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Abstract—Non-orthogonal multiple access (NOMA) is a
promising candidate radio access technology for future wireless
communication systems, which can achieve improved connectivity
and spectral efficiency. Without sacrificing error rate perfor-
mance, link adaptation combining with adaptive modulation and
coding (AMC) and hybrid automatic repeat request (HARQ) can
provide better spectral efficiency and reliable data transmission
by allowing both power and rate to adapt to channel fading
and enabling re-transmissions. However, current AMC or HARQ
schemes may not be preferable for NOMA systems due to
the imperfect channel estimation and error propagation during
successive interference cancellation (SIC). To address this prob-
lem, a reinforcement learning based link adaptation scheme for
downlink NOMA systems is introduced in this paper. Specifically,
we first analyze the throughput and spectrum efficiency of
NOMA system with AMC combined with HARQ. Then, taking
into account the imperfections of channel estimation and error
propagation in SIC, we propose SINR and SNR based corrections
to correct the modulation and coding scheme selection. Finally,
reinforcement learning (RL) is developed to optimize the SNR
and SINR correction process. Comparing with a conventional
fixed look-up table based scheme, the proposed solutions achieve
superior performance in terms of spectral efficiency and packet
error performance.

Index Terms—Non-orthogonal multiple access (NOMA), adap-
tive modulation and coding (AMC), hybrid automatic repeat
request (HARQ), reinforcement learning (RL).

I. INTRODUCTION

Recently, non-orthogonal multiple access (NOMA) has been
envisioned as a promising multiple access technique to sup-
port diverse traffics with much stringent requirements, such
as high spectral efficiency (SE) and high- level quality of
service (QoS), for the beyond fifth generation (B5G) and
sixth-generation (6G) network [1], [2]. Compared with the
conventional orthogonal multiple access (OMA), NOMA can
provide higher SE [2]. Existing NOMA techniques can be
mainly categorized into two classes: power-domain NOMA [3]
and code-domain NOMA (CD-NOMA) [4], [5]. This paper
focuses on the power domain NOMA, which multiplexes
users’ signals in the power domain by superposition coding
at the transmitter and employs successive interference can-
cellation (SIC) to decode the message at the receiver. Link
adaptation combined with adaptive modulation and coding

(AMC) and hybrid automatic repeat request (HARQ) is an
another powerful technique to improve the system SE under
an error performance constraint by dynamically adapting the
code rate and the modulation order to the instantaneous fading
channel condition [6]. To do that, the receivers periodically
send channel quality indicator (CQI), via a feedback chan-
nel, to the transmitter to select an appropriate modulation
and coding scheme (MCS). The mapping from instantaneous
channel conditions to CQI is usually fixed to achieve a target
reliability which is predicted through link-level simulations
using a mathematical channel model.

To augment NOMA advantages, AMC has been widely
considered [1], [3], [7]–[9]. A joint power allocation and AMC
algorithm for downlink NOMA was developed in [1] to im-
prove the SE and user fairness. The authors in [7] investigated
the throughput performance of single-packet and HARQ with
blanking for NOMA systems. Moreover, the authors in [9]
proposed a resource allocation algorithm to tackle the problem
of fair resource allocation and AMC for downlink NOMA
systems. Different from [1], [7], [9], the block error rate
requirement for each user was considered as a constraint in
[8] when optimizing the AMC scheme. For uplink NOMA
systems, an asymmetric adaptive modulation framework was
introduced in [3] to address the distinct uncertainty of the bit
error rate (BER) and throughput.

Besides the above valuable works, most existing AMC-
NOMA schemes generally assume idea channel model, perfect
channel estimation and SIC [1], [3], [7]–[9]. However, it is
very difficult to obtain a high precision channel estimation due
to many factors such as the imperfections of the transmitter
and receiver circuits, which will also lead to error propagation
during SIC [10]. In addition, the time-varying aspect of the
channel and the delay in the feedback channels will also
lead to the inaccuracy of the mathematical channel model
[11]. The inaccuracy of the mathematical channel model
will significantly degrades the system performance and affect
users’ QoS of AMC-NOMA. To tackle this issue, this paper
proposes a reinforcement learning (RL) based algorithm to
optimize the selection of MCS without relying on an explicit
channel model. The main contributions of this paper are:
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Fig. 1: System model of two-user NOMA with link adaptation.

• We analyze the average throughput and SE of the NOMA
system with cross-layer scheme combining AMC and
HARQ under the assumption of perfect SIC.

• We consider a more realistic setting where the MCS
selection is inaccurate due to the imperfections in the sys-
tem, we propose signal-to-noise ratio (SNR) and signal-
to-interference-noise-ratio (SINR) based corrections to
correct MCS selection.

• We propose a RL based algorithm to optimize the SNR
and SINR corrections to ensure a maximum throughput
fairness under a packet error rate (PER) performance
constraint. up table based method.

II. LINK ADAPTATION AIDED NOMA SYSTEM

A. Fundamental of NOMA

We consider a downlink NOMA system that consists of
a base station (BS) that serves two users. Without loss of
generality, the two users are denoted as U1 and U2. We further
let x1 and x2 be the signals of U1 and U2 with a unit power,
respectively. The transmitted signal at BS is the result of the
superposition of the NOMA users’ signals with appropriate
power levels. Let α be the power fraction allocated for user
U1, then the received signal for Uj ,∀j ∈ {1, 2} is given by

yj = hj

(√
αx1 +

√
1− αx2

)
+ nj , (1)

where nj , j = 1, 2 is the additive white Gaussian noise with
zero mean and variance N0, and hj is the complexity channel
coefficient between jth user and BS. The channel is assumed
to be Rayleigh block fading, i.e., remains constant for the
duration of one block or time slot, and changes independently
between time slots. Denote gj = |hj |2/N0 as the channel
SNR of jth user. Without loss of generality, we assume that
the channels are ordered such that g1 ≥ g2. At user side, SIC
is performed to detect the transmitted message. Specifically,
the weak user (U2) directly decodes its signal by treating U1

as noise, while the strong user (U1) first decodes the signal
of U2 and then subtracted it from the received signal before
decoding its own signal. As a result, the SINRs of the two
users are respectively given as

γ1 = αg1, γ2 =
(1− α)g2
1 + αg2

, (2)

TABLE I: An example of MSC table.

TMs TM0 TM1 TM2 TM3 TM4 TM5
Modulation - BPSK QPSK QPSK 16-QAM 16-QAM
Code rate 0 1/2 2/3 5/6 2/3 5/6

under the assumption that there is no error propagation during
SIC.

B. System model of NOMA with link adaptation

To enhance SE, a cross-layer scheme combining AMC with
HARQ is incorporated for NOMA system, which is shown in
Fig. 1. The main processes are summarized as follows:

• Step 1: The BS estimates the SNR from the reported
CQIs of U1 ans U2 via the radio resource control sig-
nalling, denoted as CQI U1 and CQI U2, respectively.
The CQI is a binary representation of the communication
channel quality calculated at the receiver side.

• Step 2: The BS estimates the SINR γj , j = 1, 2 according
to (2).

• Step 3: The estimated SINRs are then mapped to corre-
sponding MCSs for U1 and U2, denoted by TM U1 and
TM U2, respectively. We assume U1 and U2 use a same
MCS table.

• Step 4: The BS re-transmits the previous packet to user
if a non-acknowledgement (NACK) is received when the
number of re-transmissions is less than the maximum re-
transmission. Otherwise, new data packet will be sent
with the selected MCS.

• Step 5: After receiving the data packet, the user will
attempt to decode the packet. If the packet is successfully
decoded, the user will feed back an acknowledgement
(ACK) to the BS. Otherwise, a NACK will be sent by
the user.

• Step 6: User estimates channel condition and calculates
SNR based on channel estimation value.

• Step 7: User maps the estimated SNR to corresponding
CQI.

• Step 8: User reports CQI and ARQ information to BS.
The AMC-NOMA system has N transmission modes

(TMs), each of them consists of a MCS. Table I shows an
example of MCS table with N = 6 TMs. We assume the entire
SINR range are divided into N non-overlapping consecutive
intervals with switching thresholds denoted by {θn}Nn=0, i.e.,

TM n is chosen, when γj ∈ [θn, θn+1). (3)

In general, we have θN = +∞, and {θn}Nn=1 are deter-
mined to achieve a target PER constraint, denoted as Ptar, and
better SE.

Remark 1: Obviously, the imperfections of the channels will
lead to error propagation during SIC and affect the accuracy
of SNR calculation, which further makes CQI unreliable at
receiver and BS. Finally, the BS makes unwise scheduling and
MCS decision based on the imperfect SINR, which reduces the
system SE and users’ QoS.



C. The average SE of AMC-NOMA with HARQ

The expected throughput performance of the TM n for the
AMC-NOMA with HARQ is given by [12], [13]

ηn(γ) = Rn · log 2(Mn) ·
1−

Nr∏
i=0

PERn,i(γ)

1 +
Nr−1∑
i=0

i∏
j=0

PERn,j(γ)

, (4)

where Rn and Mn are the code rate and modulation order
of TM n, respectively, Nr is the number of HARQ re-
transmissions, and PERn,i(γ) is the PER of TM n on the ith
re-transmission as a function of γ. The analytical expression of
PERn,i(γ) for can be approximated using curve fitting method
[14], i.e.,

PERn,i(γ) ≈
{
1, 0 ≤ γ < γpn,i

bn,ie
−cn,iγ , γ ≥ γpn,i

(5)

where the parameters bn,i and cn,i are the constants depend
on the system settings, such as channel codes, constellation,
etc. As a result, the average SE can be written as

η =

N−1∑
n=0

∫ γn+1

γn

ηn(γ)f(γ)dγ, (6)

s where f(γ) is the probability density function (PDF) of the
SINR γ. Assume that the channel SNRs g1, g2 are sampled
from an exponential distribution pg = 1

ĝ exp
(
− g

ĝ

)
such that

g1 ≤ g2, where ĝ is the average SNR for all user channels. Its
cumulative density function (CDF) is FG(g) = 1−exp

(
−G

ḡ

)
.

According to the order statistics theory, the PDF of the ordered
gj is given by [15]

fgj (x) =
J !

(j − 1)!(J − j)!
[FG(x)]

j−1
[1− FG(x)]

J−j
px.

(7)
In (6), f(γ) is the PDF of the SINR in (2), which depends

on the channel SNRs and the power allocation factors α. By
expressing the channel SNRs as function of the SINR for each
user, g1 = γ1

α and g2 = γ2

1−α−α2γ2
, the PDFs of the SINRs

for the two users’ NOMA systems are given as

fγ1(x) =
1

α
fG1

(γ1
α

)
,

fγ2
(x) =

1− α

(1− α− α2γ2)
2 fG2

(
γ2

1− α− α2γ2

)
.

(8)

By substituting (8) and 4 into (6), we can obtain the average
SE for AMC-NOMA system. However, the above analysis
does not take into account some realistic assumptions, such
as error propagation in SIC, channel estimation errors with
unknown models, etc. If we ignore them in the system design,
then the real PER can be greater than the target one resulting
in a loss in SE. To address this problem, we propose in the
next section a RL aided link adaptation for NOMA systems
to ensure that the PER is always lower than the target value
while maximizing the SE of the NOMA users.

III. THE PROPOSED REINFORCEMENT LEARNING AIDED
LINK ADAPTATION

In this section, we investigate the AMC-NOMA system
when presents the channel estimation errors and error propa-
gation during SIC. Specifically, we propose SINR and SNR
based corrections to correct the selection of transmission
model and CQI, respectively. Then, a RL-based learning
algorithm is proposed to optimize the correction process by
maximizing the system SE subject to a target PER constraint.

A. SNR and SINR estimation

We assume that the transmitter estimates the channel gain
for each user using the CQI received from it. The SNR
estimated at the transmitter is equal to the SNR threshold
corresponding to this CQI, corrupted by a random noise. In
other terms, it is the minimum SNR required to guarantee the
target PER for the TM number indicated by CQI. We assume
that the transmitter has an MCS table used to map the SINR
into MCS but this mapping is not necessarily perfect due to the
inaccuracy of the assumed channel model used to determine
the SNR thresholds. Thus the estimated SNR for user uj , when
its CQI is equal to i is

ĝj = θiϵj , (9)

where ϵj is a channel estimation error whose statistical model
is unknown for both the transmitter and the receiver. It includes
the errors/delays coming from multiple sources such as the
errors in the CQI feedback channel, the delay of the feedback
channels, the deviation from the assumed channel model, the
imperfections of the SNR measurement unit, the systematic
errors which cause bias, etc.

After estimating the SNR for each NOMA user, the trans-
mitter calculates the SINR for each user as shown in (2) to
determine its TM. In this case, the SINR for the two users are
given by

γ1 = αĝ1, and γ2 =
(1− α)ĝ2
1 + αĝ2

, (10)

resepctively. For the sake of achieving user fairness, the
transmitter chooses α such that the SINRs for both users are
equal:

α =

√
(ĝ1 + ĝ2)2 + ĝ1ĝ22

2ĝ1ĝ2
. (11)

Based on the values of γ1 and γ2, the transmitter chooses
the TMs for both users using the MCS table. The TMs for
user 1 and user 2 are denoted by TM1 and TM2, respectively.
The SNR estimation error as well as the error propagation in
SIC both affect the choice of the TMs. They can lead to PER
greater than the target one. In the following, we propose two
methods to improve the spectral efficiency of the NOMA users
in the presence of estimation errors. The first method consists
of correcting the NOMA SINR while the second consists of
correcting the channel SNR.



B. The proposed SINR correction

The SINRs in (10) estimated by the transmitter are corrupted
by the SNR estimation error and do not take into account the
error propagation in SIC. We propose to correct each SINR
by multiplying it by a correction factor as follows:

γc
1 = αĝ1δ1, γc

2 =
(1− α)ĝ2
1 + αĝ2

δ2, (12)

where δ1 and δ2 are the correction factors for the first and
second user SINR respectively. Based on the corrected SINR
values γc

1 and γc
2, the transmitter chooses the TMs for both

users TM1 and TM2. The correction factors δ1 and δ2 should
be optimized to maximize the minimum SE of user 1 and 2
under QoS constraints. We propose later to use RL algorithm
in order to optimize the correction factors. Since in RL
algorithm we need to discretize the space of the continuous
variables δ1 and δ2, we consider an alternative approach to
(12), based on correcting the TM instead of the SINR as
follows:

TM U1c = q (TM U1 + δ1) ,

TM U2c = q (TM U2 + δ2) ,
(13)

where q is a truncation function to ensure that the resulting
TM belongs to the set of admissible values and TM U1
and TM U2 are the estimated TMs for U1 and user U2

respectively, using the erroneous SINRs in (10). In this case,
δ1 and δ2 are discrete and take their values from the finite set
{0,±1, . . .± (N − 1)}.

C. The proposed SNR correction

Instead of correcting the SINR, the second method to
improve the SE is to correct the estimated channel SNRs as
follows:

gc1 = ĝ1δ1, gc2 = ĝ2δ2. (14)

Then, the BS calculates the SINR for each user using the
corrected SNR values and determines the TMs for each user.
Similar to SINR correction method, we consider an alternative
approach for the SNR correction method based on correcting
the CQI received from each user:

CQI U1c = q (CQI U1 + δ1) ,

CQI U2c = q (CQI U2 + δ2) ,
(15)

in which the correction values are discrete. After correcting
the CQIs, the transmitter uses the corrected CQI to estimate
the channel SNRs according to (9) and calculates the SINRs
which are used to determine the TM for the users.

D. RL-based link adaptation algorithm

RL is an area of machine learning which is about taking
suitable action in an environment to maximize the reward in
a particular situation, see e.g. [16]. It involves an agent, a
set of states S, and a set of actions per state A. When the
agent performs an action a ∈ A, it makes a transition from
state to state and receives a reward. The goal of the agent
is to maximize its long-term reward by optimizing the action
to be chosen in each state. Q-learning is a model-free RL

algorithm (i.e., it does not require a model of the environment)
to learn a function, called a policy that specifies the action to
be taken by the agent which is in a certain state. Therefore, it
has a Q-function that calculates the quality of each state-action
combination:

Q : S ×A → R. (16)

At each time t, after the agent selects an action at ∈ A, it
receives a reward rt and moves from the state st to a state
st+1. After that, Q is updated as follows

Q(st, at)←Q(st, at)

+ β
(
rt + ρ ·max

a
Q(st, a)−Q(st, at)

)
,

(17)

where β ∈ [0, 1] is the learning rate and ρ ∈ [0, 1] is the
discount factor. The initial values of Q are initialized to zero.

In the proposed NOMA system with link adaptation, the
model of the estimation errors is not known at the transmitter
and the receiver and is unpredictable. Hence, we propose to use
RL algorithm to optimize the correction factors as function of
the CQI received from the receivers. We define the state space,
the action space and the reward as follows:

• The states s consist of the CQIs received from U1 and
U2: s = (CQI U1,CQI U2).

• The actions a consist of the correction factors that should
be optimized for each state value: a = (δ1, δ2), δ1, δ2 ∈
{0,±1, . . .± (N − 1)}.

• The receiver of each user sends an ACK or NACK mes-
sage to the sender depending on whether the decoding of
the packet as successful or not. The reward R calculated
by the transmitter is equal to the minimum between the
instantaneous throughput of the two users:

R = min{R1 log2(M1)κ1, R2 log2(M2)κ2}, (18)

where κj = 0 if uj sends a NACK and κj = 1 if uj

sends a ACK.
At each time t when the agent is in state st, the action

at is selected to perform either exploration (randomly) or
exploitation (the action a which maximize Q(st, a)). We
choose to use the simplest approach, called ε-greedy, where
0 < ε < 1 is a parameter controlling the amount of exploration
and exploitation. The value of ε is decreased with time to
make the agent exploits more. The reward defined above does
not take into account the average PER. Although the MCS
thresholds have been optimized to meet the target PER, i.e.,
Ptar, the real measured PER can be greater than the target one
due to the errors and the imperfections in the SINR estimation.
The transmitter estimates the current average PER at a certain
episode of the Q-learning algorithm using the NACK messages
as follows:

ˆPER =
NNACK

Np
, (19)

where Np is the total number of transmitted packets and
NNACK is the number of unsuccessfully decoded packets. To
ensure that the PER is less than the target one Ptar, we set
a negative reward R− when ˆPER is greater than Ptar, where



TABLE II: MCS table in NOMA system.

TM(n) 0 1 2 3 4 5 6 7 8 9 10 11
R 0 0.2 0.25 0.3 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
M - 2 2 2 4 4 4 4 4 4 4 4
SE 0 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
10% FER SNR (θn) [dB] - −5.4 −4.5 −3.6 −2.9 −1.9 −1.1 −0.4 0.40 1.00 1.60 2.16

TM(n) 12 13 14 15 16 17 18 19 20 21 22 23 24
R 0.6 0.65 0.7 0.75 0.8 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
M 4 4 4 4 4 16 16 16 16 16 16 16 16
SE 1.2 1.3 1.4 1.5 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
10% FER SNR (θn) [dB] 2.74 3.34 3.91 4.46 5.24 6.35 7.21 8.21 9.20 10.15 11.17 12.35 14.45

Algorithm 1 RL-based link adaptation algorithm.
1: Initialize Q(s, a) = 0,∀a ∈ A, s ∈ S.
2: for episode t← 1 to T do
3: U1 and U2 perform data detection and decoding based

on SIC and corresponding channel code, and estimate
their SNRs

4: Obtain st = (CQI U1,CQI U2) and ARQ information,
i.e, κ1,t and κ2,t

5: Calculate Rt based on (18)
6: if t ≥ Nth then
7: Calculate ˆPERj =

Nj,NACK
Np

8: end if
9: if ˆPERj > PERtar then

10: Rt = R−

11: end if
12: Determine the action (δ1, δ2) = argmaxa Q(st, a) with

a probability of 1−ϵ, otherwise, select a random action
13: end for
14: return All Q(s, a)

R− tuned by the transmitter. The pseudocode of the proposed
RL based link adaptation for downlink NOMA is provided in
Algorithm 1.

IV. NUMERICAL RESULTS

We employ SIC for data detection and choose the low-
density parity check codes (LDPC) with frame length equal
to 200 bits from the 3GPP standard for 5G new radio 1 for
channel encoding/decoding. We consider the MCS table in
Table II, where the SNR thresholds θn, n = 1, 2, . . . , 25 are
calculated to achieve a target FER less or equal to Ptar = 0.1
using the above LDPC codes with perfect channel estimations.
As can be seen in Table II, there are N = 25 TMs, and
the SNR threshold ranges from −5.39 dB to 14.45 dB. The
maximum re-transmission number is Nr = 3 and Nth is set
to be Nth = 200 for a reliable average PER estimation. The
learning rate and discount factor are set to be β = 0.9 and
ρ = 0.1, respectively. An ε-greedy policy with a fixed value
of ε = 0.08 is employed during the learning phase. The goal
is to have the RL agent performs in the long run.

1http://www.3gpp.org/ftp//Specs/archive/38 series/38.212/

The baseline solutions are the fixed look-up table, which
is given in Table II, refereed to as fixed AMC. In the fixed
look-up table approach, a static mapping of SINR to MCS is
obtained by analyzing the PER curves and selecting the best
MCS that satisfies the target PER. For example, if the received
SNR is 3 dB, respectively, the transmitters will choose the TMs
12.

We first evaluate the average SE, average sum SE and
average FER of SINR based correction, which is shown in Fig.
2. The channel estimation errors for the two users are modeled
as ϵ1 ∼ N (0.3, 0.3) and ϵ2 ∼ N (0.3, 0.5), and N (m, v)
denotes a Gaussian distribution with mean m and variance
v. It is noted that the distribution of the channel estimation
errors are not known for the transmitter. Without the aid of
RL, we observe that the average FER can exceed the target
one due to the errors in the channel estimation that makes
the SNR thresholds θn inaccurate. As a result, the average SE
decreases. With the aid of RL, we observe that the average
FER is always less than the target one and the average SE is
improved.

We further evaluate the performance when the average of
the channel estimation error increases. Specifically, we plot in
Fig. 3 the average SE, average sum SE and the average FER as
function of ĝ, when the channel estimation errors for the two
users are modeled as ϵ1 ∼ N (1.2, 0.3) and ϵ2 ∼ N (1.2, 0.3).
We observe in Fig. 3(a) that the SE of the user having the best
channel is greatly reduced due to two factors: the estimation
error of its channel SNR and the error propagation in SIC due
to the high probability of choosing a wrong TM for the second
user. With the aid of RL, the transmitter is able to correct the
TMs for both user resulting in improved SE and lower FER
for both users. The performance of RL-aided link adaptation
is shown for SINR correction and SNR correction methods.
Both methods achieve similar average sum SE and are able to
meet the target FER.

V. CONCLUSION

In this paper, we introduced a RL based link adaptation
for NOMA systems. We analysed the throughput performance
and average SE of a two-user NOMA system with AMC
combining HARQ scheme conditioned on the perfect channel
information and SIC. To address the inaccurate MCS selection
due to the imperfections of SIC and channel estimation in the
system, we proposed two approaches to correct the received
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Fig. 2: Performance evaluation ϵ1 ∼ N (0.3, 0.5) and ϵ2 ∼ N (0.3, 0.8).
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Fig. 3: Performance evaluation for ϵ1 ∼ N (1.2, 0.3) and ϵ2 ∼ N (1.2, 0.3).

MCS selection, i.e., SNR and SINR based corrections. Finally,
RL algorithm was developed to optimize the SNR and SINR
correction process. Numerical results demonstrated the bene-
fits of the proposed RL-based link adaptation scheme in terms
of SE and FER.
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