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Abstract—A brain-computer interface (BCI), which provides
an advanced direct human-machine interaction, has gained sub-
stantial research interest in the last decade for its great potential
in various applications including rehabilitation and communi-
cation. Among them, the P300-based BCI speller is a typical
application that is capable of identifying the expected stimulated
characters. However, the applicability of the P300 speller is
hampered for the low recognition rate partially attributed to
the complex spatio-temporal characteristics of the EEG signals.
Here, we developed a deep-learning analysis framework named
ST-CapsNet to overcome the challenges regarding better P300
detection using a capsule network with both spatial and temporal
attention modules. Specifically, we first employed spatial and
temporal attention modules to obtain refined EEG signals by
capturing event-related information. Then the obtained signals
were fed into the capsule network for discriminative feature
extraction and P300 detection. In order to quantitatively assess
the performance of the proposed ST-CapsNet, two publicly-
available datasets (i.e., Dataset IIb of BCI Competition 2003
and Dataset II of BCI Competition III) were applied. A new
metric of averaged symbols under repetitions (ASUR) was
adopted to evaluate the cumulative effect of symbol recognition
under different repetitions. In comparison with several widely-
used methods (i.e., LDA, ERP-CapsNet, CNN, MCNN, SWFP,
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and MsCNN-TL-ESVM), the proposed ST-CapsNet framework
significantly outperformed the state-of-the-art methods in terms
of ASUR. More interestingly, the absolute values of the spatial
filters learned by ST-CapsNet are higher in the parietal lobe
and occipital region, which is consistent with the generation
mechanism of P300.

Index Terms—brain-computer interfaces (BCIs), capsule net-
work, P300, attention.

I. INTRODUCTION

BRain-computer interfaces (BCI) provide an opportunity
for people to directly interact with their surroundings

through brain waves [1] [2]. For example, Long et al. com-
bined motion imagery and P300 potentials to control a 2-
D cursor movement [3], and further developed a BCI-based
system to control the movement of a wheelchair [4]. Wang et
al. identified the user’s gaze direction using frequency-encoded
steady-state visual evoked potentials [5]. Lin et al. developed a
BCI-based system to estimate drivers’ drowsiness [6]. Zheng et
al. proposed a high-performance brain switch based on code-
modulated visual evoked potentials with both fast reaction and
low false positive rate (FPR) during idle state [7]. Among all
BCI paradigms, Electroencephalography (EEG) is a method
of acquiring brain waves that has attracted many researchers
to its use due to its high temporal resolution and non-invasive
nature [8] [9]. An event-related potential (ERP) based EEG
is a brain reaction that occurs directly from a specific event
[10]. A typical ERP component, P300 that occurs around
300ms after the target stimulus onset at the parietal lobe,
has been widely used in BCI [11] [12] [13]. For instance,
Farwell and Donchin [14] proposed a P300 speller paradigm
in 1988, allowing individuals to type with their minds. Many
datasets of P300 are based on this pioneer paradigm. It is
noteworthy mentioning that the international BCI competition
datasets also include the P300 paradigm, which are usually the
benchmark datasets to compare the performance of various
models on EEG classification. Alain Rakotomamonjy and
Vincent Guigue [15] won the championship using an ensemble
of support vector machines (ESVMs) for P300 detection in
BCI III Competition [16]. However, the method does not take
into account the importance of the individual electrodes and
simply feeds the raw data into the classifier for training.

In order to improve the accuracy of detecting ERP signals,
Rivet et al. [17] raised xDAWN, a spatial filtering method,
to enhance P300 potentials with respect to the Non-P300
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potentials; further, Barachant improved the xDAWN to a
generalization to any type of ERP [18]. Most recently, with
graphics processing units (GPUs) becoming more powerful,
deep learning has grown tremendously. Zhang et al. proposed
an improved EEGNet [19] that combined xDAWN saptial
filtering with EEGNet [20] for the individually-calibrated rapid
serial visual presentation (RSVP) task and won second place in
the BCI Controlled Robot Contest at 2022 World Robot Con-
test [21]. Wang et al. proposed denoising autoencoder neural
networks to improve the symbol recognition accuracy by about
0.7% compared to ESVMs, which can automatically learn
features from unlabeled data and solve the problem of local
minima in neural networks due to random initialization [22].
Cecotti and Graser [23] used convolutional neural networks to
detect P300 for the first time and achieved a high recognition
rate (95.5%) in the 15th repetition. However, it has a low
symbol recognition rate in the first 5 or even 10 repetitions,
leading to a low information transfer rate (ITR). To further
increase the symbol recognition rate in the first 5 repetitions,
Wang et al. [24], who have crowned champions of the P300-
based BCI competition in the 2019 World Robot Conference,
proposed Multiscale-CNN to enhance the performance of P300
detection. Three temporal kernels at different scales were
applied on its temporal convolution layer to obtain discrimi-
native time features. However, some valuable information that
would help in classification will be lost during the forward
propagation, because it employed the max pooling operation to
reduce feature maps which only retains the most active features
and discards the rest. To overcome the information loss in the
pooling operation, Sabour et al. [25] proposed capsule network
(CapsNet). A capsule contains a set of neurons and the output
is a vector which represents various entity materialisation
parameters, such as position, size, rotation etc. The length
of the vector represents the probability of the corresponding
class. The lower level capsules are connected to the higher
level capsules by a dynamic routing algorithm. Several recent
studies have demonstrated that CapsNet could achieve better
performance than traditional techniques. For example, we used
a multi-kernel capsule network to identify schizophrenia which
outperformed other methods in our previous study [26]. Chao
et al. combined multiband feature matrix (MFM) and CapsNet
outperforming 2D-CNN in emotion recognition [27]. Liu et
al. employed 1D-CapsNet to detect P300 which reached 96%
symbol recognition rate [28]. Ma et al. attempted to use
ERP-CapsNet for ERP detection and obtained much better
results than the traditional machine learning algorithms and
CNNs [29] and also explained the mechanism of how P300
components are preserved in capsules. However, ERP-CapsNet
just took the raw EEG signals as input, which introduced
additional noise.

In order to reduce signal noise and further improve the
P300 detection accuracy, we employed spatial and temporal
attention mechanism to refine the input EEG signals, and
then fed the refined EEG signals into ERP-CapsNet for
classification. Several attention mechanisms have been widely
used, such as the Squeeze-Excitation (SE) block [30] proposed
by Hu et al. which adaptively generates channel attention
maps and recalibrates the feature responses of channels by

explicitly modelling the interdependencies between channels.
It first generates average-pooled features from the original
convolutional feature maps via the average pooling functions,
then feeds the generated features into a multilayer percep-
tron (MLP) with Sigmoid activation, which yields a chan-
nel attention map. Then the element-wise multiplication of
original convolutional feature maps with the channel attention
map gives the calibrated channel feature response, i.e., the
channel refined feature map. The work of Hu et al. inspired
Woo et al. to develop a more powerful attention mechanism,
the Convolutional Block Attention Module (CBAM) [31]. It
consists of a channel attention module and a spatial attention
module. The channel attention module is a variant of the SE
block. It generates average-pooled and max-pooled features
from the original convolutional feature maps via the average
pooling and max pooling functions which are then fed into a
shared MLP where the outputs are summed and activated by
a Sigmoid function to produce a channel attention map. The
channel attention map is also element-wise multiplied with
original convolutional feature maps to obtain channel refined
feature maps. The spatial attention module first compresses
the channel refined feature maps into two features via the max
and average pooling functions respectively, and then generates
the spatial attention map via a 7× 7 convolution. Finally, the
channel refined feature maps are element-wise multiplied with
the spatial attention maps to obtain channel and spatial refined
feature maps. Their experimental results on various image
datasets showed that inserting CBAMs into the baseline model
can significantly improve the classification performance. In-
spired by this, we try to combine ERP-CapsNet [29] with
CBAMs, which we call ST-CapsNet, expecting to improve the
performance of P300 detection.

The main contributions of this work are summarized as
follows: 1) To our knowledge, this is the first attempt to
combine spatial and temporal attention with a capsule network
to improve the accuracy of P300 detection. 2) We proposed
a more comprehensive method (ASUR) to measure symbol
recognition performance by comparing the average correctly
recognized symbols under the first 5, 10 and 15 repetitions of
a stimulus round.

II. DATASETS
A. Description

The data sets used in this paper are the dataset IIb of BCI
competition 2003 and dataset II of BCI competition III [16].
We separated dataset II into two data sets: dataset II-A and
II-B because it contains two subjects (subjects A and B).
These datasets are complete records of P300 evoked potentials
recorded with BCI2000 [32] using a paradigm described by
Farwell and Donchin [14]. The subjects were presented with
a 6x6 matrix of symbols. All rows and columns in the matrix
were randomly intensified at a frequency of 5.7 Hz. By staring
at the desired symbol in the matrix, a P300 evoked potential
would occur in the subjects’ brains when the desired symbol
flashed. When other symbols flashed, stimulated potentials do
not have a P300 component and are called Non-P300 evoked
potentials. The P300 potentials are different from the Non-
P300 potentials, because the rare target stimuli cause subjects’
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brains to generate P300 potentials [33]. Six columns and six
rows were randomly intensified in the matrix; only one column
and one row contain the desired symbol, which means there
are two P300 evoked potentials and ten Non-P300 evoked
potentials in one stimulation round. Due to the extremely low
SNR of ERPs, the stimulation round should be repeated several
times to improve the P300 recognition accuracy.

The EEG data was recorded from 64 electrodes at a sam-
pling rate of 240 Hz in several sessions. Each session consisted
of a number of runs. In each run, subjects focused on a series
of symbols. At first the screen was displayed for 2.5 seconds,
during which time each symbol had the same intensity (i.e., the
matrix was blank). Subsequently, one of the rows or columns
in the matrix was randomly enhanced for 100 ms, and then
the matrix was blanked for 75 ms. The enhancement of the
rows/columns was carried out randomly 12 times in a block.
The block was repeated 15 times for each symbol to spell.
There were a total of 31 symbols in dataset IIb, and 100
symbols in datasets II-A and II-B. Table I shows the number
of P300 and Non-P300 samples for training and testing in each
dataset. For more information pertaining to the dataset, please
refer to https://www.bbci.de/competition.

TABLE I: The sample composition of the training and testing
sets for each dataset.

Dataset Training Testing
P300 Non-P300 P300 Non-P300

IIb 1260 6300 930 4650
II-A 2550 12750 3000 15000
II-B 2550 12750 3000 15000

B. Data Preprocessing
To reduce the effect of the imbalance of the data sets, we

averaged two randomly selected samples from P300 samples
many times so that the number of P300 is the same as the
number of Non-P300. The preprocessing step consists of the
following stages. We first extracted all data samples between
0 to 650 ms, i.e., 156 time samples after the start of an
intensification. Afterwards, an FIR band-pass filter (Hamming
window) with a frequency range of 0.1 to 20Hz was adopted
that was followed by downsampled (to half of the staple points
for each channel) and normalized steps (via Z-score in eq (1)
and sigmod approach) to normalize the filtered EEG data. The
sigmoid function was used because the value range of the
reconstructed EEG signal in the decoder layer is from 0 to 1.
The obtained band-pass filtered and normalized EEG data was
set as input for the ST-CapsNet.

Xij ←
Xij − X̄i

σi
(1)

X ∈ RC×78 is the half downsampled filtered EEG signal and
Xij is the signal value of the i-th electrode at the j-th time
point. X̄i and σi are the average and standard deviation of the
i-th electrode signal. C represents the number of electrodes,
and 78 stands for the time samples of the signals. We set C to
64 because datasets IIb, II-A, and II-B all have 64 electrodes.

III. METHODS

ERP-CapsNet has shown good performance in P300 detec-
tion [29]. However, it just took the raw EEG signals as input
which might introduce some additional noise. Hence, to reduce
the noise of EEG signals and improve the accuracy of P300
detection, we linked spatial and temporal attention modules
with ERP-CapsNet as illustrated in Fig.1.

A. Spatial Attention
We define the variable V ∈ Rc×h×w, where c, h and

w represent the channel, height and width dimensions of V,
respectively. The spatial attention module is used to enhance
the spatial information of the raw input EEG signal X , as
summarised below.

MS = σ(W1
T ReLU(W0

TF s
avg)⊕W1

T ReLU(W0
TF s

max)) (2)

where F s
avg and F s

max ∈ RC×1×1 are the features generated
from the reshaped signal XR ∈ RC×1×78 through max pooling
and average pooling function along the width dimension (the
pooling kernel size and pooling stride were set to 78 and 1,
respectively). In the shared MLP, W0 ∈ RC×C

r is the weight
between the input layer and the hidden layer, while W1 ∈
RC

r ×C is the weight between the hidden layer and the output
layer, and r is the reduction ratio. We set r to 16 as suggested in
[31]. The function ⊕ denotes element-wise addition, and σ is
the sigmoid operation. MS ∈ RC×1×1 is the spatial attention
map that we get at last in the spatial attention module. By
simply multiplying the reshaped signal XR with the spatial
attention map MS through the function ⊗ which denotes the
element-wise multiplication, we get the spatial refined signal
XS ∈ RC×1×78. Note that Ms is auto broadcasted along the
width dimension when doing the element-wise multiplication
due to the special mechanism of Pytorch [34].

XS = XR ⊗MS (3)

B. Temporal Attention
In the temporal attention module, the spatial refined signal

XS first compressed itself into two feature maps (i.e., F t
avg and

F t
max ∈ R1×1×78 ) through max pooling and average pooling

function along the channel dimension (the pooling kernel size
and pooling stride were set to C and 1, respectively). Then the
two feature maps were stacked and convolved by a convolution
layer with a 1 × D (D can be taken as 3, 5, and 7) filter, a
stride of 1, same padding, and sigmoid activation, producing
a temporal attention map MT ∈ R1×1×78.

MT = σ
(
Conv1×D

(
F t
avg;F

t
max

))
(4)

Afterwards, we can get the refined EEG signal XST ∈
RC×1×78 through the function below, which is auto broad-
casted along the channel dimension.

XST = XS ⊗MT (5)

C. Capsule Network
In the capsule network, we first extracted temporal features

from XST using 10 C × 1 spatial filters through convolution
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Fig. 1: Overview of ST-CapsNet architecture. It consists of three blocks, (a) the spatial attention module, (b) the temporal
attention module and (c) the capsule network.

operation and ReLU function, where the stride is 1. Next,
we used 64 1× 13 temporal filters by convolution and ReLU
operations to extract temporal features of which size is 64×1×
8. The temporal features are divided into 8 groups. The size of
each group is 8×1×6, which means six 8D primary capsules.
So we got 48 8D primary capsules in total as the input of the
dynamic routing. The output of the dynamic routing is two
16D output capsules. The lengths of the two output capsules,
calculated through the L2 norm and then activated by Softmax,
represent the probabilities of P300 and Non-P300, respectively.
We can determine the label of the input sample X using eq
(6), where ptarget and pnon represent the probability that the
model identifies sample X as a P300 and a non-P300 sample,
respectively

Classifier(X) =

{
1, (ptarget > pnon)

0, (otherwise)
(6)

The mechanism of the dynamic routing algorithm is com-
pletely different from that of the CNN and is described in
Algorithm 1. Sabour et al. suggested that better convergence
can be obtained by using three routing iterations than one
iteration [35]. Therefore, we set the maximum number of
routing iterations, i.e., N to 3. After the dynamic routing layer,
we keep the output capsule representing the category of the
input EEG sample X as the input of the decoder network and
mask the other output capsule. The decoder network consists
of three fully connected layers; the number of neurons is 512,
1024, C × 78, and the activation functions are ReLU, ReLU,
sigmoid.

The loss function of ST-CapsNet consists of two compo-
nents, namely margin loss and reconstruction loss. The margin

loss is defined as follows:

Lj = Tj max(0,m+ − ||vj ||)
2

+ λ(1− Tj)max (0, ||vj || −m−)
2

(7)

where Lj stands for the loss of j-th output capsule, λ =
0.5, m+ = 0.9, m− = 0.1. Tj = 1 if the label of the input
sample is j, otherwise Tj = 0. For binary classification, the
margin loss function is more efficient, because it punishes
the predictions depending on how closely they match with
the sign of the target [36]. The reconstruction loss Lr is
obtained by calculating the mean squared error between the
input EEG signal and the reconstructed EEG signal. Adding
the reconstruction loss can boost the routing performance [25].
The total loss of the ST-CapsNet is summed as follows:

L =
∑
j=1

Lj + αLr (8)

where α is set to 0.0005.

D. Training

We used parameters of a pre-trained model to initialize ST-
CapsNet in attention layers and two convolution layers to
obtain better convergence and avoid local optimum as sug-
gested in [35]. The pre-trained model is shown in TableII. All
models were implemented in PyTorch and trained on GeForce
RTX 2080 Ti. The batch size was set to 64. The learning rate
was initially set to 0.001 with an exponential decay rate of
0.96. For the pre-trained CNN, we employed cross-entropy
loss. The Adam optimizer with default parameters was used
to optimize all models. To avoid overfitting, the early stop and
data augmentation in braindecode [37] were used.
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Algorithm 1: Dynamic routing
Input:

ui ∈ R8: primary capsule, i ∈{1, 2, ...48}
Output:

vj ∈ R16: output capsule, j ∈{1, 2}
Begin:

b = 0 ▷ initialize parameter b ∈ R48×2

for k in 1:N do ▷ routing iteration
for i in 1:48 and j in 1:2 do

cij =
exp(bij)∑2

j=1 exp(bij)
▷couping coeffcients

for j in 1:2 do
sj =

∑48
i=1 cijWijui ▷ weight Wij ∈ R16×8

vj =
∥sj∥2

1+∥sj∥2

sj
∥sj∥ ▷ squash

for i in 1:48 and j in 1:2 do
bij = bij +Wijui · vj ▷ update

return v1, v2

TABLE II: Pre-trained network architecture. C represents the
number of electrodes. C is set to 64 for datasets IIb, II-A, and
II-B.

Layer #Filters Size Output Activation Stride
Reshape (C, 1, 78)

Attention(spatial, temporal) (C, 1, 78)
Reshape (C, 78)
Conv2D 10 (C, 1) (10, 1, 78) ReLU 1
Covn2D 64 (1, 13) (64, 1, 6) ReLU 13

Fully-connected 384 2 Softmax

E. Target Symbol Recognization

The StimulusCodes [16] shown in Fig.2 have a value range
of 0 to 12 (0 when no row/column is being intensified, 1 to 6
for intensified columns, 7 to 12 for intensified rows). Because

Fig. 2: Different row/column intensifications are assigned
to the StimulusCodes [16]. The numbers in blue are the
StimulusCodes.

of the low SNR of ERP, subjects need to take 15 repetitions
to recognize one symbol in the P300 speller paradigm. Each
repetition has 12 stimuli that correspond to 12 stimulus codes.
Let pk(i) denote the length of the 16D output capsule which
stands for the probability of P300 when the stimulus code is k
in the i-th repetition. Pk is the sum of those P300 possibilities
from the first to the n-th repetition.

Pk =

n∑
i=1

pk
(i) (9)

Then we can identify the column c and row r of the target
symbol in the n-th repetition by:

c = argmax
k∈[1,6]

Pk (10)

r = argmax
k∈[7,12]

Pk (11)

IV. RESULTS
A. Algorithms for Comparison

To evaluate the accuracy of P300 detection and symbol
recognition, we compared our ST-CapsNet with six models
(i.e., a capsule network, two traditional methods, two deep
learning models, and a method combining deep learning and
traditional algorithms). The details of the models are described
as follows:

1) ERP-CapsNet, which was state of the art, is the first
capsule network applied to ERP detection and achieved
good results [29]. The network structure is the same as
the Capsule Network in Fig.1.

2) CNN-1 is the first proposed CNN model for P300
detection [23]. It consists of four layers; the first two
are convolutional layers (with a 64×1 spatial kernel and
50 1 × 13 temproal kernels separately) used to extract
spatial and temporal features respectively, and the last
two are fully connected layers (with 100 and 2 neurons
respectively) used to classify ERP signals.

3) MCNN-1 is an ensemble of five CNN-1 models, each
trained on a different partition of the data [23]. There are
five data partitions in total because the number of Non-
P300 samples is five times larger than the number of
P300 samples in the original data. Each data partition
is derived from the original data and has the same
number of P300 and Non-P300 samples. CNN-1 and
MCNN-1 are often used to compare P300 performance
as benchmarks.

4) Linear discriminant analysis (LDA) with covariance
shrinkage has shown better performance than a conven-
tional LDA classifier in detecting single trial ERP signals
[38]. We abbreviated this approach as S-LDA and copied
the reproduction results done by Ma et al. [29] for a clear
comparison.

5) Spatially Weighted FLD-PCA (SWFP) is designed for
single trial ERP detection, which outperformed than
Hierarchical Discriminant Component Analysis (HDCA)
[39] and Hierarchical Discriminant Principal Component
Analysis Algorithm (HDCPA) [40]. First, a spatial filter
is estimated at each time point using Fisher Linear
Discriminant (FLD), and then all the estimated spatial
filters (78 in total) are applied to an EEG sample to
obtain a spatially filtered EEG sample. Each channel
of this EEG sample is then applied with principal
component analysis (PCA) for dimensionality reduction.
Six principal components are retained to explain > 70%
variance as reported in [40].
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6) MsCNN-TL-ESVM was proposed by Sourav Kundu and
Samit Ari [41]. It consists of two blocks, the feature
extraction block and the classification block. The authors
first used a convolution network with spatial filters with
fixed size (64 × 1) and multiple temporal filters of
different sizes (1 × 20 and 1 × 10) based on transfer
learning to extract discriminant spatial and temporal
features, after which they applied Fisher ratio to select
important features and then sent those selected features
to the ensemble of SVMs for symbol recognition.

B. Evaluation Metrics

We adopted accuracy (Acc.) and F1-score as metrics to
evaluate the performance of P300 detection in single trial.
To evaluate the performance of symbol recognition, it is
not sufficient to compare the number of symbols correctly
recognized under separate repetitions, because the P300-based
speller paradigm has the characteristic of cumulative effect,
i.e., the recognition accuracy of the previous repetition affects
the recognition accuracy of the next repetition. Here we give an
assumption that a good model should perform well with fewer
repetitions (reach a higher information transfer rate) without
sacrificing overall performance (correctly identifying as many
symbols as possible under all repetitions). Hence, to quantify
the performance of models in recognizing symbols under
different repetitions, we proposed a comprehensive evaluation
measure as following:

ASURk =
1

k

k∑
i=1

Ci (12)

where Ci means the correctly recognized symbols in the i-th
repetition. ASURk stands for the average correctly recognized
symbols per repetition when we take k repetitions into account.
We take three values of k (5, 10, 15). ASUR5, ASUR10 and
ASUR15 represent the average correctly recognized symbols
in the first five, ten and fifteenth repetitions separately. It is
worth mentioning that ASUR15 means the overall performance
of symbol recognition because there are 15 repetitions in total.
Besides, higher ASUR5 and ASUR10 mean higher accuracy
of symbol recognition with fewer repetitions. In addition,
to compare the symobol recognition speed of models under
different repetitions, we referred to the formula for calculating
ITR under the i-th repetition in the paper [42], defined as
follows:

ITR =
60

(
(1−Ai) log2

1−Ai
G−1

+Ai log2 Ai + log2 G
)

2.5 + 2.1i
(13)

where Ai is the accuracy of symbol recognition rate (in
percent) under the i-th repetition, and G (G is 36 here) is the
number of symbols presented in the p300-speller paradigm as
shown in Fig. 2.

C. Performace of P300 Detection in Single Trial

The kernel size of temporal attention module in ST-CapsNet
was chosen to be 1× 5. The results are shown in Table III. It
is obvious that ST-CapsNet outperforms other models both
in accuracy and F1-score on datasets IIb and II-B, while
ERP-CapsNet has a little higher F1-score than ST-CapsNet

on dataset II-A. The results indicate attention modules of ST-
CapsNet could boost the performance of P300 detection in
single trial.

TABLE III: Results of P300 detection in single trial.

Dataset
II-b II-A II-BModel

Acc. F1-score Acc. F1-score Acc. F1-score
ST-CapsNet 0.8997 0.7213 0.7785 0.4535 0.8342 0.5405

ERP-CapsNet [29] 0.8927 0.7146 0.7456 0.4546 0.8160 0.5287
CNN-1 0.8810 0.6957 0.7037 0.4311 0.7819 0.5090

MCNN-1 0.8746 0.6899 0.6899 0.4260 0.7586 0.5034
S-LDA [29] 0.8694 0.6428 0.7435 0.4336 0.8057 0.4983

SWFP 0.8448 0.6430 0.7302 0.4462 0.7840 0.5073
MsCNN-TL-ESVM 0.8778 0.6945 0.7492 0.4543 0.8153 0.5382

D. Performance of Symbol Recognition

The correctly recognized symbols in every repetition for
each model on datasets IIb, II-A, II-B are shown in Tables
IV, V, VI. The character ’-’ means the authors did not
report the value in their papers. Table IV illustrates that ST-
CapsNet, ERP-CapsNet, CNN1 and MsCNN-TL-ESVM can
correctly identify all symbols in the 4th repetition, while
S-LDA requires 5 repetitions and even SWFP need take 8
repetitions to correctly recognize all symbols on dataset IIb.
In addition, ST-CapsNet and MsCNN-TL-ESVM have almost
the same performance and are better than the other methods.
On dataset II-A, both ST-CapsNet and ERP-CapsNet correctly
identified 98 symbols in the 15th repetition, and ST-CapsNet
is more accurate in the 5th to 10th repetitions while ERP-
CapsNet is more accurate in the 11th to 13th repetitions.
On dataset II-B, ST-CapsNet has the highest accuracy from
repetition 4 to 7 , while MsCNN-TL-ESVM are the most
accurate from repetition 9 to 13.

TABLE IV: Number of correctly classified symbols for dataset
IIb.

Model Repetition
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ST-CapsNet 27 29 30 31 31 31 31 31 31 31 31 31 31 31 31
ERP-CapsNet [29] 24 27 29 31 31 31 31 31 31 31 31 31 31 31 31

CNN1 21 25 29 31 31 31 31 31 31 31 31 31 31 31 31
MCNN-1 23 26 29 31 31 31 31 31 31 31 31 31 31 31 31

S-LDA [29] 20 23 25 27 31 31 31 31 31 31 31 31 31 31 31
SWFP 21 26 27 29 29 30 30 31 31 31 31 31 31 31 31

MsCNN-TL-
ESVM [41] 27 28 30 31 31 31 31 31 - - - - - - -

TABLE V: Number of correctly classified symbols for dataset
II-A.

Model Repetition
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ST-CapsNet 18 31 53 56 68 79 82 85 84 88 89 92 92 95 98
ERP-CaspNet [29] 16 36 52 57 68 75 76 83 82 87 92 94 94 95 98

CNN-1 [23] 16 33 47 52 61 65 77 78 85 86 90 91 91 93 97
MCNN-1 [23] 18 31 50 54 61 68 76 76 79 82 89 92 91 93 97
S-LDA [29] 14 24 46 55 58 66 77 75 79 85 86 89 90 91 95

SWFP 16 28 48 58 67 71 78 81 84 87 89 92 91 95 97
MsCNN-TL-
ESVM [41] 24 38 46 50 60 70 72 79 84 86 89 89 92 94 96
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TABLE VI: Number of correctly classified symbols for dataset
II-B.

Model Repetition
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ST-CapsNet 41 61 66 78 85 86 92 90 91 95 96 96 95 97 96
ERP-CaspNet [29] 45 60 66 73 81 85 87 90 90 94 94 94 94 95 96

CNN-1 [23] 35 52 59 68 79 81 82 89 92 91 91 90 91 92 92
MCNN-1 [23] 39 55 62 64 77 79 86 92 91 92 95 95 95 94 94
S-LDA [29] 39 54 64 67 75 78 85 88 87 92 92 96 93 94 96

SWFP 40 60 69 71 80 82 86 89 89 92 92 93 92 94 94
MsCNN-TL-
ESVM [41] 40 59 67 74 79 84 90 92 94 97 96 98 97 97 96

TABLE VII: ASURk (k = 5, 10, 15) on datasets II-b, II-A and
II-B

Model dataset II-b dataset II-A dataset II-B
5 10 15 5 10 15 5 10 15

ST-CapsNet 29.6 30.3 30.5 45.2 64.4 74.0 66.2 78.5 84.3
ERP-CaspNet 28.4 29.7 30.1 45.8 63.2 73.7 65.0 77.1 82.9

CNN-1 27.4 29.2 29.8 41.8 60.0 70.8 58.6 72.8 78.9
MCNN-1 28.0 29.5 30.0 42.8 59.5 70.5 59.4 73.7 80.7
S-LDA 25.2 28.1 29.1 39.4 57.9 68.7 59.8 72.9 80.0
SWFP 26.4 28.5 29.3 43.4 61.8 72.1 64.0 75.8 81.5

MsCNN-TL-
ESVM 29.4 30.2 30.4 43.6 60.9 71.3 63.8 77.6 84.0

As summarized in Table V and Table VI, some models have
higher accuracy when there are more repetitions but lower
recognition accuracy when there are fewer repetitions, which
means that different models have different accuracy tendencies
under repetitions. Our ST-CapsNet tends to be more accurate
with fewer repetitions, while ERP-CapsNet and MsCNN need
more repetitions to be accurate. Table VII illustrated that
ST-CapsNet has the highest accuracy of symbol recognition
on the overall performance (highest ASUR15) on the three
datasets (II-b, II-A and II-B). ERP-CapsNet is a little more
accurate in the first 5 repetitions. In summary, our ST-CapsNet
outperforms ERP-CapsNet by about 1 percent and is better
than the other models in symbol recognition.

E. Performance of ITR

To show the speed of symbol spelling, we compared the
ITR under each repetition as shown in Fig.3. The kernel size
of the temporal module was chosen to be 1×5. On dataset IIb,
ST-CapsNet and MsCNN-TL-SVM achieved almost the same
ITR performance (both with highest ITR of 51.56 bits/min)
and outperformed the other models significantly. Furthermore,
ST-CapsNet achieved the highest ITR of 13.32 bits/min in the
6th repetition on dataset II-A and 19.74 bits/min in the 2nd
repetition on dataset II-B, respectively. Interestingly, we found
that with the same symbol recognition rate, the performance
of ITR decreases significantly with the number of repetitions.
Thus, improving the symbol recognition rate for the first few
repetitions is a key point to obtain a higher ITR.

F. Effect of Temporal Attention to Model Performance under
Various Kernel Sizes

We also explored the performance of ST-CapsNet with
different temporal attention kernel sizes (1× 3, 1× 5, 1× 7).

Table VIII illustrates that, in single trial P300 detection,
1× 3 kernel outperformed the other two on dataset IIb, and
1× 5 is the best on datasets II-A and II-B. Although there
is a difference in performance between these three kernels
in detecting the P300, it is not significant. The number of
correctly recognized symobols and ASURk values are given
in Tables IX,X separately. ST-CapsNet with 1× 7 kernel has
better performance of symbol recognition in the first five and
ten repetitions, while with 1× 5 kernel has the best overall
performance. Those findings showed that ST-CapsNet is not
sensitive to the choice of kernel size of the temporal attention
module.

TABLE VIII: Results of P300 detection under different kernel
sizes of temporal attention module.

Dataset
II-b II-A II-BKernel

Acc. F1-score Acc. F1-score Acc. F1-score
1x3 0.9046 0.7256 0.7514 0.4520 0.8364 0.5355
1x5 0.8997 0.7213 0.7785 0.4535 0.8342 0.5405
1x7 0.9016 0.7228 0.7609 0.4526 0.8414 0.5402

TABLE IX: Number of correctly classified symbols under
different kernel sizes of temporal attention module.

RepetitionDataset Kernel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1x3 25 27 30 31 31 31 31 31 31 31 31 31 31 31 31
1x5 27 29 30 31 31 31 31 31 31 31 31 31 31 31 31IIb
1x7 26 27 29 30 31 31 31 31 31 31 31 31 31 31 31
1x3 19 29 54 60 70 77 79 84 84 89 89 91 93 94 95
1x5 18 31 53 56 68 79 82 85 84 88 89 92 92 95 98II-A
1x7 20 36 54 60 72 76 80 82 79 89 89 93 89 93 97
1x3 43 62 68 74 82 86 88 90 90 94 95 95 94 96 96
1x5 41 61 66 78 85 86 92 90 91 95 96 96 95 97 96II-B
1x7 47 60 71 73 81 88 89 90 91 93 95 94 95 96 96

TABLE X: ASURk (k = 5, 10, 15) under under different kernel
sizes of temporal attention module.

Kernel dataset II-b dataset II-A dataset II-B
5 10 15 5 10 15 5 10 15

1x3 28.8 29.9 30.3 46.4 64.5 73.8 65.8 77.7 83.5
1x5 29.6 30.3 30.5 45.2 64.4 74.0 66.2 78.5 84.3
1x7 28.6 29.8 30.2 48.4 64.8 73.9 66.4 78.3 83.9

V. DISCUSSION

In this paper we used a capsule network with spatial
and temporal attention modules to improve the performance
of detecting P300. This method has superior performance
compared to ERP-CapsNet, CNN-1, MCNN-1, S-LDA, SWFP,
MsCNN-TL-ESVM for P300 detection in single trial. Among
them, the traditional methods (S-LDA, SWFP) have the worst
performance, probably because those handcrafted features do
not contain rich discriminative information, and the number of
parameters of these two models is so small that there is a risk
of underfitting. The results of classical convolutional networks
(CNN-1, MCNN1) are slightly better, but still less satisfactory.
ERP-CapsNet is about two points higher than classical convo-
lutional networks, probably because the capsule network used
a dynamic routing layer to replace the max pooling layer, thus
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Fig. 3: ITR Comparison under 15 repetitions. (a), (b) and (c) are for datasets IIb, II-A and II-B, respectively

avoiding information loss during backpropagation. MsCNN-
TL-ESVM is a combination of multi-scale convolutional net-
work (automatically extract rich multi-scale temporal features)
and ensembled SVMs (reduce the variance of the classifiers to
avoid the risk of overfitting), and employed migration learning
training stratage (ensure the amount of training data). The
results are excellent and have nearly the same performance as
ERP-CapsNet. Our proposed ST-CapsNet outperformed ERP-
CapsNet by about 1 percentage probably because we employed
attention mechanisms to make the capsule model automatically
learn and strengthen discriminative features focusing on space
and time.

To be able to accurately detect the symbols to be spelled, a
typical solution is to increase the number of repetitions which
could improve SNR. However, as the number of repetitions
increases, the time taken to detect individual symbols becomes
longer. A good model should be able to recognize as many
symbols as possible with as few repetitions as possible. A
traditional metric of evaluating the accuracy of symbol recog-
nition is to directly compare the correctly recognized symbols
at repetitions 5, 10 and 15, respectively as used in [43] [44].
However, this approach does not take into account the cu-
mulative effect of the P300-based speller paradigm, where the
spelling accuracy of the previous repetiton affects the accuracy
of the next repetition. Thus, we introduced a new metric ASUR
to evaluate the accuracy of symbol recognition. Higher ASUR5

and ASUR10 indicate higher average symbol recognition rate
for the first 5 and the first 10 repetitions, respectively. Higher
ASUR15 indicates better overall performance of the symbol
recognition. Our experimental results show that the spatial and
temporal attention modules can improve the accuracy of ERP-
CapsNet for symbol recognition at low repetitions without
losing the overall performance. In addition, in the temporal
attention module, we tested different sizes of kernels (1 × 3,
1×5 and 1×7). These three different kernels all could achieve
better results than ERP-CapsNet on both P300 detection in
single trial and symbol recognition with similar performance,
indicating that ST-CapsNet is less sensitive to the choice of
kernel size.

To investigate the region of interest learned by spatial atten-
tion module, we ranked the averaged values of spatial attention
maps in descending order, and marked top eight electrodes in

Fig. 4: Region of Interest (marked by red circles) in spatial
attention module. These red-circled channels correspond the
largest 8 values in the spatial attention maps. The leftmost,
middle, and rightmost represent the regions of interest for
datasets IIb, II-A, and II-B, respectively

Fig. 5: Averaged topography with the target minus the non-
target component over the entire time winodw. From the left-
most column to the rightmost column correspond to datasets
IIb, II-A, II-B

red as shown in Fig.4. We found that all three spatial attention
maps share two common channels (Cz and CPz), and the
enhanced electrodes were located roughly in the central and
parietal lobes of the brain, indicating that the attention module
was able to capture the spatial features of P300. Furthermore,
the learned spatial attention maps generally accords with those
of previous studies [24] [15] [23].

To further investigate the mechanisms of how the spatial
and temporal attention modules affect the raw EEG signals,
we sent all raw EEG signals to attention layers and obtained
refined EEG signals. However, due to complex non-linear
transformations, the characteristics of the EEG signals change
considerably in time and space, which is difficult to understand
humanly. From another perspective, comparing the difference
between the mean P300 signal and the mean Non-P300 signal
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Fig. 6: The spatial filters obtained in the first convolutional
layer. There are 10 spatial filter feature maps for each dataset.
(a), (b) and (c) correspond to datasets IIb, II-A and II-B,
respectively

Fig. 7: The weights of the average of 10 spatial filters in the
first convolution layer. The topographic maps correspond to
datasets IIb, II-A, II-B from the leftmost to the rightmost.

is a better approach, as the attention layers maximize the dif-
ference between the P300 samples and the Non-P300 samples,
as shown in Tables III. We therefore subtracted the mean Non-
P300 signal from the mean P300 signal and averaged the EEG
topographies over the entire time period, as plotted in Fig.5.
We can see from this figure that on datasets IIb and II-A, the
energy areas of both the refined and raw EEG topographies
are concentrated in the parietal lobe; while on dataset II-B,
the energy in the parietal lobe of the refined versus the raw
EEG topographies is more focused. Those findings indicate
that attentional mechanisms can enhance the ability to capture
P300 features.

We also explored the spatial features learned by the capsule
newtork in ST-CapsNet. First, we selected 10 spatial filters in
the first convolutional layer of the capsule network, and took
their absolute values for normalization. Next, we used MNE-

TABLE XI: The ranking of best 8 electrodes for datasets IIb,
II-A, and II-B.

Ranking 1 2 3 4 5 6 7 8
IIb PO7 P8 PO8 O1 Oz CP1 CPz Pz

II-A Pz PO7 PO8 POz O1 CPz Cz FC1
II-B PO8 PO7 O1 PO4 PO3 Pz CPz POz

Python [45] to plot the topography of datasets IIb, II-A and
II-B. Fig.6 shows the weights of each of the learned spatial
filters. Fig.7 shows the average of the 10 spatial filter weights
for each dataset. We can find that the average spatial filter has
higher values in the parietal and occipital regions, which is
consistent with the results in [23] and [24]. The ranking of
best 8 electrodes for the datasets IIb, II-A, II-B are shown in
Table XI. The electrodes are arranged in descending order of
absolute values of the averaged 10 spatial filters. The common
electrodes between the three datasets are PO7, PO8, O1, CPz,
Pz, which is in general agreement with the results in [23].

Our approach illustrates that extracting good spatial and
temporal features is crucial for the classification of EEG
signals, as reported by others. For example, the deep subject-
adapted convolutional neural network (SACNN) by Liu et
al. uses parallel multiscale convolutional networks to extract
temporal and spatial features from raw EEG data and achieve
good classification accuracy [46]. Despite the excellent perfor-
mance of ST-CapsNet in P300 detection, the method has some
shortcomings. The capsule network model has a relatively
large number of parameters compared to traditional methods
and CNNs which means it needs longer training time and
requires higher performance equipment. Although ST-CapsNet
is able to achieve higher accuracy of symbol recognition
at low repetitions, we are not able to precisely control the
recognition accuracy at a single repetition. Because P300
detection in single trial and symbol recognition are two tasks,
and our model and loss function are designed for the first task
without a well-designed training method for the second task.
In the future, we will look for a better approach in terms of
reducing the number of parameters in the model and designing
a separate training method for the symbol recognition task.

VI. CONCLUSION

In this study, we proposed a novel deep-learning analysis
framework—ST-CapsNet to enhance the performance of P300
detection. Specifically, instead of sending EEG signals directly
to the capsule network, the complex spatio-temporal charac-
teristics of EEG signals were initially extracted through spatial
and temporal attention modules, which were served as inputs
to the capsule network for P300 detection. On this account, the
spatial and temporal of P300 features could be attained. Subse-
quent performance evaluation was conducted on two publicly-
available datasets that reveals superiority of the proposed ST-
CapsNet in both single-trial P300 detection and cumulative
effect under different repetitions (i.e., better ASUR). Within
this context, our results demonstrate the beneficial effect of
adding attention mechanisms to the capsule network in P300
speller, which may lead to new directions for developing better
P300-based BCI communication system.
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Hämäläinen, “MEG and EEG data analysis with MNE-Python,” Fron-
tiers in Neuroscience, vol. 7, no. 267, pp. 1–13, 2013.

[46] S. Liu, J. Zhang, A. Wang, H. Wu, Q. Zhao, and J. Long, “Subject
adaptation convolutional neural network for eeg-based motor imagery
classification,” Journal of Neural Engineering, vol. 19, p. 066003, nov
2022.

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2023.3237319

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	DATASETS
	Description
	Data Preprocessing

	Methods
	Spatial Attention
	Temporal Attention
	Capsule Network
	Training
	Target Symbol Recognization

	RESULTS
	Algorithms for Comparison
	Evaluation Metrics
	Performace of P300 Detection in Single Trial
	Performance of Symbol Recognition
	 Performance of ITR
	Effect of Temporal Attention to Model Performance under Various Kernel Sizes

	DISCUSSION
	CONCLUSION
	References

