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Abstract—Autonomous underwater vehicles (AUVs) play an
important role in deep-sea exploration, in which AUV self-
localization is a key component. However, due to poor visibility
caused by challenging marine environments, AUVs are often
equipped with high-cost and heavy-weight acoustic sensors to
accomplish localization tasks. We propose a robust real-time
AUV self-localization method based on stereo camera and in-
ertial sensor, which merges point and diagonal features, as well
as inertial measurements to overcome the challenges of poor
visibility. Our method also includes an underwater loop detection
algorithm based on the combination of points and diagonal
segments, which can extract effective binary descriptors in low-
textured underwater scenarios. Furthermore, we develop an AUV
self-localization system based on a real-time, portable, low-cost,
and small volume sensor suite. Finally, we test the proposed
method in a real underwater environment using our sensor suite,
and the experimental results demonstrate the effectiveness of
the proposed method under dramatically changing underwater
scenarios.

Index Terms—Localization, AUV, stereo vision-inertia, under-
water.

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs) have
demonstrated significant potentials in the exploitation

and utilization of marine resources in recent years, for in-
stance, deep-sea exploration, subaqueous construction, under-
water rescue, routine seafood products monitoring, pipeline
detecting and real-time seabed mapping [1], [2], [3], [4]. For
complex and dynamic marine environments, self-localization
function of AUVs is the foundation for accomplishing po-
tential applications. Self-localization capability could signifi-
cantly improve the AUV autonomy while performing tasks in
an unknown environment [5].
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The underwater environments for sensors to be used for
localization and mapping tasks is harsh. Although a few high-
precision sensors could lead to good results, the high-power
and heavy-weight limit their wider applications. Radio waves
are extremely strongly attenuated in saltwater because seawa-
ter which contains a tremendous amount of salt is a conductive
transmission medium and could significantly attenuate the
electromagnetic waves. Acoustic sensors, such as underwater
acoustic sensor networks (UASNs) [6], Doppler velocity log
(DVL) [7], sonar [8], could also provide effective localization
capability, but the high-cost and low-bandwidth hinder their
application scenarios. In particular, many breakwaters have
been built up near ports, where the magnetic interference is
strong, and some acoustic positioning devices like ultra-short
baseline (USBL) is prone to fail. And UASNs need to go
through a cumbersome installation process before deployment.
LiDAR sensors have been successfully applied in self-driving
cars due to their high precision in range. However, they are
bulky on small underwater vehicles and the propagating energy
attenuates rapidly in water.

Recently visual simultaneous localization and mapping
(SLAM) technology has demonstrated a certain level of ac-
curacy and robustness on ground mobile vehicles with the
benefits of light weight and low power consumption. Mur-
Artal et al. [9] proposed a feature-based SLAM system (ORB-
SLAM) for monocular, stereo and RGB-D cameras, which
demonstrates real-time performance. Gálvez-López et al. [10]
used the BoW technology to retrieve images, which can
effectively solve the loop detection problem. Subsequently, a
number of approaches [11], [12], [13] based on ORB-SLAM
extensions have been proposed. Most vision-based localization
algorithms [14], [15], [16], [17] were used to estimate the
pose of ground mobile robots or unmanned drones. Direct
application in large-scale underwater environments still poses
significant challenges due to the nature of complex dynamic
underwater scenes, such as texture-less images, changing
viewpoints, and motion blurs. In this paper, we propose to
use an inexpensive inertial measurement unit (IMU) sensor
together with stereo camera to implement a robust real-time
AUV self-localization algorithm to address the issues posed
by underwater challenging scenes.

Due to the ability to achieve high accuracy in localization,
visual SLAM with IMU sensors has been applied for ground
mobile platforms [18], [19]. However, when deployed directly
in marine environments, the robustness of those methods
usually decreases in low texture underwater environments.
It is not easy to find a large number of keypoint features
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and sometimes they failed to complete the planned path. Our
algorithm utilises new combined features with IMU sensors
and we evaluated that they are effective and efficient in
underwater environments. Specifically, we first extract the
ORB feature points, and then we continue to extract diagonal
segments around ORB features. In this way, some potential
linear shape elements can be extracted in a low texture
environment. Afterwards, the obtained feature points and line
segments are fused with IMU readings. Our motivation is that
the pose estimation in some challenging underwater scenes
could be compensated for with IMU information in short
intervals. Our loop detection component also benefits from
our new combined features in some challenging underwa-
ter scenes. We have successfully implemented the proposed
method on a NVIDIA TX2 platform in the Yellow Sea area.
Our system is designed as a real-time, portable, low-cost, and
small volume unit for AUV self-localization. Experimental
results demonstrate that the proposed method could produce a
small error of 0.39 m under dramatically changing underwater
scenarios and achieve real-time performance. We summarize
our contributions as follows:

• We propose an underwater self-localization scheme based
on stereo vision-inertia to solve the robustness problem
in low-textured dynamic underwater environments.

• We propose an underwater loop detection algorithm based
on the combination of points and diagonal segments,
which can extract effective binary descriptors in chal-
lenging marine environments.

• We develop a real-time, portable, low-cost, and small
volume sensor suite based AUV self-localization system,
and carry out extensive underwater experiments to test its
performance.

The paper is structured as follows. Section II gives a brief
introduction to some related works. Section III presents an
overview of the proposed robust real-time self-localization
framework for AUVs. In Section IV, we elaborate the details of
our proposed algorithm. Section V describes our experimental
results in the fire pool and the Yellow Sea. Finally, the
conclusions and directions for future work are summarized
in Section VI.

II. RELATED WORKS

Self-localization is an important technology in AUVs that
could be deployed to conduct exploration, underwater rescue
and oceanographic survey. In the early years, magnetic com-
pass was usually adopted for voyage. However, it can only
determine the course angle and cannot be used for navigation
alone. It needs to be combined with speed, initial position
and other information. At present, most underwater navigation
algorithms are based on acoustic sensors such as sonar, USBL,
DVL [20], and long baseline (LBL) [4], [21], [22]. Teixeira
et al. [23] proposed a submap-based technique that utilizes
sonar to map underwater structures with complex geometries.
In [24], the authors described a system that uses sonar and
navigation sensors to acquire features of interest in a shallow-
water ocean environment. Xu et al. [25] proposed a filtering
method for cooperative localization under compass failure

and non-Gaussian measurement noise. In [26], the authors
proposed a filtering framework, in which the factor related to
the speed of propagation of the acoustic waves in the medium
is explicitly considered and estimated. However, using acoustic
sensors to collect data in aquaculture is costly, and sometimes
deploying the underwater acoustic sensor node equipment
requires significant time to be invested.

Recently, with the rapid development of underwater com-
munication technologies, UASNs have been emergent and
are attracting the interest of numerous researchers. More
specifically, Yan et al. [6] proposed an AUV-aided localization
scheme for UASNs with current field estimation, including
AUVs, surface buoys, active and passive sensor nodes. In [27],
the authors proposed a Q-learning based delay-aware rout-
ing approach to extending the lifetime of underwater sensor
networks. This route recalculation in UASNs is very difficult
within intermediate nodes due to low intelligent sensors and
additional energy consumption. Afterwards, Lin et al. [28]
employed software-defined networking (SDN) technology and
proposed an SDN-enabled distributed architecture for delay-
sensitive spatiotemporal routing in UASNs. Nevertheless, the
long cruise distance of an AUV and limited bandwidth could
increase the transmission delay [29]. In addition, sensor nodes
often have passive motions caused by ocean currents or tides,
which could also affect the accuracy of positioning.

For terrestrial environments, self-driving cars and unmanned
aircrafts are equipped with high-precision 3D LiDAR. Rozen-
berszk et al. [30] introduced a LiDAR-only odometer and
localization system that could deal with the challenges of
globally localizing a vehicle in urban scenarios. In [31],
the authors proposed a global localization scheme using 3D
LiDAR scan, which relies on learning-based descriptions of
point cloud segments and computes the full 6-DOF pose
in a map. In order to achieve better performance in road
estimations, some researchers adopted the strategy of fusing
multiple sensors. For example, Gu et al. [32] proposed a road
detection method based on a multi-modal conditional random
field, which combines both sparse LiDAR point clouds with
dense camera images for road detection in real-time. However,
underwater vehicles in civil fields are always equipped with
low-cost sensors and low computational resources. As the size
of LiDAR is large, it is not suitable for small water spaces.

Cameras have the potential to make localization systems
more cost-effective. In the literature, some kinds of vision-
based methods have been applied to the localization of un-
manned equipment [33], [34], [35], [36]. Lippiello et al. [37]
presented a pose tracking system based on a single camera to
localize an aerial drone. Rublee et al. [38] proposed a fast and
accurate binary descriptor based on BRIEF, called ORB, which
is rotation invariant and resistant to noise. Then, Mur-Artal et
al. [39] presented ORB-SLAM using ORB features. In order
to further improve the robustness, some researchers have made
extensions on top of ORB-SLAM. Zuo et al. [40] developed
a robust efficient visual SLAM system based on ORB-SLAM,
which utilizes point and line features. In [41], the authors
proposed a stereo visual SLAM system that combines both
points and line segments to improve the robustness. However,
none of these methods is combined with IMU information and
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Fig. 1. The outline of the proposed algorithm.

they have not been applied for underwater applications.
Thanks to the low-cost IMU, vision camera is often com-

bined with IMU and other sensors to improve the estimation
of pose. An IMU consists of accelerometers measuring linear
acceleration and gyroscopes measuring angular velocity. Due
to the drift of accelerometers and gyroscopes, the estimation
error will increase with time. In [18], the authors proposed
a visual-inertial fusion methodology for state estimation with
online calibration refinement. Wang et al. [42] proposed an un-
derwater self-localization method based on Pseudo-3D vision-
inertia for AUVs, which merges depth information with a 2D
visual image to achieve continuous and robust localization.
Eisele et al. [43] developed and experimentally validated a
plenoptic navigation system on a low-cost central processing
unit, which validates that vision-inertia is feasible in unstable
marine environments.

Different from other existing studies that employ costly
sonars, USBLs, or LiDARs to acquire measurement data,
our proposed scheme, as described in the following section,
includes a stereo camera, and a low-cost IMU to improve
the performance of underwater self-localization estimation.
A key feature of our localization method is to achieve the
pose estimation for a miniature underwater vehicle with low-
cost sensors and limited computational resources. Therefore,
a robust underwater self-localization method for AUVs is
proposed. Since our method is based on underwater vision
and inertia, we would like to highlight the main differences
with other papers. For example, compared with [13], we do
not need a pose constraint from acoustic odometry to link

two submaps. Compared with [44], our optimization scheme
is better than its extended Kalman filter (EKF) framework, i.e.
we can reduce the accumulated error with time. In addition,
we do not need to prepare artificial markers in advance. It is
more suitable for unknown underwater environments.

III. SYSTEM OVERVIEW

The architecture of the proposed robust real-time AUV self-
localization system based on stereo vision-inertia is shown
in Fig. 1. The system starts with a measurement preprocess-
ing module, in which point and diagonal segment features
are extracted and tracked, and IMU measurements between
two consecutive frames are pre-integrated. The stereo visual
odometry module matches the stereo keypoints, and then
estimates the pose by detecting the changes. After inserting
a new keyframe, the local mapping and loop closing modules
begin to perform in parallel. In both processes, we use all
IMU measurements, local visual measurements and feature
correspondences retrieved from loop closure to optimize the
AUV pose. Finally, the map merging module performs global
optimization to update the 3D trajectory of the AUV after
eliminating the drift. The aforementioned modules run con-
currently in a multithread setting. Each module has different
running rates and real-time guarantee to ensure that the whole
system runs reliably at all times.

Table I shows the main notations used in this paper. We
define the IMU coordinate system as the right-handed, which
is the same as the body frame. The axis directions are show
in Fig. 2.
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TABLE I
NOTATION DEFINITIONS

Name Description

(·)w The world frame

ba The accelerometer biases

bw The gyroscope biases

gw The gravity vector in the world frame

na The additive noise in acceleration measurements

nw The additive noise in gyroscope measurements

R The rotation matrices

pk The position states of the kth frame

vk The velocity states of the kth frame

SO(3) The special orthogonal group

SE(3) The special Euclidean group

Exp R3 → SO(3)

Log SO(3) → R3

△t The sampling period of the IMU

X

Y
Z

IMU coordinate system

Fig. 2. The IMU coordinate system of the underwater vehicle.

IV. UNDERWATER STEREO VISUAL-INERTIAL
SELF-LOCALIZATION METHOD

This section describes the proposed real-time self-
localization algorithm. The main modules in Fig. 1 will be
described with details in the subsections below.

A. Measurement Preprocessing

The raw accelerometer â and gyroscope ω̂ measurements
from IMU are represented as:

ât = at + bat
+Rt

wg
w + na,

ω̂t = ωt + bwt
+ nw. (1)

We consider ât and ω̂t are measured in the body frame, and
we define the IMU frame to be the same as the body frame.
The IMU measurements are affected by acceleration bias ba,
gyroscope bias bw, and additive noise. We assume that the

additive noise in acceleration and gyroscope measurements are
Gaussian, na ∼ N (0, σ2

a), nw ∼ N (0, σ2
w):

ḃat = nba ,

ḃwt = nbw . (2)

All the state information for the visual-inertial optimization
is defined as follows:

Xk ≃ {Rk,pk,vk,ba,bw}, (3)

where Xk represents the IMU state when taking the kth image.
The above formula includes the orientation, position and
velocity of an IMU measurement, as well as the acceleration
bias and gyroscope bias in the IMU body frame.

We denote △t as the sampling period of the IMU, i and
i + 1 as two consecutive IMU measurement time instants, n
and n + 1 as two consecutive keyframe time instants. Fig. 3
shows the different rates for the IMU and camera. The motion
estimate between time n and n+ 1 can be computed as:

Rn+1 =Rn

i+l−1∏
t=i

Exp ((ω̂t − bwt − nw)△t) ,

pn+1 =pn+

i+l−1∑
t=i

[
vt△t+

1

2
g△t2+

1

2
Rt (ât−bat−na)△t2

]
,

vn+1 =vn+

i+l−1∑
t=i

g△t+

i+l−1∑
t=i

Rt(ât − bat
− na)△t, (4)

where l is the number of IMU measurement steps between
two keyframes.

k k+1Δt

Pre-integrated 

IMU

IMU

k+2 t

n+1n

i+li+1i

Fig. 3. Illustration of the different rates for IMU and camera.

We preintegrate the IMU measurements between two con-
secutive underwater images. Then we can obtain the rotation,
position and velocity states of the (k + 1)th frame as the
initial value for the visual odometry. They can be written
as Bk,k+1 = (△Rk,k+1,△pk,k+1,△vk,k+1), and the infor-
mation matrix for the measurements is

∑
Bk,k+1

. The IMU
measurement residual rBk,k+1

can be stated as:
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rBk,k+1
=

[
rT△pk,k+1

, rT△vk,k+1
, rT△Rk,k+1

]T
,

r△Rk,k+1
= Log(△RT

k,k+1R
T
kRk+1),

r△pk,k+1
= RT

k (pk+1 − pk − vk△t− 1

2
g△t2)−△pk,k+1,

r△vk,k+1
= RT

k (vk+1 − vk − g△tk,k+1)−△vk,k+1. (5)

B. Stereo Visual Odometry

We extract point and diagonal segment features in stereo
underwater images and search for matches for each left feature
in the right image. After establishing the corresponding rela-
tionship between two stereo frames, we project the keypoints
and their diagonal features from the current frame to the
next frame. We estimate the camera motion iteratively by
using Gauss-Newton least-square [45], [46] to minimize the
projection errors of the keypoints and their diagonal features.
The motion estimation between the kth and (k + 1)th frames
can be expressed by Tk,k+1.

It is assumed that the stereo image is corrected so that
the epipolar line is horizontal. Then, we generate the stereo
keypoint with the coordinates of the left feature and the
horizontal coordinate of the right match. In the extraction
of point features, we leverage the ORB features method [9]
which provides good invariance to changes in viewpoint and
illumination and allows for a fast, efficient keypoint matching.
We define rk,j as the reprojection errors at the kth frame for
a position pj :

rk,j = uk+1,j − π (Tk,k+1,uk,j) , (6)

where uk,j is the visual observation of a point pj at the kth

image, uk+1,j is the visual observation of the same point at
the (k + 1)th image, j ∈ [1,m]. π is the back projection
function, which projects a pixel at current frame into a pixel
at next frame using camera intrinsic parameters and Tk,k+1.
The information matrix is defined as Σk,j .

When all ORB features are extracted in the frame, we
extract the line segments similar to four-rectangle features
around its points. As shown in Fig. 4, we take 5 pixels up
and down the diagonal direction of the feature point to form
a new line segment, which looks very similar to a diagonal
feature.

(u+1, v+1)
(u+2, v+2)

(u+3, v+3)
(u+4, v+4)

bj (u+5, v+5)

(u-1, v-1)
(u-2, v-2)

(u-3, v-3)
(u-4, v-4)

aj (u-5, v-5)

pj (u, v)

Fig. 4. Illustration of a point and its diagonal segment feature.

We define ak,j , bk,j as the 2D endpoints of a diagonal
segment dk,j in the kth frame, ak+1,j , bk+1,j as the 2D
endpoints located on the corresponding diagonal segment in
the (k + 1)th frame. The normalized line can be written as:

dk+1,j =
ak+1,j × bk+1,j

|ak+1,j × bk+1,j |
, (7)

where dk+1,j is the jth diagonal segment in the (k + 1)th

frame.
We then define the error function ek,j to represent the

distance between the endpoints of the diagonal segment in the
kth frame and its corresponding line in the (k + 1)th frame.
The line reprojection error ek,j can be expressed as:

ek,j =

[
dk+1,j · π (Tk,k+1,ak,j)
dk+1,j · π (Tk,k+1, bk,j)

]
. (8)

C. Local Mapping

In order to ensure the real-time performance of the system,
the local mapping and loop closure detection module described
in the next subsection will be performed only when a new
keyframe is inserted. The keyframe includes the observed
stereo features and their descriptors, and the visual descriptors
corresponding to the left image calculated by the visual
vocabulary. After a new keyframe is inserted, the system starts
to perform the bundle adjustment procedure of the local map.

Given a set of keyframes N with their state vectors
{X0,X1, · · ·Xk, · · ·XN}, a set of observation points m
with their state vectors {u0,0,u0,1, · · ·uk,j , · · ·uN,m},
and a set of observation positions of the endpoints
for diagonal segments m with their state vectors
{(a0,0, b0,0), (a0,1, b0,1), · · · (ak,j , bk,j), · · · (aN,m, bN,m)},
we can define the vector χ, which contains all the above
state vectors to be optimized. The vision-inertia optimization
function can be written as:

min
χ


N∑

k=1

∥∥rBk−1,k

∥∥2
ΣBk,k+1

+

N∑
k=1

m∑
j=0

ρ
(
∥rk,j∥Σk,j

)

+

N∑
k=1

m∑
j=0

ρ
(
∥ek,j∥Σk,j

) , (9)

where ρ is used to decrease the impact of spurious matchings
in the reprojection error.

D. Loop Closing

We extend a DBoW2 method [10], a bag-of-word place
recognition approach, to improve the underwater loop closure
detection process using points and diagonal segments. This
procedure is performed in parallel with the local mapping
module. We extract the visual descriptor information of key
points and diagonal segments from each underwater image,
then stack them into a word vector, and finally construct a
vocabulary from different underwater datasets. When running
the loop closure detection module, the system searches the
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database for the image which contains the word most similar
to the current keyframe.

Once a loop closure is successfully detected, we correct
the error distributed along the loop, which is solved by the
pose graph optimization. Tn,n+1 ∈ SE(3) is the motion
estimation between the nth and (n+ 1)th keyframes. During
the optimization, the corresponding element ξn,n+1 ∈ se(3)
of the associated Lie-algebra is given. We can write the error
function as follows:

Ln,n+1 (ξn, ξn+1) = log (exp (ξn,n+1)

· exp (ξn+1) · exp (ξn)−1
)
, (10)

where log : SE(3) 7→ se(3) is the matrix logarithm which
maps a transformation matrix to an element on the tangent
space, exp : se(3) 7→ SE(3).

We leverage the general graph optimization (g2o) library
[47] to solve the pose graph optimization problem and ob-
tain the optimized pose of keyframes. The landmarks (both
keypoints and diagonal segments) observed are updated while
updating the pose of the keyframes. We estimate their relative
motion by fusing the matched landmarks. Concretely, we seek
a match between the features from both keyframes while
also searching for a new correspondence between the current
keyframe and the local map associated with the old keyframe.
Finally, we merge the local maps on both sides of the loop.

E. Map Merging

In this paper, we fuse the features of points and diagonal
segments extracted from stereo underwater images, as well
as the measurements from IMU. We use the sliding window
of keyframes and their points as the optimizable variables. All
underwater features seen by all these keyframes, and keyframe
poses observing these features are also optimized. Here, the
features and keyframes are associated through reprojection er-
rors. In the map merging process, the pose graph optimization
is able to propagate the loop correction to the rest of the map.
Then, after considering the mid-term and long-term matching
of the loop closure, the global bundle adjustment is used to find
the pose estimation. Note that the global bundle adjustment is
implemented only when the number of keyframes is lower than
the threshold to avoid the huge computational costs. After the
graph optimization and global bundle adjustment, the system
will update the 3D trajectory of the AUV.

V. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

We test the proposed method in real dynamic underwater
scenarios to evaluate its performance. The self-design un-
derwater vehicle for algorithm verification consists of the
following components:

• NVIDIA Jetson TX2,
• Forward-looking stereo global shutter camera with 752×

480 resolution,
• Inertial measurement unit (ADXL326 and ADXRS620,

package alignment error: ±1 degrees, interaxis alignment
error: ±0.1 degrees),

• Lithium-ion rechargeable battery (24VDC, 10Ah).
The custom-made sensor suite was designed for underwater

scenario localization and mapping as the target application.
Extensive experiments were carried out in a fire pool and the
Yellow Sea. The size of whole underwater vehicle system is
550 × 400 × 300 mm3 in dimensions. It consists of a forward-
looking stereo global shutter camera, an IMU, a pair of LEDs,
a lithium-ion battery (Charging Voltage: 220VAC), etc. The
AUV is driven by the lithium battery and is equipped with
four thrusters, including two plane omnidirectional thrusters
and two vertical thrusters, as shown in Fig. 5.

Fig. 5. The picture of the underwater vehicle testbed that we used for the
experiment. It includes a forward-looking stereo global shutter camera, an
IMU, a depth gauge, a pair of LEDs, etc.

The underwater real scene experiment is an arduous task in
reality, which is limited by a variety of conditions. We first
set up water tank experiments to test the motion performance
of the AUV, as shown in Fig. 6 (a). To quickly evaluate the
performance of the algorithm in real-time, we use a display
emulator on NVIDIA TX2 to debug the underwater system
through a remote desktop so that we can obtain a high-
resolution remote desktop for operation.

In order to fairly evaluate the proposed method and facilitate
the comparison with the ground truth, we have also carried
out experiments in the Yellow Sea area, as shown in Fig.
6 (b). It can be seen from Fig. 6 (b) that there are some
stones scattered along the coast of the port. We manipulated
the AUV to move along the parallel direction of the stones,
and its movement direction is shown by the red arrow in Fig.
6 (b). Due to the influence of waves in the ocean, the AUV
was easily failed to move even in the straight line. Here we
used a PID algorithm to mediate the control system of the
AUV so that it can navigate in the predefined direction. At
the same time, we use an Unmanned Aerial Vehicle (UAV) to
track the trajectory of the AUV in real-time. Since we have
no ground truth in the Yellow Sea experimental environment,
we evaluate our method using the GPS data of the UAV as
the ground truth.

B. Experimental Results

This section presents the experimental results. We set up
two different experimental environments, and all data are
collected by our custom-made underwater sensor suite. To
collect datasets under different scenarios, ROS [48] has been
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(a)

(b)

Fig. 6. Underwater experiment scene. (a) The picture of the water tank
experiment. (b) Top view of the Yellow Sea experiment, taken by a UAV.

used to record data in bag files. The features tracked by the
forward-looking camera in the dim underwater environment
are shown in Fig. 7. As it can be seen in the example shown
in Fig. 7, the proposed method can extract point and diagonal
features in the low-textured dynamic underwater environment.
The detailed results of the two experiments are as follows:

Fig. 7. Features tracked by the forward-looking camera in the Yellow Sea.

In the first experimental scenario of the port, we chose a
place with a right angle for testing, as shown in Fig. 8 (a). We
operated the AUV to move in the direction of the red arrow in
Fig. 8 (a), and (b) shows the trajectory generated by Pangolin,
which is a lightweight library for managing visualization
and user interaction that wraps OpenGL functions. We also
compare the results of the proposed method with the ground
truth to evaluate our algorithm. Fig. 9 shows the detailed com-
parison results. Note that after losing the IMU compensation,
the tracking is often lost at the corner, resulting in localization
failure. Fig. 9 (c) shows the incomplete trajectory. Clearly, our
visual-inertial scheme and loop closure detection are effective.
In order to further verify the effectiveness of the proposed

method in the loop closure detection, we manipulated the
AUV to move a rectangular trajectory. Fig. 10 shows the loop
closure detection result, which demonstrates that our system
successfully detects that the AUV returned to the starting
position.

(a)

(b)

Fig. 8. Experimental results of the proposed method at the port. (a) The real
scene of the experiment in the Yellow Sea, where the most data in this paper
were collected. (b) Aerial view of real-time AUV localization and mapping at
right angles. Both blue and green represent map points, where green represents
current local map points and red represents keyframes.

As we have described in the Introduction section, many
breakwaters have been built up near the port. The magnet
interference there is strong, and some acoustic positioning
equipment is prone to failure. We also tried to use SeaTrac
X150 USBL micro positioning system to generate the tra-
jectory at the right angle of the port, but unfortunately, the
positioning trajectory is prone to drift. Fig. 11 shows the tra-
jectory drift by the SeaTrac PinPoint-Underwater-Navigation
Software. We can intuitively see that the SeaTrac X150 USBL
positioning system is not suitable for this coastal environment
with a magnetic field. It further shows that our method is
effective.

In the second experimental scenario of the Yellow Sea
area, we did not test the proposed system near ports in the
shallow sea, but far from the coast. The scenario we set up is
shown in Fig. 12 (a). In this complex dynamic environment,
it was quite hard for us to get the ground truth. We used the
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Fig. 9. Comparison of trajectory (blue) and ground truth (red). (a) Our method (Stereo camera+IMU+Loop). (b) Our method without loop (Stereo camera+IMU).
(c) Our method without IMU (Stereo camera+Loop). Best viewed in color.

Fig. 10. Experimental results of the proposed system in underwater loop
closure detection. Both blue and green represent map points, where green
represents current local map points and red represents keyframes.
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Fig. 11. Drift trajectories are generated in the SeaTrac PinPoint-Underwater-
Navigation Software.

custom-made sensor suite to evaluate the proposed method by
navigating around the visible rocks. Based on our experimental
equipment, we can only evaluate it visually without the ground
truth. Fig. 12 (b), (c) and (d) show aerial views of trajectories
generated by the visualization tool in Pangolin, respectively.
It also shows the position of visual features. It is obvious that
the proposed system draws the trajectory in real-time as the
AUV gradually moves forward, up and down. Therefore, the
results show that our method also works in marine space far
from the coast.

To validate the performance of the proposed localization
system, we calculated the average processing time of three
threads: visual odometry, local mapping, and loop closing,
and analyzed the Root Mean Square Error (RMSE) by us-

ing NVIDIA Jetson TX2 in experimental scenarios. Detailed
statistics are shown in Table II. Please note that while the
visual odometry is continuously processing new frames, local
mapping and loop closing run in parallel threads. In particular,
the loop closure detection does not need to process each frame.
The visual odometry thread processing time is 98 ms, which
shows that the localization system can run in real-time. In
the stereo-inertial configuration, the RMSE of our system is
0.39 m. Subsequently, we tested the proposed system without
any loop closure detection, and the localization accuracy
decreased significantly, increasing to 0.66 m. Finally, we tested
the proposed system without IMU. Unfortunately, the system
performed poorly or even fails. Especially when the AUV
sailed to a corner in low-textured underwater environments,
the system was prone to collapse after the tracking was lost. In
this case, we cannot obtain the complete underwater trajectory.
We used the partial trajectory to calculate the error, which
increases to 3.07 m.

TABLE II
STATISTICS FOR ALGORITHM PERFORMANCE

Average Runtime (ms) Localization Errors (m)

Visual
Odometry

Local
Mapping

Loop
Closing

Stereo+IMU
With Loop

Stereo+IMU
Without Loop

Stereo+Loop
Without IMU

98 251 39 0.39 0.66 3.07

We also analyzed the Mean Absolute Error (MAE) for
the localization while using the stereo-inertial configuration.
The MAE value is 0.44 m. Fig. 13 illustrates the cumulative
distribution functions (CDFs) of the localization errors. Mean-
while, we compare our method with two related underwater
localization methods proposed by Jung et al. [49] and Lee et
al. [50], both of which are vision-based localization for AUVs.
The comparison of localization accuracy is shown in Table III.
As we can see from the results that our method has a smaller
RMES than the other works, and the self-localization system
has advantages in coastal environments with a magnetic field.

C. Influence of different times on results

Real-time AUV self-localization in an unstable marine en-
vironment is a challenging task. Water flow or tide, particles
and plankton all could cause various imaging backgrounds,
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(a) (b)

(c) (d)

Fig. 12. Experimental results of the proposed method for AUVs in marine space far from the coast. In (a), we chose an area located far from the coast.
Aerial views of the different trajectories are shown in (b), (c) and (d). It can be clearly shown that the proposed system is also suitable for similar selected
complex areas. (a) The experimental scenario is far from the coast. (b), (c) and (d) Aerial views of the different trajectories shown in Pangolin. Both blue
and green represent map points, where green represents current local map points and red represents keyframes.

TABLE III
COMPARISON OF LOCALIZATION ACCURACY

Method Jung et al. [49] Lee et al. [50] Ours

RMSE (m) 0.67 0.52 0.39
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Fig. 13. CDF of localization errors.

which could bring the noise to the system. In order to compare
the influence of dynamic water current, low illuminations and
colour shift on the experimental results, we tested the proposed
system at different times of the day. At 7:00 am, at low tide,
the sea was quiet and the underwater light was sufficient. At
this moment, the RMSE was 0.36 m. At 11:00 am, the AUV
floated slightly with the water during the rising tide of the

sea. The RMSE now was increased to 0.39 m. At 2:00 pm,
the sea was at a high tide, and the AUV swung greatly with
the water. The RMSE was 0.44 m, and sometimes the system
was prone to collapse. At 6:00 pm, the light intensity in the
Yellow Sea was weak and the colour of the water was dark. At
this time, it was easy to lose features, resulting in localization
failure. We leveraged auxiliary LED lights to cope with low
light conditions, and the RMSE was 0.52 m.

VI. CONCLUSION

This paper proposed a robust underwater self-localization
scheme based on stereo vision-inertia with low-cost sensors
and low computational processors. Specifically, this method
merges point and diagonal features, as well as IMU measure-
ments to overcome the challenges caused by complex unstable
marine scenarios. Our underwater loop detection algorithm is
based on the combination of points and diagonal segments,
which can extract effective binary descriptors. In addition, we
develop an AUV self-localization system based on a real-time,
portable, low-cost, and small volume sensor suite, including a
stereo camera, and a low-priced IMU. Our proposed method
was evaluated by our custom-made underwater sensor suite
on real-world maritime space. Experimental results show that
the proposed approach can implement the localization task
with an accuracy of 0.39 m. In particular, our scheme is
more suitable than the SeaTrac X150 USBL for accurate AUV
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self-localization in coastal environments with magnetic fields.
Therefore, the proposed underwater self-localization approach
provides an effective navigation solution for AUVs in the
complex marine environment.

It should be noted that there is still a great many of work
to be done for the AUV in order to further improve the
localization and mapping accuracy. For example, how to use
the strong feature learning ability of deep neural networks
to extract potential features? How to improve the accuracy
of localization in challenging unstable marine environments?
How to apply decentralized visual SLAM to AUVs in extreme
circumstances? We will try to address some of these challenges
in our future research.
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