
IN

δ
c = {xπδc (0), xπδc (m−k−2)}, c ∈ SNδ , δ = 1, 2, . . . , p.
Schmidt’s construction provides a PMEPR upper bound of

2k+p+1 for the sequences corresponding to the GBFs which
have the following properties:

TABLE I
PMEPR UPPER BOUND FOR DIFFERENT VALUES OF M AND p, WHERE

M +

p∑
i=1

Ni < 2m .

k Construction M p PMEPR upper bound

1

Corollary 1 0 1 Proposed [5]
4 8

Corollary 2
0 1 8 8

2 8 ≥ 16
1 1 6 ≥ 8
2 0 4 4

2

Corollary 1 0 1 8 16
2 8 ≥ 32

1 1 8 ≥ 16

Corollary 2

0

1 16 16
2 16 ≥ 32
3 16 ≥ 64
4 16 ≥ 128

1
1 14 ≥ 16
2 14 ≥ 32
3 14 ≥ 128

2 1 12 ≥ 16
2 12 ≥ 32

3 1 10 ≥ 16
4 0 8 8

• The restricted Boolean functions of a GBF have the
following graphical properties as given in Fig. 3.

• xlδ ∈ PMc ∀c ∈ SM , δ = 1, 2, . . . , p.
• xlδ ∈ IN

δ1
c ∀c ∈ SNδ1 , δ1 ∈ {1, 2, . . . , p} \ {δ}, δ =

1, 2, . . . , p.
Otherwise, the PMEPR upper bound provided by Schmidt’s
construction will be strictly greater than 2k+p+1. For different
values of M and p, we compare the PMEPR upper bounds
obtained from Corollary 1 and Corollary 2, with [5] in TABLE
I.

VI. CODE-RATE COMPARISON WITH EXISTING WORK

In this section, we compare our proposed construction with
the constructions given in [4] and [5] in terms of code-rate
and PMEPR.

A. Comparison With [4]

In this subsection, we give a comparison of our proposed
construction with [4] to show that the proposed construction
can generate more sequences, i.e., higher code-rate with tighter
PMEPR upper bound.

It is observed that by using Corollary 1, we get at least

m!

2

[
(m− 2)!

2
− 1

]
q2m−3(q − 1)2,

complementary sequences with PMEPR at most 4 and

3m!

4

[
(m− 3)!

2
− 1

]
q3m−8(q − 1)2,

complementary sequences with PMEPR at most 8 of length
2m. The detailed derivations on enumeration of complemen-
tary sequences with maximum PMEPR 4 and 8 are given in
Subsections A and B of Appendix B, respectively.
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By Corollary 2, we obtain at least[
m!(m− 2)!(m− 1)

4

]
q2m−2(q − 1)2,

complementary sequences with PMEPR at most 6 and at least

m(m− 2)

[
(m− 2)!

2

]2
q2m−3(q − 1)2,

complementary sequences with PMEPR at most 8. The de-
tailed derivations on enumeration of complementary sequences
with maximum PMEPR 6 and 8 are given in Subsections C
and D of Appendix B, respectively.

Now we define three codebooks S1,S2,S3 where S1,S2,
and S3 contain codewords of length 2m over Zq with PMEPR
at most 4, 6, and 8 respectively, given in TABLE II. The code-

TABLE II
PMEPRS AND ENUMERATIONS FOR CODEBOOKS S1,S2,S3

Codebook PMEPR
upper bound Size of Codebook

S1 4 m!
2

[
(m−2)!

2
− 1

]
q2m−3(q − 1)2

S2 6
[
m!(m−2)!(m−1)

4

]
q2m−2(q − 1)2

S3 8
3m!
4

[
(m−3)!

2
− 1

]
q3m−8(q − 1)2

+m(m− 2)
[
(m−2)!

2

]2
q2m−3(q − 1)2

rate [29] of a code-keying OFDM is defined as R(C) :=
logq |C|
L , where |C| and L denote the set size of codebook C

and the number of subcarriers respectively. In TABLE III and
TABLE V, code-rate comparisons with [4] is given. TABLE
IV contains code-rates for binary and quaternary cases with
PMEPR at most 6.

TABLE III
CODE-RATE COMPARISON WITH CODEBOOK IN [4] WITH PMEPR AT

MOST 4 OVER Zq

L = 2m
Zq q = 2 q = 4

Proposed [4] Proposed [4]

m = 5 0.4346 0.3440 0.3762 0.1875
m = 6 0.3274 0.2660 0.2588 0.1210
m = 7 0.2202 0.1800 0.1654 0.0740
m = 8 0.1398 0.1130 0.1015 0.0440
m = 9 0.0855 0.0660 0.0605 0.0255
m = 10 0.0509 0.0380 0.0353 0.0145

TABLE IV
CODE-RATE FOR OFDM CODES WITH PMEPR AT MOST 6 OVER Zq

L = 2m
Zq q = 2 q = 4

m = 4 0.6981 0.6356
m = 5 0.5466 0.4478
m = 6 0.3812 0.2935
m = 7 0.2483 0.1834
m = 8 0.1547 0.1108
m = 9 0.0933 0.0654
m = 10 0.0549 0.0378

TABLE V
CODE-RATE COMPARISON WITH CODEBOOK IN [4] WITH PMEPR AT

MOST 8 OVER Z2

L = 2m
Zq q = 2

Proposed [4]

m = 7 0.2371 0.1720
m = 8 0.1501 0.1170
m = 9 0.0916 0.072
m = 10 0.0544 0.043

B. Comparison With [5]

In this subsection, we present a comparison between our
proposed construction with [5] to show that the proposed
construction can provide higher code-rate and PMEPR upper
bound. For 0 ≤ k < m, 0 ≤ r ≤ k + 1, and h ≥ 1, a linear
code A(k, r,m, h) [5] is defined to be the set of codewords
corresponding to the set of polynomials{

m−k−1∑
i=0

xαgi(xm−k, . . . , xm−1) + g(xm−k, . . . , xm−1) :

g0, . . . , gm−k−1 ∈ F(r − 1, k, h), g ∈ F(r, k, h)} .
(56)

The number of codewords in A(k, r,m, h) is equal to 2sk ,
where

sk = (m− k) log2 |F(r − 1, k, h)|+ log2 |F(r, k, h)|.

Now, R(k,m, h) [5] is defined to be the set of codewords
associated with the following polynomials over Z2h

2h−1
∑

c∈{0,1}k

m−k−2∑
i=0

xπc(i)xπc(i+1)

k−1∏
j=0

x
cj
m−k+j(1− xm−k+j)

(1−cj),

(57)

where πc are 2k permutations of {0, 1, . . . ,m − k − 1}.
For m − k > 1 and r > 2 − h, the set R(k,m, h)
contains [(m − k)!/2]2

min{r+h−3,k}
codewords corresponding

to a GBF of effective-degree at most r. The sequences
in the cosets of A(k, r,m, h) with coset representatives in
R(k,m, h) have PMEPR at most 2k+1 and the code has min-
imum Lee and squared Euclidean distance equal to 2m−r and
2m−r+2 sin2( π

2h
) respectively. We define Imk = {0, 1, . . . ,m−

k − 1} which will be used in the construction of code.
1) Code Construction by Using Corollary 1: In this section,

we consider the case p = 1, M = 0 of Corollary 1. For
0 ≤ k < m− 1, 0 ≤ r ≤ k + 1, α 6= l1 (l1 ∈ {0, 1, . . . ,m−
k − 1}) and h ≥ 1, we define a linear code A1,l1(k, r,m, h)
corresponding to the set of polynomials{

m−k−1∑
i=0

xαgi(xm−k, . . . , xm−1) + g(xm−k, . . . , xm−1) :

g0, . . . , gm−k−1 ∈ F(r − 1, k, h), g ∈ F(r, k, h)} .
(58)

A1,l1(k, r,m, h) contains 2s1,k codewords, where

s1,k = (m− k − 1) log2 |F(r − 1, k, h)|+ log2 |F(r, k, h)|.
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Since, A1,l1(k, r,m, h) ⊂ A(k, r,m, h), the minimum dis-
tances of A1,l1(k, r,m, h) can be lower bounded by 2m−r

and 2m−r+2 sin2( π
2h
).

Now, we assume thatR1,l1(k,m, h) be the set of codewords
associated with the following polynomials

2h−1
∑

c∈{0,1}k

m−k−3∑
i=0

xπc(i)xπc(i+1)

k−1∏
j=0

x
cj
m−k+j(1− xm−k+j)

(1−cj)

+2h−1xl1(e0xm−1 + · · ·+ ek−1xm−k),
(59)

where πc are 2k permutations of {0, 1, . . . ,m − k − 1} \ l1
and e0, . . . , ek−1 ∈ {0, 1}, but all can not be zero at the same
time.

For m− k > 2 and r > 2− h, it can be shown that the set
R1,l1(k,m, h) contains (2k − 1)[(m− k − 1)!/2]2

min(r+h−3,k)

codewords corresponding to a GBF of effective degree at most
r.

Note 1: Assume that m − k > 2. Let 2 ≤ r ≤ k + 2
when h = 1, 1 ≤ r ≤ k + 1 when h > 1 and r′ =
min{r, k + 1}. By using Corollary 1, it can be shown that
any coset of A1,l1(k, r

′,m, h) with coset representatives in
R1,l1(k,m, h) have PMEPR at most 2k+1. Now take the union
of (2k − 1)[(m − k − 1)!/2]2

min(r+h−3,k)

distinct cosets of
A1,l1(k, r

′,m, h), each containing a word in R1,l1(k,m, h)
with effective degree at most r. The PMEPR of the corre-
sponding polyphase codewords in this code is at most 2k+1.
Since the code is a subcode of ERM(r,m, h), its minimum
Lee and squared Euclidean distances are lower bounded by
2m−r and 2m−r+2 sin2( π

2h
) respectively.

2) Code Construction by Using Corollary 2: In this section,
we consider the case p ≥ 2, M = 0 of Corollary 2. Consider
R2,l(k,m, h) be the set of codewords associated with the
following polynomials

2h−1
p∑

α=1

∑
cα∈SNα

m−k−3∑
i=0

xπcα (i)xπcα (i+1)

×
k−1∏
j=0

x
cαj
m−k+j(1− xm−k+j)

(1−cαj ),

(60)

where cα = (cα0 , . . . , c
α
k−1), πcα are Nα permutations of

{0, 1, . . . ,m−k−1}\ lα, l = (l1, l2, . . . , lp) and
∑p
α=1Nα =

2k.
Now, we define the set L =

{l : l ∈ {0, 1, . . . ,m− k − 1}p, l1 < l2 < · · · < lp}.
For m− k > 2, r > 2− h, and l ∈ L, it can be shown that

the set R2,l(k,m, h) contains

[(m−k−1)!/2]min(2r+h−3,N1) × [(m−k−1)!/2]min(2r+h−3,N2)

× · · · × [(m−k−1)!/2]min(2r+h−3,Np)

codewords corresponding to a GBF of effective degree at most
r.

Note 2: Assume m − k > 2. Let 2 ≤ r ≤ k + 2 when
h = 1, 1 ≤ r ≤ k + 1 when h > 1 and r′ = min{r, k +
1}. By using Corollary 2, it can be shown that any coset of
A(k, r′,m, h) with coset representatives in R2,l(k,m, h) have

at most PMEPR 2k+2. It is also observed that the minimum
Lee and squared Euclidean distances of the code⋃

a∈R2,l(k,m,h)

(a +A(k, r,m, h))

are lower bounded by 2m−r and 2m−r+2 sin2( π
2h
) respec-

tively.
3) Code Construction With Maximum PMEPR 4 and 8: In

this part, we construct codes with maximum PMEPR 4 and 8
by using the above discussed codes.

Corollary 3 (Code With Maximum PMEPR 4): Assume that
m > 3. Let 2 ≤ r ≤ 3 when h = 1, 1 ≤ r ≤ 2 when h > 1
and r′ = min{r, 2}. Now, consider

C =

 ⋃
a1∈R(1,m,h)

a1+A(1, r′,m, h)


⋃ ⋃

l1∈Im1

 ⋃
a2∈R1,l1

(1,m,h)

a2+A1,l1(1, r
′,m, h)

 .
(61)

The code |C| contains codewords or sequences with at most
PMEPR 4. Hence, the maximum PMEPR of C is 4. We denote
the number of codewords or sequences in the code by |C|,
where

|C| =
(
2s1 × [(m− 1)!/2]2

min{r+h−3,1}
)

+
(
2s1,1 × (m− 1)× [(m− 2)!/2]2

min(r+h−3,1)
)
.

(62)

Since C is a subcode of ERM(r,m, h), the minimum Lee and
squared Euclidean distances of the code are lower bounded by
2m−r and 2m−r+2 sin2( π

2h
) respectively.

TABLE VI
CODE-RATE COMPARISON WITH CODEBOOK IN [5] WITH MAXIMUM

PMEPR 4 OVER Z2h

m h r Proposed [5] dL d2E
4 1 2 0.6192 0.5990 4 16.00

3 0.7053 0.6980 2 8.00
2 1 0.4611 0.4560 8 16.00

2 0.6000 0.5990 4 8.00
5 1 2 0.4345 0.4250 8 32.00

3 0.5392 0.5366 4 16.00
2 1 0.3087 0.3060 16 32.00

2 0.4249 0.4246 8 16.00
6 1 2 0.2848 0.2798 16 64.00

3 0.3732 0.3721 8 32.00
2 1 0.1959 0.1946 32 64.00

2 0.2799 0.2798 16 32.00

From (62), it is clear that the set size of the sequences with
maximum PMEPR 4 obtained from our proposed construction
is larger than the set size given in [5]. In TABLE VI, we have
compared the code-rate of sequences with maximum PMEPR
4 obtained from our proposed construction with that of the
construction given in [5].

Corollary 4 (Code With Maximum PMEPR 8): Suppose
m > 4. Let 2 ≤ r ≤ 4 when h = 1, 1 ≤ r ≤ 3 when
h > 1 and r′′ = min{r, 3}.
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For the case 2 ≤ r ≤ 3 when h = 1, 1 ≤ r ≤ 2 when
h > 1 and r′′ = min{r, 3}, we consider the code C1, defined
by

C1 =

 ⋃
b1∈R(2,m,h)

b1+A(2, r′′,m, h)


⋃ ⋃

l1∈Im2

 ⋃
b2∈R1,l1

(2,m,h)

b2+A1,l1(2, r
′′,m, h)


⋃⋃

l∈L

 ⋃
b3∈R2,l(1,m,h)

b3+A(1, r′,m, h)

 ,
(63)

where

|C1| =
(
2s2 × [(m− 2)!/2]2

min{r+h−3,2}
)

+
(
3× (m− 2)× 2s1,2 × [(m− 3)!/2]2

min(r+h−3,2)
)

+
(
2s1 × |L| × [(m− 2)!/2]2×min{2r+h−3,1}

)
,

(64)

where |L| =
(
m−1
2

)
for k = 1 and p = 2.

Since C1 is a subcode of ERM(r,m, h), the minimum Lee
and squared Euclidean distances of the code are lower bounded
by 2m−r and 2m−r+2 sin2( π

2h
) respectively.

For r = 4 when h = 1 and r = 3 when h > 1, we consider
the code C2, defined by

C2 =

 ⋃
b1∈R(2,m,h)

b1+A(2, r′′,m, h)


⋃ ⋃

l1∈Im2

 ⋃
b2∈R1,l1

(2,m,h)

b2+A1,l1(2, r
′′,m, h)

 ,
(65)

where

|C2| =
(
2s2 × [(m− 2)!/2]2

min{r+h−3,2}
)

+
(
3× 2s1,2 × (m− 2)× [(m− 3)!/2]2

min(r+h−3,2)
)
.

(66)

Since C2 is a subcode of ERM(r,m, h), the minimum Lee and
squared Euclidean distances of the code are lower bounded by
2m−r and 2m−r+2 sin2( π

2h
) respectively.

From (64) and (66), it is clear that our proposed construction
can provide more number of sequences than the construction
given in [5]. In TABLE VII, we have compared the code-rate
of sequences with maximum PMEPR 8 obtained from our
proposed construction with that of the construction given in
[5].

C. Comparison with [8]–[23]

In this subsection, we give a comparison of our proposed
construction with the works introduced in [8]–[23]. The com-
parison has been given in TABLE VIII.

TABLE VII
CODE-RATE COMPARISON WITH CODEBOOK IN [5] WITH MAXIMUM

PMEPR 8 OVER Z2h

m h r Proposed [5] dL d2E
5 1 2 0.5138 0.4558 8 32.00

3 0.6056 0.5991 4 16.00
4 0.6984 0.6981 2 8.00

2 1 0.3495 0.3216 16 32.00
2 0.5030 0.5025 8 16.00
3 0.5991 0.5991 4 8.00

6 1 2 0.3552 0.3060 16 64.00
3 0.4263 0.4245 8 32.00
4 0.5366 0.5366 4 16.00

2 1 0.2322 0.2077 32 64.00
2 0.3374 0.3372 16 32.00
3 0.4246 0.4246 8 16.00

VII. CONCLUSIONS

In this paper, we proposed a direct and generalized con-
struction of polyphase CS by using higher order GBFs and
the concept of isolated vertices. The proposed construction
provides tighter PMEPR upper bound for code words and
higher code-rate by maintaining the same minimum code
distances as compared to Schmidt’s construction. We have
shown that our proposed construction gives rise to sequences
with maximum PMEPR upper bound of 4 in Corollary 1
and 8 in both Corollary 1 and Corollary 2, respectively. In
addition, we have obtained sequences with maximum PMEPR
upper bound of 6 in Corollary 2. The constructions given by
Davis and Jedwab [3], Paterson [4] and Schmidt [5] appear as
special cases of our proposed construction. Lastly, as pointed
out by one reviewer, the practical PMEPR performances of
our constructed sequences also depend on the power amplifier
(PA) at the transmitter. The PA may introduce certain non-
linear distortions when the transmit signals are not in the linear
amplification zone. As a future work of this research, it would
be interesting 1) to evaluate the reduction of the input back-off
(IBO) for different PAs based on our constructed sequences
and compare it with the known sequences. 2) to compare the
complementary commulative distribution function (CCDF) of
the PMPER of our proposed method to the known methods.

APPENDIX A
PROOF OF Theorem 1

For any τ 6= 0, the sum of AACF of sequences from the
set S, which is defined in (22), can be written as∑

dd′′
A
(
f +

q

2
(d · xJ + d′′e2)

)
(τ) = L1 + L2, (67)

where

L1 =
∑
dd′′

∑
c

A
((
f +

q

2
(d · xJ + d′′e2)

)
xJ=c

)
(τ), (68)

and

L2 =
∑
dd′′

∑
c1 6=c2

C
((
f +

q

2
(d · xJ + d′′e2)

)
xJ=c1

,(
f +

q

2
(d · xJ + d′′e2)

)
xJ=c2

)
)
(τ).

(69)
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TABLE VIII
COMPARISON WITH [8]–[23]

Sequence Class Approach Phase Length Constraints
Complete complementary codes (CCC) [8] Second-order GBFs q 2m m ≥ 1, q ≥ 2, 2|q

General QAM Golay complementary seq. [9] PSK GDJ seq. q 2m m ≥ 1
General QAM Golay complementary seq. [10] Gaussian integer pairs q 2m m ≥ 1

CS [11] Seq. Insertion q N + 1, N + 2, 2N + 3 q ≥ 2, 2|q, N length of a GCP
CCC [12] Paraunitary matrices q MN′ M > 1, N ′ ≥ 1, q ≥ 2

CCC [13] Paraunitary matrices q PN
′

P |M,N ′ ≥ 1, q ≥ 2
Inter-group complementary code set [14] Second-order GBFs q 2m m ≥ 2, q ≥ 2, 2|q

Z-complementary code set [15] Second-order GBFs q 2m m ≥ 2, q ≥ 2, 2|q
Z-complementary code set [16] Second-order GBFs q 2m m ≥ 3, q ≥ 2, 2|q

CS with large zero-correlation zone [17] Second-order GBFs q 2m m ≥ 2, q ≥ 2, 2|q
CS [18] Second-order GBFs q 2m−1 + 2v m ≥ 2, 1 ≤ v ≤ m− 1, q ≥ 2, 2|q

CCC [19] RM codes q 2m m ≥ 2, q ≥ 2, 2|q
CS [20] RM codes q 2m m ≥ 2, q ≥ 2, 2|q

Z-complementary pair [21] Seq. Insertion and concatenation q 2α+210β26γ α, β, γ ≥ 0, q = 2
Quasi-complementary seq. set (QCSS) [22] Singer difference sets and optimal quaternary seq. set q 2m − 1, 2(2m − 1) q = 2m − 1,m ≥ 2

QCSS [23] Primitive elements of extension field and trace function q q, q − 1 q ≥ 3, q = pn, n ≥ 1, p prime
Corollary 1 GBFs of order no less than 2 q 2m m ≥ 2, q ≥ 2, 2|q
Corollary 2 GBFs of order no less than 2 q 2m m ≥ 2, q ≥ 2, 2|q

We first focus on the term L1, which can be written as

L1 = T +

p∑
i=1

Ti, (70)

where

T =
∑
dd′′

∑
c∈SM

A
((
f +

q

2
(d · xJ + d′′e2)

)
xJ=c

)
(τ),

(71)
and

Ti =
∑
dd′′

∑
c∈SNi

A
((
f +

q

2
(d · xJ + d′′e2)

)
xJ=c

)
(τ),

(72)
where SM is the set of all those c for which G(f


xJ=c) is a

path over m− k vertices.
To find L1, we first start with T . Since, G(f


xJ=c) is a

path over m− k vertices for all c ∈ SM , we have [4]

∑
d′′

A
((
f+

q

2
(d · xJ+d′′e2)

)
xJ=c

)
(τ)

=

{
2m−k+1, τ = 0,

0, otherwise.

(73)

Therefore,

T =
∑
dd′′

∑
c∈SM

A
((
f +

q

2
(d · xJ + d′′e2)

)
xJ=c

)
(τ)

=

{
2m+1M, τ = 0,

0, otherwise.

(74)

To find L1, it remains to find Ti (i = 1, 2, . . . , p) where

Ti =
∑
dd′′

∑
c∈SNi

A
((
f +

q

2
(d · xJ + d′′e2)

)
xJ=c

)
(τ).

We can express each of Ti, as

Ti =
∑
dd′′

∑
c∈SNi

A
((
f +

q

2
(d · xJ + d′′e2)

)
xJ=c

)
(τ)

=
∑
dd′′

∑
c∈SNi

∑
β∈{0,1}

A
((
f+

q

2
(d · xJ+d′′e2)

)
xJxli=cβ

)
(τ)

+
∑
dd′′

∑
c∈SNi

∑
β∈{0,1}

C
((
f+

q

2
(d · xJ+d′′e2)

)
xJxli=cβ ,(

f +
q

2
(d · xJ + d′′e2)

)
xJxli=c(1−β)

)
(τ).

(75)

Since, for all c ∈ SNi , G(f


xJ=c) consists of a path over m−
k−1 vertices and one isolated vertex labeled li, G(f


xJxli=cβ)

is a path over m− k − 1 vertices. Therefore∑
d′′

A
((
f +

q

2
(d · xJ + d′′e2)

)
xJxli=cβ

)
(τ)

=

{
2m−k, τ = 0,

0, otherwise.

(76)

Hence, the first auto-correlation term in (75) can be expressed
as∑
dd′′

∑
c∈SNi

∑
β∈{0,1}

A
((
f +

q

2
(d · xJ + d′′e2)

)
xJxli=cβ

)
(τ)

=

{
2m+1Ni, τ = 0,

0, otherwise.
(77)

Since, for all c ∈ SNi , G(f


xJ=c) consists of a path and one
isolated vertex xli , the only term involving xli is with the
variables of the deleted vertices. Thus the only term in xli in
f can be expressed as follows.

k∑
r=1

∑
0≤i1<i2<···<ir<k

%lii1,i2,...,irxji1xji2 · · ·xjirxli = LlixJxli , (78)

where

LlixJ =

k∑
r=1

∑
0≤i1<i2<···<ir<k

%lii1,i2,...,irxji1xji2 · · ·xjir .
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To simplify the cross-correlation term in (75), we have the
following equality by Lemma 2 and (78).

∑
d′′

C
((
f +

q

2
(d · xJ + d′′e2)

)
xJxli=cβ ,(

f +
q

2
(d · xJ + d′′e2)

)
xJxli=c(1−β)

)
(τ)

=

{
ω
(2β−1)gli
q ω

(2β−1)Llic
q 2m−k, τ = (2β − 1)2li ,

0, otherwise,

where β ∈ {0, 1}.
Therefore, the cross-correlation term of (75) is simplified as

∑
dd′′

∑
c∈SNi

∑
β∈{0,1}

C
((
f +

q

2
(d · xJ + d′′e2)

)
xJxli=cβ ,(

f +
q

2
(d · xJ + d′′e2)

)
xJxli=c(1−β)

)
(τ)

=



ω
gli
q 2m

∑
c∈SNi

ωL
li
c

q , τ = 2li ,

ω
−gli
q 2m

∑
c∈SNi

ω−L
li
c

q , τ = −2li ,

0, otherwise.
(79)

From (75), (77) and (79), we have

Ti =



2m+1Ni, τ = 0,

ω
gli
q 2m

∑
c∈SNi

ωL
li
c

q , τ = 2li ,

ω
−gli
q 2m

∑
c∈SNi

ω−L
li
c

q , τ = −2li ,

0, otherwise.

(80)

From (70), (74) and (80), we have

L1 = T +

p∑
i=1

Ti

=



2m+1

p∑
i=1

Ni + 2m+1M, τ = 0,

ω
gli
q 2m

∑
c∈SNi

ωL
li
c

q , τ=2li , i=1, 2, . . . , p,

ω
−gli
q 2m

∑
c∈SNi

ω−L
li
c

q , τ=−2li , i=1, 2, . . . , p,

0, otherwise.
(81)

To find L2, we start with∑
d

C
((
f +

q

2
(d · xJ + d′′e2)

)
xJ=c1

,(
f +

q

2
(d · xJ + d′′e2)

)
xJ=c2

)
(τ)

=
∑

d

(−1)d·(c1+c2)C
((
f +

q

2
(d′′e2)

)
xJ=c1

,(
f +

q

2
(d′′e2)

)
xJ=c2

)
(τ)

= C
((
f +

q

2
(d′′e2)

)
xJ=c1

,(
f +

q

2
(d′′e2)

)
xJ=c2

)
(τ)
∑

d

(−1)d·(c1+c2)

= 0 ∀τ.
(82)

Therefore, from (69) and (82), we have

L2 =
∑
dd′′

∑
c1 6=c2

C
((
f +

q

2
(d · xJ + d′′e2

)
xJ=c1

,(
f +

q

2
(d · xJ + d′′e2)

)
xJ=c2

)
(τ)

= 0, ∀τ.
(83)

By substituting (81) and (83) into (67), we complete the proof.

APPENDIX B
ENUMERATION OF COMPLEMENTARY SEQUENCES WITH

MAXIMUM PMEPR 4, 6, AND 8

In this section, we have given the derivarions on enumera-
tion of complementary sequences with maximum PMEPR 4,
6, and 8.

A. Enumeration of complementary sequences with maximum
PMEPR 4 by Corollary 1

Let π be a permutation of the set Sα,l = {0, 1, . . . ,m−1}\
{α, l}, where α, l ∈ {0, 1, . . . ,m− 1}, and α 6= l. We define
a quadratic GBF Qπ as follows:

Qπ =
q

2

m−4∑
i=0

xπ(i)xπ(i+1). (84)

Therefore, Qπ is a quadratic GBF over the variable
{x0, x1, . . . , xm−1} \ {xα, xl}. There exist (m−2)!

2 permuta-
tions for which we have (m−2)!

2 distinct quadratic GBFs as
given in (84). Let π1, π2, . . . , π (m−2)!

2
be the (m−2)!

2 distinct
permutations and Qπ1

, Qπ2
, . . . , Qπ (m−2)!

2

, the corresponding

GBFs. Now, we define a GBF f : {0, 1}m → Zq as follows:

f = xαQπu + (1− xα)Qπv +
m−3∑
β=0

aα,πu(β)xαxπu(β)

+
q

2
xαxl +

m−1∑
i=0

gixi + g′,

(85)

where u, v ∈
{
1, 2, . . . , (m−2)!2

}
, u 6= v, aα,πu(β) ∈ Zq ,

gi ∈ Zq , and g′ ∈ Zq . For a fixed choice of α, l, u, v and
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in order to avoid repetations of the same GBFs, we consider
aα,πu(β) ∈ Zq for β ∈ {1, 2, . . . ,m − 4}, and aα,πu(β) ∈
Zq \ { q2} for β ∈ {0,m − 3}. For a fixed choice of α, l and
by varying u, v, we have (m−2)!

2

[
(m−2)!

2 − 1
]

distinct GBFs
in the form xαQπu+(1−xα)Qπv . Therefore, for fixed α and
l, we get at least (m−2)!

2

[
(m−2)!

2 − 1
]
qm−4(q − 1)2qm+1 =

(m−2)!
2

[
(m−2)!

2 − 1
]
q2m−3(q− 1)2 distinct GBFs. It is noted

that α can be selected in m ways and for each choice
of α, l can be selected in m − 1 ways. Therefore, there
exist at least m(m− 1) (m−2)!2

[
(m−2)!

2 − 1
]
q2m−3(q− 1)2 =

m!
2

[
(m−2)!

2 − 1
]
q2m−3(q − 1)2 distinct GBFs.

From (85), it is clear that either G(f |xα=0) or G(f |xα=1)
contains a path over the vertices {x0, x1, . . . , xm−1}\{xα, xl}
and one isolated vertex xl. The paths in G(f |xα=0) and
G(f |xα=1) are identified by G(Qv) and G(Qu), respectively.
From (85), Llxα = q

2xα which gives Ll0 = 0 and Ll1 = q
2 .

Hence, f satisfies the properties given in Corollary 1 for
k = 1. Therefore, we obtain m!

2

[
(m−2)!

2 − 1
]
q2m−3(q − 1)2

distinct GBFs of order three whose corresponding sequences
have PMEPRs upper bounded by 4.

B. Enumeration of complementary sequences with maximum
PMEPR 8 by Corollary 1

Let π′ be a permutation of the set Sα1,α2,l = {0, 1, . . . ,m−
1} \ {α1, α2, l}, where α1, α2, and l ∈ {0, 1, . . . ,m− 1} are
distinct. We define a quadratic GBF Qπ′ as follows:

Qπ′ =
q

2

m−5∑
i=0

xπ′(i)xπ′(i+1). (86)

There exist (m−3)!
2 permutations for which we have

(m−3)!
2 distinct quadratic GBFs of the form given in

(86). Let π′1, π
′
2, . . . , π

′
(m−3)!

2

be the permutations and
Qπ′1 , Qπ′2 , . . . , Qπ′(m−3)!

2

, the corresponding GBFs. We define

the GBF f ′ : {0, 1}m → Zq as follows:

f ′ =(xα1
xα2

+(1−xα1
)(1−xα2

))Qπ′u1
+(xα1

(1− xα2
)

+xα2
(1− xα1

))Qπ′v1
+

m−4∑
β=0

a′α1,π′u1
(β)xα1

xπ′u1 (β)

+

m−4∑
β=0

a′′α2,π′v1
(β)xα2

xπ′v1 (β)
+ bxα1

xα2
+ LlxJxl

+

m−1∑
i=0

gixi + g′,

(87)

where u1, v1 ∈
{
1, 2, . . . , (m−3)!2

}
, u1 6= v1, a′α1,π′u1

(β) ∈
Zq , a′′α2,π′v1 (β)

∈ Zq , b ∈ Zq , gi ∈ Zq , g′ ∈ Zq , and

xJ = (xα1 , xα2) ∈ {0, 1}2. The term LlxJ present in
(87) can be selected in 3 ways which are q

2xα1
, q

2xα2
,

and q
2 (xα1

+ xα2
). For a fixed choice of α1, α2, l, u1, v1

and to avoid repetations of the same GBFs, we consider
a′α1,π′u1

(β), a
′′
α2,π′v1

(β) ∈ Zq for β ∈ {1, 2, . . . ,m − 5},

a′α1,π′u1
(β) ∈ Zq \{ q2} for β ∈ {0,m−4}. We fixed a′′α2,π′v1

(0)

and a′′α2,π′v1
(m−4) in Zq\{0, q2}. For a fixed choice of α1, α2, l

and by varying u1, v1, we obtain (m−3)!
2

[
(m−3)!

2 − 1
]

distinct
GBFs in the form (xα1xβ1 + (1− xα1)(1− xβ1))Qπ′u1 +

(xα1
(1− xβ1

) + xβ1
(1− xα1

))Qπ′v1 .

From (87), we obtain at least 3m!
4

[
(m−3)!

2 − 1
]
q3m−8(q−

1)2 distinct GBFs. It is clear that each of
G
(
f |(xα1 ,xα2 )=(0,0)

)
, G

(
f |(xα1 ,xα2 )=(0,1)

)
,

G
(
f |(xα1 ,xα2 )=(1,0)

)
, and G

(
f |(xα1 ,xα2 )=(0,0)

)
contains a

path over m−3 vertices and one isolated vertex xl. The paths
in G

(
f |(xα1

,xα2
)=(0,0)

)
and G

(
f |(xα1

,xα2
)=(1,1)

)
are identified

by G(Qπ′u1 ), while the paths in G
(
f |(xα1 ,xα2 )=(0,1)

)
and

G
(
f |(xα1 ,xα2 )=(1,0)

)
are identified by G(Qπ′v1 ). For

LlxJ = q
2xα1

, LlxJ equals 0 when xJ ∈ {(0, 0), (0, 1)} and
LlxJ equals q

2 when xJ ∈ {(1, 0), (1, 1)}. For the remaining
two choices of LlxJ , we can verify that there exist exactly two
vectors in {0, 1}2 for which LlxJ ≡ 0 (mod q) and LlxJ ≡

q
2 (

mod q) for another two vectors in {0, 1}2. Therefore, the
GBF f , given in (87), satisfies all the properties specified in
Corollary 1 for k = 2, and p = 1. Hence, we have at least
3m!
4

[
(m−3)!

2 − 1
]
q3m−8(q − 1)2 complementary sequences

with the PMEPR upper bounded by 8. Following Corollary
1, more GBFs and corresponding complementary sequences
may be constructed specially by taking k = 2, and p = 2. To
compare our proposed code-rate with [4], we consider only
3m!
4

[
(m−3)!

2 − 1
]
q3m−8(q − 1)2 complementary sequences

of PMEPR at most 8 by Corollary 1.

C. Enumeration of complementary sequences with maximum
PMEPR 6 by Corollary 2

In the Subsection A of this section, we have defined Sα,l,
π, Qπu , where u ∈

{
1, 2, . . . , (m−2)!2

}
, which will be used to

count complementary sequences with maximum PMEPR 6.
Let π′′ be a permutation of the set S ′α = {0, 1, . . . ,m −

1} \ {α}. We define a quadratic GBF Qπ′′ as follows:

Qπ′′ =
q

2

m−3∑
i=0

xπ′′(i)xπ′′(i+1). (88)

Let π′′1 , π
′′
2 , . . . , π

′′
(m−1)!

2

be the permutations and
Qπ′′1 , Qπ′′2 , . . . , Qπ′′(m−1)!

2

, the corresponding GBFs. We

define the GBF f ′′ : {0, 1}m → Zq as follows:

f ′′ = xαQπu + (1− xα)Qπ′′
v′
+

m−2∑
β=0

bα,π′′
v′ (β)

xαxπ′′
v′ (β)

+

m−1∑
i=0

gixi + g′,

(89)

where u ∈
{
1, 2, . . . , (m−2)!2

}
, v′ ∈

{
1, 2, . . . , (m−1)!2

}
,

bα,π′′
v′
∈ Zq , gi ∈ Zq , and g′ ∈ Zq . For a fixed choice

of α, l, u, v′ and to avoid repetations of the same GBFs, we
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consider bα,π′′
v′ (β)

∈ Zq for β ∈ {1, 2, . . . ,m − 3}, and
bα,π′′

v′ (β)
∈ Zq \ { q2} for β ∈ {0,m− 2}.

From (89), we obtain at least
[
m!(m−2)!(m−1)

4

]
q2m−2(q −

1)2 distinct GBFs. It is clear that G(f ′′|xα=0) is a path
identified by G(Qπ′′

v′
), G(f ′′|xα=1) contains a path and one

isolated vertex xl. The path in G(f ′′|xα=1) is identified by
G(Qπu). Therefore, the GBF f ′′, given in (89), satisfies all
the properties specified in Corollary 2 for k = 1 and p = 1.
Hence, we obtain at least

[
m!(m−2)!(m−1)

4

]
q2m−2(q − 1)2

complementary sequences with the PMEPR upper bounded
by 6.

D. Enumeration of complementary sequences with maximum
PMEPR 8 by Corollary 2

Let πl1 be a permutaion of Sα,l1 and πl2 be a permutaion
of Sα,l2 , where α, l1, and l2 are three distinct integer values
from {0, 1, . . . ,m − 1}. We define the quadratic GBFs Qπl1
and Qπl2 as follows:

Qπl1 =
q

2

m−4∑
i=0

xπl1 (i)xπl1 (i+1),

Qπl2 =
q

2

m−4∑
i=0

xπl2 (i)xπl2 (i+1).

(90)

Let Q
π
l1
1
, Q

π
l1
2
, . . . , Q

π
l1
(m−2)!

2

be the quadratic GBFs

corresponding to πl11 , π
l1
2 , . . . , π

l1
(m−2)!

2

respectively,
and Q

π
l2
1
, Q

π
l2
2
, . . . , Q

π
l2
(m−2)!

2

be the quadratic GBFs

corresponding to πl21 , π
l2
2 , . . . , π

l2
(m−2)!

2

respectively. Let us

define a GBF f ′′′ : {0, 1}m → Zq as follows:

f ′′′ = xαQπl1u
+ (1− xα)Qπl2v +

m−3∑
β=0

b′
α,π

l2
v (β)

xαxπl2v (β)
,

+

m−1∑
i=0

gixi + g′,

(91)

where u, v ∈
{
1, 2, . . . , (m−2)!2

}
, b′

α,π
l2
v (β)

∈ Zq for β =

1, 2, . . . ,m−4, b′
α,π

l2
v (β)

∈ Zq\{ q2} for β = 0,m−3, gi ∈ Zq ,
and g′ ∈ Zq . Note that α can be selected in m ways and for
each choice of α, l1 can be selected in m− 1 ways. In order
to avoid repetations of the same GBF, we choose l1 in one
way. Therefore, for each choice of α and for the fixed choice
of l1, l2 can be chosen in m− 2 ways. From (91), we obtain

at least
[
(m−2)!

2

]2
q2m−3(q − 1)2 distinct GBFs.

G(f ′′′|xα=0) contains a path identified by G(Q
π
l2
v
) and

one isolated vertex xl1 . Also, G(f ′′′|xα=1) contains a path
identified by G(Q

π
l1
v
) and one isolated vertex xl2 . Therefore,

the GBF f ′′′ satisfies all the properties given in Corollary
2 for k = 1 and p = 2. Hence, we obtain at least[
(m−2)!

2

]2
q2m−3(q − 1)2 complementary sequences with the

PMEPR upper bounded by 8.
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