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Abstract—Federated learning (FL) is an efficient, scalable,
and privacy-preserving technology in which clients collaborate
on machine learning or deep learning model training. How-
ever, malicious clients can send poisoned model updates to
the central server without being identified, which makes FL
vulnerable to backdoor attacks. In this work, we propose a
novel defense approach, FLSec, to mitigate backdoor attacks
caused by adversarial local model updates. FLSec utilizes an
original measurement, GradScore, which is computed from the
loss gradient norm of the final layer of the local models for
backdoor defense. We show through analysis and experiments
that GradScore is efficient and robust in identifying malicious
model updates. Our extensive evaluation also demonstrates FLSec
is highly effective in mitigating three state-of-the-art backdoor
attacks on well-known datasets, MNIST, LOAN, and CIFAR-
10. In addition, our experiments show that FLSec significantly
outperforms existing backdoor defenses in the scenario of multi-
round backdoor attacks.

Index Terms—Deep Learning, Federated Learning, Backdoor
attack, Model Poisoning

I. INTRODUCTION

Federated learning (FL) is a collaborative machine learning
paradigm proposed by McMahan et al. [1]. Compared to cen-
tralized training, FL offers efficiency and scalability as many
clients execute the training in parallel over communication
networks [1]. FL also provides excellent privacy to clients as
they can keep their training datasets locally [1] rather than
sharing them with other participants.

However, due to its distributed operation, FL leaves the
door open for adversaries. An FL system is vulnerable to
poisoning attacks, especially backdoor attack that aims to
insert a trigger into the trained global model [2]. The existence
of a backdoor makes the global model mislabel a small group
of samples with chosen triggers into targeted labels. However,
these backdoored global models can have good accuracy in
benign and backdoored datasets.

Existing defenses against poisoning attacks can be divided
into two major classes, certified robustness and empirical
robustness (e.g. [3], [4]). In this work, we mainly discuss
empirical robustness, which is currently investigated by in-
specting distinguishable factors, such as indicative features [5],
source-focused error [4], or pair-wise cosine similarities [6]
[7] [8] [4] [5]. However, these existing approaches are only
efficient under specific assumptions about the data distribution
of the clients [4] [5] [7] [9], or specific attack strategies [6] [4].

Therefore, these works have poor efficacy in generic adversary
models. Defense approaches [10] based on robust statistics
suffer from targeted poisoning attacks as it seeks robustness
against untargeted attacks.

To address the aforementioned challenges and limitations, in
this work, we propose an effective defense approach applicable
to a generic adversary model without assumptions about data
distribution and attack strategies. This proposed technique
can effectively mitigate adaptive attacks while keeping the
performance on the main tasks. Specifically, the contributions
of our work are as follows:

• We proposed FLSec, a novel generic defense to mitigate
backdoor attacks on federated learning systems. FLSec
uses a pruning scheme. By carefully setting the pruning
rate, malicious clients can be pruned largely.

• We propose and utilize scores (GradScore) of local client
models, which are computed by the loss gradient norm
of the final layer of the local models. It measures the
updates of each client to its local model. Clients with
larger GradScore would be regarded as suspicious.

• We demonstrate the effectiveness of FLSec against back-
door attacks by evaluating multiple datasets and various
attack scenarios. Experiments show that FLSec can ef-
fectively mitigate several state-of-the-art backdoor attacks
without affecting the performance of the global model on
main tasks.

II. SYSTEM AND THREAT MODEL

A. Preliminaries

Here, C = {(xi, yi)}Ni=1 denotes the training set on local
devices, with input vectors x ∈ Rd and y ∈ {0, 1}K encoding
labels. It is assumed that in federated learning, local clients
have the same architecture neural network model. For a
chosen neural network model on clients, p(w, x) = σ(f(w, x))
denotes the probability vector of the neural network with
activation function σ and weights w ∈ RD. For any probability
vector p, let ℓ(p, y) denote the loss function.

For any local client, let w0,w1,w2, ...,wt be the iterations
of SGD(stochastic gradient descent). S0, S1, .., St−1 ⊆ S of
size M are mini-batches. Here we have

wt = wt−1 − η
∑

(x,y)∈St−1

gt−1(x, y), (1)



gt−1(x, y) = ∇w−1ℓ(p(wt−1, x), y) is the gradient of the loss
for a training sample (x, y).

B. System Setting

We assume that m clients train their local models before
sending local updates to the central server. The central server
combines these updates by using FedAvging [1]. In addition,
all the clients keep their data secret and any client can not
intercept training or testing data.

One iteration of FL training is shown below:
At each global round t, the updated global model aggregated

by the central server is given by:

Gt+1 = Gt +
η

n

m∑
i=1

(wt+1
i −Gt) (2)

Here, Gt denotes the global model at t global epoch. wt+1

denotes to local models sent by randomly chosen m local
clients {C1, ...Cm} in one global round t. η is the global
learning rate and n is the total number of local clients.

In order to simulate a non-IID distribution, we assign data
to clients according to the Dirichlet distribution [11].

C. Attack Strategies

Data poisoning: In this attack strategy, adversary A is only
able to manipulate the local training dataset of end devices. By
varying the Poisoned-Data-Rate (PDR), the attacker can make
a trade-off between attack impact and attack stealthiness. Let
Di denote the number of the combined and poisoned dataset
of a compromised client i and DA

i the number of modified or
poisoned data, then the PDR is given by:

PDR =
DA

i

Di
(3)

Model Poisoning: In this attack strategy, adversary A is
able to fully control a subset of the clients. In order to
increase the impact of the attack on the aggregated model,
Adversary Ac can deliberately modify the model updates
before submitting them to the aggregator.

Single-Shot: As proposed in [2], the adversary can scale
up the model weights by γ up to the bound β set by simple
weight-based anomaly detectors. The scaled malicious local
updates wt

i is given by:

w′t
i = (wt

i −Gt)γt
i +Gt (4)

Here, wt
i denotes a backdoored local model trained by a

malicious client. w′t
i refers to the scaled malicious local model.

Model replacement attack (Single-Shot) can ensure a good
attack performance even when only one malicious client
submits one malicious updates w′t

i in a single training round t
(Single-shot attack [2]). We use this attack strategy as one of
the benchmarks for evaluating our proposed defense technique.

Anomaly-Evasion: In [2] [12], an adaptive loss function is
used. They added a term ℓanomaly that measures the cosine
distance similarity between the known global model and the
original poisoned model. Let ℓoriginal denotes the normal loss

function and ℓanomaly denotes the evasion loss function. Then
the adaptive loss function ℓ

′
is given by:

ℓ
′
= αℓoriginal + (1− α)ℓanomaly (5)

The parameter α is used to control the weights of each part.
If α is close to zero, the impact of backdoor attacks would
be decreased. On the other hand, large α (α close to one)
can make the malicious behaviors conspicuous by the anomaly
detector. The combination of the anomaly-evasion and Scaling
attack strategies is called Constrain-and-Scale attack [2]. This
Constrain-and-Scale is another benchmark for evaluation in
then that

DBA: This novel backdoor strategy is proposed by [13].
By splitting the trigger and clients into different parts, this
attack strategy performs better in clients and stealthiness
compared with centralized backdoor strategies. We use this
attack strategy as the third benchmark.

D. Adversary Model

The goal of an adversarial client A is to insert a backdoor
into the aggregated model, inducing the learned classifier to
achieve high accuracy on both its main task and a targeted
backdoor task. We assume that DB denotes benign dataset,
and DM denotes backdoored samples {xi}mi=1 with true labels
yi that should be misclassified as targeted label τi. The
adversary’s objective is to maximize the sum of misclassified
backdoored samples:

A(DB ∪DM , Gt)

= maxGt{
m∑
i=1

1[f(xi;G
t) = τi] +

∑
DB

1[f(x;Gt) = y]}

(6)

From the above equation, two main objectives for adversary
A are:

O1: Performance on the backdoor task. The aggregated
model should have a good performance on the backdoor task.
Namely, the aggregated model should misclassify triggered
samples into targeted labels [14].

O2: Stealthiness. Adversary should ensure that the aggre-
gator server is unaware of malicious behaviors. An obvious
drop in the main task accuracy (MA) should be avoided.

Similar to previous works on backdoor attacks and defense
[2] [12] [15] [16] [9], we consider a strong adversary model:
(1) The attacker fully controls the compromised end device; (2)
The attacker has full knowledge of the aggregating algorithm
and configuration hyper-parameters, i.e., learning rate and the
number of epochs; (3) The attacker can modify the updated
weights adaptively before sending back to the aggregator.

E. Defense Objectives

In order to defeat Adversary objectives, the proposed defen-
sive technique needs to meet the below security requirements:

R1: Poisoning elimination: The defense should eliminate
the backdoor attack. In other words, the performance on



backdoored dataset should remain at the same level as without
the attack.

R2: No Interruption of the original Training Process:
The defense should not interrupt or negatively impact the main
training process. The main task accuracy should achieve the
same level as without defense.

III. PROPOSED APPROACH

In this section, we introduce our proposed approach, FLSec,
by deeply inspecting and analyzing model updates to discover
models whose training data were poisoned for a specific
backdoor task. First of all, we give the definition of GradScore.
We analyze that the poisoned training dataset rate(PDR) has
a direct impact on the value of GradScore of a poisoned
model. Then we describe how to detect malicious clients by
evaluating the corresponding GradScore values in federated
learning. Finally, we give the details of our FLSec algorithm.

A. GradScore and analysis

Definition III.1. The GradScore of training set S =
(xi, yi)

N
i=1 on a local client at global iteration t is

GradScore(Ct
i ) = ∥g({(xi, yi)})∥2.

It is approximated training dynamics are in continuous
time. For a labeled example (x, y) from local data set S =
{(xi, yi)}Ni=1, the time derivative of the loss on this labeled
sample is ∆t((x, y), S

t) = −dℓ(fwt (x),y)

dt at time t. By the
chain rule,

∆t((x, y), S
t) = gt(x, y)

dwt

dt
(7)

The instantaneous rate of change in wt at time t, dwt ≈
wt+1−wt = −η

∑
(x,y)∈st gt(x, y). The goal is to understand

how poisoned samples from minibatch St affect the time
derivative of the loss for any samples (x∗, y∗) from the same
minibatch.

Lemma III.1. Let S¬j = S\(xj , yj) denotes training set
excluding sample (xj , yj). Then for all rest samples (x′ , y′),
there exists c such that

∥∆t((x′ , y′), S)−∆t((x′ , y′), S¬j)∥ = c∥gt(xj , yj)∥. (8)

Proof. See Appendix.

It is not difficult to see from above that the contribution
of a training sample (xj , yj) to the decrease of loss on other
samples from same minibatch can be quantified by Eq.(8).
The value of ∥gt(xj , yj)∥ is the GradScore of sample (xj , yj).
Samples with large GradScore have a high influence on learn-
ing. For backdoor training on local devices, malicious clients
should try to reduce backdoor training loss ℓB((x, y), Gt).
Hence, malicious clients should increase the poisoned data
rate(PDR). In Fig.1(a)(c), we evaluated this inference, running
backdoor training on MNIST dataset with a minibatch of 64
samples. With the same pre-trained model, a model trained
with a higher poisoned data rate causes an obvious decrease
in backdoor training loss and has a higher GradScore value.
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Fig. 1: Impact of the poisoned data rate (PDR) on loss value,
Backdoor Accuracy, and GradScore. value

B. FLSec Design

Key Observations. Our first observation is that no matter
what is the data distribution among clients, the deviations
between local models and global model start to cancel out,
i.e.,∀w ∈ {wi}mi=1,wt+1

i − Gt ≈ 0 [2], in the benign
setting, as the global model converges. Therefore, the updates
of benign local models , dw ≈ wt+1 − wt is bounded.
According to Eq.(8), it is not difficult to see ∥∆t((x′ , y′), S)−
∆t((x′ , y′), S¬j)∥ is bounded. Therefore, ∥gt(xj , yj)∥ of one
example from benign dataset is small. The second observation
is that when the global model starts to converge, poisoning
behaviors on the malicious client would deviate from the
malicious updates from the current iteration global model [17].
The GradScore of benign clients is small, while the GradScore
of malicious clients is larger. In Fig.1, it is shown that the
GradScore of the last layer gradients of malicious clients’
model is obviously larger than benign clients’. Therefore, by
comparing the GradScore of the last layer of local models,
malicious clients can be detected.

Now, we discuss the steps of FLSec. Algorithm 1 outlines
the procedure of FLSec.

Identifying malicious behaviors. In designing FLSec, the
first step is to identify and measure malicious behaviors
existing in the federated learning system.

Pruning and excluding malicious clients. After malicious
behaviors are identified, the next step in FLSec is to iden-
tify and exclude anomalous clients based on corresponding
GradScore values. First, GradScore corresponding to clients
is sorted in ascending order. The top p percent clients with
the highest scores are pruned and excluded from the be-
nign client list. The parameter p depends on the number of



Algorithm 1: Design of FLSec

Input: n, G0, T
// n is the number of clients in one

iteration, G0 is the initial
global model, T is the number of
global iterations

Output: GT

// GT is the updated global model
after T iterations

1 for t ∈ [1, .., T ] do
2 for i ∈ [Ct+1

0 , ..., Ct+1
n−1] do

3 GradScore(Ct+1
i ) = ∥g{(x, y)}∥2

// ∥g{(x, y)}∥2 is the L2-norm of
gradients of parameters in
final layer of models

4 end
5 SCORE ←

[GradScore(Ct+1
0 ), ..., GradScore(Ct+1

n−1)] ;
6 Sort(SCORE) ;
7 Pruwilltextbfw∗t+1

0 , ...,w∗t+1
m−1)←

Pruningp%([wt+1
0 , ...,wt+1

n−1]) // p% is
the pruning rate

8 SendPruned(w∗t+1
0 , ...,w∗t+1

m−1)→ Aggregator ;
9 Gt+1 ← Gt + η

m

∑m−1
0 (wt+1

i −Gt) // Global
Aggregating, η is the global
learning rate

10 end

anomalous clients in one global iteration. For example, when
the adversary takes a single-shot attack strategy, only one
malicious client should be excluded. It is generally assumed
that the fraction of malicious clients is within the range
(0 < f < n/2), and at least half of clients with smaller
GradScore values are identified as benign.

Metrics Description

BA(Backdoor Accuracy) the accuracy of the model in the backdoored
dataset

MA(Main Task Accuracy) the accuracy of the model in the benign
dataset

TABLE I: Evaluation Metrics

Generally, p is set to 0.5. In Section.IV, we evaluate the
validity of FLSec with different pruning rate p. The sorting
and pruning step is shown in lines 5-7 of Alg.1.

Aggregation The aggregator excludes the updates sent by
malicious users in the current iteration and trains the global
model on the remaining model updates(line 16 of Alg.1).
The global training algorithm varies based on the underlying
training algorithm used in the application. In this proposed
work, we use FedAvg [1] to train the global model.

IV. EVALUATION RESULTS

In this section, we test the efficiency of FLSec against three
adaptive backdoor attacks. We conduct several experiments

to analyze the detection accuracy of FLSec under multiple
configurations, varying system parameters (pruning rate p). All
evaluations are implemented based on the PyTorch framework
provided by [2] and [13].

A. Experimental Setup

Datasets
MNIST. The MNIST dataset consists of 70000 handwritten

digits [18]. The learning task is to classify images to identify
digits. The adversary clients mislabel labels of images before
starting poison training task [5].

CIFAR-10. The CIFAR-10 dataset consists of 60000 colored
images with 32×32 pixels and 24-bit color per pixel (3 color
channels). 50000 samples of this dataset are used for training,
and 10000 samples are used for testing.

LOAN. A non-i.i.d financial dataset consists of 1.808,534
data samples. 80% of these data are divided as training samples
and 20% are for testing.

Attack strategy. We evaluate FLSec against the backdoor
attacks: model-replacement attack [2], constrain-and-scale [2]
and DBA [13] using the same attack settings with three
datasets.

single-shot. It is assumed that only one out of ten clients is
malicious in one global epoch. Adversary only attacks once
when the global model starts to converge. We enable the
proposed approach after the first 10 global epochs for the
MNIST dataset, 10 epochs for the LOAN dataset, and 200
epochs for the CIFAR-10 dataset respectively.

Multi-rounds backdoor attacks. It is assumed that malicious
clients take attack strategies every global epoch after the global
model starts to converge.

A group of metrics used for evaluating the effectiveness of
backdoor attacks and defense techniques is listed in Tab.I.

B. Effectiveness of FLSec

Choice of pruning rate p. Fig.2 shows the impact of the
pruning rate on MA and BA rates. As for MNIST, FLSec com-
pletely mitigates four types of backdoor attacks (BA ≈ 0%)
for three datasets (meet R1) and does not affect the main task
performance as the main task accuracy is basically the same
as baseline (meet R2). In case of MNIST, we set α = 0.5. In
section 1, we discuss that the Scaling Coefficient parameter
α can balance the effect and stealthiness of backdoor attacks.
When α is set to 0.5, the performance of backdoor attack
is greatly weakened (BA = 32%) in Fig.2(c). Therefore, we
do not set α less than 0.5, as the attack impact is too weak.
In CIFAR, FLSec can easily mitigate Single-shot attacks and
Constrain-and-scale attacks (BA ≈ 0%). However, backdoors
cannot be completely mitigated under another two attack
strategies. As we discussed in section 1, unlike centralized
learning, DBA split triggers and malicious clients into different
parts. Split trigger images alone are unable to change to
prediction into targeted labels until they are assembled together
as a global trigger. This characteristic makes split triggers
much tougher to be distinguished from benign images. But as
shown in Fig.2(f)(h), the negative effects of DBA and DBA
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Fig. 2: Effectiveness of FLSec with different pruning rate p under Single-shot, Constrain-and-Scale, and DBA attack strategies
on three data sets, MNIST, Loan, and CIFAR

with Constrain-and-scale can be still effectively decreased to
a lower level.

(p=90%)MNIST (p=80%)LOAN

BA MA BA MA

Benign Setting 0.0 97.68 0.0 76.16
No Defense 99.83 39.47 98.12 71.25
Single-shot 0.44 97.32 0.0 73.36
Scaling Coefficient(α = 0.9) 0.46 97.39 0.0 73.70
Scaling Coefficient(α = 0.8) 0.44 97.32 0.0 71.25
Scaling Coefficient(α = 0.7) 0.46 97.35 0.0 71.25
Scaling Coefficient(α = 0.6) 0.39 97.28 0.16 73.05

TABLE II: Resilience of FLSec to Constrain-and-Scale attacks
with varying α values

(p=90%)MNIST (p=80%)LOAN

BA MA BA MA

Benign Setting 0.0 97.68 0.0 76.16
No Defense 93.25 77.44 98.58 75.37
DBA 0.43 97.64 0.0 73.77
Scaling Coefficient(α = 0.9) 0.39 97.59 0.0 73.63
Scaling Coefficient(α = 0.8) 0.39 97.55 - -
Scaling Coefficient(α = 0.7) 0.43 97.64 - -
Scaling Coefficient(α = 0.6) 0.37 97.53 - -

TABLE III: Resilience of FLSec to DBA with varying α values

C. Resilience to Adaptive Attacks

Varying Scale Coefficient Parameter (α) For the
Constrain-and-scale attack strategy, the malicious clients can
adjust the Scale Coefficient parameterα in order to bypass
defense techniques. We evaluate different Scale Coefficient
values α from 1 to 0.1 and keep other parameters including
global and local learning rates, the scaling factorγ, PDR,
and PMR consistently on two datasets, MNIST and LOAN.

FLSec was able to effectively reduce the impact of single-
shot replacement attacks without misclassifications on the
MNIST dataset and does not impact the main accuracy. The
results are shown in Table.II. From Table.II, FLSec also had
a good performance on LOAN with α value from 1 to 0.6.
For DBA constrain-and-scale attack strategy, the proposed
approach can still recognize all the malicious models on the
MNIST dataset(Table.III).

Varying Poisoned Data Rate (PDR) The adversary may
attempt to vary the poisoned data rate to circumvent FLSec.
We evaluate FLSec against Constrain-and-Scale attacks for
different PDR values on CIFAR-10 with p = 0.9, γ = 100.
In Fig.3, we can see that compared with 99.83% in no defense
setting, the attacks show a significant decrease in the backdoor
accuracy in all cases. When PDR is below 0.1, the malicious
clients should set a large scaling factor(γ) in order to inject
backdoors. However, large malicious updates can be easily
detected by outlier detectors [2]. Another interesting result
is that it is hard for attackers to make a trade-off between
backdoor accuracy and attack stealthiness. A smaller α means
that the malicious updates are more similar to benign models,
and the model is more stealthy. However, too small α can
highly impact the backdoor accuracy. When α is set to 0.1,
the backdoor attacks fail in all the cases.

D. Comparison to previous defenses

Preventing multi-rounds backdoor strategy. We perform
the multi-rounds backdoor strategy in the Dirichlet distribution
with hyperparameter 0.5 on the MNIST dataset to demonstrate
the effectiveness of the proposed technique compared to RFA
[10]. In every global iteration, four out of ten malicious clients
collude and perform distributed backdoor attacks without
boosting.

The single-shot attack is not considered here, as boosted
malicious model updates can be easily detected by RFA [10].



0.2 0.4 0.6 0.8 1.0
Poisoned-Data-Rate

0

10

20

30

40

50

60

70

80

Ba
ck

oo
r A

cc
ur

ac
y

Scaling Coefficient0.7
Scaling Coefficient0.5
Scaling Coefficient0.3
Scaling Coefficient0.1

Fig. 3: Poisoned data rate vs Backdoor accuracy

10 20 30 40 50 60 70
Epoch

1

2

3

4

5

Ba
ck

oo
r A

cc
ur

ac
y

RFA
FLSec

Fig. 4: Effectiveness of FLSec in comparison to RFA on
MNIST dataset. The Y-axis label refers to the accuracy of
muti-rounds backdoor attacks in federated learning

Fig.4 shows that FLSec outperforms RFA in terms of mitigat-
ing multi-round backdoor attacks. The backdoor accuracy of
the global model with FLSec remains at 0%, while there is a
non-negligible increase in the backdoor accuracy of the global
model with RFA. Therefore, the performance of RFA is poor
in the non-IID data distribution among clients, while FLSec
can mitigate malicious behaviors completely.

V. CONCLUSION

In this paper, we proposed a novel approach FLSec for
federal learning that can resist backdoor attacks. It analyzes
the difference between the contributions of benign clients
and malicious clients to the global model and uses new
measurements on local model updates to identify malicious up-
dates. FLSec was evaluated with various attack strategies and
datasets. Experiment results show that FLSec can effectively
mitigate backdoor attacks without sacrificing the performance
of the main task. We compared FLSec with state-of-the-art
defense techniques and FLSec was able to address complicated
backdoor attacks in FL systems.
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VI. APPENDIX

Proof of lemma 3.1. For a given example (x′ , y′), the chain
rule yields δt((x′ , y′), S) = gt(x′ , y′)dwt

dt . Therefore, for the
left part of Eq.(8),

∥∆t((x′ , y′), S)−∆t((x′ , y′), S¬j)∥

= ∥dℓ(ft(x
′ , y′))

dwt
(−η

∑
St

gt(x, y))

− dℓ(ft(x′ , y′))

dwt
(−η

∑
S¬jt

gt(x′ , y′))∥

= ∥dℓ(ft(x
′ , y′))

dwt
(−ηgt(xj , yj))∥

= η∥dℓ(ft(x
′ , y′))

dwt
gt(xj , yj)∥

(9)

Let c = η∥dℓ(ft(x′ ,y′ ))
dwt

∥, we can get the right part of Eq.(8).
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