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Abstract

In this paper we use a deep quantile estimator, based on neural networks and

their universal approximation property to examine a non-linear association between

the conditional quantiles of a dependent variable and predictors. This methodology

is versatile and allows both the use of different penalty functions, as well as high

dimensional covariates. We present a Monte Carlo exercise where we examine the

finite sample properties of the deep quantile estimator and show that it delivers good

finite sample performance. We use the deep quantile estimator to forecast Value-at-Risk

and find significant gains over linear quantile regression alternatives and other models,

which are supported by various testing schemes. Further, we consider also an alternative

architecture that allows the use of mixed frequency data in neural networks. This paper

also contributes to the interpretability of neural networks output by making comparisons

between the commonly used SHAP values and an alternative method based on partial

derivatives.
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Since the seminal work of Koenker and Bassett (1978) and Koenker and Hallock
(2001), quantile regression has grown in popularity and has found applications in several
disciplines both in academia and industry, see e.g. Chernozhukov and Umantsev (2001),
Adams, Adrian, Boyarchenko, and Giannone (2021) and Koenker, Chernozhukov, He, and
Peng (2017). They generalize ordinary sample quantiles to the regression setting, that
give more extensive information on the conditional distribution of a dependent variable,
given the covariates, relative to the classical regression setting; i.e. estimation of the
conditional mean. This extension can be of great importance under extreme events, where
the conditional distribution of variables such as asset returns tends to exhibit skewness, or
under the presence of outliers and/or asymmetries, see e.g. Baur and Schulze (2005).

An assumption made in the early literature, was the linear association between the
conditional quantile of the target variable and predictors. This was predominately an
assumption that allowed for streamlined computation and theoretical inference, but was
clearly restrictive. A more recent strand of the literature, relaxed the linearity assumption
and considered non-parametric estimators for the conditional quantile, that is based on
different methods, see e.g. Belloni, Chernozhukov, Chetverikov, and Fernández-Val (2019)
and references therein. Recent advances in Machine Learning (ML) literature, which is the
focus of this paper, show how modelling frameworks such as neural networks can be used
to estimate general, non-linear and potentially highly complicated associations.

Specifically, a large number of studies have shown that feed-forward neural networks
can approximate arbitrarily well any continuous function of several real variables, see e.g.
Hornik (1991), Hornik, Stinchcombe, and White (1989), Gallant and White (1992) and Park
and Sandberg (1991). Recent work by Liang and Srikant (2016) and Yarotsky (2017), extends
this result for feed-forward neural networks with multiple layers, provided sufficiently
many hidden neurons and layers are available. Notice that, besides neural networks, other
non-parametric approaches, e.g. splines, wavelets, the Fourier basis, as well as simple
polynomial approximations, do have the universal approximation property, based on the
Stone-Weierstrass theorem.

There is considerable empirical work identifying non-linearities and asymmetries in
financial variables, see e.g. Gu, Kelly, and Xiu (2021), Gu, Kelly, and Xiu (2020), He and
Krishnamurthy (2013) and Pohl, Schmedders, and Wilms (2018), where they illustrate that
ML offers richer functional form specifications that can capture potential non-linearities
between dependent and independent variables. Some examples include Gu, Kelly, and
Xiu (2020) in which, they evaluate the forecast accuracy of machine learning methods in
measuring equity risk premia, and find that neural networks give substantial forecasting
gains in asset pricing compared to linear models, and Bucci (2020), where a recurrent
neural network is proposed, that approximates realised volatility well and outperforms
other classic non-linear estimators in forecasting. In a similar fashion, Smalter Hall and Cook
(2017) use several neural network architectures to predict unemployment in the U.S. and find
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that neural networks outperform forecasts from a linear benchmark model at short horizons.
In addition, Gu, Kelly, and Xiu (2021) propose the use of a conditional Autoencoder1, and
illustrate its superior performance relative to linear unsupervised learning methods.

Before we discuss the contributions of this paper, we provide a succinct summary
of the current machine learning literature on non-linear quantile and Value-at-Risk (VaR)
estimation, but we note that the majority of this work, was not available during the writing of
this paper. Keilbar and Wang (2022) use neural networks to estimate a non-linear conditional
VaR model introduced by Tobias and Brunnermeier (2016) and find that, it gives significant
gains in modelling systemic risk. In addition, Tambwekar, Maiya, Dhavala, and Saha (2022)
estimate a non-linear binary quantile regression and develop confidence scores to assess
the reliability of prediction. Padilla, Tansey, and Chen (2022) examine the performance of
a quantile neural network using the Rectified Linear Unit (ReLU) as activation function
and show that it has superior statistical performance relative to other quantile regression
methods. Chen, Liu, Ma, and Zhang (2020) propose a unified non-linear framework, based
on feed-forward neural networks, that allows the estimation of treatment effects, for which
they establish consistency and asymptotic normality. Their framework includes the quantile
estimator and allows for high-dimensional covariates. ML based estimators for quantiles
have been proposed in other fields, see e.g. Meinshausen (2006), where quantile random
forests are introduced, and Zhang, Quan, and Srinivasan (2018) that propose a quantile
neural network estimator.

In this paper, we contribute to the expanding literature on the use of ML in Finance and
use a deep quantile estimator that can capture non-linear associations between asset returns
and predictors to forecast VaR. Note that this estimator also allows for high dimensional
data. We further consider an alternative architecture that allows the use of mixed frequency
data. We also contribute towards the explainable machine learning literature, by proposing
the use of partial derivatives as a means to "peeking" inside the black box.

We first explore the small sample properties of the deep quantile estimator via Monte
Carlo experiments, which show that the estimator delivers good finite sample performance.
Then we examine the performance of the deep quantile estimator, in the context of one of the
most widely examined problems in finance: that of measuring and subsequently forecasting
the risk of a portfolio adequately, via VaR modelling. VaR is a popular model that was
first introduced in the late 80s and since then, has become a standard toolkit in measuring
market risk. It measures how much value a portfolio can lose within a given time period
with some small probability, τ. VaR and quantiles are related in the following manner, let
r = (r1, . . . , rT)

′ denote the returns of a portfolio, then, the τth VaR is equivalent of computing
the negative value of the τth quantile of r, −qτ(r).

In this paper, we argue, following the non-parametric literature, that the linear rela-
tionship between VaR and predictors can be restrictive and use the deep quantile neural

1Autoencoders are artificial neural networks that can be used as a dimensionality reduction technique.

3



network estimator that allows a non-linear association between covariates and VaR. This
method appears particularly suitable for developing sound predictions for the past stock
return losses in the U.S. over the sample period from September 1985 up to August 2020, the
importance of which has been brought to the forefront by the recent COVID-19 pandemic.
Specifically, our aim is to forecast ten-day ahead VaR produced from daily VaR forecasts. We
use daily frequency returns in a fixed forecasting framework that is outlined below.

Under this forecasting framework, mixed frequency models become relevant bench-
marks to the non-linear quantile estimator, see e.g. Ghysels, Plazzi, and Valkanov (2016).
Hence, we also include a linear MIxed DAta Sampling (MIDAS) model as a competitor and
also a non-linear MIDAS model, which is an extension to the deep quantile estimator. Fur-
ther, we consider ten-day compounded VaR forecasts that exhibit similar patterns, which we
relegate to the Online Appendix.

We are not the first to use ML methods for VaR forecasting, see e.g. Du, Wang, and
Xu (2019), where they propose a recurrent neural network, as a forecasting methodology
for the VaR model and exhibit an improved forecast performance relative to traditional
methods. To the best of our knowledge though, there has been no application that uses a
neural network quantile estimator in finance for forecasting VaR. Note that in this paper we
consider a set of neural networks that allows for mixed frequency estimation, following the
current literature see e.g., Xu, Liu, Jiang, and Zhuo (2021), Borup, Rapach, and Schütte (2022)
and Babii, Ghysels, and Striaukas (2022b).

Our empirical analysis shows that the deep quantile estimator outperforms the linear,
MIDAS and other non-parametric quantile models, in forecasting VaR. We assess the
forecasting accuracy between models based on two statistical tests. The first is the Diebold
and Mariano (1995) test with the Harvey, Leybourne, and Newbold (1997) adjustment, and
the second is the Giacomini and White (2006) test. Results from both tests suggest that the
neural network estimator has higher accuracy in forecasting VaR. We use the linear quantile
method as a benchmark to assess whether the deep quantile estimator has predictive gains or
not. This measure illustrates gains up to 98% relative to the linear one, for the deep quantile
estimator and up to 84% for the non-linear MIDAS model. Further, we use the quantile score
test that provides further evidence in favour of the neural network estimator.

We further examine whether the deep quantile estimator nests forecasts produced from
the linear and other non-parametric models, using the encompassing test of Giacomini and
Komunjer (2005). Overall, we find that forecasts from the deep quantile estimator encompass
forecasts from competing models more times than vice versa. There are some cases where the
test is inconclusive, suggesting that a forecast combination from a different pair of models
would provide a better result, which is in line with the result of Bates and Granger (1969).

While ML methods show a great capacity at both approximating highly complicated
non-linear functions and forecasting, they are routinely criticized as they lack interpretability
and are considered a "black box"; in the sense that they do not offer simple summaries of
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relationships in the data. Recently though, there has been a number of studies that try
to make ML output interpretable, see e.g. Athey and Imbens (2017), Wager and Athey
(2018), Belloni, Chernozhukov, and Hansen (2014), Joseph (2019). In this paper we also
try to understand in a semi-structural fashion, which variables impact the forecasting
performance of the deep quantile estimator more. To this end, we first use Shapley Additive
Explanation Values (SHAP) as proposed by Lundberg and Lee (2017) and further developed
in Joseph (2019), that have started to become a standard tool for interpretability in ML
methods. Further we use partial derivatives, as a means of investigating the marginal
contribution/influence of each variable to the output. We compare the partial derivatives
and SHAP values over time, and our results can be summarised as follows. First, partial
derivatives overall are more stable than SHAP values, and are able to produce interpretable
results, at a fraction of the computational time of SHAP. Second, the partial derivatives of the
deep quantile estimator fluctuate around the estimate of the conditional linear quantile and i)
exhibit time variation and ii) can capture stressful events in the U.S. economy for instance
the COVID-19 pandemic and the 2008 financial crisis.

The remainder of the paper is organised as follows. Section 1 introduces the deep quantile
estimator. Section 2 contains the Monte Carlo exercise. Section 3 presents our empirical
application. Section 4 presents the semi-structural analysis. Conclusions are set out in
Section 5. We relegate to the Online Appendix the specifications of the competing models,
empirical results from a one-day ahead VaR forecasting exercise, ten-day compounded VaR
forecasts, Giacomini and White (2006) test and results from the quantile score test and
predictive gains.

1 Empirical Methodology

In this section we start by summarising the underlying theory of a quantile regression as
outlined by Koenker and Bassett (1978) and Koenker (2005) and argue that the linear rela-
tionship of the conditional quantile between a dependent variable given the covariates, can
be restrictive. We illustrate how some fundamental results on the universal approximation
property of neural networks can be used to approximate a non-linear relationship instead,
and define the deep quantile estimator. We conclude with a discussion on how different
penalisation schemes can be used and further how hyper-parameters can be selected via
time-series Cross Validation (CV).
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1.1 Linear Quantile Regression

The standard goal in econometric analysis is to infer a relationship between a dependent
variable and one or more covariates. We consider the following linear regression model:

yt = x′tβ + ut, (1)

where yt is the dependent variable at time t, β =
(

β1, . . . , βp
)′ is a vector of unobserved slope

parameters, xt =
(
xt1, . . . , xtp

)′ is a vector of known covariates, and ut is the random error
of the regression which satisfies E(ut|xt) = 0. Standard regression analysis tries to come up
with an estimate of the conditional mean of yt given xt, that minimises the expected squared
error loss:

β̂ = arg min
β

1
T

T

∑
t=1

(
yt − x′tβ

)2 . (2)

This can be restrictive though, when i) non-linearities and outliers exist and ii) since it
provides just an aspect of the conditional distribution of yt, given xt by construction. These
potential limitations led to the development of quantile regression. In their seminal work,
Koenker and Bassett (1978) generalise ordinary sample quantiles to the regression setting,
that give more complete information on the conditional distribution of yt given xt, for which
we now provide a succinct description.

The quantile regression model can be defined as

Qy (τ|xt) = x′tβ (τ) , τ ∈ (0, 1), (3)

such that yt satisfies the quantile constraint Pr[yt ≤ x′tβ (τ) |xt] = τ, where β (τ) are regres-
sion coefficients that depend on τ. Quantile regression tries to come up with an estimate for
the τth conditional quantile, Q̂y (τ, xt) := β̂(τ), by minimizing the following function

β̂ (τ) = arg min
β

1
T

T

∑
t=1

ρτ

(
yt − x′tβ (τ)

)
, (4)

where ρτ (·) is the quantile loss function defined as

ρτ (ut) =

τut (τ) , if ut (τ) ≥ 0

(1 − τ) ut (τ) , if ut (τ) < 0

and ut (τ) = yt − x′tβ (τ). The quantile estimator in eq. 4, provides i) much richer
information on the whole conditional distribution of yt as function of the xt, and ii) more
robust estimates under the presence of outliers and non-linearities, when compared to the
ordinary least squares estimator.
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Notice that the linear association assumption, Qy (τ|xt) = x′tβ (τ), can be generally
restrictive. Instead, we consider the case of the following non-linear association,

Qy (τ|xt) = hτ (xt) ,

where hτ (·) is some unknown, (potentially highly) non-linear function. In this paper we use
an estimation strategy to approximate hτ (xt) with neural networks using their universal
approximation property. Specifically, we assume that there exists a neural network with
a function Gτ (xt, w), to be defined below, that can approximate hτ (xt) well. Before we
illustrate how this methodology is implemented, we provide a discussion on how neural
networks can approximate hτ (xt).

1.2 Neural Networks

In this paper, we limit our attention to feed-forward neural networks, to approximate hτ(xt).
This architecture consists of an input layer of covariates, the hidden layer(s) where non-
linear transformations of the covariates occur, and the output layer that gives the final
prediction. Each hidden layer has several interconnected neurons relating it to both the
previous and next ones. Specifically, information flows from one layer to the other, via
neurons only in one direction, and the connections correspond to weights. Optimising a
loss function w.r.t. these weights makes neural networks capable of learning.

Throughout our exposition, L denotes the total number of hidden layers, a measure for
the depth of a neural network, and J(l) denotes the total number of neurons at layer l, a
measure of its width. We start by presenting a general definition of a deep (multi-layer) feed-
forward neural network. Let σl(·), l = 0, . . . , L be the activation function used at the lth layer,
that is applied elementwise and induces non-linearity. We use the ReLU activation function,
σl (·) = max (·, 0), for l = 1, . . . , L − 1, applied element-wise and a linear one for the output
layer, l = L. We denote by g(l) the output of the lth layer which is a vector of length equal to
the number of the J(l) neurons in that layer, such that g(0) = xt. Then, the overall structure
of the network is equal to:

Gτ (xt, w) = g(L)
(

g(L−1)
(
· · ·

(
g(1) (·)

)))
, (5)

where
g(l) (xt) = σl

(
W (l−1)g(l−1) + b(l)

)
, l = 1, . . . , L, (6)

W (l) is a J(l) × J(l−1) matrix of weights, b(l) is a J(l) × 1 vector of biases giving an

overall vector w =
(

vec(W (0))′, . . . , vec(W (L))′, b(1)′ , . . . , b(L)′
)′

of trainable parameters of

dimensions J(l)(1 + J(l−1)) total number of parameters in each hidden layer l, J(0) = p and
J(L) = 1.
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According to various universal approximation theorems (see e.g. the theoretical results
in Hornik (1991), Hornik, Stinchcombe, and White (1989), Gallant and White (1992),
Kapetanios and Blake (2010), Liang and Srikant (2016) and Yarotsky (2017)), Gτ(xt, w) can
approximate arbitrarily well hτ(xt), such that, for any ϵ > 0,

sup
t

|Gτ (xt, w) − hτ(xt)| < ϵ. (7)

In this sense, the above (ϵ)-approximation can be seen as a sieve type non-parametric
estimation bound, where ϵ can become arbitrarily small by increasing the complexity of
Gτ (xt, w).

The increase in complexity can occur, either by letting L → ∞, which stands for deep
learning, or by letting J(l) → ∞. While asymptotically, both ways deliver the same results
(see e.g. Farrell, Liang, and Misra (2021) and references therein), the approximation error
has been shown to decline exponentially with L, see e.g. Babii, Chen, Ghysels, and Kumar
(2020) but only polynomially with J(l), providing some evidence for the prevalent use of
deep learning. Notice that there also exists an alternative approximation theory for sparse
deep learning, see e.g. the work of Schmidt-Hieber (2020). As an illustration, in the Online
Appendix we depict a simple feed-forward neural network with two inputs, two hidden
layers, a total of five neurons and one output layer.

1.3 Non-linear Quantile Regression

We assume that the conditional quantile follows a non-linear relationship Qy(τ|xt) = hτ(xt)

and there exists a function Gτ(xt, w), that can (ϵ)-approximate hτ(xt), see the bound in eq.
7. Using this assumption, we can formally define the conditional quantile function as the
following approximation

Qy (τ|xt) = Gτ (xt, w) + O (ε) ,

where Gτ (xt, w) is the unknown non-linear function we want to estimate in order to
approximate hτ(xt). We obtain the deep neural network conditional quantile estimate from
the solution of the following minimization problem:

Qy (τ|xt) = arg min
w

1
T

T

∑
t=1

ρτ (yt − Gτ(xt, w)) , (8)

where w = (vec(W (0))′, . . . , vec(W (L))′, b(1)′ , . . . , b(L)′)′ contains all model parameters, and
Gτ(xt, w) denotes the overall non-linear mapping, described in eq. 5 and 6. Notice that the
choice of Gτ (xt, w) will govern whether the model is parametric or non-parametric. If the
number of neurons and layers is small, then the model is parametric, if the above number
becomes large, then the model becomes non-parametric, since the number of estimated
parameters increases with the sample size, similar to sieve non-parametric approximations.
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To allow the use of mixed frequency data, we can make the following changes to the
structure of the network Gτ(xt, w):

In the input layer, we implement frequency alignment on each input variable xt

according to the corresponding maximum lag order K. Thus, each high frequency predictor
xt is transformed into a low frequency vector x⋆t = B(Lφ; ϑ)xt,

B(Lφ; ϑ) =
K

∑
k=0

B(k; ϑ)Lk
φ, B (k; ϑ) =

exp(ϑ1k + ϑ2k2)

∑K
k=1 exp(ϑ1k + ϑ2k2)

, (9)

where B (k; ϑ) is the normalised Almon polynomial, Lk
φ is a lag operator such that Lk

φxφ
t =

xφ
t−k; the lag coefficients in B(k; ϑ) of the corresponding lag operator Lk are parameterised as

a function of a small dimensional vector of parameters ϑ. We use this weight function on the
frequency alignment vector to reduce the number of parameters and ensure a parsimonious
specification. As a consequence, the low frequency variable x⋆t which has the same frequency
as the output yt is obtained. The rest of the architecture of the deep MIDAS follows the
architecture of the deep quantile estimator, but instead of using xt in eq. 6, we use x⋆t .

1.4 Regularized Non-Linear Quantile Regression

Neural networks have a great capacity to estimate non-linear relationships from the data, but
this comes at a cost, since they are prone to overfitting. This can lead to a severe drop in their
forecasting performance, especially in small samples. There is a variety of commonly used
techniques in ML, see e.g. Gu, Kelly, and Xiu (2021) for a good summary, that can be used
to ease this impact, originally coming from the high-dimensional statistical literature. The
reader is also referred to Goodfellow, Bengio, and Courville (2016) for an excellent summary
of different topics about the implementation of neural networks, including regularization.

1.4.1 Regularization

A common solution to this caveat is regularization, where a penalty term is imposed on
the weights of the neural network and is appended in the loss function. Regularization,
generally improves the out-of-sample performance of the network by decreasing the in-
sample noise from over-parameterization, utilising the bias-variance trade-off. Further,
another benefit of regularization is that it provides computational gains in the optimization
algorithm. The penalised loss function, for a given quantile τ, can be written as:

L(Gτ(xt, w), yt) =
1
T

T

∑
t=1

ρτ(yt − Ĝτ(xt, w)) + ϕ(w), (10)
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where the penalty term is

ϕ(w) =



λ ∥w∥1, LASSO

λ ∥w∥2
2, Ridge

λ(1 − α)∥w∥1 + λα∥w∥2
2, Elastic Net

0, otherwise

,

and λ and α are tuning parameters, for which we discuss their selection below. Generally,
there is a plethora of loss functions, and the choice among them, depends mainly on the
task at hand. In this paper we use the quantile loss function. The different penalisation
schemes on ϕ(w) work as follows: deep LASSO or l1-norm penalisation, is a regularization
method that shrinks uniformly all the weights to zero, and some at exactly zero. The latter
is referred to as the variable selection property of the deep LASSO. Deep Ridge works in a
similar manner to the deep LASSO, by shrinking the weights, uniformly to zero, but not at
exactly zero. Finally, the deep Elnet2 is a combination of deep LASSO and deep Ridge, that has
been shown to retain good features from both methods, see e.g. Zou and Hastie (2005).

1.4.2 Cross Validation

The CV scheme consists of choices on the overall architecture of the neural network: the total
number of layers (L) and neurons (J), the learning rate (γ) of the Stochastic Gradient Decent
(SGD), the batch size, dropout rate, level of regularization and a choice on the activation
functions.

Regarding the choice on the activation functions, we use ReLU for the hidden layers
and a linear function for the output layer. We tune the learning rate of the optimiser, γ, from
five discrete values in the interval [0.01, 0.001]. For the width of the neural network we tune
the hyper-parameters from the following grid [1, 5, 10]. The batch size is selected via the
following grid [10, 20].3 Further, we tune the regularization parameter, λ, from five discrete
values in the interval [0.01, 0.001], both for deep LASSO and deep Ridge, and for the case of the
deep Elnet we choose α from a grid [0.1, 0.5, 0.9]. We also use dropout regularization, where
the dropout probability is up to 20%, see e.g. Gu, Kelly, and Xiu (2020). For the non-linear
MIDAS , we also cross validate ϑ1 from eight discrete values in the interval [−1, 0.5] and for
ϑ2, we use six discrete values in [−0.5, 0.5].
We use two different sets of grids to tune the depth of the neural networks. The first
set is used in our Monte Carlo experiments where we use two different grids [1, 3, 5] and
[10, 15, 20], which lead to shallow and deep neural networks, respectively. We use this first
set to examine whether shallow or deep neural networks have better finite performance,

2Deep Elastic net
3We have also considered batch normalisation and find that overall, results exhibit similar pattern with and

without it.
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which we discuss in the next Section 2. Given these results, we use the following grid
[1, 5, 10] as the second set, in our empirical application.

To select the various hyper-parameters outlined above, we follow Babii, Ghysels, and
Striaukas (2022a) and references therein and use a time-series Cross-Validation (CV) scheme,
which we succinctly describe: Let δ denote a gap of observations that separates the test and
training samples with the aim of reducing the dependence between the two. For some δ ∈ N

and at each t = 1, . . . , T:

• If t > δ + 1 and t < T − δ, we use the following sample It,δ = {1, . . . , t − δ − 1, t + δ +

1, . . . , T} to estimate all the different hyper-parameters, denoted as w−t, for simplicity.
For t = 1, . . . , δ + 1, we use It,δ = {t + δ + 1, . . . , T} as the training sample. For t =
T − δ, . . . , T the training sample is It,δ = {1, . . . , T − δ − 1}. Next, we use the left-out
observations to test the model:

CV =
1
T

T

∑
t=1

ρτ(yt − Ĝτ(xt, w−t)) + ϕ(w−t) (11)

• Finally, we minimize CV with respect to all different hyper-parameters.

It is clear that tuning all these different architectures, parameters and hyper-parameters
increases considerably the computational cost. To ease the computational burden of time-
series CV we follow Babii, Ghysels, and Striaukas (2022a) and draw randomly a sub-sample
I ⊂ T of size κ and minimise:

CVκ =
1
κ ∑

t∈I
ρτ(yt − Ĝτ(xt, w−t)) + ϕ(w−t). (12)

Throughout the Monte Carlo experiments and empirical application, we set κ = 20 and δ = 5
as in Babii, Ghysels, and Striaukas (2022a). Finally, we use the optimal parameters and
hyper-parameters from the time-series CV and evaluate the out-of-sample performance of
the network.

1.4.3 Optimisation

The estimation of neural networks is generally a computational cumbersome optimization
problem due to non-linearities and non-convexities. The most commonly used solution
utilises stochastic gradient descent (SGD) to train a neural network. SGD uses a batch of
a specific size, that is, a small subset of the data at each epoch (iteration) of the optimization
to evaluate the gradient, to alleviate the computation hurdle. The step of the derivative at
each epoch is controlled by the learning rate, γ. We use the adaptive moment estimation
algorithm (ADAM) proposed by Kingma and Ba (2014)4, which is a more efficient version

4ADAM is using estimates for the first and second moments of the gradient to calculate the learning rate.
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of SGD. Finally, we set the number of epochs to 5, 000 and use early stopping, following Gu,
Kelly, and Xiu (2020) to avoid any potential overfitting.

2 Monte Carlo

2.1 Setup

In this section we present Monte Carlo (MC) experiments, in order to study the finite
sample performance of the deep quantile estimator as outlined in Section 1, for the different
penalisation schemes. We generate artificial data {yt} using a single predictor {xt},
according to the following model:

yt = hτ(xt) + ut, (13)

where ut is the realisation of a random variable u distributed as, ut ∼ i.i.d.N(−σΦ−1(τ), σ2),
σ = 0.1 and Φ−1 is the quantile function of the standard normal distribution. hτ(·) is the
general non-linear function that we wish to approximate via the deep quantile estimator.

All the experiments are based on the following values: τ ∈ (1%, 2.5%, 5%, 10%, 20%),
T ∈ (100, 300, 500, 1000) and the number of MC replications is 1000. We consider the
following five data generating mechanisms (DGM) to assess the finite sample properties of
the deep quantile estimator:

Case I: We consider the case of a N(0, 1) simulated single predictor that is generated as

yt = hτ(xt) + ut, hτ(xt) = sin(2πxt), xt ∼ i.i.d. N(0, 1).

This is the simplest design in our Monte Carlo experiments. We use this simple case to
showcase that linear methods, as expected, cannot produce reasonable performance under a
sigmoid type of a non-linear function hτ(·).

Case II: We consider an AR(1) simulated single predictor as follows

yt = hτ(xt) + ut, hτ(xt) = sin(2πxt),

where xt is simulated as

xt = 0.8xt−1 + εt, εt ∼ i.i.d.N(0, 1).

In this design we increase the complexity by introducing a correlated predictor.

Case III: We consider the case of a single predictor generated via a GARCH(1,1) model

yt = hτ(xt) + ut, hτ(xt) = sin(2πxt),
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where xt is simulated as:

xt = σtεt, σ2
t = 1 + 0.7x2

t−1 + 0.2σ2
t−1, εt ∼i.i.d. N(0, 1).

In this design, we wish to examine, how the deep quantile estimator fares, when the regressor
is conditionally heteroskedastic, following a GARCH(1, 1) model. A GARCH type of
assumption on the distribution of asset returns is one commonly used in the literature.

Case IV: We consider the case of a single predictor that is generated as follows:

yt = hτ(xt) + ut, hτ(xt) = Gτ(xt, w), xt ∼ i.i.d. N(0, 1).

In this case we simulate hτ(xt) to reflect a function composition, commonly used in neural
networks. We simulate it with 3 hidden layers and a specific number of neurons, such as

Gτ(xt, w) =
(

W (3)
(

sin
(

W (2)
(

sin
(

W (1)
(

sin
(

W (0)x′t + b(1)
))

+ b(2)
))

+ b(3)
)))′

,

where w = (vec(W (0))′, . . . , vec(W (3))′, b(1)′ , . . . , b(3)′)′, W (0) is 50 × 1, W (1) is 10 × 50, W (2)

is 8 × 10 and W (3) is 1 × 8. Further, we simulate the weights, w, so that, every entry wi,j is
simulated as, wi,j = δi,j 1(δi,j > 0.5), where δi,j ∼ U(0, 1), allowing for some sparsity.

Case V: We consider an AR(1) simulated error as follows:

yt = hτ(xt) + εt, hτ(xt) = sin(2πxt), xt ∼ i.i.d. N(0, 1),

where εt is simulated as

εt = 0.6εt−1 + ut.

We use this design to examine whether correlated errors impact the deep quantile estimator.

Across all cases, we estimate hτ(xt) using the deep quantile estimator with different
penalisation schemes. Let ĥτ, pen = Ĝτ ,pen(xt, w) denotes the estimate, where pen corre-
sponds to no regularization, deep LASSO, deep Ridge and deep Elnet. We use the following
metrics in order to evaluate the small sample properties, of the deep quantile estimator
across R = 1000, MC replications: i) the average mean squared error of the true resid-
uals, AMSEut =

1
R

1
T ∑R

i=1

(
∑T

t=1 u2
t

)
i
, ii) the average mean squared error of the estimated

residuals, AMSEût, pen = 1
R

1
T ∑R

i=1

(
∑T

t=1(yt − ŷt,pen)2
)

i
and finally, iii) the average absolute

bias ABIASĥτ ,pen = 1
R

1
T ∑R

i=1

(
∑T

t=1 |(hτ(xt) − Ĝτ,pen(xt, w))|
)

i
. We report results only for

AMSEût, pen below, since results for the alternative metrics exhibit similar patterns and are
available upon request.

Tables 1 – 5 about here
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2.2 Results

We consider a linear quantile estimator, other sieve-typei have estimators such as polyno-
mials and B-splines (defined in the Online Appendix), shallow and deep neural network
estimators with their depth being described in Section 1. Note, that we also use the time-
series CV to select the optimal number of knots of the B-splines estimator from the following
grid of six discrete values in the interval [5, 10]. Our Monte Carlo aims to answer which
estimator has the best asymptotic properties under a non-linear setup. We find that both
shallow and deep networks deliver good finite sample properties across quantiles, with
shallow learning being the best between the two in most cases. Further, neural networks
perform better than the linear quantile and other sieve estimators. We present our Monte
Carlo results for Cases I – V in Tables 1 – 5 respectively.

In Figure 1, we can see that the linear quantile estimator, under a non-linear setup
doesn’t work, as expected, and the MSE remains constant as the sample size increases.
Next we present the asymptotic properties for the deep quantile estimator across different
penalization schemes, namely deep quantile, deep LASSO, deep Ridge and deep Elastic Net, and
find that the deep quantile non-linear estimators have good finite sample properties.

When τ = 1% it appears that the deep quantile estimator works well for sample sizes
larger than T = 300, but in comparison with the linear one it generally works better. In Case
II the non-linear estimators depict fine finite sample properties and their performance is
better than the linear one. In this case the non-regularized estimator performs better than the
regularized ones. Next, similar behaviour appears in Case III. In Case IV, where we allow
for some sparsity in the weights, we find, as expected, that the linear quantile regression
estimator, does not work under non-linearity, while the non-linear one works as expected.
In Case V, where we consider serial correlated errors, we find that adding a penalty term in
the non-linear estimators improves the performance of the deep quantile estimator in extreme
quantiles.

We further find, as expected, that the linear quantile regression, second order quantile
polynomial and cubic splines estimators, do not work under non-linearity. Finally, in very
few occasions, we find that splines estimator performs better than shallow networks for
small sample sizes and extreme quantiles.

Overall, our Monte Carlo results suggest that the deep quantile estimator using both deep
and shallow learning has good finite sample properties, and can approximate non-linear
functions. We also find evidence in favour of the penalisation schemes described in Section
1. Specifically, the penalised deep quantile estimators also have good finite sample properties,
and in some cases, perform better that the non-regularized one; a finding in favour of weight
regularization.
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3 Empirical Setup

In this section we outline our empirical application setup, where we use the deep quantile
estimator to forecast VaR. We examine the predictive ability of the deep quantile estimator
and other non-parametric models, relative to the linear one, using the quantile encompassing
test of Giacomini and Komunjer (2005). We further examine the predictive performance of
the different methods by testing their forecasting accuracy, using the Diebold and Mariano
(1995), Giacomini and White (2006) and quantile score tests.

3.1 Deep Quantile VaR forecasting

The data used in our empirical application consist of around 36 years of daily prices on
the S&P500 index (source: Bloomberg), from September 1985 to August 2020 (T = 9,053
observations). We use daily log returns, defined as rt = log (Pt/Pt−1) for our forecasting
analysis. We use four different classes of VaR models and produce forecasts for τ =

(1%, 5%, 10%) empirical conditional quantiles, using the deep quantile estimator.
The first VaR specification we consider is the GARCH(1,1) model that has been proposed

by Bollerslev (1986), in which σ2
1,t = ω0 + ω1σ2

1,t−1 + ω2r2
t−1, see eq. 14. The second VaR

specification we consider, is RiskMetrics, proposed by J.P. Morgan (1996), which assumes
σ2

2,t = λσ2
2,t−1 + (1 − λ)r2

t−1, where for daily returns, λ = 0.94, see eq. 15.
The last two specifications we consider follow the Conditional Autoregressive Value-at-

Risk model (CAViaR), proposed by Engle and Manganelli (2004), where a specific quantile
is analysed, rather than the whole distribution. Specifically, the CAViaR model corrects the
past VaRj, t−1 estimates in the following way: it increases VaRj, t when VaRj, t−1 is above the
τth quantile, while, when the VaRj, t−1 is less than the τth quantile, it reduces VaRj, t. Thus,
the third VaR we examine is the Symmetric absolute value (SV) that responds symmetrically
to past returns, see eq. 16 and lastly, we consider the Asymmetric slope value (ASV) as it
offers a different response to positive and negative returns, see eq. 17. For ease of exposition,
we refer to the above specification as VaR1,t, . . . , VaR4,t, respectively. Below we summarise
their specifications:

VaR1,t = β0 + β1σ1,t (14)

VaR2,t = β0 + β1σ2,t (15)

VaR3,t = β0 + β1VaR3,t−1 + β2|rt−1| (16)

VaR4,t = β0 + β1VaR4,t−1 + β2r+t−1 − β3r−t−1, (17)

where βi, i = 0, . . . , 3 are parameters to be estimated. We use these specifications following
Giacomini and Komunjer (2005). Under the mixed frequency setup, we consider the
following equation

VaR(MIDAS)
i,t = B(Lφ; ϑ)VaRi,t, (18)
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where B(Lφ; ϑ) is defined in eq. 9 , i= 1, . . . , 4 and ϑ are parameters to be estimated. For a
more detailed summary of MIDAS we refer the reader to Ghysels, Santa-Clara, and Valkanov
(2004). As discussed in Section 1, the linear association between VaR and the covariates
can be restrictive. Instead we assume that the relationship between the response variable,
VaR, and the covariates has an unknown non-linear form for a given τ, that we wish to
approximate with the deep quantile estimator as

VaR1,t = Gτ (σ1,t, w) (19)

VaR2,t = Gτ (σ2,t, w) (20)

VaR3,t = Gτ (VaR3,t−1, |rt−1|, w) (21)

VaR4,t = Gτ

(
VaR4,t−1, r+t−1, r−t−1, w

)
, (22)

where VaRj,t, j = 1, . . . , 4 is indexed at (day) t = 1, . . . , T. The dimension p of covariates that
we use in our analysis depends on the specification chosen for VaR. Specifically, if j = 1, 2
then p = 1, if j = 3, p = 2 and finally if j = 4 then p = 3.

In the Online Appendix, we briefly delineate the model specifications for the quantile
B-splines, quantile polynomial and quantile MIDAS estimators.

3.2 Forecasting Exercise Design

This section presents our forecasting exercise design. We reserve the last 2, 000 observations
to evaluate the out- of-sample performance using various tests and use the remaining
7, 053 observations to tune parameters via time-series CV as described in Section 1. This
specific split is used because we follow Giacomini and Komunjer (2005) and want the
power of the Conditional Quantile Forecast Encompassing (CQFE) test to be comparable
with their exercise. Generally, a forecasting exercise is performed either via a recursive or
rolling window, see e.g. Ghysels, Plazzi, Valkanov, Rubia, and Dossani (2019), yet in either
setting to produce all h-step ahead forecasts for the last 2,000 observations and to tune the
hyper-parameters can be computationally challenging. Instead, we follow Giacomini and
Komunjer (2005) and perform a fixed forecast window exercise, in which we estimate our
models once.

For our forecasting design we use a fixed forecast window exercise and predict the ten-
day-ahead VaR as:

V̂aR1,t+10|Ft = Gτ(σ1,t, w∗), (23)

where Ft denotes the information set up to time t, w∗ denotes the optimal weights obtained
from the time-series CV. Eq. 23 illustrates how forecasts for the first VaR specification were
obtained via the deep quantile estimator. In a similar manner forecasts can be obtained for
other VaR specifications and alternative models, using eq. 14 – 22.
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We evaluate the forecasting performance of VaR models with the deep quantile estimator
as in Section 1. Further, we consider ten-day compounded VaR forecasts, which we relegate
to the Online Appendix.

3.3 Forecast Evaluation

In this section we discuss the various tests we have considered, in order to evaluate the
predictive ability of the deep quantile estimator and present the testing results. In general,
Root Mean Squared Forecast error (RMSFE) is used to measure the accuracy of point estimates
and is defined as

RMSFE =

√
∑T

t=1(yt+h − Ĝτ (xt+h, w))2

T
,

where h denotes the forecasting horizon and Ĝτ (xt+h, w) is the solution of the eq. 8 after
selecting the optimal w via CV at the τth quantile.

Table 6 reports relative RMSFE versus the linear quantile estimator. In most cases, linear
quantile estimator outperforms polynomial and splines estimators across competing models
and quantiles. In all cases deep quantile and deep quantile MIDAS estimators outperform
the linear quantile estimator. The forecast gains of the deep quantile vary from 50% − 98%,
while the gains from deep quantile MIDAS fluctuate between 11% − 84%. We find that neural
network models improve VaR forecasts in all VaR models across the quantiles we consider.

3.3.1 Diebold Mariano Test

We perform a quantitative forecast comparison across different methods and test their
statistical significance. To do so, we calculate the RMSFE for each method and perform
the Diebold and Mariano (1995) (DM) test, with the Harvey, Leybourne, and Newbold
(1997) adjustment to gauge the statistical significance of the forecasts. As our empirical
application entails quantiles, we compute the DM statistics based on the comparison of
empirical quantile losses rather than the MSE loss. With the DM test, we assess the
forecasting accuracy of the deep quantile estimator relative to the benchmark linear quantile
regression model. In this exercise we set τ equal to 1%, 5% and 10%.

Results from the DM test are reported in Table 6, where asterisks denote the statistical
significance of rejecting the null hypothesis of the test at 1%, 5% and 10% level of signifi-
cance, for all quantiles and models we consider. These results suggest that forecasts pro-
duced from the non-linear estimator outperform, for the majority of cases, forecasts obtained
from the linear and non-parametric quantile regression estimators.

Table 6 about here
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3.3.2 Giacomini-White Test

In a similar manner and to complement the DM test, we follow Carriero, Kapetanios,
and Marcellino (2009) and further calculate the Giacomini and White (2006) test (GW) of
equal forecasting accuracy, that can handle forecasts based on both nested and non-nested
models, regardless of the estimation procedures used for the derivation of the forecasts,
including the deep quantile estimator. As in the DM test, we compute the GW statistics
based on the empirical quantile losses rather than the MSE one. Table 2 in the Online
Appendix illustrates the results for Giacomini and White (2006) test, where daggers denote
the statistical significance of rejecting the null hypothesis of the test at 1%, 5% and 10% level
of significance, for all quantiles and different models we consider. Similarly to the DM
forecasting accuracy test, the Giacomini and White (2006) test is again significant at 1% in
most cases, with the following exceptions.

Quantile polynomial regression forecasts are only significant at the 1% level of signif-
icance for ASV model at τ = 5%. In quantile splines, forecasts for the RM specification at
τ = 10% are significant at the 5% level of significance and under SV at τ = 10% are sig-
nificant at the 10% level of significance. Forecasts from the linear MIDAS, under the SV
specification, at τ = 1% are insignificant and at τ = 5% are significant at the 5% level of sig-
nificance and under the ASV specification, at τ = 1% and τ = 5%, are significant at the 10%
significance level.

Results for the SV with Deep MIDAS estimator are not significant at τ = 1% and τ = 5%
for the Giacomini and White (2006) test, while results for the ASV with Deep MIDAS
estimator are significant at 5% for all quantiles we consider. Results for the SV with Deep
LASSO MIDAS estimator at τ = 1%are not significant, while at τ = 5% are significant at the
5% level of significance.

Results for the SV with Deep Ridge MIDAS estimator are only significant at the 5%
level of significance for the Giacomini and White (2006) test at τ = 10%. Results for the
ASV with Deep Ridge MIDAS estimator are only significant at the 5% level of significance
across quantiles. Forecasts from deep Elnet MIDAS model under SV specification at τ = 10%
are significant at 5% level of significance. Finally, forecasts from deep Elnet under ASV
specification across quantiles are significant at the 5% level of significance.

Overall, results from both the DM and Giacomini and White (2006) tests suggest that
the non-linear estimators outperform, for the majority of times, competing linear and non-
parametric estimators in VaR forecasting.

3.3.3 Conditional Quantile Forecast Encompassing (CQFE)

We present the implementation of the CQFE test as proposed by Giacomini and Komunjer
(2005) and the Generalized Method of Moments (GMM) estimation as proposed by Hansen
(1982). Let q̂1,t be a vector of the τth quantile forecasts produced from model 1 and q̂2,t be the
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competing forecasts produced from model 2. The basic principle of CQFE is to test whether
q̂1,t conditionally encompasses q̂2,t. Encompassing occurs when the second set of forecasts
fails to add new information to the first set of quantile forecasts (or vice versa) in which case
the first (second) quantile forecast is said to encompass the second (first).

The aim of the CQFE test is to test the null hypothesis, that q̂1,t performs better that any
linear combination of q̂1,t and q̂2,t. Under the null hypothesis, it holds

Et (ρτ (yt+1 − q̂1,t)) ≤ Et (ρτ (yt+1 − θ0 − θ1q̂1,t − θ2q̂2,t)) , (24)

that is satisfied if and only if the weights (θ1, θ2) are equal to (1, 0). The objective function of
the GMM is:

JT = gT (θ)′ W T gT (θ) .

The optimal weights are computed as:

θ⋆ = arg min
θ

gT (θ)′ W T gT (θ) , gT (θ) =
∑T

t=1
(
τ − 1τ{yt+1 − θ′qt < 0}

)
zT

T
,

where W T is a positive definite matrix, gT(θ) is the sample moment condition, θ =

(θ0, θ1, θ2)
′ is a set of weights, θ⋆ = (θ⋆0 , θ⋆1 , θ⋆2)

′ denotes the optimal weights, q̂t = (1, q̂1,t, q̂2,t)
′

is a vector with the forecasted values based on the pairwise models 1, and 2 in the CQFE test,
m denotes the out-of-sample size and zT is a vector of instruments. Hansen (1982) showed
that by setting W T = S−1

T i.e the inverse of an asymptotic covariance matrix, is optimal as it
estimates θ⋆ with as small as possible asymptotic variance. S is also known as the spectral
density matrix of gT. We follow Newey and West (1987) and use a heteroskedasticity robust
estimate ŜT, of S defined as:

ŜT = Ŝ0 +
m

∑
j=1

(
1 − j

m + 1

)(
Ŝj + Ŝ

′
j

)
, where Ŝj =

1
T

T

∑
t=j+1

gt

(
θ̂
)

gt−j

(
θ̂
)

.

Ŝ0 is the estimated spectral density matrix evaluated at frequency zero. The GMM estimation
is performed recursively, i.e. i) minimize JT using an identity weighting matrix to get θ⋆,
which gives W T via ŜT and ii) minimize JT using W T = Ŝ

−1
T from step i).

Consequently, we consider two separate test H10 : (θ⋆1 , θ⋆2) = (1, 0) versus H1a : (θ⋆1 , θ⋆2) ̸=
(1, 0) and H20 : (θ⋆1 , θ⋆2) = (0, 1) versus H2a : (θ⋆1 , θ⋆2) ̸= (0, 1), which correspond to testing
whether forecast q̂1,t encompasses q̂2,t or q̂2,t encompasses q̂1,t. Then the CQFE statistics are
defined as:

ENC1 = T ((θ⋆1 , θ⋆2) − (1, 0)) Ω̂ ((θ⋆1 , θ⋆2) − (1, 0))′

ENC2 = T ((θ⋆1 , θ⋆2) − (0, 1)) Ω̂ ((θ⋆1 , θ⋆2) − (0, 1))′ ,
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where Ω̂ = gT(θ)
′S−1gT(θ). The asymptotic distribution of the GMM estimates of θ requires

the moment conditions to be once differentiable. To satisfy this requirement, we follow
Giacomini and Komunjer (2005) and replace the moment condition with the following
smooth approximation:

gτ(θ) =
∑T

t=1
[
τ − (1 − exp((yt+1 − θ′q̂t)/η))

]
1{yt+1 − θ′q̂t < 0})zT

T
,

where η is the smoothing parameter. We choose the critical values, ccrit of the test from a
χ2

2 distribution, in which q̂i,t encompasses q̂j,t, if ENCi ≤ ccrit ∀i ̸= j = 1, 2. In the empirical
application, the vector of instruments, zT, is (1, rt, VaRi,t, VaRj,t), ∀ i ̸= j = 1, 2 .

We select η to be 0.005, following the CQFE test rejection probabilities in Giacomini and
Komunjer (2005), since our POOS size is 2, 000 observations. We consider the following five
blocks: i) the non-parametric, ii) the non-linear, iii) the non-linear MIDAS, iv) the linear and
v) the linear MIDAS blocks. The non-parametric block consists of the quantile polynomial
and quantile splines estimators, the non-linear block consists of the deep quantile estimators
for the different regularization schemes and the non-linear MIDAS block consists of the
deep MIDAS estimators for the different regularization schemes. Finally, the linear and
linear MIDAS blocks consist of the linear quantile and linear quantile MIDAS estimators,
respectively.

We examine each block of models across different quantiles. Specifically, we consider
how many times the models within a specific block outperform models from other blocks
and present these results in Table 7. Under this setting a win denotes that the prevailing
model encompasses the competing benchmark model, while a loss means that the competing
model encompasses the prevailing one. Precisely, we consider a win when the computed p-
value of the CQFE test fails to reject the null hypothesis, i.e. H10 or H20. On the contrary, in
the case where the CQFE test suggests that there is no encompassing between the forecasts,
we consider this as a loss, i.e. the null hypothesis is rejected. Furthermore, the CQFE test has
a gray zone in which the test can fail to reject both null hypotheses (H10 and H20), hence the
test is inconclusive. Below we summarise the CQFE testing results for the different quantiles
when η = 0.005.

For the 10th quantile, the non-linear block encompasses 713 times the competing blocks,
in comparison to the linear block, which encompasses the competing blocks 173 times
and the non-parametric block that encompasses the others 322 times. The linear block
does not encompass other blocks less than 15 times and the non-linear block for 86 times.
Additionally, the test is inconclusive 696 times for the non-linear block and 159 times for
the linear one. Thus, the non-linear block is ranked first in terms of how many times it
encompasses the other blocks and the non-linear MIDAS block is ranked second.

For the 5th quantile, the non-linear block encompasses 739 times other blocks, 342 times
the non-parametric and the linear 170 times. Further, the linear block does not encompass

20



the other blocks 18 times and the non-linear 60 times. Finally, for the non-linear block, the
CQFE test is inconclusive 726 times and 166 times for the linear block. The ranking of the
first two blocks is the same as in the 10th quantile.

Finally, we examine the 1st quantile. In this case, the non-linear block encompasses
757 times the other blocks, 336 times the non-parametric and the linear block 173 times.
Furthermore, the linear block does not encompass 15 times the other blocks and the non-
linear 42 times. The test is inconclusive 751 times for the non-linear block and 170 times
for the linear one. The ranking remains the same as above. Results for different smoothing
parameters η suggest similar patterns and are available upon request.

Table 7 about here

4 Semi-Structural analysis

A general issue in ML is the trade-off between accuracy and interpretability; where the
output of a highly complicated model, e.g. a deep neural network, can have great accuracy
or forecasting performance, but cannot be easily interpreted. In this section we first discuss
the details of two methods that can be used to make ML methods interpretable. The first
one is the Shapley Additive Explanation Values (SHAP), that has received a lot of attention
recently, and the second is partial derivatives. Further we make a formal comparison on the
output of both methods, based on the output of the deep quantile estimator that illustrates,
i) that both methods can be used to make the impact of each covariate in neural networks
interpretable and ii) perhaps surprisingly that the use of partial derivatives, offers more
stable results at a fraction of the computational cost.

4.1 Shapley values

Shapley values (SHAP) are a general class of additive attribution methods, based on the
initial work of Shapley (1953) where the goal was to determine how to fairly split a pay-off
among players in a cooperative game. In the context of ML, the goal of SHAP values is
to explain the prediction of the dependent variable by estimating the contribution of each
covariate to the prediction. SHAP values, following the exposition in Lundberg and Lee
(2017) and Lundberg, Erion, and Lee (2018) can be constructed as follows.

Let f (xt) = Ĝ(xt, w) be the output of the estimated model we wish to interpret, given a
p × 1 vector of covariates xt, and f̂ the explanation model, to be defined below. Further, let
x†

t be the M × 1 subset (vector) of xt that contains simplified covariates. These simplified
covariates, can be mapped to the original through a mapping function hxt(·), such that
xt = hxt(x†

t ). Then under the local accuracy property of Lundberg and Lee (2017), if there
exists a vector, z†

t , with binary inputs, such that z†
t ≈ x†

t , then f̂ (z†
t ) ≈ f (hxt(z

†
t )), where the
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explanation model (i.e. the additive attribution function) is

f̂ (z†
t ) = ϕ0 +

M

∑
i=1

ϕiz†
t,i, (25)

and f̂ (z†
t ) represents the linear decomposition of the original ML model, where ϕ0 is the

intercept, ϕi ∈ R is the effect to each dependent variable z†
t ∈ (0, 1), that provides local and

global inference at the same time. If zt,i = 1 then the covariate is observed, on the contrary,
if zt,i = 0 then the covariate is unknown. Under the following three properties: i) local
accuracy i.e. the explanation function should match the original model, ii) missingness,
which ensures that input variable have no attributed effect and iii) consistency, under which,
if an input variables is important, then the effect to each dependent variable should not
decline, the SHAP value is

ϕi = ∑
M⊆p\{i}

|M|! (p − |M| − 1)!
p!

[
fM∪{i}

(
xM∪{i}

)
− fM(xM)

]
, (26)

where p is the set of all predictors, |M| is the number of non-zero elements in x†
t , fM(xM) is

the model’s output using except from the ith covariate, and fM∪{i}

(
xM∪{i}

)
is the output of

the model, when {i} is included in the covariate set.

The calculation of SHAP values can be computationally expensive, as it requires 2N

possible permutations of the predictors.For the case of deep neural networks Lundberg and
Lee (2017), and Shrikumar, Greenside, and Kundaje (2017), have shown that DeepLIFT can
be used as an approximation of the deep SHAP that is computationally feasible 5, preserving
the three properties above. DeepLIFT is a recursive prediction explanation method for
deep learning. The Additive feature attribution methods analogy of DeepLIFT is called the
summation-to-delta property is

p

∑
i=1

C∆xt,i∆o = ∆o. (27)

Then the SHAP values can be obtained as

ϕi = C∆xt,i∆o,

where C∆xt,i∆o, represents the impact of a covariate to a reference value relative to
the initial value, is assigned to each xt,i covariate, o = f (·) is the output of the model,
∆o = f (x) − f (r), ∆xt,i = f (xt,i) − rt,i and r the reference value. Eq. 27 matches eq. 25, if
in ∆o we set ϕ0 = f (rt,i) and ϕi = C∆xt,i∆o.

5There are other methods that can be used to achieve this, such as Tree Explainer, Kernel Explainer, Linear
Explainer, Gradient Explainer.
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4.2 Partial Derivatives

The use of partial derivatives for the interpretation of a model is straight forward in
econometrics, with various uses, ranging from the simple linear regression model to impulse
response analysis. In this section we show how partial derivatives can be used even in
highly non-linear deep neural networks. Before we start the analysis, note that while the
deep neural networks are highly non-linear, their solution/output via SGD optimization
methods, can be treated as differentiable function, as the majority of activation functions are
differentiable. Let’s consider the case of ReLU, that is not differentiable at 0, whereas it is in
every other point. From the point of gradient descent, heuristically, it works well enough to
treat it as a differentiable function. Further, Goodfellow, Bengio, and Courville (2016) argue
that this issue is negligible and ML softwares are prone to rounding errors, which make it
very unlikely to compute the gradient at a singularity point. Note that even in this extreme
case, both SGD and ADAM, will use the right subgradient at 0.

For a general xt ∈ Rp, let

dj, i, t =
∂Ĝj, τ(xt, w)

∂xj, i, t−1
, (28)

denote the partial derivative of covariate xi = xit, for i = 1, . . . , p at time t = 1, . . . , T,
Ĝj, τ(xt, w) is the forecasted VaRj,t, across the j different VaR specifications we consider. We
assess the partial derivative in time, since, following Kapetanios (2007), we expect it to vary
in time, due to the inherent non-linearity of the neural network. Our covariate(s) xt are the
conditional volatility for GARCH and RM, VaR lagged values, the absolute S&P500 daily
return and the positive and negative S&P500 daily returns for SV and ASV, respectively. It is
evident that under the classic linear regression problem, or linear quantile regression model,
the effect of the covariates xt to the dependent variable yt is constant, time invariant, and
corresponds to β̂(τ).

4.3 Results

In this application we use the whole sample size i.e. around 36 years of daily returns on the
S&P500 index to provide an accurate interpretation of the deep quantile estimator. Figures 1
– 4 illustrate the partial derivatives and SHAP values evaluated in time on the output of the
deep quantile6 estimator, for a specific quantile τ. Further, we compare the partial derivatives
of the deep quantile estimator relative to the linear quantile regression partial derivative, i.e.
the β(τ) coefficient. Both partial derivatives and SHAP values seem to identify interesting
patterns that can be linked to some well known events. Below we discuss our results for all
models we have considered in our empirical application.

6In this section we limit our attention in the output of the best performing model, in terms of its forecasting
capacity, as reflected by the forecast gains measure in Section 3, for each model, based on the different
penalisation schemes. Results from all the different penalisation schemes suggest similar patterns to the ones
discussed above and are available upon request.
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The results for the first two models, i.e. GARCH and RM can be summarised together,
since in both models there is only one covariate, that is the conditional volatility, but with a
different specification. The results from this model are illustrated in Figures 1. We find that
the partial derivative appears to be more stable over time, fluctuating around the constant
partial derivative, β(τ), of the linear quantile estimator. When there is a crisis or a stressful
event in the financial markets, they increase. As an example, we see significant spikes in
the partial derivatives, both in March 2020 as well as in 2008, which stand for the onset of
the COVID-19 pandemic and the Great Recession respectively. We also find that the biggest
increase occurs in 1987, the year when Black Monday happened, and also significant variation
during the U.S. government shutdown in 2019. The values for the partial derivatives
generally increase, as τ decreases. SHAP values have a similar behaviour with the partial
derivatives, but are more volatile across time. For the first two models, there are some events,
e.g. during the 1991, where the values for both SHAP and partial derivatives do not increase
a lot. We view this finding as an inability of these two models, to properly account for this
crisis.

In the last two models, the merit of SHAP values and partial derivatives becomes clear,
since in these models we have more than one covariates and both methods can provide an
indication on the effect of each covariate on the final output. Overall, we find that increasing
the number of covariates, allow the models to account for all crises within the sample. For
the case of the SV model, we find that the important covariate is the lagged values of VaR,
rather than the absolute values of S&P500. Similar to the one covariate models, we find that
the partial derivatives are more stable than SHAP values, fluctuating closely around β(τ)

and picking up when there are crisis or distress in the economy or financial markets. The
SHAP values again appear to be more volatile with a wider range. Similar to the findings
of the one covariate models, the higher the values for the partial derivative and SHAP, the
lower the τ quantile.

For the case of the ASV model, we find that again the lagged values of VaR is the
most significant covariate, the negative S&P500 returns have some impact and the positive
S&P500 returns are almost insignificant. Similar to the cases above, we find that the partial
derivative is more stable than SHAP values, fluctuating closely around β(τ) and picking up
when there is a crisis or distress in the economy or financial markets. The SHAP values again
appear to be more volatile with a wider range. Again and same as before, lower quantiles
have higher partial derivatives. The results for these two models are illustrated in Figures 2,
3 and 4.

Different penalization schemes maintain the aforementioned results, with a lower
magnitude. Overall, we observe that the linear quantile regression shows a fixed pattern
across time and is evident that this model does not anticipate shocks in the economy. Our
analysis suggests that it is higher during stressful events. As Engle and Manganelli (2004)
suggest, SV and ASV react more to negative shocks and in stressful events their spike is
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larger than the GARCH and RM models. Finally, covariates with the minimum contribution
on the forecasted values, such as the positive S&P500 returns has negligible impact on both
SHAP and partial derivatives values.

Figures 1 – 4 about here

5 Conclusion

In this paper we contribute to the expanding literature on the use of ML in finance and
use the deep quantile estimator that has the potential to capture the non-linear association
between asset returns and predictors. In Section 1, we lay out the exact workings of the deep
quantile estimator, and illustrate how it generalises linear quantile regression.

In the Monte Carlo exercise in Section 2, we study the finite sample properties of
the deep quantile estimator, based on a number of data generating processes. We present
extensive evidence the estimator gives good finite sample performance, that is a function of
T, uniformly across different regularization schemes.

We use the deep quantile estimator, with various penalization schemes, to forecast
VaR. We find that the deep quantile estimator gives considerable predictive gains, up to
98%, relative to the VaR forecasts produced by the linear quantile regression. This result
is backed by the forecasting accuracy tests, i.e. the Diebold and Mariano (1995), the
Giacomini and White (2006) and the quantile score tests. Further, results from the CQFE
test of Giacomini and Komunjer (2005) suggest that forecasts obtained from the non-
linear estimators encompass forecasts from the linear and non-parametric models with a
higher frequency. These findings are in support of the non-linear association between the
conditional quantile of asset returns and covariates, hence suggesting a new avenue in
forecasting in finance and in macroeconomics during extreme events.

In addition, we do a semi-structural analysis to examine the contribution of the
predictors in VaR over time. We consider, following the ML literature, SHAP values and
further partial derivatives. Our findings suggests that the non-linear estimator reacts more
in stressful events and exhibits time-variation, while the linear quantile estimator presents,
as expected, a constant time invariant behaviour. We conclude that financial variables are
characterised by non-linearities, that the deep quantile estimator can approximate quite well.

Finally, we make a formal comparison between SHAP and partial derivatives, and
interestingly find that partial derivatives can be used to make ML methods interpretable,
are less volatile, easier to interpret and can be computed at a fraction of time used in the
calculation of SHAP values.
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Figure 1: Partial Derivative, SHAP and β̂(τ) for GARCH and RM models.

(a) GARCH without penalty (b) GARCH with Elnet penalty

(c) GARCH with Elnet penalty (d) RM without penalty

(e) RM without penalty (f) RM with Ridge penalty

:Partial Derivative, : SHAP values, : β̂(τ), shaded area presents NBER recession
indicators
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Figure 2: Partial Derivative, SHAP and β̂(τ) for SV model.

(a) SV without penalty (b) SV without penalty

(c) SV with LASSO penalty (d) VaR lagged values without penalty

(e) VaR lagged values without penalty (f) VaR lagged values with LASSO penalty

:Partial Derivative, : SHAP values, : β̂(τ), shaded area presents NBER recession
indicators
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Figure 3: Partial Derivative, SHAP and β̂(τ) for ASV model.

(a) ASV with Ridge penalty (b) ASV with Ridge penalty

(c) ASV without penalty (d) S&P500 positive values with Ridge penalty

(e) S&P500 positive values with Ridge penalty (f) S&P500 positive values without penalty

:Partial Derivative, : SHAP values, : β̂(τ), shaded area presents NBER recession
indicators

39



Figure 4: Partial Derivative, SHAP and β̂(τ) for ASV model.

(a) S&P500 negative values with Ridge penalty (b) S&P500 negative values with Ridge penalty

(c) S&P500 negative values without penalty

:Partial Derivative, : SHAP values, : β̂(τ), shaded area presents NBER recession
indicators
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