
Pattern Recognition 138 (2023) 109285 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Wse-MF: A weighting-based student exercise matrix factorization 

model 

Xia Sun 

a , Bo Li a , Richard Sutcliffe 

a , c , ∗, Zhizezhang Gao 

b , Wenying Kang 

a , Jun Feng 

a 

a School of Information Science and Technology, Northwest University, Xi’an 710127, China 
b School of Statistics, Beijing Normal University, Beijing 100875, China 
c School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, CO43SQ, UK 

a r t i c l e i n f o 

Article history: 

Received 26 November 2021 

Revised 6 December 2022 

Accepted 27 December 2022 

Available online 11 January 2023 

Keywords: 

Educational data mining 

Personalized exercise prediction 

Matrix factorization 

a b s t r a c t 

Students who have been taught new ideas need to develop their skills by carrying out further work in 

their own time. This often consists of a series of exercises which must be completed. While students 

can choose exercises themselves from online sources, they will learn more quickly and easily if the ex- 

ercises are specifically tailored to their needs. A good teacher will always aim to do this, but with the 

large groups of students who typically take advantage of open online courses, it may not be possible. 

Exercise prediction, working with large-scale matrix data, is a better way to address this challenge, and 

a key stage within such prediction is to calculate the probability that a student will answer a given 

question correctly. Therefore, this paper presents a novel approach called Weighting-based Student Ex- 

ercise Matrix Factorization (Wse-MF) which combines student learning ability and exercise difficulty as 

prior weights. In order to learn how to complete the matrix, we apply an iterative optimization method 

that makes the approach practical for large-scale educational deployment. Compared with eight models 

in cognitive diagnosis and matrix factorization, our research results suggest that Wse-MF significantly 

outperforms the state-of-the-art on a range of real-world datasets in both prediction quality and time 

complexity. Moreover, we find that there is an optimal value of the latent factor K (the inner dimension 

of the factorization) for each dataset, which is related to the relationship between skills and exercises in 

that dataset. Similarly, the optimal value of hyperparameter c 0 is linked to the ratio between exercises 

and students. Taken as a whole, we demonstrate improvements to matrix factorization within the context 

of educational data. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

With the rapid informatization of education, student learning 

ata obtained from online education platforms [1] provides many 

pportunities for developing new means of assessment [2] and 

ew forms of intelligent tutoring [3] . Much of this information is 

n the form of matrices. 

Students typically learn by practicing in their own time what 

hey have learned within formal lectures, often delivered online. 

arge banks of online exercises can contribute by making such 

aterial available to students. However, students can learn more 

uickly and easily if exercises are chosen for them which specifi- 

ally meet their needs. Because this is time-consuming for teachers 
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o do, it is very valuable to automate the process by inferring the 

ppropriate exercises from large-scale student-exercise datasets. 

An important step within exercise recommendation is to esti- 

ate how likely it is that a student will be able to answer an ex-

rcise. If this probability is too low, then the exercise is probably 

oo difficult and will discourage the student. On the other hand, if 

he probability is too high, then the exercise is too easy and will 

ave insufficient instructional value to be worthwhile. 

With improvements in computing capability, approaches based 

n deep learning have made rapid progress and this has resulted 

n data mining successes within educational research. For exam- 

le, researchers have proposed Deep Knowledge Tracing (DKT) 

4] , Dynamic Key-Value Memory Networks (DKVMN) [5] , Exercise- 

nhanced Recurrent Neural Networks (EERNN) [6] and Exercise- 

ware Knowledge Tracing (EKT) [7] for predicting student perfor- 

ance [8] . However, since knowledge tracing builds a model based 

n the answer records of all students as a whole, it can only give 
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n overall prediction for all students, rather than a personal one 

or individual students, making it inapplicable to customized exer- 

ise prediction. 

Regarding individualized exercise prediction, the Deterministic 

nputs Noisy AND Gate (DINA) model [9] , as one of the Cogni- 

ive Diagnosis Methods (CDMs) [10–12] , is one of the most popular 

rediction techniques in the education community, and its psycho- 

etric models have immense potential to provide rich and rele- 

ant information for instruction and learning. However, in real life, 

e need to pay attention to the high time complexity of DINA. 

he existing method focuses on explicit modeling of the ‘slip’ and 

guess’ latent factors for each exercise, usually assumed O 

(
2 L 

)
in 

ime complexity where L is the number of skills; this can make 

t unsuitable for applications involving large datasets where bet- 

er performance can only be achieved by using a large number of 

arameters. 

In order to address the above problems, the Matrix Factoriza- 

ion (MF) model [13] for exercise prediction was introduced. MF 

s one of the commonly employed methods in pattern recogni- 

ion, and can be used to predict the scores of students when 

 student-exercise performance matrix has been populated with 

ome observed scores. MF, computed via Stochastic Gradient De- 

cent (SGD), is one of the most prominent approaches; it is eas- 

er to train and requires no additional attributes. However, MF as- 

igns binary weights (zero or one) to the predicted data, rather 

han real-valued weights, making it suboptimal. More recently, De- 

ooght’s study [14] confirms that using priors on the predicted val- 

es leads to an overall improvement in MF quality. 

Inspired by the above work, we aim to predict the student score 

rom the joint perspective of both students and exercises. In partic- 

lar, students have a single underlying characteristic, namely learn- 

ng ability, and there is also a parameter representation for the ex- 

rcises, called difficulty. Whether a student can solve an exercise 

epends on the difficulty of the exercise and the learning ability 

f the student, and the combination of the two attributes can help 

chieve personalized learning. Therefore, we propose a novel MF 

odel called Weighting-based Student Exercise Matrix Factoriza- 

ion (Wse-MF), which focuses on setting an explicit prior on pre- 

icted data, as well as incorporating a student-exercise weight- 

ng strategy, by taking into account the student learning ability 

nd exercise difficulty from observed data. Considering computa- 

ional complexity due to complex weights, we apply a new opti- 

ization, Student-Exercise element-wise Alternating Least Squares 

SE-ALS), which is based on the existing eALS technique [15] . SE- 

LS is more efficient than the commonly-used SGD approach. SGD 

ses a stochastic method for controlling the possible losses, and 

elies on a good learning rate, while SE-ALS uses coordinate de- 

cent to carry out optimization, updating a particular parameter at 

ach step, which does not rely on the learning rate anymore. We 

ummarize our key contributions as follows: 

• We define a student’s learning ability and exercise difficulty, 

and use them as a student-exercise weighting strategy. There- 

fore, our method is able to achieve individuation. 
• We incorporate the student-exercise weighting strategy into the 

loss function and apply it to the predicted data, effectively im- 

proving the MF model for exercise prediction. 
• We apply a new optimization called SE-ALS, based on student 

and exercise matrices, so that our Wse-MF is more efficient 

than DINA. Hence, we can train quickly and with low time com- 

plexity. 
• We conduct experiments on three real-world datasets and show 

that our method consistently outperforms state-of-the-art CDM 

methods. Moreover, the proposed model has two important pa- 

rameters, the latent factor K (the inner dimension of the fac- 

torization) and the weight of the predicted data, c . We show 
0 

2 
experimentally that the optimal value of K is related to the re- 

lationship between skills and exercises within a dataset, while 

c 0 is approximately equal to the ratio between the numbers of 

exercises and students. 
• Overall, the work is a contribution to research on matrix factor- 

ization, demonstrated within the education field. 

. Related work 

In this section, we introduce existing exercise prediction meth- 

ds from three perspectives: knowledge tracing models, cognitive 

iagnosis models and matrix factorization models. 

.1. Knowledge tracing models 

Knowledge tracing has been increasingly influenced in the past 

wo decades by developments in the fields of pedagogy and com- 

uter science. In 1994, Bayesian Knowledge Tracing (BKT) [16] was 

he first application of knowledge tracking to the prediction of stu- 

ent performance scores, and Individualized Bayesian Knowledge 

racing [17] was developed from this by splitting BKT parame- 

ers. In 2015, Piech et al. proposed Deep Knowledge Tracing (DKT) 

4] , showing that tracking student learning and predicting answers 

reatly improves forecasting accuracy. In 2017, by automatically es- 

ablishing the relationship between exercises and implicit knowl- 

dge points, Zhang et al. proposed a Dynamic Key-Value Memory 

etwork (DKVMN) model [5] for student exercise prediction. This 

as followed by Su et al. in 2018 [6] , who proposed a general

xercise-Enhanced Recurrent Neural Network (EERNN) framework 

or exploring both students records and the text content of exer- 

ises. In 2019, Liu et al. [7] extended EERNN to form the Exercise- 

ware Knowledge Tracing (EKT) framework, in order to quantify 

ow much an exercise can affect the ability of a student to de- 

elop multiple skills during the learning process. In 2021, Zia et al. 

18] proposed an improvement of BKT in which features are firstly 

ngineered from the basic features, to derive hidden features and 

ence reveal information that was not apparent. Finally, Song et al. 

19] proposed a Joint graph convolutional network deep Knowl- 

dge Tracing (JKT) framework to establish connections between ex- 

rcises under cross-concepts and to capture high-level semantic in- 

ormation. 

.2. Cognitive diagnosis models 

In educational psychology, Item Response Theory (IRT) is a 

odern psychometric theory which considers that students’ re- 

ponses to exercises have a special relationship with their potential 

haracteristics. One of the underlying assumptions of IRT is that 

tudents all use the same skill to respond to each exercise. When 

xercises do not satisfy this unidimensionality assumption, Multi- 

imensional Item Response Theory (MIRT) [20] enables the inter- 

ction of students with exercises to be modeled in a way which 

s capable of discriminating between levels of student ability, and 

evels of student proficiency with respect to these abilities. Cheng 

t al. [21] consider that traditional IRT only exploits student re- 

ponse results, and has difficulties in fully utilizing the seman- 

ics of question texts. Therefore, they first use a vector to repre- 

ent student proficiency with regard to knowledge concepts, and 

epresent question texts and skills by dense embeddings. Then, 

hey use deep learning to determine the parameters of students 

nd of questions, by exploiting question texts and the relation- 

hip between those texts and skills. Xu et al. [22] proposed two 

ew probabilistic graph models to improve the accuracy of assess- 

ents based on the well-accepted cognitive diagnosis technique in 

OOCs. 
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Table 1 

An example Q-matrix. 

Exercise Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 

exercise 1 1 0 0 1 0 

exercise 2 0 0 1 1 1 

exercise 3 0 1 0 0 0 
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Fig. 1. Wse-MF Framework Overview: Schema for training exercise MF models. 
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As mentioned earlier, the Cognitive Diagnosis Method (CDM) 

11] is a technique based on IRT to predict the future performance 

f a particular student by an analysis of their previous work. With 

he CDM, students are characterized by their proficiency in specific 

kills. A Q-matrix [23] is previously determined by experts in the 

ubject and specifies the skills which are required for each exer- 

ise. Table 1 is an example of a Q matrix, where 1 indicates that 

he exercise contains the skill, and 0 indicates that the exercise 

oes not contain the skill. CDMs can be grouped into two classes, 

epending on whether the information they use is discrete or con- 

inuous. Among them, the DINA model [9] , introduced above, uses 

 vector of latent binary variables, that is, it can only assign stu- 

ents their degree of mastery of a set of skills using discrete val- 

es. To address this limitation, a popular solution is probabilistic 

odeling of students’ skills in order to simulate them as contin- 

ous values between 0 and 1 [24] . Liu et al. [10] combined fuzzy

et theory and educational hypotheses in order to model a student; 

heir fuzzy Cognitive Diagnosis Framework (fuzzyCDF) was applica- 

le to both objective and subjective exercises [25] . 

.3. Matrix factorization models 

Matrix Factorization (MF) analysis has attracted more and more 

ttention from researchers because it outperforms the state-of-the- 

rt Collaborative Filtering (CF) technique. For example, He et al. 

26] enhanced the flexibility of MF by allowing the use of nonuni- 

orm weights on missing data. Zhong et al. [27] proposed a Con- 

trained Matrix Factorization which integrates the course average 

core into the objective function so as to make up the prediction 

eviation caused by the unbalanced course selection rate. Most 

raditional NMF-based algorithms are sensitive to noisy data; cor- 

entropy based semi-supervised NMF (CSNMF) [28] aims to solve 

his issue. In addition, Hu et al. [29] proposed a Feature Nonlinear 

ransformation Non-Negative Matrix Factorization with Kullback- 

eibler Divergence (FNTNMF-KLD) for extracting the nonlinear fea- 

ures of a matrix in standard NMF. Jin et al. [30] described two 

ew sparse matrix factorization methods, each with L 2 , 1 norm to 

xplicitly force the row sparseness of the factor matrix. This ap- 

roach can attain comparable performance to the deep learning- 

ased matrix completion methods. 

.4. Analysis 

In spite of the successes achieved within the previous work dis- 

ussed above, the existing methods still display some limitations. 

or instance, although deep learning has been well developed in 

he field of exercises, the DKT and DKVMN models not only need 

o adjust many hyperparameters manually, but more importantly, 

he model parameters obtained from the training are overall pre- 

ictions for all students, so they cannot predict suitable exercises 

or an individual student. 

Specifically, in order to model the slip and guess latent factors, 

ognitive diagnosis usually assumes a time complexity of O 

(
2 L 

)
here L is the number of skills. In consequence, adjusting the slip 

nd guess for N exercises takes time O 

(
N × 2 L 

)
where N is the 

umber of exercises. Thus, for one iteration which is adjusting all 

he parameters of the model, the time complexity is O 

(
M × N × 2 L 

)

3 
here M is the number of students. Clearly, this means that the al- 

orithm is not very practical when applied to large datasets involv- 

ng huge numbers of students, exercises and performance records. 

Furthermore, MF requires time to recursively compute and up- 

ate the matrix, especially when the number of factors is large, 

nd it ignores the student’s knowledge state. So, by using data- 

riven methods to mine attributes of students and exercises from 

erformance data, we want to apply an efficient method to solve 

ersonalized exercise prediction at low time complexity. 

. Proposed method 

We will now introduce our general loss function for training ex- 

rcise MF models, which is called Wse-MF ( Fig. 1 ). In essence, we 

rst randomly generate two matrices, namely the Student-Factor 

atrix ( P 0 P 0 P 0 ) and the Exercise-Factor Matrix ( Q 0 Q 0 Q 0 ), and multiply the 

wo to obtain the Student-Exercise Prediction Matrix ( ̂  R 0 ˆ R 0 ˆ R 0 ). Secondly 

e calculate the loss with the Student-Exercise Score Matrix ( R R R ), 

aking into account the student‘s learning ability and the exercise 

ifficulty. Then, we apply the SE-ALS algorithm [15] to optimize 

he objective function by setting a cache to achieve a significant 

ncrease in speed. It updates the Student-Factor Matrix ( P 1 P 1 P 1 . . . ) and 

he Exercise-Factor Matrix ( Q 1 Q 1 Q 1 . . . ) t o obtain the Student-Exer cise 

rediction Matrix ( ̂  R 1 ˆ R 1 ˆ R 1 . . . ). Finally, when the loss approaches 0, we 

btain the new Student-Exercise Prediction Matrix ( ̂  R n ˆ R n ˆ R n ). 

.1. Student-exercise weighting strategy 

All other factors being equal, students who have a high learning 

bility are more likely to answer an exercise correctly; similarly, 

xercises which have a greater difficulty are more likely to be done 

rongly. To account for these effects, we evaluate student learning 

bility and exercise difficulty from a statistical perspective. 

Student’s learning ability : The CDM model mainly uses the 

tudent-Exercise Score Matrix and the Exercise-Skill Correlation Q- 

atrix to obtain the student’s mastery of the skills, so as to realize 

he exercise prediction. The DINA model, on the other hand, which 

s a kind of CDM, introduces exercise parameters slip and guess , as 

lready mentioned: Students who possess all the required skills for 

n exercise can nevertheless make a slip and answer incorrectly; 

onversely, students who lack at least one of the required skills 

an still guess and hence answer correctly. DINA adopts the Ex- 

ectation Maximization algorithm to obtain the two parameter es- 

imates based on exercises and the students binary skill state [9] . 

he slip and guess update rules are as follows: 

 i = 

I 1 
i j 

− R 

1 
i j 

I 1 
i j 

(1) 
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 i = 

R 

0 
i j 

I 0 
i j 

(2) 

here I 1 
i j 

is the number of students who have all the required skills 

or exercise i and R 1 
i j 

is the number of students among I 1 
i j 

correctly 

nswering exercise i . Conversely, I 0 
i j 

is the number of students lack- 

ng at least one of the required skills for exercise i and R 0 
i j 

is the

umber of students among I 0 
i j 

correctly answering exercise i . 

However, the method of Zhu et al. [24] is an improvement rela- 

ive to the DINA model because the skill state is no longer Boolean, 

ut is now a continuous value between 0 and 1. As a result, the 

osterior probability ˆ ∂ u j that will now be obtained is as follows: 

ˆ 
 u j = 

∑ 

∂ u j =1 P 
(
∂ j | r u , s i , g i 

)
∑ J 

x =1 
P 
(
∂ x | r u , s i , g i 

)
= 

∑ 

∂ u j =1 L 
(
r u | ∂ j , s i , g i 

)
P ( ∂ x ) ∑ J 

x =1 
P 
(
∂ x | r u , s i , g i 

)
= 

∑ 

∂ u j =1 

∏ I 
i =1 L 

(
r ui | ∂ j , s i , g i 

)
P ( ∂ j ) ∑ J 

x =1 
P 
(
∂ x | r u , s i , g i 

) (3) 

here s i and g i represent the slip and guess parameters of exer- 

ise i , and r u represents student u ’s answer records. The numera- 

or represents the state accumulation after the student u answers 

he exercise containing skill j, and the denominator represents the 

ll-state accumulation based on student u ’s answer records. 

A students average mastery over all exercises is now established 

y the probability of the student being at each skill state [24] : 

 ui = 

∑ J 
j=1 

Q i j 

√ √ √ √ 

J ∏ 

j=1 

In ui j (4) 

here the In ui j is 

n ui j = 

{
1 , Q i j = 0 

ˆ ∂ u j × Q i j , Q i j = 1 

(5) 

here Q i j is an element of the Q-matrix, Q i j = 1 means that exer-

ise i includes skill j, and Q i j = 0 means that exercise i does not 

nclude skill j. 

Finally, we use l ui as that student’s learning ability. 

Exercise difficulty : Because exercises differ in the number and 

ype of skills required, obtaining low-dimensional vectors of the 

xercises through matrix factorization also loses some information, 

ncluding exercise difficulty. We use the method of Minn et al. 

31] to find the differences between success and failure ratios on 

ach skill, based on a student’s previous performance, and trans- 

orm each one into a value for the student u as follows: 

uccess 
(
x u j 

)
= 

N ∑ 

i =1 

(
x u ji == 1 

)
N u j 

(6) 

ailure 
(
x u j 

)
= 

N ∑ 

i =1 

(
x u ji ! = 1) 

N u j 

(7) 

 ui = Q i j ∗
(
failure 

(
x u j 

)
− success 

(
x u j 

))
(8) 

here success 
(
x u j 

)
and failure 

(
x u j 

)
are the ratios of exercises re- 

uiring skill x j being answered correctly or incorrectly, and N u j 

s the total number of times student u has practiced skill x j . x u ji 

eans student u answers the exercise i including skill x j correctly. 

 i j is the relationship between exercise i and skill x j , and d ui is 

he difficulty of exercise i for student u , which is transformed into 
4 
he difficulty of skill x j for student u through the Q-matrix. From 

q. (11) we can see that if failure 
(
x u j 

)
is greater than success 

(
x u j 

)
, 

t indicates that students have a low degree of mastery of the skill 

 j ; then, through the Q-matrix mapping, exercises containing this 

kill x j will be assigned a high difficulty. 

.2. Student-exercise weighting loss 

In Section 3.1 , we proposed the Student-Exercise Weighting 

trategy, which defines the student’s learning ability and exercise 

ifficulty. In order to achieve accurate and personalized exercise 

rediction, we add it to the loss function as the weight of the pre- 

icted data. In this section, we first introduce the MF method, il- 

ustrating the issue of inefficiency which arises from the conven- 

ional loss function used. Then, we describe the Wse-MF model af- 

er adding the Student-Exercise Weighting Strategy. 

.2.1. MF method for prediction 

The starting point of the MF method is a matrix R ∈ R M ×N , 

here M is the number of students and N is the number of ex- 

rcises. If student u carries out exercise i , then the corresponding 

lement in the matrix is one. Otherwise it is zero. In our work, R

s represented in the form of a student-exercise matrix. Matrix R 

s now factorized into P ∈ R M ×K and Q ∈ R N ×K , in so doing gener- 

lizing the mapping between students and exercises. K is thus the 

nner dimension of the factorization and we refer to this as the 

atent factor. Prediction of exercise i for student u is given by the 

ule: 

ˆ 
 ui = p u q i 

T (9) 

More recent works learn factor vectors directly on known inter- 

ction data through a suitable objective function which minimizes 

rediction error. The proposed objective functions are usually regu- 

arized in order to avoid overfitting [32] . Typically, gradient descent 

s applied to minimize the objective function: 

 = 

N ∑ 

i =1 

M ∑ 

u =1 

(
r ui − ˆ r ui 

)2 + λ

( 

M ∑ 

u =1 

‖ 

p u ‖ 

2 + 

N ∑ 

i =1 

‖ 

q i ‖ 

2 

) 

(10) 

The constant λ controls the extent of regularization, usually de- 

ermined by cross validation. Minimization is typically performed 

y either stochastic gradient descent or alternating least squares. 

.2.2. Wse-MF model 

It is well-known that the matrix R which models student inter- 

ction is usually very large and also very sparse, meaning that it is 

oo time-consuming to predict the frequent nulls. To this end, we 

vercome the limitation of uniform weights in matrix factorization 

odels and adopt our Student-Exercise Weighting as the value to 

e predicted. By expanding the first term of Eq. (10) , our loss func- 

ion is as follows: 

 = 

∑ 

(u,i ) ∈ R 
(
r ui − ˆ r ui 

)2 + 

∑ M 

u =1 

∑ 

i / ∈ r u c 0 
d ui 

l ui 
ˆ r ui 

+ λ
(∑ M 

u =1 ‖ 

p u ‖ 

2 + 

∑ N 
i =1 ‖ 

q i ‖ 

2 
) (11) 

here c 0 represents the weight of the predicted data, consider- 

ng the number of students and exercises, and 

d ui 
l ui 

denotes the 

eight with which the exercise i is predicted by student u (we 

ill demonstrate the effectiveness of c 0 and the Student-Exercise 

eighting Strategy in Sections 4.4.2 and 4.4.3 ). As can be seen, the 

rst term is concerned with the prediction error of the relevant 

ntries. The second term expresses the loss of predicted data in 

erms of d ui and l ui , which can take different values independently: 

hen d ui is high and l ui is low, that means the exercise i is diffi- 

ult and the student u is assigned low learning ability; we hope 
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Algorithm 1 Wse-MF model using SE-ALS with M , N , R , K , λ and 

d ui 
l ui 

. 

1: Procedure Student-Exercise Weighting Matrix Factorization( M , 

N , R , K , λ and 

d ui 
l ui 

) 

2: Randomly initialize P and Q ; 

3: While stopping criteria is not met do 

4: for ( u , i ) ∈ R do ˆ r ui ← Eq. (9) 

5: for u ← 1 to M do //update student factors 

6: for f ← 1 to K do 

7: p u f ← Eq. (12) 

8: end 

9: end 

10: for i ← 1 to N do //update exercise factors 

11: for f ← 1 to K do 

12: q i f ← Eq. (13) 

13: end 

14: end 

15: end 

16: return P and Q ; 

17: end Procedure 

Table 2 

Dataset Summary. 

Dataset Students Skills Exercise Records Avg. Skills per Exercise 

Obj. Subj. 

FrcSub 536 8 20 0 10,720 2.8 

Math1 4209 11 15 5 84,180 3.4 

Math2 3911 16 16 4 78,220 3.2 

o
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1 http://staff.ustc.edu.cn/ ∼qiliuql/data/math2015.rar . 
he predicted value is close to 0, because otherwise 
d ui 
l ui 

will in- 

rease the cost function. In contrast, when d ui is low and l ui is high, 

hat means the exercise i is easy and the student u is assigned high

earning ability; now we hope the predicted value is close to 1 and 

akes the loss become close to 0. Furthermore, there are two ad- 

itional cases: When d ui and l ui are both low, or when they are 

oth high, they only depend on the first term of the loss function. 

o, our loss function can better deal with the error problem of the 

rst two cases. The last term is to solve the overfitting problem 

aused by MF. It is not directly minimizing the loss function, but is 

dding a normalization factor. 

.3. Inference 

Our goal is to find a vector p u for each student u , and a vector

 i for each exercise i . These vectors will be known as the student 

actors and the exercise factors, respectively. This is the MF tech- 

ique which is popular for SGD when using explicit feedback, with 

wo important distinctions: 1) Our cost function contains M × N

erms, where M is the number of students and N is the number of 

xercises. For typical datasets M × N can easily reach a few billion. 

his huge number of terms prevents the use of most direct opti- 

ization techniques such as SGD. 2) SGD needs a careful and time- 

onsuming search for the learning rate. In contrast to SGD, ALS re- 

uires no learning rate to be determined. What is more, it can be 

bserved that when either the student factors or the exercise fac- 

ors are fixed, the cost function becomes quadratic so its global 

inimum can be readily computed. Based on the above analysis, 

e focus on the SE-ALS algorithm [15] in our MF model. We opti- 

ize one parameter with the other fixed, then optimize the other 

arameter with the first one fixed, repeating the process iteratively 

ntil a joint optimum is reached. First, we write the p u f update 

ule as Eq. (12) by separating the observed data part: 

p u f = 

∑ N 
i =1 

(
r ui − ˆ r ui 

)
q i f −

∑ 

i / ∈ r u c 0 
d ui 

l ui 
q i f ̂  r ui ∑ 

i ∈ r u q 
2 
i f 

+ 

∑ 

i / ∈ r u c 0 
d ui 

l ui 
q 2 

i f 
+ λ

(12) 

Similarly, we can derive the update rule for q i f : 

 i f = 

∑ M 

u =1 

(
r ui − ˆ r ui 

)
p u f − �u / ∈ r i c 0 

d ui 

l ui 
p u f ̂ r ui ∑ 

u ∈ r i p 
2 
u f 

+ 

∑ 

u / ∈ r i c 0 
d ui 

l ui 
p 2 

u f 
+ λ

(13) 

The second term of Eq. (11) is more time-consuming because 

he items are to be predicted. So, the sum on predicted data can 

e formulated as the difference between the sum on all items and 

he sum on observed data. In this way, the sum on predicted data 

isappears from the computations: 

M 

 

 =1 

∑ 

i / ∈ r u 
c 0 

d ui 

l ui 

ˆ r 2 ui = 

M ∑ 

u =1 

c 0 
d ui 

l ui 

ˆ r 2 ui −
∑ 

(u,i ) ∈ R 
c 0 

d ui 

l ui 

ˆ r 2 ui (14) 

So, the second term in the numerator of Eq. (12) is 

 

 / ∈ r u 
c 0 

d ui 

l ui 

q i f ̂  r ui = 

N ∑ 

i =1 

c 0 
d ui 

l ui 

q i f ̂  r ui −
∑ 

i ∈ r u 
c 0 

d ui 

l ui 

q i f ̂  r ui (15) 

nd the second term in the denominator of Eq. (12) is 

 

 / ∈ r u 
c 0 

d ui 

l ui 

q 2 i f = 

N ∑ 

i =1 

c 0 
d ui 

l ui 

q 2 i f −
∑ 

i ∈ r u 
c 0 

d ui 

l ui 

q 2 i f (16) 

The complete Wse-MF Algorithm is shown as Algorithm 1 be- 

ow. 

. Experiments 

In this section, we will conduct experiments with the aim of 

nswering the following questions: 
5

RQ1 Do our proposed Wse-MF methods outperform the state- 

f-the-art methods? 

RQ2 How do different parameter settings (e.g. λ, the latent fac- 

or, and the weight of the predicted data) affect Wse-MF? 

RQ3 Is our proposed Student-Exercise weighting strategy effec- 

ive? 

First, we introduce the three datasets, provide the experimen- 

al settings and specify the baselines, before answering the above 

hree questions in Section 4.4 . 

.1. Datasets 

The experiments are conducted on three real-world datasets 

hich are widely used. The first dataset comprises the scores 

f middle school students performing fraction subtraction exer- 

ises [23,33] . The second and third datasets contain the results of 

wo mathematics examinations taken by students in high school; 

hese include both objective and subjective exercises. 1 Each of the 

atasets consists of a score matrix and a Q-matrix. Each Q-matrix 

s specified by experts in the appropriate subject field. A brief sum- 

ary of these datasets is shown in Table 2 . Note that scores in the

rcSub matrix are all either 0 or 1, while those in the Math1 and 

ath2 matrices are real values between 0 and 1. 

.2. Experiment settings 

For RQ1 , we select three evaluation indicators to 

easure the effectiveness of our model: accuracy (ACC) , 

oot mean square error (RMSE) and mean absolute error (MAE) . 

sing ACC , we train our model on 80% of the interactions, with- 

olding 20% for testing, and the data is evenly and randomly 

http://staff.ustc.edu.cn/~qiliuql/data/math2015.rar
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Table 3 

Time Complexity of models. 

Model Time complexity 

DINA O 
(
MN2 L 

)
MF O ( MNK + | R | K ) 
Wse-MF O 

(
(M + N) K 2 + | R | K )

M is the number of students, N is the number of exercises, L 

is the number of skills, K is the latent factor (inner dimension 

of the factorization), and | R | is the number of training data in 

student-exercise matrix R . 

Table 4 

ACC of models. 

Dataset Frcsub Math1 Math2 

Model ACC 

DINA 0.34 0.40 0.36 

kNN 0.53 0.56 0.51 

PMF 0.64 0.60 0.66 

PMF-CD 0.74 0.65 0.66 

ERviaIS 0.76 0.66 0.67 

Wse-MF 0.83 0.72 0.80 

Best results in each group are in bold. 
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istributed. Since exercises in the Math1 and Math2 datasets con- 

ain subjective questions, and their score matrices contain values 

rom 0 to 1, the task can be regarded as a regression problem 

nd hence we conduct our experiments at the 20%, 40%, 60% and 

0% test ratios, using RMSE and MAE as the evaluation metrics. 

enerally, the smaller the values of these metrics are, the better 

he results we have. Furthermore, as the datasets contain a large 

umber of objective questions, this can also be considered a clas- 

ification task. We construct our experiments using leave-one-out 

valuation and multiple divisions with the same test ratio. Since 

he performance does not vary much from one division to the 

ext, we choose the average as the experimental result. In our 

xperiments, we compare the proposed approach with eight stan- 

ard methods as described below. For the purpose of comparison, 

e record the best performance of each algorithm by tuning its 

arameters. Moreover, in order to answer RQ2 and RQ3 , we also 

onduct experiments on the parameters and innovations of our 

odel. 

.3. Baselines 

The eight baseline methods are as follows: 

1. Item Response Theory (IRT) 

Birnbaum [34] , Rasch [35] propose a cognitive diagnosis 

method modeling examinees’ latent traits and using parameters 

of problems like difficulty and discrimination. 

2. Deterministic Inputs Noisy AND Gate (DINA) 

De La Torre [9] build a cognitive diagnosis method modeling 

students’ skill proficiency with a Q-matrix and incorporating 

the slip and guess factors of exercises. 

3. Probabilistic Matrix Factorization (PMF) 

Minh and Salakhutdinov [36] construct a latent factor model 

projecting students and problems into a low-dimensional space. 

4. Non-negative Matrix Factorization (NMF) 

Desmarais [37] proposes a latent non-negative factor model, 

which can be viewed as a topic model. 

5. k-Nearest Neighbor (kNN) 

Zhao [38] calculates the similarity between students and finds 

similar exercises to recommend. 

6. Probabilistic Matrix Factorization and Cognitive Diagnosis 

(PMF-CD) 

Zhu et al. [24] combine the complementary advantages of PMF 

and cognitive diagnosis, taking both the individual and the 

common study status of students into account. 

7. fuzzy Cognitive Diagnosis Framework (fuzzyCDF) 

Liu et al. [10] fuzzify the skill proficiency of examinees and 

combine fuzzy set theory and educational hypotheses to model 

the examinees’ mastery of the problems based on their profi- 

ciency. 

8. Personalized Exercise Recommendation via Implicit Skills 

(ERviaIS) 

Kang et al. [39] use exercise-concept pairs to discover implicit 

relations between skills with the aid of Dynamic Key-Value 

Memory Networks (DKVMN) and predict students’ performance 

by combining the updated Q-matrix with a cognitive diagnosis 

model. 

For the CDM and MF methods, we analyzed the time complexity . 

or the DINA, PMF, kNN, PMF-CD and ERviaIS methods, with evenly 

ivided data, we constructed the experiments on the 20% test ratio, 

sing ACC as the evaluation metric; For the IRT, DINA, PMF, NMF, 

NN, PMF-CD and fuzzyCDF methods, with evenly divided data, we 

onstructed the experiments on the 20%, 40%, 60% and 80% test 

atios, using MAE and RMSE as the evaluation metrics. 
6 
.4. Results and discussion 

.4.1. Performance comparison ( RQ1 ) 

In this section, we show the experimental results of the models 

t multiple test ratios on three datasets. Next, we analyze the per- 

ormance of the Wse-MF approach relative to the other methods 

sing three measures, Time complexity , ACC and MAE/RMSE . 

Time complexity : Table 3 shows the time complexity of Wse- 

F as compared with the DINA and MF methods. The complexities 

f DINA and MF are, respectively, O 

(
MN2 L 

)
and O ( MNK + | R | K ) , 

here, as seen earlier, M, N, L denote the numbers of students, ex- 

rcises, and skills, K is the inner dimension of the factorization, 

nd | R | is the number of training data in matrix R . Note that in

he MF model, the inner dimension of the factorization process is 

rtificially set and its value is often smaller than both M and N . MF 

ethods are mainly affected by the number of students and the 

mount of exercises; DINA is also affected by exponential growth 

n the number of skills, which has the biggest impact because of 

he Q-Matrix. Therefore, the time complexity of DINA depends on 

he number of skills. However, as actual online education platforms 

ay contain huge numbers of exercises and students, the DINA 

nd MF methods are unsuitable for large-scale data. 

In contrast, we see that our approach achieves the best per- 

ormance. The time complexity of Wse-MF is O 

(
(M + N) K 

2 + | R | K 

)
nd is little influenced by M and N due to the application of 

he SE-ALS optimization strategy. In Wse-MF, by performing op- 

imization at the element level, the expensive matrix inversion can 

e avoided. We can speed up learning by using the cache intro- 

uced from SE-ALS [15] to avoid the massive repeated computa- 

ions for which the time complexity is O 

(
K 

3 
)

[40] , so that updat- 

ng a student or an exercise costs O 

(
K 

3 + MK 

2 
)

or O 

(
K 

3 + NK 

2 
)
. So, 

his quadratic level, O 

(
(M + N) K 

2 + | R | K 

)
, makes our method suit- 

ble for large-scale learning. Specifically, our approach trains more 

uickly than cognitive diagnosis methods. We think the reason is 

hat cognitive diagnosis methods update a parameter to minimize 

he objective function of the current status, and moreover the up- 

ate time is spent modeling skills. 

Therefore, the Wse-MF model based on matrix factorization ap- 

lies the SE-ALS optimization strategy with the lowest time com- 

lexity. 

ACC : Table 4 shows the prediction results of Wse-MF and the 

ther approaches on the three datasets. We can see that the ACC 
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Fig. 2. We conduct experiments on three datasets with a 20%–80% test ratio and show the MAE of the models. When the testing data ratio ranges from 20% to 80%, the MAE 

of our method is lower than other methods, except that it is up to 0.02 higher than fuzzyCDF when the test ratio is from 40% to 80% on the Math2 dataset. 
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cores of Wse-MF on the three datasets are 83%, 72% and 80%. 

hese scores are better than all the other models. 

Compared with the matrix factorization methods, we believe 

hat the benefits mainly come from the Student-Exercise Weight- 

ng Strategy (see Section 4.4.3 ), as the traditional PMF and PMF- 

D methods do not use an approach based on weights associated 

ith individual student-exercise pairs. So, the Wse-MF method has 

 better prediction effect by virtue of its loss function and because 

t considers both the learning ability of each student and the diffi- 

ulty of each exercise. 

MAE/RMSE : Figs. 2 and 3 compare Wse-MF with the CDM and 

F methods at multiple test ratios on the three datasets using MAE 

nd RMSE as evaluation indicators. For datasets FrcSub and Math1 , 

se-MF outperforms the other methods as measured by MAE and 

MSE ; however, Wse-MF has poor performance on Math2 . Under 

he 20% test ratio the Wse-MF score, as measured by both MAE 

nd RMSE , is lower than (superior to) that of all the other methods. 

urthermore, under the 40% test ratio, Wse-MF is also superior to 

he other methods as measured by MAE and RMSE , with the excep- 

ion of its score on the Math2 dataset, where fuzzyCDF is superior 

y just 0.02. 

Generally, Wse-MF performs best on Frcsub while still perform- 

ng well on the other two datasets. The reason may be that the 

odel can accurately predict an objective exercise, and under the 

remise of not using fuzzy sets, it can also better predict a subjec- 

ive exercise; however, on the Math1 and Math2 datasets, Wse-MF 

erforms less well than fuzzyCDF because it does not use the fuzzy 

et hypothesis to distinguish between subjective and objective ex- 

rcises like fuzzyCDF. 

Finally, when changing the test ratio from 40% to 80%, the pre- 

iction performance is not better, but is still acceptable. In fact, it 

uffers from the ‘cold start’ problem: When the training data ratio 

eclines from 80% to 20%, that is to say the training matrix be- 
7

omes highly sparse, there may be students who have few or even 

o exercise records from which to predict difficulty. At this stage, 

ess training data leads to a reduction in training times, but at the 

ame time, the prediction error becomes large. 

All the above evidence demonstrates that Wse-MF has a good 

bility to predict student performance by taking full advantage 

f the exercise records. This suggests that a matrix factorization 

odel based on student learning ability and exercise difficulty 

s suitable for exercise prediction datasets in the field of educa- 

ion. Moreover, the evidence also provides a good idea for ed- 

cational researchers, namely adding prior knowledge (students’ 

earning ability and exercise difficulty) to the model. Thirdly, Wse- 

F achieves rapid prediction through applying the SE-ALS opti- 

ization strategy. 

.4.2. Study of Wse-MF ( RQ2 ) 

As the latent factor K plays an important role in matrix factor- 

zation, we explore its impact on performance. We also analyze the 

nfluence of the parameters c 0 and λ. 

Impact of latent factor K: In order to explore whether there 

s a suitable latent factor that can achieve the best prediction re- 

ults, we experiment with different values. In particular, under the 

0% test ratio on the three datasets, we chose values from 1 to 20 

or the experiments, because 20 is less than the number of stu- 

ents and exercises. Figure 4 summarizes the experimental results. 

e found that there is indeed a certain factor to make the three 

valuation indicators optimal for the three datasets, i.e., K = 1 for 

rcsub , K = 2 for Math1 , and K = 14 for Math2 . 

We guessed that the latent factor is closely related to the num- 

er of skills per exercise, because the potential space that maps 

tudents to exercises must have a certain connection with skills, 

nd they are also hidden in the attribute information of stu- 

ents and exercises. However, according to the dataset summary 
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Fig. 3. We conduct experiments on three datasets with a 20%–80% test ratio and show the RMSE of the models. When the test data ratio ranges from 20% to 40%, the RMSE 

of our method is lower than other methods. However, when the test ratio is between 60% and 80%, the RMSE is up to 0.02 higher than for fuzzyCDF. 

Fig. 4. We conduct experiments with K from 1 to 20 on the three datasets and show the MAE/RMSE/ACC of the models. Our method performs well when K is 1 on FrcSub , 2 

on Math1 , and 14 on Math2 . 
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n Table 2 and the experimental results in Fig. 4 , it seems that

he factor is not directly related to skills per exercise. Therefore, 

e carried out an analysis of the Q-matrix and obtained further 

tatistics. 

According to the Q-matrices for the three datasets, we can con- 

lude that the average skills contained in each exercise (2.8 for 

rcsub , 3.4 for Math1 , and 3.2 for Math2 ) is approximately 3 and

he number of exercises (20) is also equal in all three datasets. 

owever, the number of those skills shared between the exer- 

ises varies by dataset. Frcsub has 8 skills, Math1 has 11 skills, 

nd Math2 has 16 skills. If an exercise contains around 3 skills, 

ess will be shared for Math2 than for Frcsub and Math1 , be- 

ause the number of skills in Math2 is higher. This could ac- 

ount for the higher optimal value of K for Math2 , since more 

imensions are needed to map the exercises to the skills in the 
atrix. n

8

Impact of the weight of predicted data c 0 : In order to observe 

he influence of the hyperparameter c 0 on the experimental re- 

ults, we set c 0 from 0 to 5 in the experiments. Figure 5 shows

he three optimal values of c 0 , i.e., 0.01 for Frcsub , 0.005 for Math1 ,

nd 0.005 for Math2 . 

In Eq. (11) , macroscopically, we interpreted c 0 as the weight 

f predicted data. In fact, according to the results in Fig. 5 , we

ound the best c 0 and deduced that the role of c 0 is to balance

he number of students and exercises, because the proportion of 

tudents’ learning ability to exercise difficulty is not balanced in 

he Student-Exercise Weighting Strategy. For instance, on the Frc- 

ub dataset, there are 536 students and 20 exercises. When stu- 

ents learning ability and exercises difficulty are normalized by 

oftmax , those exercises with a large number of students will have 

 smaller average learning ability, and those students with a small 

umber of exercises will have a higher average difficulty, which 
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Fig. 5. We conduct experiments with c 0 from 0 to 5 on the three datasets and show the MAE/RMSE/ACC of the models. Our method performs well when c 0 is 0.01 on FrcSub , 

0.005 on Math1 , and 0.005 on Math2 . 

Table 5 

Impact of λ. 

Dataset Frcsub Math1 Math2 

λ MAE RMSE ACC MAE RMSE ACC MAE RMSE ACC 

1 0.24 0.35 0.82 0.32 0.39 0.71 0.21 0.32 0.79 

0.1 0.23 0.34 0.82 0.32 0.38 0.71 0.20 0.32 0.80 

0.01 0.23 0.34 0.83 0.31 0.38 0.72 0.20 0.31 0.80 

Best results in each group are in bold. 
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Table 6 

Effectiveness of Student-Exercise Weighting Strategy. 

Dataset Frcsub Math1 Math2 

Model MAE RMSE ACC MAE RMSE ACC MAE RMSE ACC 

PMF 0.26 0.37 0.64 0.32 0.44 0.60 0.34 0.46 0.66 

We-MF 0.26 0.37 0.82 0.32 0.40 0.71 0.22 0.34 0.80 

Ws-MF 0.24 0.35 0.82 0.32 0.40 0.71 0.21 0.33 0.80 

Wse-MF 0.23 0.34 0.83 0.31 0.38 0.72 0.20 0.31 0.80 

Best results in each group are in bold. 
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eads to an order of magnitude difference. So, we guessed that the 

alue of c 0 is approximately equal to the ratio between the num- 

er of exercises and students ( 20 / 536 ≈ 0 . 01 ). This is also the case

or the Math1 and Math2 datasets, i.e., 20 / 4209 ≈ 0 . 005 for Math1

nd 20 / 3911 ≈ 0 . 005 for Math2 . 

Impact of λ: In order to find the optimal value of parameter λ
nd its influence on the experimental results, we set λ from 0.01 

o 1 in the experiments. Table 5 shows that the optimal value of λ
s 0.01. As λ increases, the prediction results of Wse-MF decrease 

lightly, but it can be observed that the decrease is small. From 

q. (10) , this parameter is located in the regularization item and it 

s only to prevent overfitting. So, it has little effect on the experi- 

ental results. 

.4.3. Effectiveness of student-exercise weighting strategy ( RQ3 ) 

To investigate how the Student-Exercise Weighting Strategy af- 

ects the performance, we consider Wse-MF variants using dif- 

erent strategies. In particular, we remove l ui , d ui or both from 

q. (11) ; in other words, we set them to 
d ui 
1 , 1 

l ui 
, or we completely

elete the second term from the equation. We refer to the result- 

ng models as Ws-MF, We-MF and PMF. In fact, it is illogical only to 

emove two items, because the model then degenerates into ma- 

rix factorization, so we select the most representative PMF model 
9 
or comparison. We show the results in Table 6 and obtain the fol- 

owing findings: 

• Wse-MF is always superior to its variants. We attribute the 

improvements to the combination of student learning ability 

and exercise difficulty, that is the Student-Exercise Weighting 

Strategy, which makes predicted data dependent on the prior 

knowledge from attributes of students and exercises. 
• In most cases, Ws-MF outperforms We-MF. This shows that stu- 

dent learning ability is more important than exercise difficulty. 

After all, the number of students is much larger than the num- 

ber of exercises, so we can model student attributes better. 

.4.4. Potential applications outside education 

Two key aspects of the work presented here are, firstly a novel 

oss function based on student learning ability and exercise diffi- 

ulty, and secondly, an optimization to allow faster training with 

ower time complexity. Both of these could be applicable in other 

pplication fields, provided that certain assumptions held. Con- 

erning the loss function, learning ability and exercise difficulty are 

calar values manipulated in matrix form. In other domains, pro- 

ided that comparable information existed within an isomorphic 

ramework, a similar function could potentially be used. 
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Regarding the proposed optimization, this is not education- 

pecific. Therefore, we consider there is the possibility to apply a 

imilar approach within another field. 

. Conclusion 

In this paper, we proposed a matrix factorization model to sim- 

late student data within an exercise prediction framework and 

howed that the MF technique is indeed effective under certain as- 

umptions, one of these being that all students attempt the same 

xercises. MF is easily applicable to a wide variety of contexts 

y specifying only the input data. Aspects of our approach could 

lso potentially be applied outside the education field, as discussed 

bove. In contrast to previous work that applied MF, we produced 

 general Wse-MF approach, which can model individual students 

nd hence predict the effect of individualized exercises. In particu- 

ar, both observed data and predicted data were considered in the 

oss function, and heuristic knowledge was effectively utilized to 

redict results. To address the key efficiency challenge, we applied 

he learning algorithm SE-ALS, which effectively optimizes param- 

ters just at the element level, while leaving the others fixed. Fi- 

ally, we have mentioned the ‘cold start’ problem in Section 4.4.1 . 

ur method performs poorly at the 80% test ratio, so in future 

ork we will improve the model by means of incremental matrix 

pdates and then apply it to data derived from online education 

latforms. 

eclaration of Competing Interest 

The authors declare that there is no conflict of interest regard- 

ng the publication of this paper. 

ata availability 

Data will be made available on request. 

cknowledgment 

This work was supported in part by the National Natural Sci- 

nce Foundation of China (No. 61877050 ) and the Major Re- 

earch and Development Projects in Shaanxi Province of China (No. 

019ZDLGY03-10). 

eferences 

[1] A. Anderson, D. Huttenlocher, J. Kleinberg, J. Leskovec, Engaging with massive 
online courses, in: Proceedings of the 23rd International Conference on World 

Wide Web, ACM, 2014, pp. 687–698 . 
[2] P.D. Nichols, S.F. Chipman, R.L. Brennan, Cognitively Diagnostic Assessment, 

Routledge, 2012 . 
[3] H. Burns, C.A. Luckhardt, J.W. Parlett, C.L. Redfield, Intelligent Tutoring Sys- 

tems: Evolutions in Design, Psychology Press, 2014 . 

[4] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L.J. Guibas, J. Sohl-Dick-
stein, Deep knowledge tracing, in: Advances in Neural Information Processing 

Systems, 2015, pp. 505–513 . 
[5] J. Zhang, X. Shi, I. King, D.-Y. Yeung, Dynamic key-value memory networks for 

knowledge tracing, in: Proceedings of the 26th International Conference on 
World Wide Web, International World Wide Web Conferences Steering Com- 

mittee, 2017, pp. 765–774 . 

[6] Y. Su, Q. Liu, Q. Liu, Z. Huang, Y. Yin, E. Chen, C. Ding, S. Wei, G. Hu, Ex-
ercise-enhanced sequential modeling for student performance prediction, in: 

The Thirty-Second AAAI Conference on Artificial Intelligence(AAAI-18), 2018, 
pp. 2435–2443 . 

[7] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su, G. Hu, EKT: exercise-aware
knowledge tracing for student performance prediction, IEEE Trans. Knowl. Data 

Eng. (2019) . 1–1 
[8] A. Sapountzi, S. Bhulai, I. Cornelisz, C. van Klaveren, Dynamic models for 

knowledge tracing & prediction of future performance, Data Anal. (2018) 131 . 

[9] J. De La Torre, DINA model and parameter estimation: a didactic, J. Educ. Be- 
hav. Statist. 34 (1) (2009) 115–130 . 

[10] Q. Liu, R. Wu, E. Chen, G. Xu, Y. Su, Z. Chen, G. Hu, Fuzzy cognitive diagnosis
for modelling examinee performance, ACM Trans. Intell. Syst.Technol. (TIST) 9 

(4) (2018) 48 . 
10 
[11] J. Leighton, M. Gierl, Review of cognitively diagnostic assessment and a sum- 
mary of psychometric models, in: Cognitive Diagnostic Assessment for Educa- 

tion: Theory and Applications, 2007, pp. 3–18 . 
12] L. DiBello, L. Roussos, W. Stout, Review of cognitively diagnostic assessment 

and a summary of psychometric models, in: C.R. Rao, S. Sinharay (Eds.), Hand- 
book of Statistics, Vol. 26, 2007, pp. 970–1030 . Psychometrics 

[13] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender 
systems, Computer 42 (8) (2009) 30–37 . 

[14] R. Devooght, N. Kourtellis, A. Mantrach, Dynamic matrix factorization with pri- 

ors on unknown values, in: Proceedings of the 21th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 189–198 . 

[15] X. He, H. Zhang, M.-Y. Kan, T.-S. Chua, Fast matrix factorization for online rec- 
ommendation with implicit feedback, in: Proceedings of the 39th International 

ACM SIGIR conference on Research and Development in Information Retrieval, 
ACM, 2016, pp. 549–558 . 

[16] A.T. Corbett, J.R. Anderson, Knowledge tracing: modeling the acquisition of 

procedural knowledge, User Model. User-Adapt. Interact. 4 (4) (1994) 253–278 . 
[17] M.V. Yudelson, K.R. Koedinger, G.J. Gordon, Individualized Bayesian knowledge 

tracing models, in: International Conference on Artificial Intelligence in Educa- 
tion, Springer, 2013, pp. 171–180 . 

[18] A. Zia, J. Nouri, M. Afzaal, Y. Wu, X. Li, R. Weegar, A step towards improving
knowledge tracing, in: 2021 International Conference on Advanced Learning 

Technologies (ICALT), 2021, pp. 38–39 . 

[19] S. Song, J. Li, Y. Tang, T. Zhao, Y. Chen, Z. Guan, JKT: a joint graph convolutional
network based deep knowledge tracing, Inf. Sci. 580 (2021) 510–523 . 

20] M.D. Reckase, Multidimensional item response theory models, in: Multidimen- 
sional Item Response Theory, Springer, 2009, pp. 79–112 . 

21] S. Cheng, Q. Liu, E. Chen, Z. Huang, Z. Huang, Y. Chen, H. Ma, G. Hu, DIRT: deep
learning enhanced item response theory for cognitive diagnosis, in: Proceed- 

ings of the 28th ACM International Conference on Information and Knowledge 

Management, 2019, pp. 2397–2400 . 
22] J. Xu, Q. Li, J. Liu, P. Lv, G. Yu, Leveraging cognitive diagnosis to improve peer

assessment in MOOCs, in: IEEE Access, 2021, pp. 50466–50484 . 
23] K.K. Tatsuoka, Analysis of Errors in Fraction Addition and Subtraction Problems, 

Final report, Kikumi K. Tatsuoka, 252 ERL, 103 S. Mathews St., Univ. of Illinois,
Urbana, IL 61801., 1984 . 

24] T. Zhu, Z. Huang, E. Chen, et al., Cognitive diagnosis based personalized ques- 

tion recommendation, Chin. J. Comput. 40 (01) (2017) 176–191 . 
25] Z. Liu, B.J. Jansen, Subjective versus objective questions: perception of question 

subjectivity in social Q&A, in: International Conference on Social Computing, 
Behavioral-Cultural Modeling, and Prediction, Springer, 2015, pp. 131–140 . 

26] X. He, J. Tang, X. Du, H. Richang, T. Ren, C. Tat-Seng, Fast matrix factoriza-
tion with nonuniform weights on missing data, IEEE Trans. Neural Netw. Learn. 

Syst. 8 (2020) 2791–2804 . 

27] S. Zhong, L. Huang, C.D. Wang, J.H. Lai, Constrained matrix factorization for 
course score prediction, in: 2019 IEEE International Conference on Data Mining 

(ICDM), 2020, pp. 1510–1515 . 
28] S. Peng, S. Wee, B. Chen, Z. Lin, Robust semi-supervised nonnegative matrix 

factorization for image clustering, Pattern Recognit. 111 (2021) . 
29] L. Hu, N. Wu, X. Li, Feature nonlinear transformation non-negative matrix fac- 

torization with Kullback-Leibler divergence, Pattern Recognit. 132 (2022) . 
30] X. Jin, J. Miao, Q. Wang, G. Geng, K. Huang, Sparse matrix factorization with 

L2,1 norm for matrix completion, Pattern Recognit. 127 (2022) . 

31] S. Minn, Y. Yu, M.C. Desmarais, F. Zhu, J.-J. Vie, Deep knowledge tracing and dy-
namic student classification for knowledge tracing, in: 2018 IEEE International 

Conference on Data Mining (ICDM), IEEE, 2018, pp. 1182–1187 . 
32] A. Paterek, Improving regularized singular value decomposition for collabo- 

rative filtering, in: Proceedings of KDD Cup and Workshop, Vol. 2007, 2007, 
pp. 5–8 . 

33] L.T. DeCarlo, On the analysis of fraction subtraction data: the DINA model, 

classification, latent class sizes, and the q-matrix, Appl. Psychol. Meas. 35 (1) 
(2010) 8–26 . 

34] A.L. Birnbaum, Some latent trait models and their use in inferring an exami- 
nee’s ability, Statist. Theories Mental Test Scores (1968) . 

35] G. Rasch, On general laws and the meaning of measurement in psychology, in: 
Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and 

Probability, Vol. 4, 1961, pp. 321–333 . 

36] A. Mnih, R.R. Salakhutdinov, Probabilistic matrix factorization, in: Advances in 
Neural Information Processing Systems, 2008, pp. 1257–1264 . 

37] M.C. Desmarais, Mapping question items to skills with non-negative matrix 
factorization, ACM SIGKDD Explor. Newsl. 13 (2) (2012) 30–36 . 

38] Y. Zhao, Recommended exercises based on collaborative filtering algorithm (in 
Chinese), Sci. Technol. Econ. Mag. (005) (2016) 136 . https://www.doc88.com/ 

p-7824554938674.html?r=1 

39] W. Kang, L. Zhang, B. Li, J. Chen, X. Sun, J. Feng, Personalized exercise recom-
mendation via implicit skills, in: Proceedings of the ACM Turing Celebration 

Conference-China, ACM, 2019, p. 77 . 
40] Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feedback 

datasets, in: 2008 Eighth IEEE International Conference on Data Mining, Ieee, 
2008, pp. 263–272 . 

ia Sun received a PhD from Xian Jiaotong University, China, in 2006. She is a Pro-

essor in the School of Information Science and Technology at Northwest Univer- 
ity, Xian, China. Her current research interests include natural language processing 

nd machine learning. Recent projects have included causality extraction from ed- 
cational data, and relationship extraction from bioinformatics text. She has served 

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0027
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0028
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0031
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0033
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0035
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0036
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0037
https://www.doc88.com/p-7824554938674.html?r=1
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0039
http://refhub.elsevier.com/S0031-3203(22)00764-6/sbref0040


X. Sun, B. Li, R. Sutcliffe et al. Pattern Recognition 138 (2023) 109285 

a
N

a
E  

b

R  

s

a
R

s
t

L

m

n
A

a

J  

f

s

i
h

b
c

v
o

s a reviewer for IEEE Transactions on Industrial Informatics, IEEE Transactions on 
eural Networks and Learning Systems and Chinese Journal of Electronics. She has 

lso reviewed for the IEEE International Conference on Computational Science and 
ngineering). She is the co-author of 40 articles and is editor or co-editor of four

ooks. 

ichard Sutcliffe received a PhD from University of Essex in 1989. He is an As-
ociate Professor at Northwest University China. His research interests are in the 

reas of Natural Language Processing, Information Retrieval and Music Information 
etrieval. Recent projects have included persuasive conversational agents, public 

ector message classification, analysis of classical music texts, and personality and 
ranslation ability. He has reviewed for Artificial Intelligence Review, Computational 

inguistics, Computers and the Humanities, Information Processing and Manage- 

ent, Information Retrieval Journal, Journal of Natural Language Engineering, Jour- 
11 
al Traitement Automatique des Langues. Conferences he has reviewed for include 
CL, CIKM, COLING, IJCNLP, LREC, NAACL-HLT, and SIGIR. He is the co-author of 108 

rticles and is co-editor of three books and ten conference proceedings. 

un Feng received a PhD from City University of Hong Kong in 2006. She is a Pro-
essor in the School of Information Science and Technology at Northwest Univer- 

ity. Her research areas include pattern recognition and machine learning, especially 

n the fields of medical imaging analysis and intelligent education. Recent projects 
ave included medical image analysis with deep learning, and intelligent education 

ased on AI and Brain-Human Interaction. She has reviewed for many journals, in- 
luding TSP, JIVP, MTAP, JDIM, CJC, JCAD, OPE, and INFPHY. Conferences she has re- 

iewed for include IEEE-VR, MICCAI, SIGCSE, IWCSE, and CompEd. She is a member 
f IEEE and ACM, and is co-author of 132 articles and co-editor of three books. 


	Wse-MF: A weighting-based student exercise matrix factorization model
	1 Introduction
	2 Related work
	2.1 Knowledge tracing models
	2.2 Cognitive diagnosis models
	2.3 Matrix factorization models
	2.4 Analysis

	3 Proposed method
	3.1 Student-exercise weighting strategy
	3.2 Student-exercise weighting loss
	3.2.1 MF method for prediction
	3.2.2 Wse-MF model

	3.3 Inference

	4 Experiments
	4.1 Datasets
	4.2 Experiment settings
	4.3 Baselines
	4.4 Results and discussion
	4.4.1 Performance comparison (RQ1)
	4.4.2 Study of Wse-MF (RQ2)
	4.4.3 Effectiveness of student-exercise weighting strategy (RQ3)
	4.4.4 Potential applications outside education


	5 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References


