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Abstract
Purpose This study aimed at comparing the predictive accuracy of the power law (PL), 2-parameter hyperbolic (HYP) and 
linear (LIN) models on elite 1-h track running performance, and evaluating pacing profile and running pattern of the men’s 
best two 1-h track running performances of all times.
Methods The individual running speed–distance profile was obtained for nine male elite runners using the three models. 
Different combinations of personal bests times (3000 m-marathon) were used to predict performance. The level of absolute 
agreement between predicted and actual performance was evaluated using intraclass correlation coefficient (ICC), paired t 
test and Bland–Altman analysis. A video analysis was performed to assess pacing profile and running pattern.
Results Regardless of the predictors used, no significant differences (p > 0.05) between predicted and actual performances 
were observed for the PL model. A good agreement was found for the HYP and LIN models only when the half-marathon was 
the longest event predictor used (ICC = 0.718–0.737, p < 0.05). Critical speed (CS) was highly dependent on the predictors 
used. Unlike CS,  PLV20 (i.e., the running speed corresponding to a 20-min performance estimated using the PL model) was 
associated with 1-h track running performances (r = 0.722–0.807, p < 0.05). An even pacing profile with minimal changes 
of step length and frequency was observed.
Conclusions The PL model may offer the more realistic 1-h track running performance prediction among the models inves-
tigated. An even pacing might be the best strategy for succeeding in such running events.

Keywords Fatigue · Power law · Intensity–duration profile · Critical speed · Step length · Step frequency

Introduction

The 1-h track running event is a unique competition among 
the track and field disciplines, as it is the only running race 
in which time, rather than distance, is fixed. Although there 
is a large body of literature focusing on the analysis of dif-
ferent endurance running events and world records [1–5], 
the 1-h track running event has surprisingly received very 
little scientific interest. Considerable scientific insights about 
different endurance running events have been gained from 
the analysis of the individual running speed–distance (or 
time) relationship [1–3, 6–10], classically used to evaluate 
endurance capacity and predict endurance running perfor-
mance [1, 6–13]. However, few studies have attempted to 
predict 1-h track running performance [12, 14]. Moreo-
ver, while there is a large body of literature focusing on 
the analysis of pacing profile and running pattern during 
distance-based running events [15, 16], no studies have ever 
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investigated them during the 1-h track running event (i.e., a 
time-based event). As a result, very little is known about this 
unique running event.

Analyzing the individual relationship between running 
speed and distance of elite athletes performing the 1-h track 
running provides an opportunity to gain new insight on 
this kind of events. It is well recognized that the capacity 
to sustain a given running speed decreases as the distance 
increases [3, 17, 18]. This negative exponential decay of 
the running speed–duration relationship was early described 
using the power law (PL) model:

where s is the running speed (m⋅s−1), c and α are constants 
and d is the running distance covered. The PL model has 
also been used to characterize individual intensity–duration 
profiles with the purpose of predicting endurance perfor-
mance [14, 19–21]. Nevertheless, very little is known about 
the predictive accuracy of the PL model on 1-h track run-
ning performance. Some data suggest that when using ath-
letes’ personal best times (PB), the PL model can offer a 
better estimation of elite long-distance running performance 
compared to other common models, such as the 2-parameter 
hyperbolic (HYP) and linear (LIN) models (i.e., the linear 
representation of the HYP model) [14, 22]. However, these 
models have traditionally been preferred to the PL model for 
the prediction of endurance running performance [1, 6, 7, 
9–11, 13, 23], 1-h track running performance included [12]. 
Interestingly, although some data suggest that the PL model 
may better predict elite 1-h track running performance com-
pared to the HYP model [14, 20], this hypothesis is yet to 
be tested.

Pacing profile, defined as the distribution of the running 
pace over a competition, is an important contributory factor 
of endurance running performance [4, 15, 24, 25]. Whereas 
several studies have investigated the association between 
pacing profile and outcomes of different elite endurance run-
ning events [4, 15, 16, 24, 26, 27], no studies have focused 
on the elite 1-h track running pacing profile before. The need 
for a different performance strategy is plausible, because 
attempting to run as far as possible in a given amount of 
time is different proposition from attempting to run a fixed 
distance in the shortest possible time. Thus, analyzing elite 
athletes’ pacing profile during such events could benefit both 
coaches and athletes in choosing the best pacing strategy to 
adopt during competitions.

It is also important to note that running speed (and its 
changes over time—i.e., pacing) is directly determined by 
the product of step length and step frequency. Therefore, 
analyzing athletes’ running pattern is essential and can pro-
vide further important information to coaches and athletes. 
For instance, it has been reported that elite/competitive 

s = cd
� ,

endurance runners generally possess higher step lengths 
compared to recreational/amateur runners [28, 29]. A strong 
negative correlation has also been found between step length 
and time to complete a half-marathon [30], while no cor-
relation has been observed between step frequency and 
endurance performance [30]. However, to the best of our 
knowledge, the elite 1-h track running pattern has never 
been investigated. Moreover, since preferred step lengths 
and frequencies may significantly change depending on 
where athletes run (e.g., treadmill vs overground) [31], it 
is very important to analyze running patterns during real-
competitive settings. Accordingly, a running pattern analysis 
of the recent 1-h track running world record would represent 
a promising opportunity to gain new insights on such events.

Therefore, the aims of this study were to: (1) test and 
compare the predictive accuracy of the PL, HYP and LIN 
models on elite 1-h track running performance. Since the use 
of different models’ predictors may provide different perfor-
mance estimates [32–34], the predictive accuracy of these 
models was assessed using different PB of the events ranging 
between the 3000 m and the marathon; and (2) evaluate the 
pacing profile and running pattern of the men’s best two 1-h 
track running performances of all times, performed at the 
World Athletics Wanda Diamond League Meeting 2020 in 
Brussels. It was hypothesized that the PL model would better 
predict elite 1-h track running performance compared to the 
HYP and LIN models.

Methods

Design and secondary data collection

This is a computational/observational study involving the 
analysis of secondary performance data of elite endurance 
runners. This study was reviewed and approved by the Eth-
ics Committee of the University of Essex (ETH2021-0765).

Since one aim of this study was to test the predictive 
capacity of different models, it was necessary to identify 
elite runners who had competed in 1-h track running events 
and having also previously competed in 5000 m, 10,000 m, 
half-marathon and marathon events (see “Data analysis” for 
more details). Nine male elite runners fitting these criteria 
were identified and selected (aged 31 ± 4 years at the time 
they performed their 1-h track PB) from the 217 perfor-
mances recorded in the all-time men's best 1-h runs rank-
ing. Eight of the selected runners also competed in 3000 m 
events and their PB was included in the analysis (see “Data 
analysis”). To note, for one runner we considered the 3000 m 
event performed following the 1-h track PB (see Table 1), 
as this was the only official 3000 m event available. Data 
were obtained from two databases freely available online 
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(www. allti me- athle tics. com and www. iaaf. org/ stati stics/ 
index. html).

Each individual running speed–distance profile was 
obtained using three different models: PL, HYP, and LIN 
models. The best fit for each model was found by minimizing 
the sum of the residuals (i.e., in a last-squares sense) using 
the Levenberg–Marquardt non-linear curve-fitting algorithm 
[35, 36], available in the MATLAB curve fitting toolbox 
(R2016a Mathworks, Natick, MA). Adjusted R2 ( R2

adj
 ) and 

mean absolute percentage error (MAPE) were used as good-
ness of fit and model accuracy measures, respectively. The 

1-h track running performance was then estimated using the 
three predictive models and six different predictors groups, 
obtaining six performance predictions per each model. The 
agreement between the predicted and the actual 1-h track 
running performances was then calculated.

Data analysis

It was assumed that each PB corresponded to the athletes’ 
maximal performance (Table 1). Each individual run-
ning speed–distance profile for each model was obtained 

Table 1  Athletes’ personal best 
performances

Athlete 3000 m 5000 m 10,000 m Half marathon Marathon 1-h 
(m)

1
 Speed (m⋅s−1) 6.63 6.47 6.22 5.91 5.62 21,330
 Time (seconds) 452.6 773.1 1606.6 3572.0 7511.0
 Date (year) 2016 2011 2011 2015 2018 2020

2
 Speed (m⋅s−1) 6.52 6.37 6.04 5.69 5.63 21,322
 Time (seconds) 460.4 784.9 1656.4 3710.0 7489.0
 Date (year) 2015 2018 2014 2017 2020 2020

3
 Speed (m⋅s−1) 6.74 6.58 6.32 5.97 5.58 21,285
 Time (seconds) 445.1 759.4 1582.8 3535.0 7556.0
 Date (year) 1998 1998 1998 2006 2006 2007

4
 Speed (m⋅s−1) 6.58 6.35 6.14 5.67 5.24 21,101
 Time (seconds) 455.7 787.8 1628.2 3723.0 8049.0
 Date (year) 1989 1989 1989 1988 1986 1991

5
 Speed (m⋅s−1) 6.08 5.96 5.76 5.24 20,855
 Time (seconds) 823.0 1679.2 3664.0 8059.0
 Date (year) 1987 1987 1987 1989 1990

6
 Speed (m⋅s−1) 6.35 6.25 6.08 5.88 5.59 20,703
 Time (seconds) 472.6 800.2 1644.8 3588.0 7548.0
 Date (year) 2017 2017 2019 2017 2017 2020

7
 Speed (m⋅s−1) 6.27 6.20 5.97 5.58 5.37 20,399
 Time (seconds) 478.2 806.8 1675.2 3783.0 7851.0
 Date (year) 1999 1994 1996 1996 1995 1996

8
Speed (m⋅s−1) 6.48 6.28 6.12 5.72 5.39 20,102
Time (seconds) 463.0 795.7 1633.5 3686.0 7833.0
Date (year) 1999 1998 1999 2008 2004 2009
9
Speed (m⋅s−1) 6.20 5.98 5.82 5.65 5.37 19,985
Time (seconds) 483.8 836.6 1719.1 3735.0 7863.0
Date (year) 2012 2013 2014 2018 2019 2020

http://www.alltime-athletics.com
http://www.iaaf.org/statistics/index.html
http://www.iaaf.org/statistics/index.html
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considering six different predictors groups separately: 
(1) 3000 m, 5000 m, 10,000 m, half-marathon and mara-
thon; (2) 3000 m, 5000 m 10,000 m and half-marathon; 
(3) 3000 m, 5000 m and 10,000 m; (4) 5000 m, 10,000 m, 
half-marathon and marathon; (5) 5000 m, 10,000 m and 
half-marathon; (6) 10,000 m, half-marathon and marathon. 
It was decided to choose these predictors events as the 1-h 
track running performance ranges among these distances, 
and therefore, it was expected to optimize the prediction 
accuracy. Moreover, the use of predictors ranging between 
3000 m and 10,000 m were expected to optimize the appli-
cation of the HYP and LIN models [37].

The individual running speed–distance profile obtained 
using the PL model was computed by fitting running speed 
against running distance. Subsequently, the distance at 
which a running speed elicits a time to exhaustion (TTE) 
of 60 min was computed as D

PL
=

1−�
√

3600c, where DPL 
is the predicted running distance, c and α the coefficients 
of the PL model.

The individual running speed–distance profile obtained 
using the HYP model (i.e., t = ARCHyp∕v − CSHyp , 
where  CSHyp is the critical speed in m ·  s−1, ARC Hyp is 
the anaerobic running capacity in meters and t is the 
running time) was computed by fitting running time 
against running speed. The model coefficients were then 
used to predict the 1-h track running performance (i.e., 
DHyp = ARCHyp + CSHyp × 3600 , where DHyp is the pre-
dicted performance).

The individual running speed–distance profile obtained 
using the LIN model (i.e., DLin = CSLin × t + ARCLin , where 
 CSLin is the critical speed, ARC Lin is the anaerobic running 
capacity for the LIN model and DLin is the predicted perfor-
mance) was computed by fitting running distance against 
running time. Subsequently, each 1-h track running perfor-
mance was estimated considering t = 3600.

Since the temporal proximity between the predictor events 
(i.e., 3000 m, 5000 m, 10,000 m, half-marathon and mara-
thon PB) and the 1-h track running event may have poten-
tially rendered the model less accurate for some runners, 
a correlation analysis between [predicted–actual 1-h track 
performance, Δabs] and [the time interval between when the 
1-h track PB was performed and the mean time of when the 
predictor events were performed, ΔT] was computed.

It was also decided to obtain a measure similar to 
the average power of a 20-min time-trial, traditionally used 
in cycling to obtain the so-called “Functional Power Thresh-
old”. Specifically,  the equivalent speed for a  20-min run-
ning TTE using the PL model coefficients (defined here as 
 PLv20) was computed as PLV20 = PLD20∕1200 , where  PLD20 
corresponds to PLD20 =

1−�
√

1200c . Subsequently,  PLv20 
was compared with  CSHyp and  CSLin within each predictors 
group.

Video analysis

Two athletes broke the previous world record in the 1-h track 
running at the World Athletics Wanda Diamond League 
Meeting (4/09/2020, Brussels). To compute pacing profile, 
step length and step frequency of these athletes, a video 
analysis of the entire race was individually conducted by 
two experienced researchers. The free software Kinovea 
(v.0.8.15, www. kinov ea. org) was used for the video analysis. 
The video was recorded at 25 Hz. Step length was computed 
as the total number of running steps divided by the portions 
of track considered. To precisely count the total number of 
running steps within each portion of track considered, the 
first and the last running steps were divided into ten equal 
parts. Official lines and markers on the track were used to 
identify the length of each analyzed portion of track. A total 
of 95 track segments (average length: 232 ± 131 m, range: 
[80, 740 m]), included between the race starting point and 
21,300 m, were considered to determine the running pace. 
The number of running steps were computed on 57 of them 
only (average length: 210 ± 96 m, range: [90, 400 m]), as it 
was not possible to clearly identify athletes running pattern 
on the remaining ones. It is also worth noting that a remark-
able agreement was observed between the number of steps 
counted by the two researchers independently, and that the 
differences in magnitude were rare and not larger than 2/10 
of a single running step. The step frequency was computed 
as the total number of steps within a given track portion 
divided by the time run within that track portion.

Statistical analysis

All data were first checked for normality using the Shap-
iro–Wilk test (W), histograms, Q–Q plots and boxplots. A 
one-way repeated measures ANOVA was used to investi-
gate the effect of different predictors on models’ coefficients, 
 PLv20, and performance estimates. A two-way repeated 
measures ANOVA (3 × 6) was used to investigate the dif-
ference between  CSHyp,  CSLin and  PLv20 across predictors 
groups. In the case of a significant interaction, only pre-
planned follow-up comparisons were performed (i.e., com-
parisons between  CSHyp,  CSLin vs  PLv20 within each pre-
dictors group). The Greenhouse–Geisser adjustment was 
performed when the sphericity assumption was not fulfilled. 
Paired sample t tests with Benjamini–Hochberg’s p value 
correction were used as follow-ups (with false-discovery 
rate ≤ 0.05). The level of absolute agreement between pre-
dicted and actual performance was evaluated using “One-
Way Random” intraclass correlation coefficient (ICC), 
Bland–Altman concordance analysis, and paired t test. For 
the Bland–Altman concordance analysis, since an actual 

http://www.kinovea.org
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performance can be considered a gold standard measure, 
we plotted Δabs against actual performances instead of (pre-
dicted + actual)/2 [38] (hereinafter referred as concordance 
plot). The presence of a proportional bias was identified by a 
significant slope of the regression line [39]. The relationship 
between models’ coefficients and actual performance, and 
between  PLv20 and actual performance were evaluated using 
r. The relationship between models’ coefficients,  PLv20 and 
the average speed of each predictors groups was investigated 

using r. An alpha level of 0.05 was used to indicate statisti-
cal significance. All data were expressed as means ± 1SD. 
Effect sizes are presented as either partial eta-squared ( �2

P
 ) 

or as Cohen’s d (d). The SigmaPlot software was used to 
conduct the Bland–Altman analysis (version 12.0, Systat 
Software, San Jose, CA). The IBM SPSS Statistics 23 soft-
ware package was used to conduct all the other the statistical 
analyses (SPSS Inc, Chicago, Illinois, USA).

Table 2  Model’s coefficients, adjusted R2 ( R2

adj
 ), MAPE, and Pearson’s correlations for the power law (PL), 2-parameter hyperbolic (HYP), and 

linear (LIN) models

X mean value, SD standard deviation, 95% CI 95% confident intervals ([lower, upper]), MAPE mean absolute percentage error, r Pearson’s cor-
relation coefficient, ΔT time interval in years. Model’s coefficient 1 corresponds to c, ARC Hyp and ARC Lin for the PL, HYP and LIN models, 
respectively. Model’s coefficient 2 corresponds to α,  CSHyp and  CSLin for the PL, HYP and LIN models, respectively

n = 8 Model’s  
coefficient 1

Model’s  
coefficient 2

R2

adj
MAPE Correlation with actual  

performance
Correlation with predictors’  
average speed

Model’s  
coefficient 1

Model’s  
coefficient 2

Model’s  
coefficient 1

Model’s  
coefficient 2

Model X ± SD
[95% CI]

X ± SD
[95% CI]

X ± SD
[95% CI]

X ± SD
[95% CI]

r (p value) r (p value) r (p value) r (p value)

Predictors 
group 1

3000 m–5000 m–10,000 m–21097.5 m–42195 m

ΔT = 4.0 ± 2.4
 PL 10.835 ± 1.248 -0.063 ± 0.011 0.971 ± 0.014 0.003 ± 0.001 0.490 (0.218) − 0.363 (0.376) 0.466 (0.245) − 0.304 (0.465)

[9.792, 11.879] [-0.073, -0.053] [0.960, 0.983] [0.002, 0.005]
 HYP 1284 ± 466 5.310 ± 0.180 0.949 ± 0.023 44 ± 16 − 0.045 (0.921) 0.460 (0.251) 0.179 (0.671) 0.474 (0.235)

[931, 1636] [5.159, 5.460] [0.930, 0.968] [31, 57]
 LIN 861 ± 196 5.394 ± 0.154 0.999 ± 0.000 26 ± 9 0.125 (0.768) 0.488 (0.220) 0.251 (0.548) 0.593 (0.121)

[697, 1025] [5.266, 5.523] [0.999, 0.999] [18, 34]
Predictors 

group 2
3000 m–5000 m–10,000 m–21097.5 m

ΔT = 4.5 ± 2.9
 PL 10.458 ± 1.136 -0.059 ± 0.011 0.971 ± 0.026 0.003 ± 0.002 0.636 (0.090) − 0.503 (0.204) 0.539 (0.169) − 0.354 (0.390)

[9.509, 11.407] [-0.068, -0.049] [0.949, 0.993] [0.002, 0.005]
 HYP 677 ± 162 5.574 ± 0.154 0.952 ± 0.018 24 ± 5 0.423 (0.297) 0.345 (0.402) 0.361 (0.380) 0.619 (0.102)

[541, 812] [5.445, 5.702] [0.936, 0.967] [20, 28]
 LIN 528 ± 119 5.635 ± 0.147 0.999 ± 0.000 12 ± 4 0.430 (0.288) 0.4095 (0.315) 0.347 (0.400) 0.702 (0.052)

[428,627] [5.512, 5.758] [0.999, 0.999] [9, 16]
Predictors 

group 3
3000 m–5000 m–10,000 m

ΔT = 5.2 ± 3.7
 PL 9.730 ± 0.844 -0.051 ± 0.009 0.987 ± 0.013 0.002 ± 0.001 0.692 (0.057) − 0.503 (0.204) 0.587 (0.126) − 0.323 (0.436)

[9.024, 10.436] [-0.058, -0.043] [0.976, 0.998] [0.001, 0.003]
 HYP 292 ± 56 5.911 ± 0.145 0.987 ± 0.010 7 ± 4 0.726 (0.042) 0.548 (0.160) 0.243 (0.563) 0.901 (0.002)

[245, 339] [5.790, 6.032] [0.979, 0.996] [4, 10]
 LIN 273 ± 48 5.928 ± 0.148 0.999 ± 0.000 3 ± 2 0.660 (0.075) 0.591 (0.123) 0.406 (0.319) 0.920 (0.001)

[233, 313] [5.804, 6.051] [0.999, 0.999] [2, 5]
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Results

Mean coefficients, MAPE and R2
adj

 values of the PL, HYP 
and LIN models obtained using different predictors groups 
are reported in Tables 2 and 3. The associations between the 
models’ coefficients and the actual 1-h track running perfor-
mance, and between the models’ coefficients and the average 
running speed within each predictors group are shown in 
Tables 2 and 3. No significant correlation between Δabs and 
ΔT was found for all the investigated models and predictors 
(0.226 ≤ r ≤ 0.484; 0.221 ≤ p ≤ 0.559).

Single values of the models’ coefficients obtained using 
different predictors groups for the PL, HYP and LIN mod-
els are depicted in Fig. 1. The One-Way ANOVA reveals a 
significant main effect of predictors groups for  CSHyp and 
ARC Hyp (p < 0.001, �2

P
 = 0.845 and p < 0.05, �2

P
 = 0.787, 

respectively),  CSLin and ARC Lin (p < 0.001, �2
P
 = 0.878 

and p < 0.001,  �2
P
 = 0.870, respectively), and c and α 

(p < 0.05, �2
P
 = 0.471 and p < 0.05, �2

P
 = 0.488, respectively. 

A significant main effect of predictors groups was also found 
in the 1-h track running predictions for the three models 
(PL: p < 0.05, �2

P
 = 0.544, HYP: p < 0.001, �2

P
 = 0.889, LIN: 

p < 0.001, �2
P
 = 0.883) and for  PLv20 (p = 0.034, �2

P
 = 0.457). 

Figure 1 shows the follow-up comparisons, where no dif-
ferences were observed for c, α and performance predic-
tions when using the PL model (all  Benjamini–Hoch-
berg’s p > 0.054). No differences were also found for  PLv20 
(all Benjamini–Hochberg’s p > 0.064).

Performance predictions obtained using the different pre-
dictors groups and models are reported in Tables 4 and 5. 
Regardless of the predictors group used, no significant dif-
ferences were found between predicted and actual 1-h track 
running performance when the PL model was employed. 
Conversely, significant differences were observed when the 
HYP and LIN models were used, and a good agreement 
between predicted and actual performances was found only 
when predictors groups 2 and 5 were used (i.e., only when 
the half-marathon was included in the model).

The concordance plots for each investigated model and 
predictors group are shown in Figs. 2 and 3. No significant 
proportional bias was found. The bias and the upper and 
lower limits of agreement values of the concordance plots, 
and ICCs are reported in Tables 4 and 5.

CSHyp and  CSLin were equal to the 97 ± 1% and 98 ± 1% 
of the average running speed of the longest event included 
in the predictors group 1 (i.e., marathon), 97 ± 1% and 
98 ± 0.5% in the predictors group 2 (half-marathon), 97 ± 1% 
and 97 ± 0.5% in the predictors group 3 (10,000 m); 97 ± 1% 
and 97 ± 0.5% in the predictors group 4 (marathon), 96 ± 1% 
and 98 ± 1% in the predictors group 5 (half-marathon), and 
96 ± 1% and 97 ± 1% in the predictors group 6 (marathon).

The average running speed corresponding to  PLV20 was 
found equal to 6.15 ± 0.14 m⋅s−1 in the predictors group 1, 
6.15 ± 0.15 m⋅s−1 in the predictors group 2, 6.18 ± 0.15 m⋅s−1 
in the predictors group 3, 6.15 ± 0.15 m⋅s−1 in the predic-
tors group 4, 6.15 ± 0.15 m⋅s−1 in the predictors group 5, 
6.21 ± 0.16 m⋅s−1 in the predictors group 6.

The Two-Way ANOVA revealed a main effect of run-
ning speed (p < 0.001, �2

P
 = 0.996) and predictors group 

(p < 0.007, �2
P
 = 0.866). A significant interaction was also 

found (p < 0.001, �2
P
 = 0.839). Follow-up comparisons 

revealed a significant difference between  PLV20 and  CSHyp 
when using predictors group 1 (p > 0.001, d = 4.562), 2 
(p > 0.001, d = 4.450), 3 (p > 0.001, d = 5.078), 4 (p > 0.001, 
d = 4.549), 5 (p > 0.001, d = 3.577) and 6 (p > 0.001, 
d = 3.612); and between  PLV20 and  CSLin when using predic-
tors group 1 (p > 0.001, d = 5.005), 2 (p > 0.001, d = 4.624), 3 
(p > 0.001, d = 5.575), 4 (p > 0.001, d = 4.982), 5 (p > 0.001, 
d = 3.617) and 6 (p > 0.001, d = 3.854).

Positive associations between  PLV20 and the average speed 
of the predictors group 1 (r = 0.991, p < 0.001), predictors 
group 2 (r = 0.999, p < 0.001), predictors group 3 (r = 0.994, 
p < 0.001), predictors group 4 (r = 0.955, p < 0.001), predic-
tors group 5 (r = 0.984, p < 0.001), and predictors group 6 
(r = 0.719, p < 0.05) were observed.

The association between  PLV20 and the actual 1-h track 
running performance is shown in Fig. 4. To note, positive 
high correlations between  PLv20 and the actual 1-h track run-
ning performances were observed, except when the predic-
tors group 6 was used. Conversely, no associations between 
 CSHyp,  CSLin and actual 1-h track running performances 
were found (Tables 2 and 3).

A total number of 5895 and 6177 running steps were 
counted for the 1st and 2nd men’s best 1-h track runners 
of all times, respectively. The average number of running 
steps done within the portions of track analyzed corre-
sponded to 105 ± 48 and 111 ± 51, respectively. The mean 
running speed of the men’s best two 1-h track running 
performances of all times (1st: 5.925 ± 0.089 m⋅s−1, coef-
ficient of variation (CV) = 1.5%, median = 5.913 m⋅s−1, 
range = [5.774, 6.410]; 2nd: 5.923 ± 0.074  m⋅s−1, 
CV = 1.2%, median = 5.912  m⋅s−1, range = [5.708, 
6.258], respectively) are shown in Fig. 5, panel A. Step 
length (1st: 2.05 ± 0.02 m, CV = 1.09%, median = 2.05 m, 
range = [1.98, 2.15]; 2nd: 1.84 ± 0.02  m, CV = 1.2%, 
median = 1.84 m, range = [1.77, 1.90]) and step frequency 
(1st: 2.89 ± 0.02  Hz, CV = 0.81%, median = 2.89  Hz, 
range = [2.84, 2.99]; 2nd: 3.22 ± 0.02 Hz, CV = 0.91%, 
median = 3.22 Hz, range = [3.14, 3.30]) are reported in 
Fig. 5, panel B and C, respectively. The relative step length 
(i.e., ([step length∕athlete’s height] × 100)) was found equal 
to 117.3 ± 1.3% (median = 117.2%, range = [113.3, 122.6]) 
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and 109.4 ± 1.1% (median = 109.4%, range = [105.4, 
113.1]) for the 1st and 2nd performance, respectively (ath-
letes’ height: 1.75 m and 1.68 m, respectively). Running 
speeds, step lengths and step frequencies in Fig. 5 were 
the only variables not normally distributed (W > 0.954, 
p < 0.05).

Very small but significant changes of both step fre-
quency and step length were observed over time. Spe-
cifically, a significant increment over time was found 

in step length (p < 0.001) in both performances (1st: 
slope = 0.0000022, intercept = 2.03,  r = 0.659; 2nd: 
slope = 0.0000020, intercept = 1.81, r = 0.666) (Fig. 5, 
panel B). A concomitant significant decrement was found 
in step frequency (p < 0.001) in both performances (1st: 
slope = − 0.0000050, intercept = 2.90,  r = 0.478; 2nd: 
slope = -0.0000058, intercept = 3.24, r = 0.435) (Fig. 5, 
panel C).

Table 3  Model’s coefficients, adjusted R2 ( R2

adj
 ), MAPE, and Pearson’s correlations for the power law (PL), 2-parameter hyperbolic (HYP), and 

linear (LIN) models

X mean value, SD standard deviation, 95% CI 95% confident intervals ([lower, upper]), MAPE mean absolute percentage error, r Pearson’s cor-
relation coefficient, ΔT time interval in years. Model’s coefficient 1 corresponds to c, ARC Hyp and ARC Lin for the PL, HYP and LIN models, 
respectively. Model’s coefficient 2 corresponds to α,  CSHyp and  CSLin for the PL, HYP and LIN models, respectively

n = 9 Model’s  
coefficient 1

Model’s  
coefficient 2

R2

adj
MAPE Correlation with actual  

performance
Correlation with predictors’  
average speed

Model’s  
coefficient 1

Model’s  
coefficient 2

Model’s  
coefficient 1

Model’s  
coefficient 2

Model X ± SD
[95% CI]

X ± SD
[95% CI]

X ± SD
[95% CI]

X ± SD
[95% CI]

r (p value) r (p value) r (p value) r (p value)

Predictors 
group 4

5000 m–10,000 m–21097.5 m–42195 m

ΔT = 3.7 ± 2.0
 PL 11.234 ± 1.451 − 0.067 ± 0.013 0.964 ± 0.035 0.003 ± 0.001 0.445 (0.230) − 0.354 (0.349) 0.375 (0.320) − 0.228 (0.555)

[10.119, 12.350] [− 0.077, − 0.057] [0.937, 0.991] [0.001, 0.004]
 HYP 1479 ± 487 5.259 ± 0.199 0.963 ± 0.035 29 ± 10 − 0.029 (0.942) 0.364 (0.336) − 0.035 (0.950) 0.610 (0.081)

[1104, 1853] [5.106, 5.413] [0.947, 0.979] [22, 37]
 LIN 1117 ± 267 5.329 ± 0.171 0.999 ± 0.000 3 ± 1 0.107 (0.785) 0.384 (0.307) − 0.019 (0.962) 0.698 (0.037)

[911, 1324] [5.198, 5.461] [0.999, 0.999] [2, 4]
Predictors 

group 5
5000 m–10,000 m–21097.5 m

ΔT = 4.3 ± 2.5
 PL 10.654 ± 1.667 − 0.060 ± 0.017 0.966 ± 0.040 0.002 ± 0.001 0.515 (0.156) − 0.431 (0.247) 0.499 (0.171) − 0.397 (0.290)

[9.373, 11.936] [− 0.073, − 0.048] [0.935, 0.996] [0.001, 0.003]
 HYP 748 ± 214 5.554 ± 0.152 0.958 ± 0.020 13 ± 3 0.328 (0.389) 0.313 (0.412) 0.357 (0.345) 0.556 (0.120)

[584, 912] [5.437, 5.671] [0.943, 0.973] [11, 16]
 LIN 648 ± 182 5.592 ± 0.145 0.999 ± 0.000 7 ± 3 0.343 (0.367) 0.348 (0.359) 0.363(0.337) 0.614 (0.079)

[508, 788] [5.480, 5.704] [0.999, 0.999] [5, 10]
Predictors 

group 6
10,000 m–21097.5 m–42195 m

ΔT = 3.2 ± 1.5
 PL 12.366 ± 2.406 − 0.075 ± 0.019 0.920 ± 0.099 0.148 ± 0.086 0.195 (0.616) − 0.111 (0.776) − 0.012 (0.977) 0.098 (0.801)

[10.517, 14.215] [− 0.090, − 0.060] [0.844, 0.996] [0.077, 0.373]
 HYP 1732 ± 626 5.226 ± 0.215 0.953 ± 0.026 14 ± 4 − 0.049 (0.901) 0.347 (0.360) − 0.110 (0.778) 0.650 (0.072)

[1250, 2213] [5.061, 5.391] [0.933, 0.973] [11, 17]
 LIN 1522 ± 440 5.264 ± 0.191 0.999 ± 0.000 8 ± 4 0.023 (0.953) 0.357 (0.346) − 0.131 (0.736) 0.694 (0.038)

[1184, 1859] [5.117, 5.411] [0.999, 0.999] [4, 11]
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Fig. 1  Models’ coefficients obtained using different predictors groups 
are displayed for the PL (panels A and B), HYP (panels D and E) and 
LIN (panels G and H) models. Panels C, F and I depict performance 
predictions using different predictors groups for the PL (panel C), 
HYP (panel F), and LIN (panel I) models, respectively. The transpar-
ent grey area shown on panels C, F and I represents the mean ± 1SD 
of the actual 1-h track running performance [dashed lines represent 
the mean ± 1SD, the dot line represents the mean running perfor-
mance value when using predictors groups 1–3 (20,778 ± 560 m) and 
4–6 (20,787 ± 525  m)]. In each panel, both individual (open circle) 
and mean ± SD (horizontal solid lines) values are reported for PL 
(top panels), HYP (middle panels) and LIN (bottom panels) models. 
§p < 0.05 main effect of predictors groups. Follow-up comparisons 
with Benjamini–Hochberg’s p value correction: ap < 0.05 predictors 

group 1 vs predictors group 2, bp < 0.05 predictors group 1 vs pre-
dictors group 3, cp < 0.05 predictors group 1 vs predictors group 4, 
dp < 0.05 predictors group 1 vs predictors group 5, ep < 0.05 predic-
tors group 1 vs predictors group 6, fp < 0.05 predictors group 2 vs 
predictors group 3, gp < 0.05 predictors group 2 vs predictors group 
4, hp < 0.05 predictors group 2 vs predictors group 5, ip < 0.05 pre-
dictors group 2 vs predictors group 6, jp < 0.05 predictors group 3 vs 
predictors group 4, kp < 0.05 predictors group 3 vs predictors group 
5, lp < 0.05 predictors group 3 vs predictors group 6, mp < 0.05 pre-
dictors group 4 vs predictors group 5, np < 0.05 predictors group 4 
vs predictors group 6, and op < 0.05 predictors group 5 vs predictors 
group 6.  CSHyp and  CSLin estimates increase with short-event PB 
times (predictors group 2, 3, and 5) and decrease with longer event 
PB times (predictors group 1, 4, and 6)
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Discussion

To the best of our knowledge, this is the first study 
investigating the predictive accuracy of the PL, HYP 
and LIN models on 1-h track running performance in 
elite athletes, as well as analyzing the pacing profile 
and running pattern during this type of running events. 
The main findings showed that: (1) the use of differ-
ent predictors may affect the estimation of the models’ 
coefficients and the prediction of the elite 1-h track run-
ning performance in all the models; (2) the PL model 
provides a better predictive accuracy of the elite 1-h 

track running performance compared to the HYP and 
LIN models, for which reasonable predictions were 
observed only when the half-marathon was considered 
as the longest event among the models predictors; (3) 
 CSHyp and  CSLin seem to be highly dependent on the 
predictors chosen, and they corresponded to 96–98% of 
the average speed of the longest event considered as a 
predictor. Both  CSHyp and  CSLin did not correlate with 
the elite 1-h track running performance, whereas a mod-
erate-to-strong positive correlation between  PLV20 and 
1-h performance was observed; (4) the men’s best two 
1-h track running performances of all times were run 

Table 4  Actual and predicted performance, Δabs, magnitude of Δabs, ICC and concordance plot limits of agreement for the power law (PL), 
2-parameter hyperbolic (HYP),  and linear (LIN) models

X mean value, SD standard deviation, 95% CI 95% confident intervals ([lower, upper]), Δabs predicted–actual performance, ICC intra-class corre-
lation coefficient  (ICC(1,1): model 1 = one-way random, type 1 = reliability of single measures;  ICC(1,2): model 1, type 2 = reliability of the mean 
measure); LoA upper and lower limits of agreements for the concordance plot (bias ± 1.96SD)

n = 8 Actual  
performance

Predicted  
performance

Δabs Magnitude of 
Δabs

ICC(1,1) ICC(1,2) Concordance plot LoA 

Model X ± SD (m) 
[95% CI]

X ± SD (m) 
[95% CI]

X ± SD (m) 
[95% CI]

t- and p-value 
(Cohen's d)

ICC (p-value) 
[95% CI]

ICC (p-value) 
[95% CI]

Upper (m)  
[95% CI]

Lower (m) 
[95% CI]

Predictors 
group 1

3000 m–5000 m–10,000 m–21097.5 m–42195 m

 PL 20,778 ± 560
[20310, 21247]

20,736 ± 438
[20307, 21102]

− 43 ± 400
[− 377, 292]

t(7) = − 0.301
p = 0.772
(0.107)

ICC = 0.715 
(0.011)
[0.141, 0.934]

ICC = 0.834 
(0.011)
[0.247, 0.966]

741
[142, 1340]

− 826
[− 1425, − 227]

 HYP 20,778 ± 560
[20310, 21247]

20,398 ± 436
[20034, 20763]

− 380 ± 437
[− 745, − 15]

t(7) = − 2.462  = 
p 0.043
(0.870)

ICC = 0.448 
(0.100)
[− 0.266, 0.856]

ICC = 0.619 
(0.100)
[− 0.726, 0.922]

476
[− 178, 1130]

− 1236
[− 1890, − 581]

 LIN 20,778 ± 560
[20310, 21247]

20,281 ± 458
[19898, 20663]

− 498 ± 440
[− 866, − 130]

t(7) = − 3.198 
p=0.015
(1.131)

ICC = 0.343 
(0.169)
[− 0.378, 0.818]

ICC = 0.511
 (0.169)
[− 1.215, 0.900]

365
[− 295, 1025]

− 1361
[− 2021, − 701]

Predictors 
group 2

3000 m–5000 m–10,000 m–21097.5 m

 PL 20,778 ± 560
[20310, 21247]

20,845 ± 469
[20454, 21237]

67 ± 480
[− 335, 469]

t(7) = 0.395 
p=0.075
(0.140)

ICC = 0.604 
(0.034)
[− 0.056, 0.094]

ICC = 0.753 
(0.034)
[− 0.118, 0.950]

1009
[289, 1728]

− 874
[− 1594, − 155]

 HYP 20,778 ± 560
[20310, 21247]

20,741 ± 493
[20329, 21154]

− 37 ± 515
[− 468, 394]

t(7) = − 0.203  
p=0.845
(0.072)

ICC = 0.568 
(0.046)
[− 0.110,0.894]

ICC = 0.725
(0.046)
[− 0.248, 0.944]

973
[201, 1745]

− 1047
[− 1819, − 275]

 LIN 20,778 ± 560
[20310, 21247]

20,813 ± 491
[20403, 21224]

35 ± 505
[− 387, 457]

t(7) = 0.196  
p=0.085
(0.069)

ICC = 0.584
(0.040)
[− 0.087, 0.898]

ICC = 0.737
(0.040)
[− 0.190, 0.946]

1025
[268, 1782]

− 955
[− 1712, − 198]

Predictors 
group 3

3000 m–5000 m–10,000 m

 PL 20,778 ± 560
[20310, 21247]

21,108 ± 517 330 ± 487
[− 77, 737]

t(7) = 1.917 
p=0.097
(0.678)

ICC = 0.491 
(0.078)
[− 0.215, 0.870]

ICC = 0.658 
(0.078)
[− 0.548, 0.930]

1284
[554, 2013]

− 624
[− 1353, 105]

 HYP 20,778 ± 560
[20310, 21247]

21,571 ± 526
[20676, 21540]
[21132, 22011]

793 ± 474
[397, 1189]

t(7) = 4.735  
p=0.002
(1.674)

ICC = 0.073 
(0.417)
[− 0.593, 0.700]

ICC = 0.137 
(0.417)
[− 2.910, 0.824]

1722
[1012, 2432]

− 135
[− 845, 574]

 LIN 20,778 ± 560
[20310, 21247]

21,612 ± 534
[21165, 22058]

833 ± 460
[448, 1218]

t(7) = 5.120  
p=0.001
(1.810)

ICC = 0.057 
(0.433)
[− 0.603, 0.692]

ICC = 0.108
(0.433)
[− 3.039, 0.818]

1735
[1046, 2425]

− 69
[− 759, 621]
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at an even pace and very small but significant changes 
of both step length and step frequency were observed 
over time.

Prediction of 1‑h track running performance

The prediction accuracy of the PL model was found to be 
remarkably high, suggesting that this model can offer a rea-
sonable prediction of elite 1-h track running performance. 
Indeed, regardless of the model predictors used, a good 
agreement between predicted and actual performance was 
observed, even though the use of short predictor may lead to 

overestimate performance predictions. Although the effect 
of using different groups of predictors to estimate 1-h track 
running performance is rather small, they may modify the 
PL model coefficients (Fig. 1). This is in line with previous 
studies, which suggested that at least two PL models would 
operate in describing the speed loss over distance in running 
world records [18, 40] (i.e., fractal component of running 
performance phenomenon [3, 40]). It is worth noting that 
only running world records were used in these studies, and 
therefore, future investigations are required to verify whether 
this phenomenon is likewise present at an individual level.

Table 5  Actual and predicted performance, Δabs, magnitude of Δabs, ICC and concordance plot limits of agreement for the power law (PL), 
2-parameter hyperbolic (HYP), and the linear (LIN) models

X mean value, SD standard deviation, 95% CI 95% confident intervals ([lower, upper]), Δabs predicted–actual performance, ICC intra-class corre-
lation coefficient  (ICC(1,1): model 1 = one-way random, type 1 = reliability of single measures;  ICC(1,2): model 1, type 2 = reliability of the mean 
measure), LoA upper and lower limits of agreements for the concordance plot (bias ± 1.96SD)

n = 9 Actual  
performance

Predicted  
performance 

Δabs Magnitude of Δabs ICC(1,1) ICC(1,2) Concordance plot LoA 

Model X ± SD (m) 
[95% CI]

X ± SD (m) 
[95% CI]

X ± SD (m) 
[95% CI]

t- and p-value 
(Cohen's d)

ICC (p-value) 
[95% CI]

ICC (p-value) 
[95% CI]

Upper (m)  
[95% CI]

Lower (m)  
[95% CI]

Predictors 
group 4

5000 m–10,000 m–21,097.5 m–42195 m

 PL 20,787 ± 525
[20384, 21190]

20,681 ± 438
[20344, 21017]

− 106 ± 417
[− 427, 215]

t(8) = 0.763 
p=0.468
(0.254)

ICC = 0.641
(0.018)
[0.054, 0.904]

ICC = 0.781 
(0.018)
[0.103, 0.950]

712
[142, 1282]

− 924
[− 1494, − 354]

 HYP 20,787 ± 525
[20384, 21190]

20,413 ± 442
[20072, 20753]

− 374 ± 460
[− 728, − 21]

t(8) = − 2.441
p=0.040
(0.814)

ICC = 0.380
(0.128)
[− 0.297, 0.813]

ICC = 0.551 
(0.128)
[− 0.844, 0.897]

527
[− 101, 1155]

− 1276
[− 1904, − 648]

 LIN 20,787 ± 525
[20384, 21190]

20,303 ± 460
[19949, 20657]

− 484 ± 457
[− 836, − 133]

t(8) = − 3.177
p=0.013
(1.059)

ICC = 0.291
(0.195)
[− 0.385, 0.776]

ICC = 0.451 
(0.195)
[− 1.252, 0.874]

412
[− 212, 1036]

− 1380
[− 2004, − 756]

Predictors 
group 5

5000 m–10,000 m–21,097.5 m

 PL 20,787 ± 525
[20384, 21190]

20,803 ± 435
[20468, 21137]

16 ± 470
[− 345, 377]

t(8) = 0.101
p=0.922
(0.034)

ICC = 0.566
(0.037)
[− 0.064, 0.880]

ICC = 0.723 
(0.037)
[− 0.138, 0.936]

936
[295, 1578]

− 905
[− 1546, − 264]

 HYP 20,787 ± 525
[20384, 21190]

20,743 ± 458
[20391, 21095]

− 44 ± 481
[− 414, 326]

t(8) = − 0.274
p= 0.791
(0.091)

ICC = 0.561
(0.038)
[− 0.072, 0.879]

ICC = 0.718 
((0.038)
[− 0.155, 0.935]

900
[242, 1557]

− 988
[− 1645, − 330]

 LIN 20,787 ± 525
[20384, 21190]

20,780 ± 457
[20429, 21131]

− 7 ± 478
[− 374, 360]

t(8) = − 0.044
p= 0.966
(0.015)

ICC = 0.570
(0.035)
[− 0.058, 0.882]

ICC = 0.726 
(0.035)
[− 0.123, 0.937]

929
[277, 1581]

− 943
[− 1595, − 291]

Predictors 
group 6

10,000 m–21,097.5 m–42,195 m

 PL 20,787 ± 525
[20384, 21190]

20,715 ± 422
[20391, 21039]

− 72 ± 414
[− 391, 246]

t(8) = − 0.522
p= 0.616
(0.174)

ICC = 0.646
(0.017)
[0.063, 0.906]

ICC = 0.785 
(0.017)
[0. 118, 0.951]

740
[174, 1306]

− 884
[− 1450, − 318]

 HYP 20,787 ± 525
[20384, 21190]

20,547 ± 420
[20224, 20869]

− 240 ± 449
[− 585, 105]

t(8) = − 1.605
p= 0.147
(0.535)

ICC = 0.495
(0.063)
[− 0.162, 0.856]

ICC = 0.662 
(0.063)
[− 0.387, 0.922]

640
[27, 1253]

− 1120
[− 1734, − 507]

 LIN 20,787 ± 525
[20384, 21190]

20,473 ± 425
[20146, 20799]

− 314 ± 433
[− 647, 19]

t(8) = − 2.176
p= 0.061
(0.725)

ICC = 0.463
(0.078)
[− 0.201, 0.845]

ICC = 0.633 
(0.078)
[− 0.504, 0.916]

535
[− 57, 1126]

− 1163
[− 1754, − 572]
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When the HYP and LIN models were used, a completely 
different scenario appeared. Indeed, substantial changes in 
performance prediction were observed when different pre-
dictors groups were used, and a good agreement between 
predicted and actual performance was obtained only when 
the predictors groups 2 and 5 were used. Moreover,  CSHyp 

and  CSLin estimates increased with short-event PB and 
decreased with longer event PB, and vice versa for ARC 
Hyp and ARC Lin estimates (Fig. 1). These findings are in 
line with previous studies, where changes in model coeffi-
cients were observed when using different model predictors, 
even when using those within the severe-intensity domain 

Fig. 2  Concordance plots for the PL (panels C, F and I), HYP (pan-
els B, E and H) and LIN (panels C, F and I) models when the pre-
dictors group 1 (top panels), 2 (middle panels) and 3 (bottom panels) 
were used. Concordance plots depict the bias (i.e., the average value 

of Δabs, solid line) and the limits of agreement (bias ± 1.96SD, long-
dashed lines) for each predictive model. Each panel shows the rela-
tionship between Δabs and  actual performances along with the equa-
tion found. Data points represent the athletes
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[32–34]. In this regard, it has been suggested that critical 
speed (CS) is highly dependent on the longest event chosen 
as a predictor, corresponding to the 95–99% of the average 
running speed of that event [33]. In line with this, we found 

that  CSHyp and  CSLin corresponded to the 96–98% of the 
average running speed of the longest event chosen. Overall, 
our findings showed that the HYP and LIN models do not 
reliably predict elite 1-h track running performance, and this 

Fig. 3  Concordance plots for the PL (panels A, D and G), HYP (pan-
els B, E and H) and LIN (panels C, F and I) models when the pre-
dictors group 4 (top panels), 5 (middle panels) and 6 (bottom panels) 
were used. Concordance plots depict the bias (i.e., the average value 

of Δabs, solid line) and the limits of agreement (bias ± 1.96SD, long-
dashed lines) for each predictive model. Each panel shows the rela-
tionship between Δabs and actual performances along with the equa-
tion found.  Data points represent the athletes
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is consistent with Gamelin and colleagues study [12] who 
reported similar outcomes for amateur runners.

These findings collectively suggest that the PL model 
may offer a better performance prediction of elite 1-h track 
running performance compared to the HYP and LIN mod-
els. A potential explanation could be that the PL model can 
better characterize the individual running speed–distance 
profile compared to the HYP and LIN models. This is also 
suggested by a lower MAPE observed for the PL model. 
This may be due to the fact that the HYP model mathemati-
cally characterizes the intensity–duration relationship using 
an asymptotic value called CS [1, 10, 14, 41], not present 
in the PL model [14]. On the other hand, the assumption 
of a linear distribution between running distance and speed 
in the LIN model might be too simplistic from a predic-
tive perspective, which may explain why this model could 
not provide a reasonable prediction. However, we cannot 
exclude that the HYP and LIN models may better predict the 
performance of other types of running events, such as those 
lasting between 2 and 15 min or included between 800 and 
10,000 m, as previously suggested [1, 37].

The moderate-to-strong positive correlation between 
 PLV20 and actual performance indicates that  PLV20 is a better 
marker of endurance capacity compared to the more popu-
lar  CSHyp and  CSLin, for which no association with actual 
performance was found. In line with this, we also observed 
that, regardless of the predictors groups used,  PLV20 strongly 
correlated with the average running speed of the models’ 
predictors and its running speed values differed from both 
 CSHyp and  CSLin. Therefore, despite CS has traditionally 
been recognized as an important physiological determinant 
of endurance performance [1, 5, 9, 10, 42] and used to esti-
mate endurance capacity [1, 6, 9], the present results indicate 
that it can be considered neither a valid predictor of running 
exhaustion time [41] or a good marker of endurance capacity 
in the elite athletes population. Although these findings sug-
gest that  PLv20 may be used as a better indicator of endur-
ance capacity among elite runners, this is a new measure/
marker and further investigation is required to better under-
stand its applicability.

Fig. 4  Relationship between  PLV20 and actual 1-h track running performance across the predictors groups. Data points represent the athletes. The 
regression line (solid line) and its 95% CI (short-dashed lines) are reported in each panel (SEE standard error of the estimate)
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Fig. 5  Pacing profile (panel 
A), step length (panel B) and 
step frequency (panel C) of 
the 1st and 2nd best 1-h track 
running performance. 1st best 
performance = continued line 
and filled circles; 2nd best 
performance = dashed line and 
open circles. To note, significant 
slight increments and decre-
ments over time were found for 
step length and step frequency, 
respectively, in both athletes 
(see text for more details)
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The present findings raise legitimate uncertainties about 
the use of the HYP and LIN models in real settings, and the 
physiological meaning addressed to their coefficients (i.e., 
the anaerobic work capacity (AWC) and CS). First, using 
different predictors has a profound impact on the estimation 
of both AWC and CS [22, 32–34], which questions their 
physiological interpretations. Second, the fact that physical 
exhaustion occurs at exercise intensities below CS invali-
dates the definition of CS as an exercise intensity that can 
be sustained for an indefinite time [9, 10]. Likewise, the 
assumption that CS would represent the transition between 
the heavy and severe-intensity domain is questioned by the 
fact that its value seems to be highly dependent on the pre-
dictors chosen, even when selected within the severe-inten-
sity domain [22, 32–34]. Third, the HYP model is unable 
to provide an accurate description of the whole spectrum of 
the exercise intensity–duration relationship, and this is very 
evident for performances lasting longer than 25–30 min [33, 
43]. On the other hand, there are several data—the present 
ones included—suggesting that the PL model would be able 
to pursue this aim [18, 33, 40]. Fourth, it is worth noting that 
the horizontal asymptotic value for the PL model (i.e., the 
analogous value of the CS) corresponds to zero. This implies 
that the exercise intensity that can be theoretically sustained 
for an indefinite time does not exist for the PL model, chal-
lenging the physiological meaning classically addressed to 
the CS [33]. Taken together, these data raise questions about 
the classical physiological meaning of AWC and CS as well 
and their practical applications.

Pacing profile and running pattern of the all‑time 
men’s best two 1‑h track running performances

An even pacing strategy has been proposed as optimal for 
track running events between 1.5 km and 10 [4], and in 
longer distances [24]. Similarly, our findings revealed an 
even pacing profile (with an end-spurt) for both the first and 
second best 1-h track running performances of all times. 
It is important to note that the analyzed 1-h track running 
event was performed with pacemakers until ~ 11,800 m, and 
that a light pacemaker on the left side of lane 1 constantly 
indicated the world record pace to break. These factors indi-
cate that an even pacing strategy was most likely decided 
in advance, suggesting that coaches and athletes may also 
believe the even pacing strategy to be the optimal one.

Pacing profile can be different between competitions as 
athletes may focus on competitive tactics or best perfor-
mance strategies [27]. Specifically, the finishing position is 
generally the most important outcome in high-standard com-
petitions (e.g., World Championships and Olympic games) 
compared to other events (e.g., National/International meet-
ings), where the finishing time might be more relevant. It 

has previously been observed that when endurance runners 
are focused on the finishing time, an even pace is adopted 
during distance-based events [27]. In the present study, the 
same pacing profile was found in athletes aiming at breaking 
the 1-h track running world record, supporting the notion 
that an even pace may also be preferred during time-based 
events. These findings highlight the crucial need to define 
a priori the pacing strategy to adopt. In this context, the PL 
model may be used for this purpose.

There is a current lack of information about how well ath-
letes are able to set themselves an effective running pace for 
time-based events. Unlike a distance-based running event, 
where there is continuous visual feedback of progress, time 
is a more abstract intangible construct which, as has been 
previously demonstrated in children [44], may be more dif-
ficult to set an anticipatory pace even for experienced run-
ners. However, it is still unclear how the temporal and spatial 
information inputs are perceived by runners and what is their 
role in the anticipatory pacing. Hence, further investigation 
is required.

Changes in running pace during competitions are caused 
by changes in step length and/or frequency. In the present 
study, the running pattern of the first and second best 1-h 
track running performance did not considerably change, 
except for the final end-spurt during which both step length 
and frequency increased. Interestingly, both athletes slightly 
increased the step length and decreased the step frequency 
over the race, but the running pace did not vary. These mini-
mal changes in the running pattern are consistent with pre-
vious findings [45–48], and may have been caused by the 
development of central and/or peripheral fatigue [49]. These 
results may underline a potential locomotor strategy adopted 
by the athletes to overcome fatigue and avoid or minimize 
decrements in running speed. However, due to the nature of 
the present study, it was not possible to identify the underly-
ing mechanisms.

The best 1-h track running performance was character-
ized by longer step lengths and lower step frequencies com-
pared to the second-best performance (see Fig. 5). Longer 
step lengths are generally associated with greater running 
performances in both sprints [50–52] and endurance run-
ning events [30, 45, 48], while no direct relation has been 
observed for higher step frequencies [30, 51, 52]. In line 
with this, the present findings would also support the notion 
that step length may be the key variable for succeeding in 
endurance running events. However, since the current analy-
sis was performed on two athletes only, further studies on 
1-h track running events are certainly required.

Limitations and methodological considerations

The PB times considered were performed at different peri-
ods of the athletes’ career, often several years before they 
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achieved their best performance in the 1-h track running (see 
Table 1). Although no correlation between Δabs and ΔT was 
found, this may have introduced an error in the performance 
estimates. Indeed, it is important to note that the individual 
running speed–duration profile is not constant in time and 
can vary during athletes’ career and training periods. There-
fore, a more valid performance prediction may be obtained 
using performance data closer in time to the event that needs 
to be predicted.

The video analysis was performed using a video recorded 
at a relatively low sampling rate (25 fps), which may have 
introduced an error associated with the running time estima-
tion. However, the error magnitude—if present—was limited 
to few photograms only (i.e., ≤ 2 photograms, correspond-
ing to ≤ 0.08 s), unlikely affecting the interpretation of the 
present findings. Moreover, the number of steps done within 
the portions of track considered was computed using a sin-
gle video containing videos recorded from different cameras 
placed around the athletic track. This might have also gener-
ated some estimation error in the number of steps. However, 
the researchers who computed the analysis reported that—if 
present—this error was very low within each portion of track 
analyzed (i.e., unlikely higher than 2/10 of one running step) 
and not expected to affect the interpretation of the findings.

We tested a relatively small sample size of elite runners, 
which might expose the analysis to an increased type II 
error. Therefore, further powered studies involving primary 
data analysis are certainly required to confirm the present 
findings.

Practical applications

The present findings reveal that using athletes’ PB together 
with the PL model can offer a reasonable prediction of elite 
1-h track running performance and characterize individual 
intensity–duration profiles. Although we used elite runners’ 
PB performances, the approach presented herein is also 
expected to be applicable to sub-elite and amateur runners. 
Moreover, some data suggest that the PL model may also 
provide a reasonable prediction of other endurance running 
events [14, 22]; however, further investigations are required.

Smyth and colleagues [11] showed that using the LIN 
model together with daily training data recorded from wear-
able devices in endurance runners would allow to predict 
marathon performance and pacing. However, the present 
findings suggest that the PL model might also be used in 
association with daily training data, favoring thus its imple-
mentation and use within sport devices and wearables. 
Nevertheless, further studies are required to investigate the 
applicability and use of the PL model, and standard meth-
odological procedures should be identified.

The present findings also suggest that an even pac-
ing strategy may be the optimal strategy during 1-h track 

running events. This implies that knowing a priori the most 
sustainable running speed to adopt during this kind of run-
ning events may be very important. By providing a good 
estimation of 1-h track running performance, the PL model 
can help athletes and coaches to identify the optimal pacing 
strategy to adopt during these events.

Conclusions

The present study shows that the PL model can offer a bet-
ter prediction of the elite 1-h track running performance 
compared to the HYP and LIN models. Data also suggest 
that the PL model would better characterize the individ-
ual intensity–duration profile of elite endurance runners. 
 PLv20 may be used as an indicator of endurance capacity 
in the elite runners population.  CSHyp and  CSLin seem to be 
highly dependent on the predictors chosen, raising legitimate 
concerns about their physiological meaning. An even pac-
ing profile with an end-spurt was observed in the first and 
second best 1-h track running performances of all times, 
supporting the notion that an even pace might be the best 
strategy for this type of events. A slight tendency in increas-
ing the step length and decreasing the step frequency over 
the race was observed. Further studies are required to better 
understand the link between fatigue and running pattern as 
well as to optimize the use of the PL model in the context of 
endurance performance prediction.
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