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A B S T R A C T

In this paper we propose a new version of penalty-based aggregation functions, the Multi Cost Aggregation
choosing functions (MCAs), in which the function to minimize is constructed using a convex combination of
two relaxed versions of restricted equivalence and dissimilarity functions instead of a penalty function. We
additionally suggest two different alternatives to train a MCA in a supervised classification task in order to
adapt the aggregation to each vector of inputs. We apply the proposed MCA in a Motor Imagery-based Brain–
Computer Interface (MI-BCI) system to improve its decision making phase. We also evaluate the classical
aggregation with our new aggregation procedure in two publicly available datasets. We obtain an accuracy of
82.31% for a left vs. right hand in the Clinical BCI challenge (CBCIC) dataset, and a performance of 62.43% for
the four-class case in the BCI Competition IV 2a dataset compared to a 82.15% and 60.56% using the arithmetic
mean. Finally, we have also tested the goodness of our proposal against other MI-BCI systems, obtaining better
results than those using other decision making schemes and Deep Learning on the same datasets.
1. Introduction

Brain–Computer Interfaces (BCIs) provide new means of commu-
nication between the human brain and the devices or systems to
be controlled by changes in brain dynamics [1]. There are several
types of BCI systems, depending on the features extracted from the
brain signals [2,3]. One popular type is based on the imagination
of movements from specific body parts, and it usually referred to as
Motor Imagery (MI) based BCI [4]. MI-based BCI systems construct
features by exploiting the power changes in specific frequency bands
that occur during the kinaesthetic imagery of body movements in
the sensorimotor cortices. This power variability is known as Event-
Related De/Synchronization (ERD/ERS) [5]. A MI-BCI based system
is usually composed of several modules comprising signal processing,
feature extraction, classification and control commands, for which EEG
is the leading non-invasive technology to measure brain signals [4]. MI
features are commonly computed by filtering the multivariate signals in
subject-specific frequency bands to later compute spatial filters that are
able to maximize power differences between different conditions [6].
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Classification is usually performed employing linear classifiers such as
Linear Discriminant Analysis (LDA). This is most common when the
BCI system only discriminates between two different tasks (or classes),
but also QDA or SVMs are popular classification procedures [7]. When
more classes are involved, or different features are combined, the
pattern recognition module might be composed by an ensemble of clas-
sifiers, where the common strategy to combine classification outputs is
majority voting [8] or arithmetic classifier output mean [9].

Another way to combine information from different features is the
inclusion of fuzzy techniques [10]. For example in [11], the authors
presented a BCI framework employing fuzzy integrals [12] to model
classifier interactions. Another example is [13], where the authors pro-
posed the use of interval-valued aggregation functions. Furthermore,
the promising results in [11] show that the classifier fusion in the con-
trol command phase is crucial to increase BCI performance. However,
choosing the best aggregation function for such system depends on
several factors, such as the type or number of classifiers used. Based
on the theory of aggregation functions [12], one possible method to
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combine classifier outputs is to use a dissimilarity measure between
the data and the fused value. A way of measuring this dissimilarity is
the so-called penalty functions.

Penalty functions are defined as a measure of deviation from a
consensus value, or in other words, as a penalty for not reaching
consensus. They have been widely studied in the fuzzy learning field.
Penalty functions can be used to build fusion functions which take into
account the lack of similarity between inputs. These functions are called
penalty-based functions. Some examples are the weighted arithmetic
and geometric means and median.

Penalty functions allow the choice of the ‘‘best’’ possible aggregation
according to a dissimilarity measure, thereby solving the problem of
choosing an aggregation function for a specific problem. However,
care needs to be taken with their design. For example, when the
quadratic error is set as a penalty function, the arithmetic mean will
be selected as the best possible aggregation regardless of the data to be
aggregated [14]. This is due to, by definition, the arithmetic mean of
the input values is always the value that minimizes the penalty.

The main goal of this paper is to propose and apply a new method
to fuse BCI classification outputs to generate a control command.
This method is based on a special type of penalty-based aggrega-
tion functions: the Multi-Cost Aggregation-Choosing functions (MCAs).
MCAs are similar to penalty-based aggregation functions because they
establish a disagreement measure between the original data and the
aggregated output in order to determine the ‘‘best’’ aggregation. The
disagreement measure is constructed using a convex combination of
two cost functions. Depending on the convex combination parameter,
the proposed functions are able to obtain more meaningful results
regarding which aggregation function is denoted as the ‘‘best’’, than
the classical approaches. A second goal is to demonstrate the usefulness
of MCA functions to classify MI-based BCI data in comparison to the
arithmetic mean or the classical penalty-based aggregation functions.
To show that this is the case, we perform several favourable compar-
isons between different aggregation functions and to other previously
published work on the same dataset [11,15].

The paper is organized as follows. Section 2 revises the concepts
of aggregation and penalty functions. Section 3 introduces the main
contributions for this work: Section 3.1 illustrates the BCI framework,
and Section 3.2 shows how to process the EEG data. Section 3.3
explains the concept of Quasi-Restricted Equivalence Functions and
Quasi-Restricted Dissimilarity Functions and Section 3.4 explains how
to use them to construct multi-cost functions. Section 3.5 explains how
to mix the different cost functions in MCA in order to optimize the per-
formance in a supervised learning task and, subsequently, Section 3.6
describes how to apply these functions to the BCI MI framework.
Section 4 displays the experimental results for the popular BCI IV
competition dataset [16] and the Clinical Brain–Computer Interface
Challenge (CBCIC) at the IEEE World Congress of Computational Intelli-
gence (WCCI) 2020 [17] using the MCA functions; and in Section 5 we
compare those results with other BCI frameworks. Finally, in Section 6
we give our final conclusions and remarks for this work.

2. Preliminaries

This section discusses some of the basic concepts regarding aggrega-
tion functions and more precisely, penalty-based aggregation functions.

2.1. Aggregation functions

Aggregation functions are used to fuse information from n sources
into one single output [12]. A function A: [0, 1]𝑛 → [0, 1] is said to be

n-ary aggregation function if the following conditions hold for any
ectors (𝑥1,… , 𝑥𝑛) ∈ [0, 1]𝑛 :

• A is increasing in each argument; that is, for every 𝑥𝑖 ∈ {1,… , 𝑛},
if 𝑥 < 𝑦,𝐴(𝑥 ,… ., 𝑥 ,… 𝑥 ) ≤ 𝐴(𝑥 ,… , 𝑦,… 𝑥 )
2

𝑖 1 𝑖 𝑛 1 𝑛
• 𝐴(0,… , 0) = 0
• 𝐴(1,… , 1) = 1

Some examples of n-ary aggregation functions are:

• Arithmetic mean: 𝐴(𝑋) = 1
𝑛
∑𝑛

𝑖=1 𝑥𝑖.
• Median: 𝐴(𝑋) = 𝑥𝑚, where for any permutation 𝜎 ∶ {1,… , 𝑛}

such that 𝑥𝜎(1) ≤ ⋯ ≤ 𝑥𝜎(𝑛), 𝑥𝑚 = 𝑥𝜎( 𝑛+12 ), if 𝑛 is odd, and

𝑥𝑚 = 1
2 (𝑥𝜎( 𝑛2 ) + 𝑥𝜎( 𝑛+12 )) if 𝑛 is even.

• Max: 𝐴(𝑋) = 𝑚𝑎𝑥(𝑥1,… , 𝑥𝑛).
• Min: 𝐴(𝑋) = 𝑚𝑖𝑛(𝑥1,… , 𝑥𝑛).

.2. Penalty functions

Penalty-based aggregation functions aim to reduce the disagreement
etween the input data and the aggregated value in an information
usion process. This process is measured using a disagreement measure
alled the penalty function.

Let 𝑋 = (𝑥1,… , 𝑥𝑛) be the inputs and 𝑦 be the output. If all the inputs
coincide 𝑥1 = ⋯ = 𝑥𝑛, and the output 𝑦 is the same as all the inputs,
then there is no disagreement. If some input 𝑥𝑖 ≠ 𝑦, then we impose a
‘‘penalty’’ for this disagreement. The greater the disagreement, and the
more inputs disagree with the output, the greater is the penalty. Then,
the aggregation function is obtained by finding the aggregated value
that minimizes the penalty.

The formal definition of a penalty function reads as follows.

Definition 1.
A function P : [0, 1]𝑛+1 → ℜ is a penalty function if:

• 𝑃 (𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦;
• 𝑃 (𝑥, 𝑦) = 0 if 𝑥𝑖 = 𝑦 for every 𝑖 ∈ {1,… , 𝑛};
• 𝑃 (𝑥, 𝑦) is quasi-convex in 𝑦 for any 𝑥.

The penalty based function is 𝑓 (𝑥) = argmin𝑃 (𝑥, 𝑦), if there is a
nique minimizer, and 𝑓 (𝑥) = 𝑝+𝑞

2 if the set of minimizers is in the
interval [𝑝, 𝑞].

Any averaging aggregation function, i.e. an increasing function
whose output is between the minimum and the maximum of the inputs,
can be represented as a penalty based function.

1. Example 1: The arithmetic mean is represented via the penalty
function 𝑃 (𝑋, 𝑦) =

∑𝑛
𝑖=1(𝑥𝑖 − 𝑦)2

2. Example 2: The median is represented via the penalty function
𝑃 (𝑋, 𝑦) =

∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦|

Given a penalty function 𝑃 , a list of 𝑛 aggregation functions (𝐴𝑔1,
, 𝐴𝑔𝑛), and a vector of values to aggregate, 𝑋, we compute a finite set

f aggregation values over the vector 𝑋, (𝐴𝑔1(𝑋),… , 𝐴𝑔𝑛(𝑋)). Then, we
ompute 𝑃 (𝑋,𝐴𝑔𝑖(𝑋)) for all components in the (𝐴𝑔1(𝑋),… , 𝐴𝑔𝑛(𝑋))
ector and look for the component that minimizes the value of 𝑃 , that
s

rgmin
𝑖

𝑃 (𝑋,𝐴𝑔𝑖(𝑋))

. Methods

This section illustrates the BCI framework used and how the EEG
ata were processed. We also introduce the new concepts of Quasi-
estricted Equivalence and Quasi-Restricted Dissimilarity Functions(Q-
EF and Q-RDF), and how to construct the newly developed MCAs.

.1. Motor imagery brain–computer interface framework

The usual modules of a BCI system can be summarized as follows:

1. EEG acquisition with an EEG device, notch filtering to re-
move power line noise and possibly subsampling and/or bad

impedance channel removal.
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Fig. 1. Visual representation of the framework used in this study. First, we measure the EEG band, and extract the information from four different frequency bands. Then, we
apply SSD and subsequently CSP to reduce dimensionality and extract features from each band. From each frequency band we train a different LDA classifier. We make a final
decision by aggregating the output from all the LDA classifiers using a MCA (detailed in Section 3.4), which results in the estimated probabilities for each one of the possible
classes.
2. Feature extraction from the EEG data measured. Often, band
pass filtering in subject-specific or fixed bands is applied to
extract specific EEG oscillations [18]. Then, some dimensional-
ity reduction procedure such as Spatio-Spectral Decomposition
(SSD) might be applied [19]. Then, Common Spatial Patterns
(CSP) are usually employed to compute optimized spatial fil-
ters [20] to separate MI tasks. Other possibilities include using
Riemannian geometry [21] or time-domain features modelling
the signal as Laplacian and Gaussian random process [22]. The
extracted features are log-transformed to normalize them.

3. Pattern classification is performed on the extracted features.
In this paper we use an ensemble of classifiers to decode the
imagery commands. Each base classifier is trained using for ex-
ample a different band and the final decision is taken combining
all of them. The most common way to obtain the final decision
is to compute the arithmetic mean of the outputs of all the base
classifiers (each one provides a probability for each class), and
take the class with a higher aggregated value. The most common
base classifier used in combination with CSP filters and log-
transformed power values is the Linear Discriminant Analysis
(LDA) [23].

A schematic view of the framework used in our experimentation can
be found in Fig. 1.

3.2. Feature extraction and classification

In order to extract features, the EEG data were first filtered in four
fixed and overlapped frequency bands, covering the range from low 𝜇
to high 𝛽 bands: 6–10, 8–15, 14–28 and 24–35 Hz.

In more detail, the time interval to extract features was optimized
for each of the bands using heuristics based on the Event-Related
Desynchronization/Synchronization (ERD/ERS) effects typically ob-
served in motor imagery data [24]. The time-resolved ERD/ERS curves
were computed as follows: first, the EEG data were spatially filtered
using small Laplacian derivations and those channels covering the
sensorimotor cortex were selected. Then, these data were band-pass fil-
tered at the band of interest. For each selected Laplacian derivation, the
Hilbert transform [25] was applied to obtain the amplitude envelope of
the oscillations. EEG activity processed in this way was averaged across
epochs separately for each class (left hand/right hand/feet/tongue MI).
The time-resolved ERD curve was calculated for each channel according
to: ERD = 100∗(POST−PRE)∕PRE, where POST is the EEG processed activity
at the post-stimulus interval and PRE is the average activity in the
3

pre-stimulus interval (−500 to 0 ms). Then, the subject-specific time
interval (a range of time samples within the active trial time) was
selected using heuristics on the ERD/ERS values (see [26]). These
heuristics were based on the pair-wise class discriminability of each
time sample that was assessed by the signed r2-value (point biserial
correlation coefficient). The signed r2-value is a correlation coefficient
between a real variable (in this case the ERD/ERS value) and a
dichotomous one containing class information. Signed r2-values were
computed for each channel and time sample separately and smoothed
with a sliding window of 200 ms. The most discriminative time samples
were selected using signed 𝑟2-coefficient with 0.8 as threshold value
and more samples were iteratively added depending on the averaged
discriminative value of the new interval. Fig. 2 shows time intervals
averaged across subjects and partitions. They mostly cover the period
between 1 and 4 s during feedback, although they are slightly different
depending on the band.

After selecting time intervals for each class pair, the EEG data
were epoched to form post-stimulus trials. The total dimensionality of
the data was then reduced using SSD on the band of interest [27].
This method allows the extraction of oscillatory neuronal sources with
optimized Signal-to-noise ratio. It linearly decomposes multivariate
data maximizing the power of the signals at specific bands and at
the same time minimizing it at the neighbouring frequency bins. After
applying SSD, the selected sources were spatially filtered using common
spatial pattern (CSP) analysis [26] . Then, log-variance features were
computed for each trial of the training set.

The features of the test set were computed by temporally filtering
the EEG data in the four bands of interest. For each band and class
pair, the corresponding SSD and CSP spatial filters were then applied.
Then, the data were epoched using the previously found time intervals.
Finally, the variance and logarithm were applied to each of the features
in each trial. The features were then log-transformed and LDA classi-
fiers were trained for subsequent classification. We also considered the
use of SVM classifiers for this framework, but they showed worse results
than those obtained using LDAs in our experiments.

3.3. Quasi-restricted equivalent functions and quasi-restricted dissimilarity
functions

In this section we present the concept of Q-REF and Q-RDF. We
recall here the notions of Restricted Equivalent Functions (REFs) and
Restrict Dissimilarity Functions (RDFs) [28,29] that will be the basis
for Q-REF and Q-RDF.
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Fig. 2. Average time interval chosen for each wave band.
Definition 2. A function 𝑐 ∶ [0, 1] → [0, 1] is called a strong negation
if and only if there exists an automorphism 𝜙 such that 𝑐(𝑥) = 𝜙−1(1 −
𝜙(𝑥)).

Definition 3. A function 𝑠 ∶ [0, 1]2 → [0, 1] is called a REF if:

1. 𝑠(𝑥, 𝑦) = 𝑠(𝑦, 𝑥);
2. 𝑠(𝑥, 𝑦) = 1 if and only if 𝑥 = 𝑦;
3. 𝑠(𝑥, 𝑦) = 0 if and only if {𝑥, 𝑦} = {0, 1};
4. 𝑠(𝑥, 𝑦) = 𝑠(𝑐(𝑥), 𝑐(𝑦)) for all 𝑥, 𝑦 ∈ [0, 1], 𝑐 being a strong negation.
5. If 𝑥 ≤ 𝑦 ≤ 𝑧 then 𝑠(𝑥, 𝑧) ≤ 𝑠(𝑥, 𝑦) and 𝑠(𝑥, 𝑧) ≤ 𝑠(𝑦, 𝑧).

Definition 4. A function 𝑑 ∶ [0, 1]2 → [0, 1] is called a RDF if:

1. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);
2. 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
3. 𝑑(𝑥, 𝑦) = 1 if and only if {𝑥, 𝑦} = {0, 1};
4. If 𝑥 ≤ 𝑦 ≤ 𝑧 then 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) and 𝑑(𝑦, 𝑧) ≤ 𝑑(𝑥, 𝑧).

In order to deal with more than two inputs, properties are relaxed
to introduce the notions of Q-REF function and Q-RDF.

Definition 5. Let 𝑛 ≥ 1. A Q-REF function is a function 𝐻𝑠 ∶ [0, 1]𝑛+1 →
[0, 1] such that:

𝐻𝑠(𝑋, 𝑦) = 𝐻𝑠(𝑥1,… , 𝑥𝑛, 𝑦) = 1 if 𝑥1 = ⋯ = 𝑥𝑛 = 𝑦. (1)

Note that REFs are specific instances of Q-REF functions. And
analogously:

Definition 6. Let 𝑛 ≥ 1. A Q-RDF function is a function 𝐻𝑑 ∶ [0, 1]𝑛+1 →
[0, 1] such that:

𝐻𝑑 (𝑋, 𝑦) = 𝐻𝑑 (𝑥1,… , 𝑥𝑛, 𝑦) = 0 if 𝑥1 = ⋯ = 𝑥𝑛 = 𝑦. (2)

Again, RDFs are specific instances of Q-RDF functions. First of all,
observe that these two types of functions are closely related. In fact, we
have the following straightforward result.

Proposition 7. Let 𝑛 ∶ [0, 1] → [0, 1] be a decreasing function such that
𝑛(0) = 1 and 𝑛(1) = 0 (a negation). Then, a function 𝐻𝑠 ∶ [0, 1]𝑛 → [0, 1]
is a Q-REF function if and only if 𝑛(𝐻𝑠) is a Q-RDF function.

We can build general Q-REF and Q-REF functions as follows.

Proposition 8. Let ℎ𝑠1,… , ℎ𝑠𝑛 ∶ [0, 1]2 → [0, 1] be a family of Q-REF
functions and let 𝐴 ∶ [0, 1]𝑛 → [0, 1] be an aggregation function. Then,
𝐻𝐴(𝑥 ,… , 𝑥 , 𝑦) = 𝐴(ℎ (𝑥 , 𝑦),… , ℎ (𝑥 , 𝑦)) is also a Q-REF function.
4

𝑠 1 𝑛 𝑠1 1 𝑠𝑛 𝑛
Proposition 9. Let ℎ𝑑1,… , ℎ𝑑𝑛 ∶ [0, 1]2 → [0, 1] be a family of Q-RDF
functions and let 𝐴 ∶ [0, 1]𝑛 → [0, 1] be an aggregation function. Then,
𝐻𝐴

𝑑 (𝑋, 𝑦) = 𝐴(ℎ𝑑1(𝑥1, 𝑦),… , ℎ𝑑𝑛(𝑥𝑛, 𝑦)) is also a Q-RDF function.

Proposition 10. Let 𝐻𝑠1,𝐻𝑠2 ∶ [0, 1]𝑛 → [0, 1] be two Q-REF functions.
Then, for every 𝛼 ∈ [0, 1]

𝛼𝐻𝑠1 + (1 − 𝛼)𝐻𝑠2 (3)

is also a Q-REF function.

Proposition 11. Let 𝐻𝑑1,𝐻𝑑2 ∶ [0, 1]𝑛 → [0, 1] be two Q-RDF functions.
Then, for every 𝛼 ∈ [0, 1]

𝛼𝐻𝑑1 + (1 − 𝛼)𝐻𝑑2 (4)

is also a Q-RDF function.

Now we consider the convex combination of a Q-REF and a Q-RDF
function. If 𝑥1 = ⋯ = 𝑥𝑛 = 𝑦, we have that:

𝛼𝐻𝑑 (𝑥1,… , 𝑥𝑛, 𝑦) + (1 − 𝛼)𝐻𝑠(𝑥1,… , 𝑥𝑛, 𝑦) = 1 − 𝛼 (5)

So:

Proposition 12. Let 𝐻𝑑 ,𝐻𝑠 ∶ [0, 1]𝑛 → [0, 1] be a Q-REF and a Q-RDF
function, respectively. Then, for any 𝛼 ∈ [0, 1[, the function:

𝐻(𝑋, 𝑦) = min(
𝛼𝐻𝑑 (𝑋, 𝑦) + (1 − 𝛼)𝐻𝑠(𝑋, 𝑦)

1 − 𝛼
, 1) (6)

is a Q-REF function.

3.4. Multi-cost aggregation-choosing functions

A penalty function is characterized using a disagreement measure
that quantifies how different the inputs 𝑋 are with respect to the
resulting aggregated value 𝑦. The use of penalty functions mitigates the
problem of choosing an appropriate aggregation function: given a dis-
agreement measure, the one whose output minimizes the disagreement
measure will be chosen. The most common disagreement measure is
the quadratic error, however, the arithmetic mean will always deliver
the best result according to this measure [14].

To solve this problem we propose the MCAs, that present two
novelties compared to the already existing penalty-based aggregation
functions:

• In order to measure the disagreement, we consider a cost func-
tion. We do so as a cost function can be applied in situations
where the term consensus would not be adequate. For example,
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in a N-class classification problem, a result of 1/N probability
for a specific class, indicates that the output does not contain
almost any information. In this case, the cost function can be used
to penalize this kind of outcome. In this manuscript, we chose
Q-REFs and Q-RDFs as cost functions, as studied in Section 3.3.

• The use of a convex combination of two functions instead of a
single function avoids trivial results such as the one regarding the
quadratic cost, which will always be minimized by the arithmetic
mean independently of the input data.

schematic view of the aggregation process using a MCA can be found
n Fig. 3.

.4.1. Costs used
We have considered a set of Q-RDFs and Q-REF measures as cost

unctions. As studied in Section 3.3, and depending on the mixed
unctions, their convex combination is also a Q-REF or a Q-RDF. Given
vector 𝑋 of size 𝑛, where each element of 𝑋 is contained in the unit

nterval the Q-RDFs measures studied are the following:

• Huber loss:

ℎ(𝑥𝑖, 𝑦) =

{

(𝑥𝑖 − 𝑦)2 (𝑥𝑖 − 𝑦)2 ≤ 𝑀
2 ∗ 𝑀 ∗ (𝑥𝑖 − 𝑦)2 −𝑀 ∗ 𝑀 (𝑥𝑖 − 𝑦)2 ≥ 𝑀

(7)

where 𝐻(𝑋, 𝑦) = 1
𝑛
∑𝑛

𝑖=1 ℎ(𝑥𝑖, 𝑦). (We use 𝑀 = 0.3 for our
experimentation)

• Quadratic cost:

𝐻(𝑋, 𝑦) = 1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑦)2 (8)

• Optimistic cost:

𝐻(𝑋, 𝑦) = (𝑚𝑎𝑥(𝑋) − 𝑦)2 (9)

• Pessimistic cost:

𝐻(𝑋, 𝑦) = (𝑚𝑖𝑛(𝑋) − 𝑦)2 (10)

The Q-REF measure studied is:

• Anti-consensus cost:

𝐻(𝑋, 𝑦) = 1
𝑛
∑

(1 − (𝑥𝑖 − 𝑦)2) (11)
5

𝑛 𝑖=1
b

Fig. 4 shows the effects of a penalty aggregation using the classical
aggregations applied to the BCI data, with a sample of 100 five dimen-
sional (5-D) random vectors with numbers in [0,1]. The histograms are
computed over the results of aggregating 100 5-D random vectors. It is
visible that the optimistic and pessimistic costs have a ‘‘skewing effect’’,
so that the histogram is sharply moved to greater and lower values,
respectively. It can also be observed that there are two very similar
cost functions: the quadratic and the Huber costs. This is expected as
they only differ in ‘‘extreme’’ values. Finally, the anti-consensus cost
exhibits the most disperse histogram.

3.4.2. Combining costs
The combination of two costs using a convex combination requires

an 𝛼 ∈ ]0, 1[ parameter. Depending which are the functions to be
combined, Q-REFs or Q-RDFs, different formulas should be used:

• Both are the same type:

Combined Cost = 𝛼 ∗ 𝑐𝑜𝑠𝑡1 + (1 − 𝛼) ∗ 𝑐𝑜𝑠𝑡2 (12)

• One is a Q-REF and the other is a quasi-dissimilarity:

Combined cost = min(
𝛼𝑐𝑜𝑠𝑡1 + (1 − 𝛼)𝑐𝑜𝑠𝑡2

1 − 𝛼
, 1) (13)

Thus, the combined cost will be another Q-RDF when both cost1 and
cost2 are both Q-RDF, and a Q-REF otherwise.

Fig. 5 shows how the cost functions behave for a five-dimensional
vector of random numbers in the interval [0, 1]: (0.60, 0.85, 0.61, 0.52,
.52).

In order to show how each cost combination works, we computed
ach of them varying the parameter 𝛼 within the ]0, 1[ interval. We also
arked the preferred value for each one. Fig. 5a and Fig. 5b correspond

o Q-RDFs and Fig. 5c and Fig. 5d are Q-REFs.
Fig. 6 studies the effect of different 𝛼 values in the quadratic and

ptimistic cost based on the same random vectors as before and shows
hat indeed the 𝛼 parameter has a notorious influence in the chosen
ggregation.

.5. Selecting the 𝛼 parameter in a multi-cost aggregation-choosing function
or a supervised classification task

As studied in Section 3.4, 𝛼 plays a crucial role in the output of a
CA. Choosing the optimal value for this parameter is not an easy task
ecause it heavily depends on the application.
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Fig. 4. Histogram of aggregated values for the optimistic, the quadratic, anti-consensus, Huber and pessimistic costs using the maximum, minimum, arithmetic mean and median
as possible aggregations in the MCA, for a random sample of 100 vectors of size 5 in the [0, 1] range. We represent in the 𝑥 axis the 𝛼 value and, in the 𝑦 axis, the frequency of
the aggregated output values in each range for each sampled random vector.
Fig. 5. Effect of different 𝛼 parameters for a vector of five, randomly chosen numbers ∈ [0, 1]: (0.60, 0.85, 0.61, 0.52, 0.52). The × marks the minimum for each 𝛼 parameter in each
error configuration.
Fig. 6. Histogram of aggregated values for the quadratic & optimistic cost using the maximum, minimum, arithmetic mean and median as possible aggregations in the MCA, for
a random sample of 100 vectors of size 5 in the [0, 1] range, using different 𝛼 values. We represent in the 𝑥 axis the 𝛼 value and, in the 𝑦 axis, the frequency of the aggregated
output values in each range for each sampled random vector.
Although some fixed 𝛼 value might work sufficiently well for some
applications, the fine-tuning of this parameter can also increase the
performance of supervised classification scenarios. As 𝛼 is restricted
to the [0, 1] interval, a dense sampling Montecarlo optimization with
accuracy as target metric is a good option to select 𝛼. Nevertheless,

hen a system is composed of more than one aggregation process and
ore than one MCA, the optimization needs to be performed over a
6

vector of numbers instead of just one value. Depending on the size
of the vector, it is still possible to optimize it performing the same
procedure as for a single value. However, one of the key ideas of the
original penalty-based aggregations is to find a suitable aggregation
for each vector of inputs. By choosing the same 𝛼 parameter for each
individual vector of inputs, this philosophy is somewhat disregarded.
In that case, computing an adaptive 𝛼, chosen according to the vector
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of inputs appears more appropriate. We named this procedure the
adaptive MCA.

The adaptive MCA computation carries an additional difficulty, as
we need to somehow relate our input vector with the final outcome,
which is the label for each sample. We propose the use of a regression:

𝛼 = 𝑓 (𝑊𝑋 + 𝑏) (14)

where 𝑓 is an activation function, 𝑊 is the weight matrix, 𝑋 is the
input vector and 𝑏 is the bias.

In this formula, both 𝑊 and 𝑏 matrices should be optimized. In this
case a Montecarlo optimization using the accuracy as the target metric
is not appropriate because the size of 𝑋 might be too large, turning the
optimization unstable due to the ‘‘curse of dimensionality’’. Thus, we
propose to learn 𝑊 and 𝑏 using a gradient descent optimization, where
a set of initial ‘‘real’’ 𝛼 values is necessary.

Although ‘‘real’’ 𝛼 values do not exist, there is a ground truth label
for each example. Suppose an aggregation function exists whose result
leads to a correct classification. Then, there is a possible value of 𝛼
that selects this optimal aggregation, and thus, correctly classifies the
sample. This value is considered a ‘‘real’’ 𝛼 (𝛼𝑟𝑒𝑎𝑙) because it correctly
classifies the sample. Usually, there will be several different values of
this parameter leading to the correct classification of that example. We
call the set of 𝛼𝑟𝑒𝑎𝑙 the 𝜶𝑒𝑠𝑡.

The next problem is determining which value in the set of 𝜶𝑒𝑠𝑡
should be selected as training label to obtain 𝑊 and 𝑏. Since we are
interested in maximizing the variability in the selection process, we
should prefer an 𝛼 whose output is as undetermined as possible. For
example: in the case of the quadratic & optimistic costs if the 𝛼 value
is 0, the chosen aggregation will always be the arithmetic mean, and
if it is 1, it will always be the maximum. Thus, the preferred 𝛼 value
should be the furthest from 0 and 1, or in other words, that 𝛼 should
be as close as possible to 0.5.

In the following Section 3.5.1 we illustrate this process for the
quadratic & optimistic costs. The same procedure can be applied to the
rest of the Q-REF and the Q-RDF combinations.

3.5.1. Training adaptive 𝛼 values for the quadratic & optimistic costs
This section illustrates the process of generating a numerical value,

out of the set of 𝜶𝑒𝑠𝑡, that can be used as label to train the Eq. (14).
This process consists of two steps:

1. Compute the 𝜶𝑒𝑠𝑡 set.
2. Determine the best value in 𝜶𝑒𝑠𝑡, that will be the closest to 0.5.

We define the predicted probability of the sample 𝑥 to be of class
𝑐 as 𝑐(𝑥) within 𝐶 possible classes, and the ground truth of 𝑥 as 𝑦𝑥.
We define the classification threshold as 𝑡 = max 𝑐𝑖(𝑥), 𝑐𝑖 ∈ 𝐶. It is
evident that for any value 𝑐(𝑥) ≥ 𝑡, if 𝑦𝑥 = 𝑐, then the classification is
correct. As aforementioned the quadratic error favours the arithmetic
mean over the rest of the aggregations, and the optimistic error, favours
the maximum. We consider the convex combination of both errors and
the mixing parameter 𝛼:

𝐶𝑜𝑠𝑡(𝑋)𝛼 = 𝛼 ∗ 𝑚𝑒𝑎𝑛(𝑋) + (1 − 𝛼) ∗ 𝑚𝑎𝑥(𝑋) (15)

The MCA that uses this cost increases with respect to the 𝛼 value,
because as the value of 𝛼 grows, the preferred value in the error formula
gets closer to the maximum.

Supposing that an 𝛼’ exists such that for the class 𝑐, and 𝑐 = 𝑦𝑥, the
MCA𝛼′ (𝑥) = 𝑡, all 𝛼′′ > 𝛼′ will result in a MCA𝛼′′ (𝑥) >= 𝑀𝐶𝐴𝛼′ (𝑥) >= 𝑡,
which will result in correct classification. This means that 𝜶𝑒𝑠𝑡 are all
the 𝛼 values bigger than 𝛼′. Then, the optimal 𝜶𝑒𝑠𝑡 is just the closest to
0.5.

The process is very similar for any other combination of Q-REF and
Q-RDF functions, but if the combined cost is not monotone with respect
to 𝛼, then 𝜶 can be disjoint.
7

𝑒𝑠𝑡
Example 3.1. Taking a vector of five random numbers: 𝐱 = [0.4, 0.9,
.1, 0.5, 0.3], we consider these five random numbers the output of five
lassifiers, i.e. the probability of a sample to be of class 𝑦, being 𝑦 the

real label of that sample.
We select a MCA that uses the maximum and mean cost, and

chooses among the average (0.44), median (0.40), minimum (0.1) and
maximum (0.90) aggregations. Then, for any 𝛼 < 0.5, the MCA will
choose the average, and for any 𝛼 > 0.5 the MCA will select the
maximum. For 𝛼 = 0.5 both values are eligible. Since the average is
0.44, if we aggregate using this value, the final result will not correctly
classify 𝐱. If we aggregate using the maximum, then the aggregation
will correctly classify the sample. So, 𝛼𝑒𝑠𝑡 in this case will be all 𝛼 values
reater than 0.5.

As final training label we take the immediate value following 0.5
nd adjust it to the desired precision. For example, if we consider
ecimals until the third digit, the target 𝛼𝑟𝑒𝑎𝑙 to learn for 𝐱 would be
.501.

.6. Multi-cost aggregation-choosing functions in the brain–computer inter-
ace framework

We use the MCA functions in the aggregation function in the deci-
ion making phase of the BCI framework. Each MCA is composed of a
et of possible aggregations to choose from and a cost function. In the
ase of the adaptive-MCA, it is also composed of a weight matrix and
bias vector. We used a set composed of four classical aggregations:
inimum, maximum, median, and the arithmetic mean. We tested all
ossible combinations of Q-REFs and Q-RDFs and presented them in
ection 3.4.1.

In the case of using a non adaptive MCA, the mixing parameter was
earnt using a Montecarlo sampling of 200 possible 𝛼 values in the ]0, 1[
ange. On the other hand, recall that in the case of the adaptive MCA we
eed to establish the 𝑋 matrix and the activation function 𝑓 of Eq. (14)
o apply the procedure detailed in Section 3.5. Matrix 𝑋 corresponds to
he outputs of all the classifiers in the BCI framework for each sample,
hereas 𝑓 is a linear activation function (𝑓 (𝑥) = 𝑥). Then, 𝑊 and 𝑏 in
q. (14) are learnt using gradient descent optimization.

. Results

In this section we discuss the outcomes of applying our new ap-
roaches to the BCI competition IV dataset 2a (IV-2a) [16] and the
linical BCI Challenge WCCI 2020 dataset (CBCIC) [17].

• Dataset 1: The IV-2a dataset has been extensively used to test
different BCI systems (see for example, [30–32]). It consists of
four motor imagery tasks (tongue, foot, left-hand and right-hand)
performed by 9 volunteers. For each task, 22 EEG channels were
collected, with a total of 288 trials for each participant. Trials
are evenly distributed among the 4 classes. For this dataset, we
studied the classification task from two different perspectives:
binary classification of the left and right hand classes, which is
a common choice of tasks in the literature [32,33]; and four-class
classification: left hand, right hand, foot and tongue.

• Dataset 2: the CBCIC dataset consist of brain imaging signals
from 10 hemiparetic stroke patients with hand functional disabil-
ity in a rehabilitation task. The data contains 80 diferent trials
of left/right hand movements. Decoding motor cortical signals
of brain-injured presents several challenges as the presence of
irregular because of the altered neurodynamics [17].

For both datasets, the evaluation process is the same. Each partic-
pant’s dataset was randomly sampled in ten different partitions (each
ith 50% train and 50% test trials). A total of 90, respectively 80
atasets were generated for the IV-a Competition and CBCIC datasets.
he final performance of each configuration was obtained averaging
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Table 1
Results using Penalty-based aggregation/arithmetic mean.

Dataset Aggregation Accuracy

IV-2a dataset Average/Classic Penalty-based aggregation 0.7974
CBCIC dataset Average/Classic Penalty-based aggregation 0.8215

Table 2
Accuracy results for binary classification using MCAs optimized with Montecarlo
Sampling in the binary task.

Dataset Quadratic Optimistic Huber Pessimistic

IV-2a Optimistic 0.7904
Huber 0.7960 0.7931
Pessimistic 0.7933 0.7938 0.7915
Anti-consensus 0.7955 0.8022 0.7939 𝟎.𝟖𝟎𝟑𝟎

CBCIC Optimistic 0.8123
Huber 0.8215 0.8142
Pessimistic 0.8113 0.8000 0.8224
Anti-consensus 0.8215 0.8221 𝟎.𝟖𝟐𝟑𝟏 0.8215

Table 3
Accuracy results for the adaptive MCA optimized with the algorithm in Section 3.5 in
the binary task.

Dataset Quadratic Optimistic Huber Pessimistic

IV-2a Optimistic 0.8000
Huber 0.7974 0.7994
Pessimistic 0.8000 0.7798 0.7994
Anti-consensus 0.7974 𝟎.𝟖𝟎𝟑𝟖 0.7970 𝟎.𝟖𝟎𝟑𝟖

CBCIC Optimistic 0.8123
Huber 0.8215 0.8215
Pessimistic 0.8113 0.8132 𝟎.𝟖𝟐𝟐𝟒
Anti-consensus 0.8215 0.8212 0.8221 0.8136

each single dataset accuracy. The results were obtained using different
aggregation functions in the decision making phase and compared the
newly proposed MCAs. Both the adaptive and the non-adaptive mixing
parameter were employed with a set of standard aggregations and also
with the already existing penalty-based aggregation functions.

Furthermore, results for each individual subject are available in the
following GitHub repository: https://github.com/Fuminides/MCA_BCI_
results.

4.1. Results for left/right hand motor imagery classification with stroke
patients (CBCIC) and BCI competition IV-2a datasets

Table 1 shows the results for the binary classification using the state-
of-art BCI framework with the arithmetic mean as the fusion function
for the classifiers output. Recall here that the choice of the penalty-
based aggregation function is always the arithmetic mean, thus the
results are the same for both.

Table 2 displays the results for all the possible MCA functions.
The selected aggregation functions are a set of classical aggregation
procedures: arithmetic mean, median, minimum and maximum. In this
case, 𝛼 was found with a simple Montecarlo sampling optimization,
using a ten-fold validation on the train set to determine its performance.
Table 3 presents analogous results to those in Table 2, but using the
algorithm proposed in Section 3.5.1 to learn the 𝛼 parameter.

These tables show that the best result is obtained for a MCA with
set by the procedure described in Section 3.5, resulting in 0.8038

f accuracy in the IV-2a dataset, and 0.8231 in the CBCIC dataset.
he second best result is obtained for a MCA with a Montecarlo
ptimization. Both MCA optimization algorithms improve the result of
he classical arithmetical mean: 0.7974 and 0.8224 for the IV-2a and
BCIC dataset, respectively. We performed a Friedman test, as both
opulations were not normal according to Shapiro–Wilk test. However,
8

o statistical differences were found. p
Table 4
Accuracy 4-class classification results using Penalty-based aggregation/arithmetic mean
in the IV-2a dataset.

Dataset Aggregation Accuracy

IV-2a Average/Classic Penalty-based aggregation 0.6056

4.2. Results for 4-class motor-imagery classification problem (BCI competi-
tion IV-2a)

The 4-class problem is analogous to the left/right hand problem
including ‘‘foot’’ and ‘‘tongue’’ tasks, which are noticeably harder to
discriminate [16]. To study this problem we have performed similar
experiments to those of the left/right hand classification task.

Table 4 shows the results for the state-of-art BCI framework us-
ing the arithmetic mean, which is similar to computing the classical
penalty-based aggregation. The obtained accuracy was 0.6056.

Table 5 displays the results for the state-of-art BCI aggregation
framework using the MCA functions where the 𝛼 parameter was op-
timized with the Montecarlo sampling algorithm. We found many
combinations of costs that resulted in MCAs surpassing the result of the
arithmetic mean. The best result found here was 0.6243 of accuracy.

Finally, Table 6 presents the results for the traditional BCI frame-
work using the MCA functions where the 𝛼 parameter was optimized
with the algorithm in Section 3.5. Here, the best result was 0.6167,
which was again better than the one obtained using the arithmetic
mean, but worse than the one using the Montecarlo sampling optimiza-
tion.

According to a Shapiro–Wilk test, the accuracy populations were not
normal. So, we used a Friedman test followed by pairwise comparisons
with Wilcoxon post-hoc tests to look for statistical differences. The
resulting 𝑃 -values are reported in Table 7. We found the Montecarlo
ptimization to significantly outperform the rest.

. Comparison with other motor imagery-brain computer inter-
ace decoding methods

In this Section we compare our results with two other MI-BCI
ystems. We employed both the IV-2a and the CBCIC datasets. The
elected BCI frameworks are described in the following:

1. Multimodal Fuzzy Fusion framework (MFF) [11]: in this work
the authors use a Fast Fourier transform to extract features from
the original EEG data, then they construct a classifier ensemble
using different types of classifiers and a fuzzy integral.

2. One Versus One and Gradient Boosting [15]: the authors used
Gradient Boosting classifiers [34] to select the optimal classifi-
cation features. They structured the decision making phase with
different One versus One (OVO) strategies: a classical OVO, and
a tree structure for the OVO classifiers (tree-OVO).

3. Multiscale CSP [35]: the authors extended CSP using different
time windows, to obtain features from different temporal scales,
which then are used to train a SVM classifier.

4. EEG net [36]: in this work, the authors proposed a specific
architecture of a Convolutional Neural Network for EEG signals,
in order to incorporate in the network different well-known
concepts of feature extraction in BCI.

5. Shallow and Deep nets [37]: are two convolutional neural net-
works, composed of 2 and 4 blocks of convolution and max
pooling blocks.

n order to compare our feature extraction method with others, we
lso used the feature extraction method developed in [35] with the
roposed MCA. In this framework, the features from different time
indows are concatenated and fed to a classifier. In order to use the

roposed MCA, instead of concatenating these features into a single

https://github.com/Fuminides/MCA_BCI_results
https://github.com/Fuminides/MCA_BCI_results
https://github.com/Fuminides/MCA_BCI_results
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Table 5
Accuracy 4-class classification results using MCAs optimized with Montecarlo Sampling.
Dataset Quadratic Optimistic Huber Pessimistic

IV-2a Optimistic 0.6066
Huber 0.6041 0.6040
Pessimistic 0.6027 0.6046 0.5993
Anti-consensus 0.6056 0.6087 0.6018 𝟎.𝟔𝟐𝟒𝟑
Table 6
Accuracy 4-class classification results adaptive MCAs optimized with the algorithm in Section 3.5.
Dataset Quadratic Optimistic Huber Pessimistic

IV-2a Optimistic 0.6124
Huber 0.6056 0.6113
Pessimistic 0.6050 0.5966 0.5990
Anti-consensus 0.6056 0.6148 0.6033 𝟎.𝟔𝟏𝟔𝟕
Table 7
Statistical significances in the four classes classification problem with Wilcoxon post-hoc
for the different MPA approaches and the arithmetic mean.

Dataset Arithmetic mean MCA Montecarlo

IV-2a MCA Montecarlo 𝑃 < .001
MCA adaptive 𝑃 < .001 𝑃 < .001

Table 8
Results of each BCI framework in the IV-2a dataset, full task.
BCI framework (IV-2a) Accuracy F1-Score

MCA Montecarlo 0.6243 0.6225
MCA adaptive 0.6167 0.6016
Multiscale MCA 𝟎.𝟕𝟒𝟑𝟑 𝟎.𝟕𝟐𝟕𝟏

MFF-Sugeno [11] 0.6424 0.6110
MFF-Sugeno Hamacher [11] 0.6898 0.6889

Gradient boosting OVO [15] 0.5245 0.2264
Gradient boosting tree-OVO [15] 0.4524 0.1163

Multiscale CSP [35] 0.7328 0.7066

EEG Net [36] 0.5747 0.3698
Shallow Net [37] 0.6362 0.5986
Deep net [37] 0.5196 0.4218

vector, we form 𝑘 different vectors concatenating the features from
adjacent frequencies. For each of these feature vectors we train a
classifier, and then we fuse the logits from these classifiers using a MCA.
We call this framework the multiscale MCA

We performed these comparisons using the same procedure as in
Section 4 and that we summarize here: we randomly sampled 10
artitions composed of 50% train and 50% test data for each subject.
his resulted in 90 different datasets for the IV-2a competition data,
nd 80 datasets for the CBCIC. As evaluation metric, we used the mean
ccuracy obtained in the test partitions.

Table 8 shows the results for each of the different configurations
ested for the IV-2a dataset. Table 9 shows the same comparison for
he CBCIC dataset. We found that the our method performed best for
he CBCIC dataset, and that the Multiscale MCA over performed the
est for the IV-2a dataset. In this configuration of the Multiscale MCA
e used two feature vectors and the Huber & Anti-consensus cost.

Table 10 shows the results for the Wilcoxon post-hoc after Friedman
est, comparing the MCA Montecarlo with the rest of the frameworks
ested for the IV-2a dataset. We found that MCA Montecarlo signifi-
antly outperforms OVO, tree-OVO frameworks but the MFF performed
tatistically better than our proposal. Table 11 shows the analogous
esults for the CBCIC dataset. In this case we found that our method
9

erformed significantly better than the MFF.
Table 9
Results of each BCI framework in the CBCIC dataset.
BCI framework (CBCIC) Accuracy F1-Score

MCA Montecarlo 𝟎.𝟖𝟐𝟑𝟏 𝟎.𝟖𝟐𝟒𝟑
MCA adaptive 0.8224 0.8224
Multiscale MCA 0.7777 0.7551

MFF-Sugeno [11] 0.7990 0.7919
MFF-Sugeno Hamacher [11] 0.8145 0.7922

Gradient boosting [15] 0.5956 0.5354

Multiscale CSP [35] 0.7956 0.7911

EEG Net [36] 0.6562 0.5933
Shallow Net [37] 0.7453 0.7342
Deep net [37] 0.5331 0.4218

Table 10
Results for the Wilcoxon post-hoc, comparing the two best MCA solutions with other
BCI systems in the IV-2a dataset.

(IV-2a) MFF-Sugeno MFF-Sugeno
Hamacher

OVO Multiscale CSP

MCA Montecarlo 𝑃 = .02 𝑃 < .001 𝑃 < .001 𝑃 < .001
Multiscale MCA 𝑃 < .001 𝑃 < .001 𝑃 < .001 𝑃 < .001

Table 11
Results for the Wilcoxon post-hoc, comparing the MPA Montecarlo with other
aggregation based BCI systems in the CBCIC dataset.
(CBCIC) MFF-Sugeno MFF-Sugeno Hamacher

MCA Montecarlo 𝑃 < .001 𝑃 < .001

6. Conclusions and future work

In this paper we introduced the combination of two generalized
versions of REFs and RDFs cost functions to choose an optimal aggre-
gation regarding a vector of inputs. We showed that this technique
is able to enhance the classifier fusion phase in two BCI frameworks
and can improve the results of the arithmetic mean (and subsequently,
the classical penalty-based aggregations) for both binary and multiclass
MI classification problems of the BCI Competition IV 2a and CBCIC
datasets.

For the latter dataset, our BCI framework performed better than the
Deep Learning, OVO, Multimodal Fusion and Multiscale CSP proposals
regardless the aggregation function chosen. We also found that the
best MCAs computed included the Anti-Consensus cost, which favours
values that differ from the consensus. This result suggests that the most
useful aggregated values to perform classification can be different to the
original consensus of the classifiers. This idea differs from the original
penalty functions intention, which was to measure disagreement in
order to choose the value that minimizes it.

Future research shall aim at improving the accuracy of the system

by studying different ways to learn which costs should be combined for
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a given task. We also intend to study the trade-off between diversity
and accuracy in the classifiers to aggregate, as the more diverse these
outputs are, the more meaningful the aggregation process can be.
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