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In this paper, we propose a partially time-windowed dynamic routing approach with forecast orders to 

tackle the dynamic pricing problem of attended home delivery, one of the challenging problems in last- 

mile logistics. The purpose of forecast orders is to find a cost-effective route map for delivery with fore- 

cast orders to guide the delivery system to accept real orders in potentially better time slots for servicing. 

Initially, we build and optimise virtual routes using forecast orders without time windows. Upon the ar- 

rival of real orders, we replace the forecast orders with incoming real orders to help the delivery system 

estimate the opportunity cost of making the delivery in each time slot. Dynamic pricing is then used to 

influence the customer’s choices of servicing slots, and based on what the customer selects, the real order 

replaces the forecast order, and the route map is re-optimised. This strategy leads to better scheduling for 

the overall route map and more slot availability for incoming customers. Through computational study, 

we demonstrate the benefit of our approach compared to static pricing and previous dynamic pricing 

policies, with or without forecast orders. In particular, by employing forecast orders without time win- 

dows, we witness a decrease in delivery costs and an increase in the number of accepted orders, leading 

to higher profits. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

With the rapid growth in Internet and mobile-communication 

etworks, online retailing has started to make up a higher and 

igher share of grocers’ revenue. The service allows customers to 

hop for goods online and to deliver them directly to their front 

oor. Attended Home Delivery (AHD) is amongst the most crucial 

opics that have been considered by e-grocers maintained by Wang 

t al. (2014) for the reason that most grocery orders may con- 

ain perishable and frozen goods that need to be dealt with im- 

ediately explained by Agatz et al. (2013) . As Fleckenstein et al. 

2022) and Waßmuth et al. (2022) recently surveyed, the AHD 

roblem integrates both a demand-management problem and a 

ariant of a vehicle-routing problem that generally holds a com- 

on framework of providing AHD services by sending out delivery 

ans to visit customers within committed time slots to drop the 

rders, which leads to a logistics challenge to effectively manage 
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he geographical location of customers and their time-window re- 

uirements. As customer satisfaction typically relates to the time 

hey have to wait for the delivery, offering narrower time slots be- 

omes one of the significant considerations of AHD services stated 

y Agatz et al. (2011) . A narrower time slot complicates the task 

f optimising delivery routes, as the shorter the time window, the 

ewer options are available for scheduling a delivery. 

Nowadays, most online grocers use fixed, one-hour time slots. 

aturally, time slots receive different customer preferences. Sup- 

ose nothing is done through the booking horizon. In that case, the 

ompany will likely have to face unbalanced demand for time slots, 

hich leads to inefficient delivery routes and a potential waste 

f fleet capacity. To deal with this issue, researchers developed 

emand-management strategies in the past and recent literature 

iming to control/incentivise customers to select specific time slots 

o ease the routing difficulty, including Agatz et al. (2013) ; Asdemir 

t al. (2009) ; Campbell & Savelsbergh (2006) ; Cleophas & Ehmke 

2014) ; Koch & Klein (2020) ; Yang et al. (2016) . Which time slot is

he best to promote is the key question to answer in this context, 

hich, however, has not yet been fully addressed by the existing 

iterature. Difficulties in answering this question lie in two facts: 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

and management in time-slotted last-mile delivery via dynamic 

, https://doi.org/10.1016/j.ejor.2023.01.023 

https://doi.org/10.1016/j.ejor.2023.01.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://creativecommons.org/licenses/by/4.0/
mailto:ma20139@essex.ac.uk
mailto:xyangk@essex.ac.uk
mailto:moncef.nasri@ocado.com
mailto:m.fairbank@essex.ac.uk
https://doi.org/10.1016/j.ejor.2023.01.023
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejor.2023.01.023


M. Abdollahi, X. Yang, M.I. Nasri et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; February 8, 2023;12:9 ] 

Upon customer request we 
need to optimise and show

Slot availability and Slot price

* Which slot is feasible?
* What is the marginal cost?
* What is the displacement cost?
* By how much should we incentivise?

Cut-off time: 
Full order list known!

Booking horizon Delivery day

Fig. 1. Time frame. 
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1. As shown in Fig. 1 , the best slot for satisfying an order de-

pends on the insertion cost for placing that order into the fi- 

nal delivery route and the potential revenue loss of displacing 

another order. However, the full order list is not known during 

the booking horizon when decisions on which slot to promote 

have to be made. Therefore, a forecast is needed for the final 

delivery route so that when the booking is made, the extra cost 

caused by the likely route deviation to satisfy that new order 

can be estimated reasonably. 

2. The likelihood of a customer accepting an order and its time 

slot depends on the promotional decisions made during the 

booking horizon, so the final delivery route is not entirely pre- 

dictable from historical information where, essentially, a differ- 

ent pricing/order-acceptance approach was used. 

There is a mutual dependency between the forecast delivery 

oute and the incentive decision. This work aims to propose a 

ethodology based on dynamic routing to break this loop to allow 

easonable demand forecasting while maintaining the dependency 

f one on the other to the maximum extent. 

Past literature in AHD concentrates primarily on how to deal 

ith time windows, both in the demand-management step (via 

ricing or other incentive means) and in solving the so-called Ca- 

acitated Vehicle Routing Problems with Time Windows (CVRPTW) 

ffirmed by Kumar & Panneerselvam (2012) . While Yang et al. 

2016) and Koch & Klein (2020) suggest route-based approaches by 

hich a virtual route map with time windows is created to pre- 

ict the final route map to help the CVRPTW find the best time 

indow for servicing an order, an easily overlooked fact is that 

he best time window can be found by solving the VRP without 

ime windows. Inspired by this idea, in this study, we propose a 

ovel dynamic routing and pricing approach based on solving and 

pdating a partially time-windowed CVRP with a combination of 

eal and forecast orders. Specifically, at any time during the book- 

ng horizon, we maintain a set of already-committed orders, with 

xed known time windows, locations and order sizes, and a set of 

orecast orders, with given order sizes and locations but without 

ny time windows. We make this distinction because the locations 

nd sizes of forecast orders can be more reliably concluded from 

istorical data (than delivery slots), as they are not meant to be 

nfluenced by the incentive policy. As for the delivery-slot choices 

f forecast orders, however, we do not impose any time windows. 

nstead, we allow the dynamic routing approach to choose its pre- 

erred time slot for each order, which is then offered to customers 

ollowing the incentive policy. Essentially, this approach assumes 

hat future customers will generally choose the incentivized time 

lots to receive their deliveries, which aligns with our ultimate 

im of developing and deploying an incentive policy to steer cus- 

omer choices of time slots. In detail, at any point in time, we 
2

olve a partial CVRPT W (p-CVRPT W) made up of accepted orders 

ith time windows and forecast orders without time windows. We 

eed back the best time window for satisfying the forthcoming cus- 

omer, based on the solution of the p-CVRPTW. This p-CVRPTW is 

olved dynamically online and updated whenever new orders are 

ommitted. 

The major contributions of this article are: 

• For the first time, incorporating forecast orders without time 

windows into the vehicle-routing system, to allow the p- 

CVRPTW to suggest the best time slot to accommodate every 

forecast order and guide the choice of incoming orders accord- 

ingly; 
• Proposing a simple-to-implement dynamic opportunity-cost ap- 

proximation for marginal delivery cost and potential revenue 

loss, based on the dynamically managed routing system with 

both actually accepted orders and forecast orders without time 

windows; 
• Presenting an order-replacement and routing re-optimisation 

framework to capture the influence of new order commitments 

and facilitate opportunity-cost approximation, which evolves as 

more information becomes available; 
• Presenting an approach that is capable of incorporating the 

firm’s specific routing method, which may include considera- 

tions such as clustering, shifting, traffic prediction, etc., to the 

maximum extent; 
• Demonstrating the superiority of the developed approach over 

four benchmark approaches, on real data-sets taken from four 

typical geographical and demographic settings; 
• Investigating the trade-off between responding time and accu- 

racy of the online decision process. 

The article is organised as follows: In Section 2 , we explore 

he previous studies and recent research conducted in the area of 

he AHD problem. Section 3 explains different aspects of the AHD 

roblem and its dynamic programming model. Section 4 , presents 

ur methodology and how to incorporate forecast orders, pricing 

ptimisation and the customer-behaviour model. The experiment 

ettings and results obtained are reported in Section 5 . Finally, we 

onclude in Section 6 . 

. Literature review 

Following the standard categorisation of demand management 

n time-slotted deliveries by Agatz et al. (2008) , literature can be 

lustered into four main groups: static slotting (e.g., Agatz et al., 

011 ), dynamic slotting (e.g., Campbell & Savelsbergh, 2005 ), static 

ricing (e.g., Klein et al., 2017 ) and dynamic pricing (e.g., Campbell 

 Savelsbergh, 2006 ). Slotting focuses on time-slot allocation to 

ustomer regions. In contrast, pricing assigns delivery prices to bal- 
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nce demands across time slots and/or steer customer choices to- 

ards the best delivery-time options. Amongst static and dynamic 

pproaches, the latter attracts more attention as it reflects the na- 

ure of online booking, where customers place their delivery re- 

uests dynamically over the booking horizon. Readers are referred 

o the surveys by Klein et al. (2020) and Snoeck et al. (2020) on

he industrial application of revenue management and advances 

n choice-based models for more information. This article concen- 

rates on dynamic approaches to demand management with pric- 

ng. Closely related works in this category are examined in this 

ection. 

From the grocer’s point of view, delivering an order in a time 

lot or another typically yields different costs, motivating the com- 

any to steer customers’ selection of time slots to increase its 

rofit. One can apply many promoting strategies to achieve this 

im, such as offering discounted delivery prices/discount vouchers 

or some slots, highlighting the slot in different colours to reflect 

heir pollution/environmental impacts, etc., Campbell & Savels- 

ergh (2006) benefit from price discounts to encourage the se- 

ection of time slots with cheaper insertion costs, where rout- 

ng decisions are simplified with an insertion heuristic based on 

ccepted orders. In this work, we consider monetary incentives, 

hich are displayed in terms of reduced delivery prices. In prac- 

ice, other types of incentives can also be translated into monetary 

epresentations, so the same approach applies to more complicated 

cenarios where some/all customers are not price-sensitive. This 

tudy aims to find the optimal incentivising policy in a stochas- 

ic and dynamic environment, where orders are collected during 

he booking horizon. Campbell & Savelsbergh (2006) also use a 

elatively simple model (linear) of customer behaviour to cap- 

ure the effect of delivery prices on the probability of a partic- 

lar time slot being chosen. This work is extended by Asdemir 

t al. (2009) , who use the more advanced, Multinomial Logit (MNL) 

odel to describe customer choices of delivery slots. They formu- 

ate a dynamic-pricing problem assuming that delivery costs are 

xed and known a priori. This assumption removes the routing 

art of the problem from profit maximisation, which significantly 

implifies the problem. In addition, the state space of the Dynamic 

rogramming (DP) model proposed by Asdemir et al. (2009) grows 

xponentially in the number of delivery time slots, making it only 

pplicable to impractically small scenarios. Similarly, Bühler et al. 

2016) propose several linear mixed-integer programs to approxi- 

ate delivery costs based on a fixed pool of potential routes. Fur- 

her down this route, Yang et al. (2016) estimate an MNL choice 

odel from real e-grocer data and numerically demonstrate that 

sing this model for time-slot pricing to influence demand may 

mprove overall profitability. They employ insertion heuristics to 

pdate a pool of feasible routes as orders come in over the booking 

orizon and deploy the marginal delivery cost as estimates of the 

pportunity cost of accepting an order into a particular time slot. 

he proposed “foresight” approach, which uses previously planned 

outes to bring in the effects of forecast orders, is justified as su- 

erior to the “hindsight” approach, which only considers accepted 

rders. While using forecast orders based on previously planned 

outes can help to build better routes, their method is restricted 

ompared to our approach for the reason that such forecasts are 

ot updated with the acceptance of new orders, and the routing 

or actual orders is independent of that for forecast orders. 

Instead of using marginal delivery costs as estimates of the op- 

ortunity costs and concentrating on tentative routes and insertion 

euristics, other works exist with a different strategy. They use al- 

ernative modelling approaches to simplify the underlying VRPTW 

olutions to emphasise the potential revenue loss by occupying 

he slot capacity. Most of these studies investigate the “accep- 

ance scheme” of customer requests, such as Campbell & Savels- 

ergh (2005) ; Ehmke & Campbell (2014) and Cleophas & Ehmke 
3 
2014) , which aim to maximise the number of requests accepted 

or delivery. Mackert et al. (2019) proposed a new choice model 

ased on a finite-mixture MNL choice model that can simplify the 

on-linear optimisation model to a linear one for solving. A model- 

ased, profit-oriented slotting approach is developed to accurately 

pproximate customer choice behaviour. 

In dynamic pricing, works also fall under this category, which 

ims to bring future order acceptance effects by estimating the so- 

alled opportunity cost. The opportunity cost of a delivery slot is 

nterpreted as the potential future-order displacement cost when 

he current order occupies the limited capacity for this time slot. 

iven the large size and the stochastic nature of industrial ap- 

lications in e-fulfilment, the opportunity cost cannot be calcu- 

ated precisely. Approaches such as Approximate Dynamic Pro- 

ramming (ADP), Linear Approximations and look-ahead heuristics 

ave been deployed to tackle the computational difficulties. In de- 

ail, Figliozzi et al. (2007) model the carrier-pricing problem in 

he dynamic vehicle-routing environment as a stochastic dynamic 

rogram, which is solved through a one-step look-ahead heuris- 

ic. Since the context is in-freight transportation, the approaches 

roposed by Figliozzi et al. (2007) are not readily applicable to 

HD problems. In the AHD context, Klein et al. (2018) present 

n approximation approach based on a Mixed-Integer Linear Pro- 

ramming (MILP) reformulation to approximate opportunity costs. 

owever, the MILP suffers from computational challenges; even 

ith further simplifications and parallel computing, their approach 

as not proven suitable for scenarios with more than 15 vans. To 

olve the computational difficulty, Yang & Strauss (2017) exploit a 

ontinuous approximation of delivery costs and propose an ADP 

ethod that estimates the opportunity cost in real-time. Their ap- 

roach is justified as efficient in industrial-size implementations; 

owever, the routing approach used omits many practical restric- 

ions to achieve this aim. In contrast, in our work here, we propose 

n approach that can directly deploy the routing package a grocer 

s currently using, which ensures all practical restrictions of rout- 

ng are accommodated in the online pricing decisions. 

The closest related work to ours is Koch & Klein (2020) , which 

lso uses forecast orders and preliminary routes to guide booking 

ecisions. Koch & Klein (2020) propose using two routes, one start- 

ng from empty and one (the skeletal route plan) generated by re- 

eatedly deploying a fixed pricing policy (the marginal delivery- 

ost approximation approach) and removing half of the orders ran- 

omly between iterations. New orders are inserted into both routes 

ased on the lowest insertion costs. For the skeletal route plan, ar- 

ificial orders are replaced by real orders upon acceptance. A major 

ifference between our work and Koch & Klein (2020) lies in the 

ay of generating and using forecast orders. 

Unlike all previous works making use of forecast orders, includ- 

ng Koch & Klein (2020) and Yang et al. (2016) , in this work, we

o not use the “previous route” in our forecast because the “pre- 

ious route” was constructed with the orders the system received 

ollowing a fixed-demand scheduling policy (e.g., a fixed pricing 

olicy or a fixed order-acceptance policy). These works consider 

reviously allocated time windows when constructing the forecast 

oute, which implicitly assumes that the previously allocated time 

indow was optimal (or good enough), and assumes that repeat- 

ng it (or guiding the system to reinforce it) will lead to preferable 

olutions. In this article, however, we avoid using previous routes 

nd their time-window restrictions imposed on forecast orders. We 

tart with the optimal route (or the best route one can find with a 

euristic) without imposing any time windows to mimic the best 

ossible route. We can do this by performing an “excellent” pric- 

ng policy in an ideal world, i.e., where all customers select what 

urns out to be the optimal time slot (from the route-optimisation 

oftware’s point of view) to receive their orders. This strategy could 

e overly optimistic at the very beginning, so we adapt it as time 
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1

asses, gradually incorporating more actual information as orders 

rrive, and re-optimise the routing upon every committed order 

ith a fixed, known time window. With this approach, we do not 

ave to forecast time windows but only the number of orders and 

heir locations. As the approach updates according to actual order 

rrivals, it is also robust concerning forecast errors. Please refer to 

ection 5.4 for detailed experiments and results on shifted forecast 

evels. 

On a related note on dynamic routing with forecast orders, 

ut without pricing to influence time-slot choices, our approach 

hares certain similarities with Bent & Van Hentenryck (2004) ; 

choua et al. (2006) and Voccia et al. (2019) . However, these works 

ssume known probability distributions of future demands when 

enerating future delivery requests, which, in our case, is un- 

nown because the distribution is influenced by the dynamically- 

hanging pricing policy our system generates. Recently, Soeffker 

t al. (2022) comprehensively discuss scenario-based approaches 

n which information models are integrated to tackle stochas- 

ic dynamic vehicle routing. Also, Klein & Steinhardt (2022) ex- 

end scenario-based approaches to address same-day deliveries 

nd incorporate value function approximation approaches as sup- 

ort to include the dynamism over time to accomplish anticipatory 

ecision-making. Likewise, Ulmer (2020) uses a value function ap- 

roximation approach to find the best pricing policy in the same- 

ay delivery problem, which proves effective. However, if these ap- 

roaches rely on a lookup table, they suffer from the curse of di- 

ensionality as the size of the vehicle’s fleet grows. 

Other articles discussing AHD resolutions under different prob- 

em settings exist, such as Dayarian & Savelsbergh (2020) explor- 

ng the employment of in-store customers to deliver online or- 

ers while they return home, Köhler et al. (2020) ; Strauss et al. 

2020) working on the use of flexible time slots and Agatz et al. 

2021) focusing on the effect of green labels. Further, Ojeda Rios 

t al. (2021) have recently published a survey on Dynamic Vehicle 

outing Problems (DVRP) by providing taxonomies of the problems 

nd solution methods. They reported that heuristics and meta- 

euristics provided 66% of solutions to DVRP. In this article, we will 

se DVRP to estimate opportunity costs and guide choices of time 

lots. 

. Problem specification 

For the problem under consideration, the company manages an 

nline booking system that allows customers to book their delivery 

 couple of days in advance, which we refer to as the booking hori- 

on. The orders committed during the booking horizon have to be 

elivered to the customer’s front door during the agreed time slot 

y the company, using its fleet. Time slots are predefined by the 

ompany which may overlap. A scheme of the slot-booking pro- 

ess is shown in Fig. 2 . To purchase goods and book for delivery,

 customer has to log in to their account with the grocer, which 

llows the system to identify their address. We refer to this as a 

customer arrival”. Next, assuming the customer decides to place 

n order, the customer chooses their delivery day. This step may 

appen before or after filling their shopping basket. Note that we 

o not consider same-day delivery, which means once the truck 

as been loaded and dispatched, it does not need to come back to 

he depot to collect more orders until its planned route has fin- 

shed. After the customer’s selection of a delivery day, the com- 

any has to identify in real-time all the feasible time slots which 

ould be used to service this order, together with their incentive 

cales. Based on this information, the customer chooses a time slot, 

nishing the order commitment. Decisions in this problem must 

e made in a stochastic dynamic environment, with randomness 

oming from both customer arrival and customer selection of de- 

ivery slots. The requirement for a fast response time, between a 
4 
ustomer’s click of delivery day and the display of available slots 

nd prices, adds another layer of difficulty to the problem. 

.1. Dynamic programming model 

In this work, we inherit the Markov Decision Process (MDP) 

odel formulated by Yang et al. (2016) . We consider a discretized 

ooking horizon with T periods, by which we mean customer ar- 

ivals to the website during the booking horizon shown in Fig. 1 . 

ach booking period is sufficiently small such that the probability 

f having more than one arrival of a booking request is negligible. 

he final time period T denotes the cut-off time after which no 

urther bookings are taken. The stages of the dynamic program are 

he time periods t ∈ { 1 , 2 , . . . , T } . At time step t within the book-

ng horizon, the system’s state can be described by a matrix X(t) , 

ith | A | rows and | S| columns. The [ a, s ] th component of X(t) rep-

esents the number of orders accepted up to time t (in the booking 

orizon), to be delivered to area a ∈ A in time slot s ∈ S. In what

ollows, we use � x t to denote the matrix X(t) reshaped in column- 

ajor order to be stored in a one-dimensional array. 

Let V t ( � x t ) denote the value function at stage t and state �
 x t ; 

t represents the expected maximum profit obtainable from the 

ales process from time t until the cut-off time T . The dynamic- 

rogramming recursion at stage t ∈ { 1 , 2 , . . . , T } is: 

 t ( � x t ) = max 
�
 d 

[( ∑ 

a 

λμa 

∑ 

s ∈ F a ( � x t ) 

P s,F a � x t ) ( 
�
 d a ) 

[ 
r i + d as + V t+1 ( � x t + 1 as ) 

] ) 

+ 

[ 
1 −

∑ 

a 

λμa 

∑ 

s ∈ F a ( � x t ) 

P s,F a ( � x t ) ( 
�
 d a ) 

] 
V t+1 ( � x t ) 

]

= 

[
max 

�
 d 

∑ 

a 

λμa 

∑ 

s ∈ F a ( � x t ) 

P s,F a ( � x t ) ( 
�
 d a ) 

[ 
r i + d as 

−
(
V t+1 ( � x t ) − V t+1 ( � x t + 1 as ) 

)] ]
+ V t+1 ( � x t ) , ∀ 

�
 x t ∈ X , (3.1) 

here λ indicates the arrival rate of customer requests; μa de- 

otes the probability that the arrival comes from area a for a given 

ustomer arrival; �
 d a is a vector of length | S| specific to area a ,

ith components d as , where component d as represents the deliv- 

ry price to area a at time slot s ; �
 d is a collection of �

 d a over all

reas; F a ( � x t ) := { s : C( � x t + 1 as ) < ∞} denotes all feasible time slots

or area a , into which order (a, s ) can be feasibly inserted given or-

ers � x t that have been accepted, where 1 as is the unit vector equal 

o the flattened single-entry matrix with a 1 in position (a, s ) ;

 s,F a ( � x t ) 
( � d a ) denotes the probability that a customer chooses slot s 

hen the firm offers the vector of delivery prices �
 d a to feasible 

lots in F a ( � x t ) ; r i denotes the revenue of the order i that is under

onsideration. The boundary condition for the MDP model is given 

y: 

 T +1 ( � x T +1 ) = −C( � x T +1 ) ∀ 

�
 x T +1 ∈ X , (3.2) 

here C( � x t ) represents the minimum cost of servicing all accepted 

rders during their agreed time slots, which is the optimal solu- 

ion of a Capacitated Vehicle-Routing Problem with Time Windows 

CVRPTW); X denotes the set of all states that allow a feasible de- 

ivery schedule. If there is no feasible solution for a given 

�
 x T +1 , 

( � x T +1 ) = + ∞ . 

The dynamic program is intractable due to the large state space 

nd the fact that the optimal solution of large-scale CVRPTW alone 

s intractable. Nevertheless, the formula (3.1) shows that the time- 

lot pricing decision is a trade-off between the immediate income, 

r i + d as ) , and the expected opportunity cost (V t+1 ( � x t ) − V t+1 ( � x t +
 as )) arising from reserving the delivery capacity in (a, s ) at time t
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or a future order. Suppose the opportunity cost can be estimated, 

hen the problem can be divided into single-stage decision prob- 

ems and becomes tractable. There are two major components of 

he opportunity cost: 

1. the marginal delivery cost of servicing one more order in (a, s ) ,

and 

2. the potential revenue loss from filling fleet capacity at t with 

an order in (a, s ) . 

Both of these two terms depend on the final delivery routes. 

This study aims to estimate the opportunity cost via dynamic 

outing with forecast orders. Both marginal delivery costs and po- 

ential revenue loss will be estimated by solving a CVRPTW dy- 

amically over the booking horizon, with a set of already-accepted 

rders with fixed time windows and a set of forecast orders with 

elaxed time windows. More details about the approximation are 

iscussed in Section 4.2 . 

. Methodology 

This section presents the solution methodology for the stochas- 

ic dynamic-pricing problem (3.1) , which is intractable via back- 

ard induction. In detail, we will address how forecast orders are 

enerated, integrated and updated in the dynamic setting and used 

o estimate opportunity cost in the following sub-sections. 

.1. Forecast orders 

As explained, we aim to incorporate forecast orders into the dy- 

amic routing process, to enable making better incentive decisions. 

ull information on orders in AHD consists of the order’s arrival 

ime, customer address, order size and delivery time window. In 

his work, however, we only forecast the total number of orders 

ver a day, their addresses and order volumes, but not the delivery 

ime window of each order. The reason is that, while we are op- 

imising the incentive decision, we are aiming to steer customers’ 

hoices of time windows. Any forecasting model ignoring the im- 

act of the incentive decision will not do a good job of predicting 

ow many orders would select each time slot in the end. On the 

ther hand, the incentive decision is optimised dynamically over 
5 
he entire booking horizon, changing over time and highly depen- 

ent on previously placed orders. 

Therefore, we propose a simplification by assuming that all cus- 

omers will select the time window most beneficial for the route 

lanning to receive their orders, which we also assume is consis- 

ent with what the company aims to achieve by providing incen- 

ives. How to calculate the best time window for an upcoming or- 

er will be discussed in more detail in Section 4.2 . Here we only 

eed an approach to predict the total number of forecast orders 

nd their locations/sizes and assume that all forecast orders are 

ranted a 24-hour time window. 

For the total number of orders on a specific delivery day, n , we

se a Simple Moving-Average (SMA) model: 

 = 

1 

k 

k ∑ 

i =1 

ˆ n i (4.1) 

here ˆ n i denotes the number of orders we received i weeks prior 

n the same weekday; k indicates the number of samples we con- 

ider for the prediction. We argue that this number n is not in- 

uenced significantly by the slot-price/incentives we offer, as the 

umber of customers in a fixed area and their intentions to pur- 

hase from the e-retailer are mainly concerned with the demog- 

aphy of the area and the loyalty of customers. We also note that 

he moving average might be not the best possible approach that 

ne can choose to predict the number of orders. More complicated 

achine-learning methods could be used to forecast the number 

f orders based on historical data. However, for this study, we only 

im to demonstrate that incorporating forecast orders without any 

ime windows into the routing process helps improve delivery ef- 

ciency and increases the total profit, even if a simplified model 

enerates the forecast orders. For every single forecast order, its 

ddress, order size and order revenue are randomly simulated from 

istorical data. Specifically, to generate one forecast order for a par- 

icular day of the week, we randomly choose (with uniform prob- 

bility distribution) one order from the previous k weeks on that 

eekday and note its address, order size and revenue. 

.2. Opportunity cost approximation 

As noted above, model (3.1) is not tractable for real implemen- 

ations. In this section, we present an efficient approximation of it 
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sing dynamic routing. Many firms use dynamic routing to build 

heir fulfilment plan while orders are still collected. 

This work calculates approximations of opportunity cost by cre- 

tively using the given dynamic-routing package to make the sys- 

em (3.1) solvable in a practical dynamic setting. One key idea here 

s to distribute the delivery cost in boundary condition (3.2) into 

tages and calculate the incremental delivery cost of accepting one 

ore order in a specific area and time window. Similar ideas have 

een shown to be effective by works such as Campbell & Savels- 

ergh (2006) and Yang et al. (2016) ; however, the approach used in 

his article is more advanced, since it considers the potential rev- 

nue loss as well as incremental delivery cost, by incorporating a 

orecast of future accepted orders. 

The number of forecast orders and their locations/order sizes 

an be generated using the methodology presented in Section 4.1 . 

e indicate the list of forecast orders by a vector �
 f , with | � f | = n ,

 | · | indicates the cardinality of a set), where n is given by (4.1) .

hese virtual orders are put into the problem to help predict the 

nal routes. The time window is the most significant difference 

etween committed and forecast orders. Committed orders have 

heir own time windows, as selected by customers, which are not 

hangeable. However, forecast orders can be placed in whichever 

ime window is most suitable because they have yet to be agreed 

ith customers. This procedure allows the optimisation algorithm 

o choose an optimised delivery slot for the forecast orders, based 

n the location and agreed slot of all actual orders collected so far. 

he optimised delivery time window for these forecast orders is 

hen used as the time window to promote when an actual arrival 

s seen in the same area as that of the forecast order. In summary, 

orecast orders serve as dummy orders without time windows that 

uide the booking process. 

.2.1. Insertion cost 

Let DC t ( � x t , � f t ) denote the total delivery cost obtained from the 

ynamic routing system at booking-horizon time t , of a list of 

lready-accepted orders, � x t , and a set of forecast orders, � f t that re- 

ains in the system until time t . When it is infeasible to fulfil all

rders ( � x t , � f t ) with the given capacity and committed time slots 

or � x t , we define DC t ( � x t , � f t ) = ∞ . In the interim periods, we build

 series of incremental delivery-cost approximations via dynamic 

outing with forecast orders. In more detail, the insertion cost of 

aving one more delivery in area a and slot s , IC t ( � x t , � f t , 1 as ) , is ap-

roximated by 

C t ( � x t , � f t , 1 as ) 

= 

{ 

min 

j s ∈ � f rad 

[
DC t+1 ( � x t + 1 as , 

�
 f t − j s ) − DC t+1 ( � x t , � f t ) 

]
if � f t � = ∅ 

DC t+1 ( � x t + 1 as , ∅ ) − DC t+1 ( � x t , ∅ ) otherwise 

(4.2) 

here �
 f rad ⊆ �

 f t denotes all forecast orders that are not exceeding 

 radius equals to rad miles away from the new order, j s ∈ 

�
 f rad in- 

icates the forecast order to be removed while inserting the new 

rder (a, s ) , and j ∗s ∈ 

�
 f rad denotes the best forecast order which is

dentified to be removed. 

Note that the location of the removed order might be different 

rom that of the new order due to the forecast error and the rule 

f replacement (explained in detail in Section 4.3 ). 

Note further that we did not need to re-run the VRP when com- 

uting Eq. (4.2) . Instead, to calculate the extra driving time/cost in 

eaching order (a, s ) and omitting the order j ∗s , we just estimated

he extra driving distance and time which would be required, as a 

eviation from the existing route found by the VRP, to accommo- 

ate these two changes. 
6 
.2.2. Displacement cost (revenue loss) 

The insertion cost (4.2) forms one part of the opportunity-cost 

stimation, whereas the other part comes from the expected rev- 

nue loss by accepting order (a, s ) , denoted by RL t ( � x t , � f t , 1 as ) . Pro-

ided that the current route (consisting of both actual and forecast 

rders) is always treated as the optimal route at the end of the 

ooking horizon, we can construct our displacement cost/revenue 

oss estimation using it. According to the state-of-the-art approach 

sed in attended home delivery literature, such as Koch & Klein 

2020) , we interpret the potential revenue loss as the “additive 

onetary value of the time window consumption” due to the ac- 

eptance of a new order. Let w s ′ ( � x t , � f t ) denote the idle time of the

urrent route in time slot s ′ ; then, after performing the replace- 

ent of forecast order j ∗s by the new order 1 as , the idle time is

epresented by w s ′ ( � x t + 1 as , 
�
 f t − j ∗s ) . The revenue loss, therefore, is

ormulated as: 

L t ( � x t , � f t , 1 as ) = 

∑ 

s ′ ∈ S 
θt,s ′ (w s ′ ( � x t , � f t ) − w s ′ ( � x t + 1 as , 

�
 f t − j ∗s )) (4.3) 

here θt,s ′ ∈ R denotes the expected future revenue income per 

nit-time in slot s ′ , that is evaluated at booking horizon t . While 

nlike Koch & Klein (2020) who learn the θt,s ′ values through sam- 

le simulation, in this work we estimate the value of θt,s ′ using the 

urrent best route from the dynamic vehicle-routing solutions, as: 

t,s ′ = 

∑ 

i 

{ r i | i ∈ 

�
 f t , u s ′ −1 ≤ τi ≤ u s ′ } 

u s ′ − u s ′ −1 

(4.4) 

here τi indicates the delivery time of order i in the current best 

oute, and u s ′ denotes the finishing time of slot s ′ . The numera- 

or of (4.4) represents the total revenue (i.e., 
∑ 

r i ) for all forecast 

rders i which are scheduled to be delivered in slot s ′ ; and the

enominator represents the duration of time slot s ′ . 
The opportunity-cost estimation is then: 

C t ( � x t , � f t , 1 as ) = IC t ( � x t , � f t , 1 as ) + RL t ( � x t , � f t , 1 as ) (4.5) 

hich can be used to replace the (V t+1 ( � x t ) − V t+1 ( � x t + 1 as )) in

q. (3.1) , so that the DP program can be reformulated as: 

˜ 
 t ( � x t ) ≈

[ 

max 
�
 d 

∑ 

a 

λμa 

∑ 

s ∈ F a ( � x t , � f t ) 

P s,F a ( � x t , � f t ) 
( � d a ) 

[
r + d as − OC t ( � x t , � f t , 1 as ) 

]] 

+ V t+1 ( � x t ) , ∀ 

�
 x t ∈ X , (4.6) 

ith all elements known (except for V t+1 ( � x t ) ; but this term is 

ot relevant in pricing optimisation) for every new order arriv- 

ng at the system. This approximation decomposes the MDP into 

ingle-stage decision problems, provided that the opportunity cost 

C t ( � x t , � f t , 1 as ) is evaluated dynamically over time. Note that the 

ifference in (4.3) can be negative, indicating that replacing a fore- 

ast order with an actual one can help to travel less. We can in- 

erpret the negative value for RL as accepting the incoming order 

ill not endure revenue loss and lead to higher slot availability for 

uture customers. Therefore, the opportunity cost regarding RL , in 

his case, favours accepting the incoming order. 

In this work, we inherit the state-of-the-art MNL model to de- 

cribe customer-selection behaviour introduced by McFadden et al. 

1973) . In this scheme, the selection probability of time slot s un- 

er price d s , P s ( � d ) , is given by: 

 s ( � d ) = 

exp(β0 + βs + βd d s ) ∑ 

k ∈ F a ( � x t , � f t ) 
exp(β0 + βk + βd d k ) + 1 

, (4.7) 

here β0 is the base utility on all choices, βs is the utility of slot 

 itself, and βd holds the utility sensitivity to delivery charge d s . 

hese β values are found by numerical optimisation for the histor- 

cal data of purchases made and reflect the popularity of different 
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imes of day, and the inferred price elasticity of demand. Similarly, 

he probability of no-booking under the delivery charge � d , P 0 ( � d ) , is

iven by: 

 0 ( � d ) = 

1 ∑ 

k ∈ F a ( � x t , � f t ) 
exp(β0 + βk + βd d k ) + 1 

(4.8) 

As Dong et al. (2009) show, under this choice model, given 

C t ( � x t , � f t , 1 as ) , the optimal solution d ∗s to the online pricing prob-

em can be achieved for s ∈ F a ( � x t , � f t ) with: 

 

∗
s = OC t ( � x t , � f t , 1 as ) − r − h 

βd 

, (4.9) 

here h is the unique solution to: 

h − 1) exp(h ) = 

∑ 

s ∈ F a ( � x t , � f t ) 

exp(β0 + βs + βd (OC t ( � x t , � f t , 1 as ) − r)) 

(4.10) 

In Section 4.3 we give more details about how the order to re- 

ove, j ∗, can be identified, and how the order replacement is car- 

ied out in an online setting. 

.3. Insertion-cost evaluation and order replacement 

Upon a new arrival in area a , the insertion feasibility and inser- 

ion cost have to be evaluated for fulfilling this order in time slot 

 , based on what orders have been accepted so far. As mentioned 

arlier, in this study, we maintain a delivery plan of all accepted 

rders and forecast orders dynamically and assume that at any in- 

erim stage, a “current best route” is available from the company’s 

VRPTW solver. As time goes by, we aim to replace forecast orders 

ith actual incoming orders, one by one. For every potential re- 

lacement in a particular time slot s , we identify the best forecast 

rder to remove, i.e., j ∗s , and calculate the incremental delivery cost 

nvolved in the replacement, and make it an estimate of the inser- 

ion cost for this time slot, i.e., IC t ( � x t , � f t , 1 as ) . The methodology is

ummarised in Algorithm 1 . 

lgorithm 1 Opportunity-cost estimation for a potential new or- 

er i in area a . 

1: Compute set �
 f rad (set of candidate forecast orders, within ra- 

dius rad, to be replaced by the new order) for new order i in

area a . 

2: for slot s ∈ S do 

3: Compute insertion cost, IC t ( � x t , � f t , 1 as ) , according (4.2), de- 

note the best order to remove as j ∗s . 
4: if IC t ( � x t , � f t , 1 as ) � = ∞ , i.e., the insertion into slot s is feasible

then 

5: Record the best forecast order to remove, j ∗s , for later use 

in Alg. 2 

6: Calculate the potential revenue loss of accepting one 

more order for slot s, RL t ( � x t , � f t , 1 as ) , according to (4.3) 

7: Calculate opportunity cost for slot s, OC t ( � x t , � f t , 1 as ) , ac-

cording to (4.5) 

8: else 

9: Set slot s as unavailable 

0: end if 

11: end for 

2: Solve (4.6) with the opportunity costs OC t ( � x t , � f t , 1 as ) , and dis-

play available slots with the optimised pricing 4.9 to customers. 

Algorithm 1 is called when we need to calculate the opportu- 

ity cost approximation to display available slots with the opti- 

ised pricing to customers. Let us consider a customer request i 

rom area a to book a delivery slot. For this request, we can eas-

ly identify a subset of neighbouring forecast orders to replace by 
7

easuring their distance to the customer’s location. To cover dif- 

erent implementation scenarios, we can apply different rules to 

alculate the subset, such as radius, road distance and/or post- 

ode sectors. Let us denote the subset of forecast orders to re- 

ove by �
 f rad . In this study, to find 

�
 f rad , the algorithm will check 

vailable forecast orders within radius rad. If there are no fore- 

ast orders within radius rad, we increase the radius gradually 

ith pre-set radius bands until forecast orders are found. The al- 

orithm’s performance is affected by the largest possible radius 

onsidered in implementation. If it is too small, the availability of 

lots might be restricted; if it is too large, the delivery cost pre- 

iction will require significant processing time to explore all fore- 

ast orders in the range. The trade-off between processing time 

nd forecast accuracy is presented in Section 5.5 with numerical 

esults. 

When all forecast orders are removed already, i.e., �
 f rad = ∅ , 

he algorithm will check the feasibility of inserting the new or- 

er without replacement. This is the same as the typical inser- 

ion heuristics carried out by, for example, Campbell & Savelsbergh 

2006) . This helps mitigate forecasting errors. Indeed, forecast or- 

ers are particularly important at the start of the booking horizon 

n guiding orders to suitable time slots. They become less impor- 

ant towards the end when the accepted orders with time win- 

ows nearly fix the routing plan. When the number of forecast or- 

ers is higher, we remove all remaining forecast orders in the end. 

ection 5.4 focuses on the forecast order levels and how the num- 

er of forecast orders may affect the performance. 

After the customer’s selection of their preferred slot, 

lgorithm 2 will perform the actual replacement/insertion of 

lgorithm 2 Order replacement/insertion upon customer selec- 

ion. 

1: Denote the slot which the customer has selected by ˆ s ; the 

neworder being made in area a by i ; and the forecast order 

to be replaced by j ∗
ˆ s 

2: if j ∗
ˆ s 

� = ∅ then 

3: Remove j ∗
ˆ s 

from the route 

4: Update � f t ← 

�
 f t − j ∗

ˆ s 
5: end if 

6: Insert order i into slot s of the route, Update � x t ← 

�
 x t + 1 a ̂ s 

7: Re-optimise the route for order set ( � x t , � f t ) 

he new order i in the selected slot ˆ s . Note that the resulting 

pproach is more robust if traffic conditions, schedule tightness, 

otential lateness, etc., are considered in detail in the dynamic 

outing system. Upon the acceptance of a new order, the CVRPTW 

s re-optimised/updated for a better delivery schedule until the 

ext arrival comes into the system. This means that the routing 

ptimisation could adjust the delivery time of the remaining 

orecast orders in the system to re-optimise the route. 

. Numerical results 

In order to investigate how our approach performs in practice, 

e test the methodology above on four typical delivery areas, each 

ith different customer densities and spread patterns. Real cus- 

omer locations and historical booking data are deployed in the 

ests, with essential manipulations to protect commercial informa- 

ion and customer privacy. 

.1. Routing package 

As explained in Section 4.2 , the designed approach can be im- 

lemented with any routing packages for CVRPTW. This includes 

ynamic-routing packages with automatic updating schemes based 
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Fig. 3. Different areas with different densities and spread patterns of orders. A detailed number of forecast orders and vehicles for each area are given as [#forecast orders, 
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n the acceptance of new orders and static routing packages that 

llow warm-starting from known solutions that are obtained from 

eplacing/inserting the new orders in the current best routes. Such 

outing packages are understood to be standard tools currently 

sed by delivery companies. In our experimental tests, however, 

e do not rely on any company’s specialised routing package but 

se a generic meta-heuristic, i.e., Simulated Annealing (SA), to 

olve the CVRPTW. The application of SA to the VRPTW was in- 

roduced and proven effective in terms of accuracy and execution 

ime by Chiang et al. (1996) . 

Implementing the SA in dynamic routing can be characterised 

y an offline phase and an online phase. The offline phase is a Ca- 

acitated Vehicle Routing Problem (CVRP) without time windows 

hat occur entirely before the booking horizon, which consists of 

nly forecast orders. The best possible route for the forecast orders 

and their best time slots) are found using SA, preliminary to the 

rder acceptance process. The online phase covers the entire book- 

ng horizon when actual orders are collected and forecast orders 

re replaced as time goes by, according to Algorithms 1 and 2 . SA
 l

8 
s called to re-optimise the current route after each replacement is 

one, until the arrival of the following order. 

.2. Experiment settings 

We test our model on four typical area settings to investigate 

ifferent scenarios regarding the spread of orders. These areas are 

 Rural area, which reflects the countryside and small villages; 

 Semi-rural area, which represents towns; a Suburb area, which 

epresents the outskirts of big cities where people live in disjoint 

ut not far-way satellite communities; and a City area, where peo- 

le live with the highest density, e.g., in apartments. Each area has 

 depot, whose location/distance to the primary service area is set 

o capture the business settings. See Fig. 3 . 

As what has been used by Yang et al. (2016) , we fit a non-

omogeneous Poisson distribution to historical data and use it to 

enerate customer arrival times in simulation. Order details, in- 

luding customer addresses and order sizes, are randomly simu- 

ated from real orders in the past. We also borrow the time slot 
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Table 1 

Results of SP, DP-IC, DP-FR-F, DP-DR-TWF and DP-DR-F methods. 

SP DP-IC DP-FR-F DP-DR-TWF DP-DR-F 

Rural Total mileage 578.93(27.61) 575.65(22.84) 577.45(23.27) 562.46(22.10) 543.08(24.49) 

Mileage/Order 9.48(1.08) 7.70(0.89) 7.64(0.68) 7.84(0.84) 6.75(0.49) 

Number of orders 60.60(5.25) 74.40(5.97) 75.00(4.69) 71.37(6.41) 79.66(3.71) 

Total order size 213.38(21.20) 273.07(23.23) 273.35(19.90) 267.38(23.38) 296.60(15.98) 

Accepted price 3.00 -4.13(0.65) −3.86(0.54) −1.47(0.34) −3.15(0.63) 

Total Profit 2109.36(206.98) 2168.66(189.12) 2187.86(157.03) 2226.23(208.64) 2433.46(133.50) 

Improvement on SP 2.81% 3.72% 5.54% 15.36% 

Semi-rural Total mileage 459.41(18.35) 446.16(17.39) 450.14(17.61) 419.76(21.10) 415.79(16.38) 

Mileage/Order 3.66(0.36) 3.09(0.26) 3.09(0.22) 2.94(0.26) 2.67(0.14) 

Number of orders 125.43(8.83) 144.40(9.84) 145.03(7.04) 142.33(7.89) 152.00(6.22) 

Total order size 448.47(30.41) 539.69(34.84) 545.63(28.63) 545.02(27.27) 583.50(20.29) 

Accepted price 3.00 −3.79(0.36) −3.41(0.39) −0.90(0.13) −1.11(0.55) 

Total Profit 4431.28(300.94) 4341.81(270.34) 4447.90(231.75) 4685.57(239.68) 5108.86(171.81) 

Improvement on SP −2.02% 0.38% 5.74% 15.29% 

Suburb Total mileage 640.77(24.33) 622.74(20.18) 622.67(23.20) 613.99(20.11) 577.59(25.82) 

Mileage/Order 3.18(0.35) 2.65(0.17) 2.65(0.18) 2.88(0.18) 2.35(0.11) 

Number of orders 202.03(15.65) 234.73(9.05) 234.20(8.90) 212.97(9.16) 245.27(5.03) 

Total order size 736.01(57.25) 891.57(32.52) 893.51(32.36) 817.10(36.21) 927.40(20.93) 

Accepted price 3.00 −3.80(0.26) −3.50(0.30) −0.00(0.34) −0.59(0.50) 

Total Profit 7263.83(564.16) 7182.95(291.06) 7273.36(280.74) 7396.60(358.20) 8249.52(230.96) 

Improvement on SP −1.11% 0.13% 1.83% 13.57% 

City Total mileage 453.07(7.63) 449.66(7.74) 449.38(8.63) 432.16(11.60) 407.63(10.15) 

Mileage/Order 0.99(0.04) 0.89(0.04) 0.89(0.03) 0.95(0.04) 0.76(0.03) 

Number of orders 458.43(14.20) 505.07(14.65) 504.43(13.94) 455.33(13.53) 531.27(13.82) 

Total order size 1702.06(57.96) 1966.86(57.56) 1966.51(58.29) 1794.86(72.67) 2060.32(58.49) 

Accepted price 3.00 −3.86(0.21) −3.45(0.20) 1.53(0.16) 3.25(0.60) 

Total Profit 16777.67(562.93) 15858.71(435.56) 16066.44(463.20) 17676.47(667.65) 

20372.63(355.69) 

Improvement on SP −5.48% −4.24% 5.36% 21.43% 
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nd MNL parameters from Yang et al. (2016) , i.e., 27 slots per 

ay, one hour each; some overlap with others. Please refer to 

4.7) and (4.8) for the detailed MNL customer-choice model param- 

ters. Continuous slot prices, in the range £[ −10 , 10] , are consid-

red in the simulation (i.e., these are the slot prices offered to cus- 

omers), with negative prices indicating discounts offered to cus- 

omers as an incentive to purchase. This pricing scheme has been 

pproved by the commercial partner we are collaborating with 

or this project. Detailed revenue/profit and order size information 

annot be published due to commercial concerns, but for a mean- 

ngful interpretation of the results, the ratio between order rev- 

nue and variable delivery cost is set to 40.5 to reflect the real 

ituation. 

.3. Experiment results 

We aim to justify the effectiveness of the proposed dynamic- 

ricing approach by maintaining a set of forecast orders without 

ime windows in the routing system. The comparisons are there- 

ore carried out between a system using forecast orders without 

ime windows, i.e., Dynamic Pricing with Dynamic Routing of Fore- 

ast orders without time windows (DP-DR-F), a system with time- 

indowed forecast orders obtained from historical routes, i.e., Dy- 

amic Pricing with Dynamic Routing of Time-Windowed Forecast 

rders (DP-DR-TWF), and a system without any forecast orders, i.e., 

ynamic Pricing Insertion Cost (DP-IC). All other decisive factors 

re the same for the tests, including: 

• The same routing package is used for each paired test, i.e., 

the Simulated Annealing (SA) for CVRPTW as described in 

Section 5.1 with the same tunable parameters; 
• All implement dynamic routing where updating (re- 

optimisation) of the current best route is performed after 

the acceptance of every new order until the next order arrives; 
• All deploy the same MNL customer-choice model estimated 

from real data for customer selections; 
9

• All deploy the same approach for insertion cost and rev- 

enue loss (where forecast orders exist) estimation according to 

Sections 4.2 and 4.3 . The only difference is the forecast routes 

(or whether there is a forecast route) used. 

On top of this, we also benchmark our approach with the 

ommonly-used Static Pricing (SP), i.e., where every feasible slot 

or the entire booking horizon has a fixed price of £3 . Also with

 fixed forecast-route approach, i.e., Dynamic Pricing Fixed Rout- 

ng Forecast (DP-FR-F), which runs dynamic pricing with time- 

indowed forecast orders/routes obtained from historical routes 

the “Foresight” policy of Yang et al., 2016 ) but not having 

he forecast route updated as new order information comes in. 

o have a fair test on the performance of the pricing policy 

lone, the feasibility of placing an order in a slot under these 

wo benchmark policies is also informed by the dynamic-routing 

ackage. 

Experiments are carried out using MATLAB on an Intel Core 

9-7940X 3.1 gigahertz machine. Since we deployed a meta- 

euristic approach to solve the CVRPTW, we conducted 30 inde- 

endent runs. We reported the average and the standard devia- 

ion (mean(s.d.)) to minimise the influence of the randomness in- 

olved in the solution approach. Performance on crucial indicators 

or profit and efficiency are presented in Table 1 , with the best one 

n every row highlighted in bold. The results show that the DP- 

R-F outperforms the other approaches in all the measurements, 

hich confirms the effectiveness of the proposed approach. 

One important observation here is that dynamic pricing (DP-IC) 

s not necessarily better than static pricing (SP), mainly when a 

oor estimation of the opportunity cost is used. Furthermore, the 

hort-sighted incremental delivery cost based on accepted orders 

lone is insufficient for opportunity-cost estimation. This insight 

s in line with the conclusions of Yang & Strauss (2017) , which 

mphasise the importance of “incorporating the impact of future 

rofit opportunities from orders”. 

As this work proposes, incorporating forecast orders (without 

ime windows) provides an easy method for future-profit estima- 
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Fig. 4. Total number of orders accepted by the methods. 
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ion. Together with the better marginal delivery-cost estimation, 

btained by maintaining a hybrid route with both forecast and ac- 

ual orders, the approach achieves a 13.57–21.43% profit increase 

ver the static-pricing method, which is better than that of 2.2–

.5% in Yang & Strauss (2017) and that of 2.6–6.2% in Yang et al.

2016) . We also performed paired sample t-tests on the total prof- 

ts for all the approaches in the studied areas. The p-values pro- 

uced were all less than 0.05, indicating that the differences were 

tatistically significant at a 5% significance level. 

We look closely at key-related components to understand 

here the additional profits come from in the DP-DR-F approach. 

igures 4 and 5 show a graphical comparison of the number of 

rder commitments and the average travelling distance per order 

cross all approaches. These elements demonstrate the efficiency 

f the final routes we end up with using the DP-DR-F approach so 

s to justify the capability of DP-DR-F in recognising the best time 

lots to offer and promoting them via dynamic pricing. 

Compared to DP-DR-TWF, which uses time-windowed forecast 

rders, the DP-DR-F approach omits the time windows from the 

orecast orders, which thus allows the dynamic route planning to 

djust the delivery time of a forecast order to the best possi- 

le time slot according to its location and fitness to the current 

est route. This feature provides extra flexibility for dynamic route 

lanning to create more feasible slots over the booking horizon 

more information to follow in Fig. 7 ) and guide the overall book- 

ng process to a more compact route in the end. Higher profits are 

herefore achieved through selling more goods. These are believed 

s the key reasons for higher order commitments provided by DP- 

R-F with the fixed fleet and time window capacity. 

Figure 6 shows samples of the final routes obtained by the five 

pproaches in Area 1. Comparing the plots in Fig. 6 , we can see

hat the DP-DR-F approach gives the most efficient routes, with 

oticeably fewer long links than the others. It performs especially 
10 
ell in the “remote area”, which directs the orders in this area to 

djacent slots, so as to avoid the van coming back to this area mul- 

iple times to meet demands at different times of the day. The im- 

roved route plan shows DP-DR-F’s ability to promote the correct 

ime slot that complies with the optimal route to reduce unneces- 

ary travel to meet customer needs. 

Figure 7 is related to how many slots are available on average 

s the booking process progresses for all methods. Based on this 

lot, we can see that all methods begin with a high slot avail- 

bility, which decreases as time passes. Decreasing rates for all the 

ther four approaches are similar, whereas, for DP-DR-F, the slope 

agnitude is lower. This outcome justifies that DP-DR-F works 

ell in reserving resources for later usage to provide more stable 

lot availability over the entire booking horizon than the bench- 

ark approaches. The higher availability leads to a higher selection 

ate on average and therefore conveys more orders. In addition, by 

pplying DP-DR-F, a significantly higher number of slots are still 

vailable when the booking horizon reaches its end. However, this 

pproach has committed a notably higher number of orders than 

thers. This upshot shows further profit growth potentials of this 

pproach suppose a more extensive market can be reached by the 

rm, which is not possible with any other approaches. 

Another critical term influencing the total profit is slot 

rice, which is the fee customers pay for the delivery service. 

igure 8 shows the average slot prices offered to the time slots that 

ustomers eventually select with every approach. It is not hard to 

ee that the DP-IC approach outperforms the static approach in the 

umber of accepted orders ( Fig. 4 ) and the per-order delivery costs 

 Fig. 5 ). However, there is no significant improvement in the over- 

ll profit due to the low average price it charges. 

Upon the arrival of a new order, there is a trade-off between 

ong-term profit and immediate gain. This balance explains why 

he prices offered by the DP-IC and DP-FR-F approaches are con- 
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Fig. 5. Average travel distance to fulfil an order. 
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5

tantly lower than those of DP-DR-TWF and DP-DR-F. Without con- 

idering the expected revenue loss in the opportunity-cost estima- 

ion, the DP-IC and DP-FR-F approaches only focus on the imme- 

iate gain brought by the order under consideration and try very 

ard to persuade this customer to buy by lowering the price of- 

ered. However, with the DP-DR-TWF and DP-DR-F approach, as 

hey still expect more future orders, the pressure of conveying an 

rder now is lighter, so the price offered is higher on average. 

omparing DP-DR-TWF and DP-DR-F, however, the prices charged 

y DP-DR-F are slightly lower in most cases. This is because, in DP- 

R-F, the best time slot is purely identified through the dynamic 

outing system without time windows, which takes no considera- 

ion of the original popularity of time slots. This puts higher pres- 

ure on lowering the price to persuade a customer to book an un- 

esirable time slot if their location is deemed the best fit for that 

ime slot. 

Note that the average prices offered by dynamic approaches 

re, in most cases, lower than zero. The finding is consistent with 

he previous study using the same choice model, i.e., Yang et al. 

2016) and Yang & Strauss (2017) . As claimed in both previous 

orks, the profit from selling an order is much higher than the 

rofit from making a delivery. The system offers discounts to en- 

ourage customers to buy, rather than highly charging them for de- 

ivery. 

Figure 9 displays the offered prices change over time on a sam- 

le run in Area 1. Prices offered by all dynamic pricing schemes 

re decreasing over time. Such a trend is understandable, as when 

lot availability decreases, the pricing problem expects a higher no- 

ooking rate, so it tends to lower the price to persuade customers 

o buy. Also, as explained in Yang et al. (2016) , popular slots are

lled in earlier than unpopular ones in the booking horizon, so 

ower prices must be offered further to promote unpopular slots 

owards the end of booking time. 

fi

11 
.4. Analysis of the number of forecast orders 

As explained in Section 4 , we use a moving average to estimate 

he number of forecast orders in each area, which may lead to, 

ometimes significant, forecast errors. This subsection investigates 

ow sensitive the DP-DR-F approach is to forecasting errors. To this 

im, we create scenarios where the number of forecast orders is 

ignificantly ( 20% ) higher or lower than the moving average and 

est the DP-DR-F on them. Table 2 shows the obtained results for 

0 independent runs in the format of the average and the stan- 

ard deviation (mean(s.d.)) for the four studied areas, based on the 

ame set of random examples that have been used in Table 1 to 

ake results comparable across tables. 

Concerning the results obtained from the simulation in Table 2 , 

e can infer that if the moving average estimate (4.1) decides 

he number of forecast orders, we can expect higher performance 

n total profit. However, if we underestimate or overestimate the 

umber of forecast orders compared to what the moving average 

ethod suggests (in our study, 20% lower or higher than the mov- 

ng average estimate), the performance undergoes a decrease in ef- 

ciency. We can notice this point in all studied areas, which af- 

rms the robustness of the proposed method to the number of or- 

er estimations. Moreover, the results for a higher number of fore- 

ast orders are slightly better than those for a lower number of 

orecast orders. This fact emphasises the critical role that forecast 

rders play in the booking process, even towards the end when ac- 

ual orders with time windows become the majority of the group 

nd the routes are relatively fixed. 

.5. Impact of radius size on performance and run-time 

The proposed approach is online, so the time it takes to 

nd feasible time slots and optimise their prices is crucial for 
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Fig. 6. Final route for Area 1 using SP, DP-IC, DP-FR-F, DP-DR-TWF and DP-DR-F methods. 
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uccessful implantation. One way of accelerating the decision 

rocess is limiting the number of forecast orders to replace when 

valuating the insertion cost. This subsection presents how various 

orecast order radii can affect the proposed method’s functionality 

nd run-time. More precisely, when the DP-DR-F method wants to 

nd the forecast orders for replacement with a new arrival, only 
12 
he forecast orders located within a specific radius of the new 

rrival will be considered. The greater this radius is, the higher the 

umber of neighbouring forecast orders will be, resulting in more 

omputation time. 

In Table 3 , we define experiments with different radii based on 

rder density, i.e., as a ratio to the average distance between or- 
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Fig. 7. Comparison of slots availability over time for Area 1. 

Fig. 8. Average prices for the slots that are booked by customers. 
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ers (ADO). When the method tries to find the candidate forecast 

rders, all the forecast orders within a specific radius will be ex- 

lored, and replacement feasibility will be conducted for each of 

hem. If no forecast orders exist in this radius, the method will 

ouble the size of the radius to search for forecast orders. This pro- 

ess will continue until at least one forecast order is found. 
13 
The average running time to obtain a list of feasible slots, with 

heir optimised prices, is reported in the last column of Table 3 . 

his measure can be seen as the average online reaction time upon 

 customer’s arrival. According to this table, there is an increas- 

ng trend in performance (e.g., profit) when we enlarge the area 

earched for a replacement. At the same time, the execution time 
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Fig. 9. Average slots’ price offered over time for Area 1. 

Table 2 

Comparison of different forecast order levels for the 4 studied areas. 

80% Forecast 100% Forecast 120% Forecast 

Rural Total mileage 548.04(24.81) 543.08(24.49) 522.15(21.05) 

Mileage/Order 6.94(0.53) 6.75(0.49) 6.82(0.61) 

Number of orders 78.23(4.34) 79.67(3.71) 76.03(5.90) 

Total order size 288.49(17.93) 296.60(15.98) 282.80(19.53) 

Accepted price −3.26(0.64) −3.15(0.63) −1.70(0.88) 

Total Profit 2356.21(155.07) 2433.47(133.50) 2428.21(151.38) 

Semi-rural Total mileage 417.00(18.27) 415.79(16.38) 375.37(14.96) 

Mileage/Order 2.70(0.17) 2.67(0.14) 2.59(0.23) 

Number of orders 153.77(5.73) 155.00(6.22) 144.67(12.06) 

Total order size 577.47(20.33) 583.50(20.29) 540.01(47.61) 

Accepted price −2.22(0.49) −1.11(0.55) 1.10(1.03) 

Total Profit 4885.20(170.11) 5108.86(171.81) 5040.52(382.49) 

Suburb Total mileage 585.34(26.56) 577.59(25.82) 554.94(23.39) 

Mileage/Order 2.40(0.18) 2.35(0.11) 2.45(0.15) 

Number of orders 243.43(9.24) 245.27(5.03) 226.13(9.81) 

Total order size 921.44(33.65) 927.40(20.93) 847.16(38.49) 

Accepted price −1.98(0.46) −0.60(0.50) 2.26(0.74) 

Total Profit 7858.11(276.22) 8249.52(230.96) 8175.12(322.48) 

City Total mileage 413.09(10.44) 407.63(10.15) 389.75(8.86) 

Mileage/Order 0.80(0.03) 0.77(0.03) 0.83(0.04) 

Number of orders 516.10(12.05) 531.27(13.82) 469.03(19.45) 

Total order size 2017.98(41.48) 2060.32(58.45) 1793.04(86.05) 

Accepted price 1.85(0.77) 3.35(0.60) 6.58(0.45) 

Total Profit 19229.16(391.95) 20372.63(355.70) 19315.16(799.10) 
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ncreases more sharply, which is in line with our expectations. 

ompared to the largest possible radius, the reduced search range, 

.g., to 0 . 01 × ADO , only sacrifices less than 0 . 5% of the total profit

hile reducing the average reaction time by 95 . 38% compared to 

he full search. The obtained results justify the effectiveness of the 

roposed simplification. In practice, the online grocer can choose a 

adius according to the maximum affordable run-time to have the 

est achievable results within the time limit. 

. Conclusion and future work 

This paper introduces a novel dynamic pricing method for at- 

ended home delivery using forecast orders without time windows. 

he approach maintains a dynamic route of actual orders (with 
14 
ime windows) and forecast orders (without time windows). It es- 

imates opportunity costs online using the most up-to-date infor- 

ation in the dynamic route. No extra learning is needed. The ap- 

roach can be easily integrated with any dynamic-routing package 

 company is using, which allows the company’s specific routing 

eeds and restrictions to be considered as well. The approach is 

ested on real data with an MNL customer-choice model. 

One limitation of this study is that we presume dynamic pricing 

s powerful enough to balance customer demands so all uncommit- 

ed orders can be moved freely across time slots. While in prac- 

ice demand is also restricted by customer availability. In future 

esearch, we will consider bringing the original slot popularity into 

onsideration while planning the forecast route of orders without 

ime windows, so as to maintain the benefit of both approaches. 



M. Abdollahi, X. Yang, M.I. Nasri et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; February 8, 2023;12:9 ] 

Table 3 

The effect of different radii on performance and run-time of DP-DR-F method in Area 3. ADO stands for average distance between orders. 

Radius Total mileage Total order size Number of orders Total profit Run-time (second) 

0.01 × ADO 580.80 891.90 234.37 8214.05 0.0041 

0.10 × ADO 577.59 909.20 240.43 8214.47 0.0104 

0.50 × ADO 581.34 914.99 241.50 8160.30 0.0336 

1.00 × ADO 573.67 922.15 244.40 8240.20 0.0519 

∞ 579.47 923.15 244.90 8251.86 0.0887 
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By conducting experiments on four different areas, the ad- 

antages of employing forecast orders without time windows are 

bserved in higher-order commitments, lower delivery costs and 

igher overall profits compared to all benchmarking approaches. 

he improvement of 13.57–21.43% profit on Static Pricing is sig- 

ificantly better than the results from former approaches in Yang 

 Strauss (2017) and Yang et al. (2016) and of an amount likely 

o be of commercial interest to those managing AHD operations. 

he robustness of the DP-DR-F approach is also justified through 

xperiments when the number of forecast orders is overestimated 

r underestimated. Potential accelerations of the approach via re- 

tricting the radius of exploration are discussed and tested in the 

nd to improve running efficiency, and make the approach more 

uitable for online implementations. 
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