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Abstract

We investigate the validity and reliability of the bootstrap approach in fund performance eval-

uation by gauging the size. Monte Carlo simulations suggest that cross-sectional dependence

may alter the size of this test and we propose a new panel bootstrap approach.
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1. Introduction

One of the cornerstones of the Market Efficiency Hypothesis (EMH) is the principle that

active investors (e.g., fund managers) do not have skills to beat the market in a persistent way.

In the last decade, the bootstrap method has become an increasingly popular way to evaluate

the performance of mutual funds (e.g., Kosowski et al. (2006); Fama and French (2010)),

hedge funds (e.g., Kosowski et al. (2007)), pension funds (e.g., Blake et al. (2013)) and even

individual investors (Meyer et al. (2012)). The great appeal of this method comes from its

simplicity and its ability to circumvent any ex ante parametric assumption on fund alphas (e.g.,

Kosowski et al. (2006); Fama and French (2010)). This method allows for the generation of the

cross-sectional distribution of fund alphas purely due to sampling variability (“luck”), against

which, the cross-section of realized alphas obtained from estimating a benchmark model is

compared. A significant difference between them is regarded as evidence of genuine skill.

Given the popularity and the seeming superiority of this approach for separating skill

from luck, it is surprising that no rigorous statistics analysis has been conducted to examine

whether it can actually lead to correct inferences on managers’ skill as researchers presumed.

Such analysis is essential to the understanding of the recent literature and the appropriate

application of bootstrap in future research. Our paper fills this gap. While it is difficult, if

not impossible, to examine the validity and reliability of the bootstrap approach, Monte Carlo

simulation appears to be the natural choice for this need.

We explicitly investigate the two potential concerns on the bootstrap method in fund per-

formance evaluation. First, the validity and reliability of this approach hinge on sample varia-

tions, i.e., the cross-sectional number of funds and time-series observations in the fund perfor-

mance evaluation area. If sample variation is not enough, the bootstrap method may inevitably

lead to a partial instead of a full picture of the underlying population due to the canonical type

I error, which prompts us to gauge the size of the application of this method to fund evalua-
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tion. This question roots in the strand of literature about hedge fund evaluation, which usually

suffers from the short time span of data (Kosowski et al. (2007)). Moreover, the traditional

fund-by-fund bootstrap does not take into account of the cross-sectional dependence, brought

by the commonly held assets of the fund managers (e.g., Blake et al. (2014)).

We gauge the size of the fund-by-fund bootstrap performance evaluation method in two

scenarios: with and without cross-sectional dependence in fund returns. Without cross-sectional

dependence, our Monte Carlo simulations demonstrate that the size of the fund-by-fund boot-

strap method approaches the conventional statistical significance level (0.05) even when we

use a realistic small number of funds and time-series observations, which means that the fund-

by-fund bootstrap method has excellent statistical properties in distinguishing skill from luck

if the fund returns are not cross-sectionally dependent. With cross-sectional dependence in

fund returns, however, the size of the fund-by-fund bootstrap method becomes much larger

than 0.05 at any quantiles including the extreme tails, which means that the statistical infer-

ences of this approach are severely biased towards identifying “skills” of fund managers. The

“skills” of fund managers identified by this approach in the previous literature may be spuri-

ous and simply due to the cross-sectional dependence in fund returns associated with common

asset holding. Although to some extent “luck” has been taken into account in this method,

cross-sectional dependence in fund returns has not.

Following the recent development on cross-sectional dependence in econometrics (e.g.,

Bai (2009); Bai and Li (2014)), we take them into account by extending the traditional boot-

strap method to a panel case with interactive effects and unobservable factors. This is very

different with the existing literature in which all factors are observable (e.g., Kosowski et al.

(2006, 2007); Fama and French (2010); Blake et al. (2013, 2014)). It is evident that not

all factors are observable (Harvey and Liu (2017a)), given the development in the literature

of the earlier CAMP-type single-factor market model to the multi-factor models such as the
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Fama-French 3-factor, 4-factor, and 5-factor models. It is promising that more factors may be

discovered in the future and we treat them as unobservable now. Indeed, one advantage of

our model is that it adopts a “let-data-speak” approach to gauge the number of unobservable

factors via a principle component analysis addon (Bai (2009)). Moreover, it is easy to see that

the usual fixed effects panel data model (e.g., Blake et al. (2014)) is a special case of our panel

data model with interactive effects.

The remainder of the paper proceeds as follows. In section 2, we introduce our panel data

model with unobservable interactive effects. Section 3 and 4 present the bootstrap procedure

and Monte Carlo simulation, respectively. We omit the classical fund-by-fund bootstrap ap-

proach for brevity, as it has been well summarized in the extant literature (e.g., Kosowski et al.

(2006, 2007); Fama and French (2010); Blake et al. (2013, 2014)). Section 5 concludes.

2. Panel data model with unobservable interactive effects

We propose the following panel data model with unobservable interactive effects to take

into account of the cross–sectional dependence:

ri t = αi + βi rmt + εi t , for i = 1, · · · , N , t = 1, · · · , T,

εi t = λ
>
i Ft + ei t , (1)

where βi is fund i’s risk loading on the market return rmt and αi is the abnormal return, which

is used to measure the fund performance, Ft(r ×1) is a vector of unobserved common factors,

λi contains the factor loadings and ei t is an idiosyncratic error term.

As mentioned in Blake et al. (2014), the standard framework has the problem that it

is potentially incomplete since it excludes fund-specific variables and other common factors

which might influence performance. With our approach, this problem can be well solved, as it
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can capture not only the observed factors but also unobserved or hidden factors. Note that rmt

can be correlated with λi alone or with Ft alone, or can be simultaneously correlated with λi

and Ft . We know that if this correlation exists, then E(rmtεi t) 6= 0, so the traditional ordinary

least squares (OLS) estimators of αi and βi will be biased and inconsistent.

It is easy to see that model (1) can be rewritten as

ri t = αi + γ
>
i zt + ei t , (2)

where γi = (βi,λ
>
i )
> and zt = (rmt , F>t )

>. Here γ>i zt can capture all the possible cross-sectional

dependence among the N funds, which includes the cross-sectional dependence resulted from

not only the observed factor rmt but also the unobserved term λ>i Ft .

Obviously, model (2) can be written as

ui t = ri t − γ>i zt , ui t = αi + ei t . (3)

Ideally, we estimate αi by the following two steps.

• First, we extract cross-sectional dependence γ>i zt by principle component estimation.

LetÕγ>i zt denotes the estimated values of γ>i zt . Under some regularity conditions, we can

show thatÕγ>i zt is a consistent estimator of γ>i zt (see, e.g., Bai (2009)).

• Second, we obtain bui t by bui t = ri t −Õγ>i zt . Then from model (3), it is easy to see that a

estimator of αi will be

bαi =
1
T

T
∑

t=1

bui t . (4)

Then we obtain bei t = bui t − bαi.

Since the extant literature (e.g., Kosowski et al. (2006, 2007); Fama and French (2010); Blake

et al. (2013, 2014)) has unanimously proposed zero skills as their null hypothesis, we, in
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this paper, focus on the type I error and the size of the bootstrap approach for performance

evaluation, which can help alleviate the probability of falsely refusing the EMH.

3. Panel bootstrap procedure for fund performance evaluation

Consider the hypothesis testing problem

H0 : α(q) = 0 versus H1 : α(q) 6= 0, for q = 0.01,0.02, 0.03,0.04, 0.05, ...

where α(q) denotes the q-th quantile of the cross-sectional distribution of α.

We evaluate the p value of the test for each quantile via the following bootstrap.

Step 1: Estimate model (2) and obtain bei t andÕγ>i zt for i = 1,2, · · · , N and t = 1,2, · · · , T .

Step 2: For the i–th fund, we sample be?i t from {bei t}Tt=1, then under the null hypothesis αi = 0,

we generate the bootstrap sample by

r?i t =
Õγ>i zt +be

?
i t .

Step 3: For the bootstrap sample {r?i t}, do the estimation in Step 1 to get bα(1)i for i = 1,2, · · · , N .

Step 4: Repeat Step 2 and Step 3 for B times to obtain bα(b)i for i = 1,2, · · · , N and b =

1,2, · · · , B.

For each given b, we compute the quantiles for bα(b)i for i = 1,2, · · · , N . Let bα(b)q denote the

q-th quantile of the bootstrapped alphas for the b-th bootstrap sample and let bαq denote the

q-th quantile of estimated alphas obtained based on the original sample.

Then at the q-th quantile, the p-value based on the estimated alphas is calculated by

pq =

∑B
b=1 I(bα(b)q < bαq)

B
, (5)
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where I(A) is an indicator function, which takes value of 1 if A is true and zero otherwise. Note

that we could also compute the p-value based on the t statistic (btα) of estimated alphas. In the

following section, we report simulation results based on both estimated alphas and btα.

4. Monte Carlo simulations

This section selectively examines and presents the results on the size of our procedure and

the benchmark bootstrap procedure of Kosowski et al. (2006). Although we have obtained

similar results from other fund-by-fund bootstrap methods suggested in the existing literature

such as Kosowski et al. (2006) and Fama and French (2010), we omit them for brevity.

We consider the following data generating processes (DGP):

ri t = αi + βi rmt + εi t , for i = 1, · · · , N , t = 1, · · · , T,

εi t = λ
>
i Ft + ei t , (6)

where αi = 0 for i = 1,2, · · · , N , βi is generated from an uniform distribution over the support

[0.5,2.0], rmt is generated from a normal distribution with mean 0.08 and standard deviation

0.15 denoted as N(0.08,0.152) and ei t is generated from a normal distribution with mean 0

and standard deviation 0.08 denoted as N(0,0.082).

We use the following two representative DGPs to gauge the size of our proposed procedure.

DGP1: λ>i Ft = 0. So there is no cross-sectional dependence in εi t under DGP1.

DGP2: λi ∼ N(0,1) for i = 1,2, · · · , N and Ft ∼ N(0,0.12) for t = 1,2, · · · , T . This means

that there exists cross-sectional dependence in εi t under DGP2.

Consulting with the actual sample in literature (e.g., Kosowski et al. (2006, 2007); Fama

and French (2010); Blake et al. (2013, 2014)), we selectively present the results for the follow-

ing combinations of N and T : {(N , T ) : (200,100), (200,200), (200,400), (400,200), (600,200)}.
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We randomly generate 500 simulations for each combination (N , T ), and for each sim-

ulation, we compute p-value following the procedure in Section 3 based on 500 randomly

generated bootstrap samples. Our results hold when we increase the number of simulations.

We plot the simulated size based on the estimated values (t-statistics) of α obtained from

our procedure and Kosowski et al. (2006) in Figure 1 (Figure 3) and Figure 2 (Figure 4) for

DGP1 and DGP2, respectively. We use “CY” and “KTWW” to denote our proposed panel boot-

strap model and the benchmark model developed by Kosowski et al. (2006), respectively.

According to Figure 1 and Figure 2, without cross-sectional dependence, the simulated

size of both Kosowski et al. (2006) and our procedure approaches the nominal size (0.05),

which means that both of them have excellent statistical properties in distinguishing skill from

luck. However, the simulated size of Kosowski et al. (2006) becomes much larger when cross-

sectional dependence exists, while our approach stays close to 0.05, which lends our procedure

a big advantage over Kosowski et al. (2006). As seen in Figure 3 and Figure 4, this conclusion

holds when we use the estimated t-statistics ( btα) instead of alphas (bαi).

5. Conclusion

We gauge the size of the fund-by-fund bootstrap performance evaluation method in two

scenarios: without and with cross-sectional dependence in fund returns. Without cross-sectional

dependence, our Monte Carlo simulations demonstrate that the simulated size of the fund-by-

fund bootstrap method approaches the nominal size (0.05) even when we use a realistic small

number of funds and time-series observations, which means that the fund-by-fund bootstrap

method has excellent statistical properties in distinguishing skill from luck if the fund returns

are not cross-sectionally dependent.

With cross-sectional dependence in fund returns, however, the simulated size of the fund-

by-fund bootstrap method becomes much larger than 0.05 at any quantile including the ex-
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treme tails, which means that the statistical inferences of this approach are severely biased

towards identifying “skills”. The “skills” of fund managers identified by this approach in the

previous literature may be spurious and simply due to the cross-sectional dependence in fund

returns associated with common asset holding. Although to some extent “luck” has been taken

into account in this method, cross-sectional dependence in fund returns is not.

To tackle this problem, we propose a panel data model with unobservable interactive

effects, which adopts a “let-data-speak” approach to gauge the number of unobservable factors

via a principle component analysis addon. The existing fixed-effects panel model (e.g., Blake

et al. (2014)) is a special case of our model. The simulated size of the test of our new model

approaches the nominal size (0.05), no matter whether there exists cross-sectional dependence

or not. The power of the proposed test procedure is out of the scope of this paper, as it may

become difficult to identify αi in some cases, which we leave as a direction for future research.

We provide researchers and practitioners with guidance in selecting specific bootstrap

method which is most appropriate, intuition regarding the possible deficiency of their spec-

ifications, as well as insights for improving the existing bootstrap method or generating alter-

native estimation methods (such as Chen et al. (2017); Ferson and Chen (2017); Harvey and

Liu (2017b)) in fund evaluation in the future.
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Figure 1: bαi-based simulated size for DGP1
The three plots in the first row are corresponding to T=100, 200 and 400 when N=200, and the three plots in
the second row are for N=200, 400 and 600 when T=200.
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Figure 2: bαi-based simulated size for DGP2
The three plots in the first row are corresponding to T=100, 200 and 400 when N=200, and the three plots in
the second row are for N=200, 400 and 600 when T=200.
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Figure 3: btα-based simulated size for DGP1
The three plots in the first row are corresponding to T=100, 200 and 400 when N=200, and the three plots in
the second row are for N=200, 400 and 600 when T=200.
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Figure 4: btα-based simulated size for DGP2
The three plots in the first row are corresponding to T=100, 200 and 400 when N=200, and the three plots in
the second row are for N=200, 400 and 600 when T=200.
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