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Abstract   

The last years have seen the emergence of the bioeconomy. Assessment of these new 

technologies is a significant challenge.   We develop a unique dynamic programming 

framework to assess the value of the investment in a multi-stage supply chain with the 

production of bio-feedstock and its processing into multiple outputs. The system allows 

for adaptive learning in all supply chain stages, which creates a positive learning effect 

of co-outputs. We apply the framework to macroalgae (seaweed) farming and 

biorefinery processing into proteins and sugars for the Philippines and Ireland as 

representatives of developing and developed economies with emerging supply chains. 

We run Monte Carlo simulations to analyze the uncertainty of learning and prices. The 

key results indicate that the macroalgae sector that builds on traditional technologies is 

quite viable. Developing a new algae industry that generates proteins and other high-

value products requires significant investment and depends on the dynamics of learning 

and prices. Even though the production of high-value chemicals is not yet viable, it 

gains profitability potential from learning of feedstock farming that is currently 

produced for the lower value application. The learning is much more valuable in 

feedstock production and processing into proteins than low-value chemicals currently 

produced (carrageenan).  

Highlights 

• Original dynamic, two-stage supply chain model with non-linear cost functions, 

learning in each stage, and heterogenous coproducts.  

• Analysis of impact of learning effects and prices on investment decision in a 

supply chain of aquaculture.  

• Theoretical and empirical confirmation of the importance of learning and co-

production in multi-stage supply chains. The co-production allows financing 



 

learning in both stages of the supply chain that may transform the presently non-

viable product into a profitable in the long run.   

• If the combined impact of learning is greater than the discount effect, than the 

investment in a technology is likely to be profitable even if prices decline.  

• Monte Carlo simulations for the Philippines and Ireland indicate that learning 

at the stage of the cultivation and biorefining into proteins is currently more 

important that processing into carrageenan (sugars).  

• The payback period for the industry in the Philippines is up to 3 years, while 

western financiers should plan for a long-term investment and maintain high 

learning rates to reach profitable commercialization  
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1. Introduction 

The concept of bioeconomy refers to sectors of the economy that are using biological 

resources to produce renewable products (NAS, 2020; European Commission, 2018; 

Pyka, Cardellini, van Meijl, & Verkerk, 2022). More specifically, the bioeconomy 

utilizes new life sciences knowledge to produce a wide range of products from living 

organisms and the waste they generate (Zilberman, Gordon, Hochman, & Wesseler, 



 

2018). As new biotechnologies emerge, a significant challenge is developing economic 

decision-making tools for ex-ante assessment that incorporate the complex supply 

chains and multi-level systems of feedstock production, refining technologies, markets, 

environmental externalities, and policies (Ramcilovic-Suominen & Pülzl, 2018; 

Wesseler & von Braun, 2017).  Much of the literature on the economics of technological 

change in the bioeconomy is an ex-post assessment of the rate of return to research or 

the adoption of new technologies (Antle, 2019; Zilberman, Gordon, Hochman, & 

Wesseler, 2018; Alston, Pardey, & Rao, 2021). However, to address the challenges of 

introducing innovations, ex-ante analysis of their design and implementation is 

essential (Van Eenennaam, De Figueiredo Silva, Trott, & Zilberman, 2021). 

The research was motivated by conversations with industry stakeholders. Inspired 

by the spike in demand for plant-based milk products, the industry believes that 

macroalgae (seaweeds) have potential (van den Burg, 2019; GFI, 2021). Plant-based 

milk has grown from a niche product to a business worth USD 20bn a year worldwide 

(The Economist, 2021).  The accelerated growth of plant-based meat, eggs, and dairy 

signals a growing global demand for more-sustainable alternatives to conventional 

products.  The macroalgae-based bioeconomy can play a vital role in providing 

sustainable food (Cai, et al., 2021), animal feed (Seghetta, et al., 2017), 

pharmaceuticals, fertilizers (Seghetta, Hou, Bastianoni, Bjerre, & Thomsen, 2016) and 

hydrocolloids (alginates, agar and carrageenan) (Alba & Kontogiorgos, 2019). The 

comparative advantages of macroalgae are the much higher biomass productivity than 

that of terrestrial plants (Casoni, Ramos, Estrada, & Diaz, 2020), while not competing 

for land or freshwater (Golberg, et al., 2020), with a potential for carbon sequestration 

(Krause-Jensen & Duarte, 2016).   



 

There is a long tradition of cultivating seaweeds in East Asia and wild harvesting 

in the West for low-value applications like food and carrageenan (Araújo, et al., 2021; 

Cai, et al., 2021).  New developments in biorefineries create an opportunity to shift 

from low-value commodities toward higher-value products in the cosmetics, functional 

food, nutraceutical, and pharmaceutical markets (Golberg, et al., 2020). These 

innovations are at the stage of initial commercialization, which includes the testing of 

the product. Accordingly, our analysis focuses on testing products prior to 

commercialization, assessing how profitable they are and to what extent the 

macroalgae-based supply chain should be commercialized. 

Zilberman, et al., (2022) distinguish between the innovation supply chain (ISC) 

and the production supply chain (PSC). In the ISC the innovative ideas developed by 

research units are transformed into inventions, upscaled, and tested for efficacy and 

profitability. The last stage of ISC involves experimenting with the PSC design. The 

PSC is built on ISC as the innovating firm designs and implements a multistage supply 

chain where feedstocks are supplied to a biorefinery to be processed into commodities. 

The biorefinery approach is a means to increase the environmental sustainability and 

economic feasibility of industrial processes (Araújo, et al., 2021). Advanced 

macroalgae-based technologies, which aim to produce higher value products, tend to 

be in the upscaling and early production stages in the cleavage between the ISC and 

PSC.  

The transition from the ISC to the PSC may not be distinct. The relationship 

between the ISC and PSC is symbiotic and synergetic, with a lot of feedback. For 

example, Pure Ocean Algae, a macroalgae-based biotechnology company in Ireland, 

has successfully completed a seed funding round which will see it invest more than €3 

million to develop the existing land-based facilities to sea site production and expand 



 

R&D and implementation teams (TheFishSite, 2022). SEAKURA cultivates seaweed 

to produce low-value food additives (Seakura, 2022). Operating on the edge of 

profitability, it is constantly engaged in R&D for adding fine chemicals to its product 

line. 

The traditional approach is to select investment in innovative products and supply 

chains based on the rate of return (ROR) and NPV (Norton & Davis, 1981). Dixit & 

Pindyck (1994), introduce the Real Option (RO) approach for project assessment, 

emphasizing that timing is a crucial element of investment decisions. Thus, the 

evaluation of projects needs to determine when to introduce new technology, not only 

if to introduce it. While the RO approach has been widely applied in the natural resource 

evaluation (Deeney, Cummins, Heintz, & Pryce, 2020), we deal with cases where the 

key question is not when but how to develop and produce a product. The entrepreneur 

controlling the technology is constrained by the availability of specialized personnel 

that can manage production and learning. So, they aim towards early implementing 

testing. A delay of introduction of a technology might be costly also because of 

intellectual property rights (IPR) considerations. If, for instance, researchers developed 

a product, they built a team that can carry it forward. But the availability of key 

personnel is limited, and others may catch up and gain patents and technological edge. 

Therefore, even if the technology is in the stage of development with only the general 

features known, the innovator might seek immediate implementation, otherwise, the 

momentum is gone (Mayer, 2022). This is relevant especially to startups and 

biotechnologies addressing climate changes that do not leave time to procrastinate. 

Innovators must start applying the lab-based technology even if it is not yet profitable 

to learn, improve and evaluate the profitability (Bergemann & Hege, 2005).  Thus, in 

the transition from innovation to production, it is important to improve the technology 



 

through learning by doing (LBD) to have a better assessment of the profit potential. 

Once a technology is established, the timing of testing technology commercialization 

should be considered for economic analysis. Generating new information for 

stimulating private sector investment is the argument for immediate investment by the 

public sector or public sector support. This investment can be evaluated by NPV since 

timing is not an issue, and the RO approach is not applicable.  

There is a new wave of economic literature that emphasizes that the multiple 

stages of bioeconomy supply chains cannot be viewed in isolation because they are 

managed in an integrated manner. The relationship between feedstock and the 

biorefinery are symbiotic (Barrett, Reardon, Swinnen, & Zilberman, Forthcoming). The 

vast literature emphasizes that in developing a new product, the two stages of feedstock 

production and its further processing are linked (Zilberman, Lu, & Reardon, 2019). The 

same financier invests in both stages. This is the case in biofuels (Antràs & Zilberman, 

2022), food (Macchiavello, Reardon, & Richards, 2022), and natural resources 

(Zilberman, Reardon, Silver, Lu, & Heiman, 2022). In the case of seaweeds, which is 

used as feedstock  to  producing proteins and other outputs in the biorefibnery, 

entrepreneur needs to determent how to allocate resources between the different stages 

of the supply chain.  

The literature contains different elements of the supply chain: multiple stage 

supply chain with homogeneous output (Spiegel, Britz, Djanibekov, & Finger, 2020; 

Chen, Khanna, & Yeh, 2012), static models for contracting decision (Du, Lu, Reardon, 

& Zilberman, 2016), dynamic models with linear cost functions, or single stage models 

with learning (Chen, Zhang, Fan, Hu, & Zhao, 2017).  Investigation of learning is 

commonly done in single output or single stage dynamic models (Deeney, Cummins, 

Heintz, & Pryce, 2020). Our study presents the first model that combines the essential 



 

elements for initial supply chain profitability and design analysis. We develop the 

dynamic optimal control model with multistage supply chain, coproduction, non-linear 

costs and learning.  

Having two-stage dynamic model with learning in each of the stages, and 

coproduction of diversified products, allows investigating the real-world situation that 

follows the intuition of the industry (Zeichner, 2020; Argaman, 2020). The key 

questions of the investor are: in which stage of supply chain investment is more 

important for developing the innovation, what is the importance of learning vs prices, 

and to what extent the investment in macroalgae supply chain can be profitable in the 

short-run vs. long run. Our approach can contribute to decision-making regarding early-

stage investment in innovations on the edge of commercialization. 

The model parameters are collected from a variety of sources: the literature, 

interviews with industry stakeholders, as well as data on the international trade of 

seaweed, thickeners, and proteins. The model is validated for the case of the 

Philippines, a developing economy with a traditional seaweed harvesting industry with 

low-value applications. We also examine the case for Ireland, a developed economy 

with an emerging macroalgae-based industry. Finally, we perform stochastic modeling 

analysis, including Monte Carlo simulations, to investigate the impact of uncertainty in 

prices and learning on profitability.  

The major results shed the light on the variation in payback period in developed 

and developing countries and the stages of the supply chain where the learning is most 

crucial. First, if for investment in the macroalgae-based experimental activity to pay for 

itself it will be more likely to become profitable even for low learning rates in the 

Philippines and within shorter payback period than in Ireland. The production of 

seaweed feedstock is projected to start with supporting the low-value commodity 



 

(carrageenan). It allows gaining learning on feedstock and reaching profitability of 

coproducing the high value chemical (proteins) in the later stage. In Ireland, the 

probability for profitability requires higher learning rates and investment horizon for at 

least 10 years.  

Second, the results identify the weak points of the system: high uncertainty of 

yields in seaweed production and productivity of biorefining into proteins. 

Accordingly, investment in activities with higher LBD potential (macraolgae farming 

and processing into high-value chemicals) should be prioritized. Even though the 

production of high-value chemicals is not yet profitable, it gains profitability potential 

from learning of feedstock farming that is currently produced for the lower value 

application. Once the co-production becomes viable, the profitability of the entire 

supply chain is enhanced. 

2. Macroalgae bioeconomy in a nutshell  

Macroalgae have been popular in Asian cuisine for centuries. Their high biomass 

growth rates, and the high content of organic compounds such as polyunsaturated fatty 

acids, led to an increase in consumer demand for algae products and the commercial 

interest in seaweed production during the last several decades (Hochman & Palatnik, 

2022). Seaweed farms bring benefits beyond the immediate value of their crop. 

Advancements in science and technologies led to the diversifying of macroalgae 

applications in food and beverages (Torres, Kraan, & Domınguez, 2019), pharma 

products (Golberg, et al., 2020), wastewater treatment (Wang, et al., 2020), bio-refining 

(Prabhu, Israel, Palatnik, Zilberman, & Golberg, 2020; Seghetta, Hou, Bastianoni, 

Bjerre, & Thomsen, 2016), dietary supplements (Peñalver, et al., 2020), cosmetics 

(Pereira, 2018), animal feed (Morais, et al., 2020), and other intermediate factors of 

production (Janarthanan & Senthil Kumar, 2018).  



 

One leading example is the use of seaweed-based hydrocolloids such as 

carrageenan as natural binders and emulsifiers employed in foods, cosmetics, and drugs 

(Duarte, et al., 2020). The annual global growth rate of carrageenan was 2% between 

2009 and 2015, valued in 2015 at more than half a U.S. billion dollars (Ferdouse, Holdt, 

Smith, Murúa, & Yang, 2018). The Philippines are one of the largest producers of 

cultivated macroalgae in the world (FAO, 2022), while Ireland is the leading EU 

seaweed producer in terms of biomass volumes and in a number of macroalgae 

production companies that reached about 20 units by 2019 (Araújo, et al., 2021). 

The very few economic studies on macroalgae utilization find that the production 

is currently profitable if cultivated in developing countries (e.g. Philippines, Tanzania, 

Indonesia) and if processed for food (Cai, et al., 2021).  Cultivation in developed 

countries and processing for fuels and high-value commodities are not yet economically 

viable (Hochman & Palatnik, 2022). The main reasons are relatively low prices of 

substitutes (such as corn bioethanol), and immature technologies of industrial, 

autonomous cultivation, and biorefining (Palatnik & Zilberman, 2017). For example, 

the rate of macroalgae growth and the conversion factors – two key parameters in 

productivity- show a wide range and may be subject to even higher variation due to 

climatic changes. Macroalgae growth depends on saturation kinetics by light intensity, 

ambient dissolved inorganic nutrient concentrations, and temperature (Buschmann, et 

al., 2004). Cultivation uncertainty is exacerbated by stochastic weather and seasonal 

variability between regions, within years, and between years (Lehahn, Ingle, & 

Golberg, 2016). This variation in the product might have a major effect on the cost-

effectiveness of the technology. Growth and conversion parameters may evolve with 

learning. The variability of technology parameters, as well as prices of inputs and 

outputs, impact profitability over time.  



 

In addition, the biorefinery process has not fully entered commercial production, 

but laboratory-based conversion technology is about to be scaled up to industrial-scale 

facilities for fermentation-derived products. The transition from lab to large-scale 

macroalgae cultivation is also expected to reduce costs as producers learn the 

environment, and detect optimal conditions for maximum yield, as happened previously 

in corn and sugarcane ethanol, where the cost and economic viability have improved 

because of learning in processing as well as feedstock production (Khanna & Crago, 

2012; Chen & Khanna, 2012). 

The seaweed supply chains consist of upstream aquafarmers, midstream 

processors and wholesalers, and downstream retailers. Our framework which is 

designed to reflect these features may apply to any supply chain or production process 

that includes at least two stages of production.  Considering the industrial application, 

we develop a mathematical model as a decision support tool for strategic planning. This 

model aims at aiding stakeholders in optimizing the macroalgae-based bioeconomy, by 

integrating the decisions at the cultivation and biorefinery stages while considering 

variability in costs, different shares of biorefinery outputs, and maximizing the expected 

net present value of profits of the two-stage production over time.  

3. State of the art  

This review is structured around two main bodies of multidisciplinary literature that are 

related to our research. The first is the literature on learning implemented in the 

bioeconomy. The second is the literature on supply chain management. We discuss each 

of these research areas, identify the gaps, and highlight the contribution of this article.  

Novel technologies are often expensive at the point of their market introduction 

but become cheaper due to the process of technological learning (Weiss, Junginger, 

Patel, & Blok, 2010). Unit costs of  innovative technologies have been observed to 



 

decline rapidly with the accumulation of production experience/knowledge, measured 

by cumulative production (McDonald & Schrattenholzer, 2002). Technological 

learning, or LBD, —or the learning effect—is a concept, which permits the evaluation 

of the decrease in unit production costs when cumulative production increases. LBD 

was explicitly introduced into economic analysis by Arrow (1962). The literature 

identifies several major drivers of technological learning: learning-by-doing, learning-

by-researching, learning-by-using, learning-by-interacting, and economies of scale 

(Arrow, 1962; Landes, 1969; Kahouli-Brahmi, 2008; Goodwin, Featherstone, & Zeuli, 

2002; Li & Ni, 2016). All these mechanisms reflect the fact that technologies may 

experience declining costs because of their increasing adoption due to the accumulation 

of knowledge through, among others, these drivers of technological learning (Kahouli-

Brahmi, 2008).  

In the case of biofuels, studies show that LBD measured by cumulative 

production played a significant role in reducing the unit industrial processing costs of 

corn ethanol over the period 1983–2005 (Chen & Khanna, 2012; Hettinga, et al., 2009). 

Due to the wide range of macroalgae growth rates and biorefinery conversion factors 

the notion of LBD is especially relevant in the context of macroalgae.  

Several functional forms of an experience curve have been used in the economic 

literature to represent the LBD effect. Kahouli-Brahmi (2008) provides a 

comprehensive review of the literature on technological learning in energy–

environment–economy modeling. The most common format, which is also usually 

employed for bioeconomics (Deeney, Cummins, Heintz, & Pryce, 2020) and biofuel 

technologies (Chen, Khanna, & Yeh, 2012), is the original form of learning function 

(Verdoorn, 1956; Hirsch, 1952) that served as the starting point in Arrow (1962):   

(1) 𝐶 = 𝐽𝑋𝑐𝑢𝑚!" 



 

Where C is the unit cost of production, investment, or capital, J is the initial 

production cost of the first unit, Xcum is the cumulative production of a product, and 	𝜇 

is a parametric constant capturing the rate of cost reduction. In other words, μ is the 

elasticity of LBD, which defines the effectiveness with which the learning process takes 

place. The learning rate (LR), or 1-progress ratio (PR), defined as 2μ, is the rate at which 

the unit cost of technology is expected to decline with every doubling of cumulative 

production (Rivers & Jaccard, 2006).  

Chen et al., (2017) review empirical studies on LRs in the biofuels industry. They 

show an evaluated cost reduction in the range of 13%-35% as the cumulative production 

of biofuels doubles. Chen et al., (2017), like many other studies that incorporate 

learning effects in the cost function, present a single-stage dynamic programming 

framework for investigating time-dependent and adaptive decision-making processes 

to develop advanced fuel technologies. It appears that existing literature has seldom 

addressed the dynamic role of LBD, which affects multiple stages of the process and 

product innovation (Li & Ni, 2016). 

The two-stage supply-chain literature focuses mainly on the following major 

challenges: inventory optimization, location planning, and feedstock uncertainty.  A 

significant branch of the two-stage production models encompasses inventory 

optimization models, where the decision about the optimal inventory of feedstock size 

or quality affects the second stage of production (Wu & Wang, 2015). Enders et al. 

(2014) model a single-item inventory system with a high priority lost sales, customer 

class, and a lower priority backordering class. They propose a critical level policy and 

develop a procedure to determine its average performance. Isotupa (2015) analyzes a 

lost-sales inventory system with two classes of goods and shows that there is a sub-

optimal policy under certain conditions. Xu, Serrano, and Lin (2017) employ the 



 

dynamic programming approach to investigate the inventory-rationing problem in a 

two-product tandem make-to-stock production/inventory system. The model proposed 

in our study introduces a more dynamic approach where instead of a given amount of 

feedstock inventory, the production of feedstock at the first stage is directly impacted 

by the production of a variety of second-stage outputs. In our model, the non-linear 

costs are affected by learning in terms of accumulated production of feedstock.   

Another stream of research models multi-stage production with the uncertainty 

that reflects the renewable energy volatility in power generation. Those studies specify 

in detail the characteristics of renewables such as wind (Wang & Guan, 2013), solar 

(Torani, Rausser, & Zilberman, 2016), and municipal solid waste (Wu, Huang, Li, Xie, 

& Xu, 2015) in the power supply or carbon sequestration (Deeney, Cummins, Heintz, 

& Pryce, 2020). Here, the second stage output – electricity – is a homogeneous good, 

whereas our analysis provides an additional decision parameter that affects the 

profitability – the output bundle might be constructed of two (or more) goods that vary 

with both costs of production and output prices.  

Deeney et al., (2020) present a real option evaluation of production with learning. 

The model represents single stage production and a single output (applied to CO2 

recycling technology). Importantly, the authors separate the learning at the stage of 

R&D from the early stage of commercialization and production. In their framework the 

learning ends at the stage of product development. From Arrow (1962) we know that 

learning is essential especially in the early stage of production. We follow the classical 

(Arrow, 1962) and the recent literature on the supply chain (Zilberman, Reardon, Silver, 

Lu, & Heiman, 2022) that indicate that in the early stage of production the learning 

continues and is highly important. Therefore, our framework complements the 

approach presented by Deeeney et al., (2020).     



 

A large body of literature assesses the economics of corn and sugarcane-based 

ethanol and biodiesel (Babcock, Bruce, Stephan, & David, 2011; Crago, Christine, & 

Madhu, 2014; Jain, Atul, Madhu, Matthew, & Haixiao, 2010). Osmani and Zhang 

(2013) present the two-stage supply chain analysis of bioethanol. Muth, et al., (2014) 

investigated the agricultural production of feedstock that varies widely across the 

landscape according to site-specific characteristics such as topography and soil 

biogeochemistry. In both studies, the multi-feedstock decision is made at the first stage 

of linear cost functions.  

Palatnik and Zilberman (2017) report that although the literature on economic 

analysis of macroalgae utilization is rapidly increasing, it lacks an established cost 

function. Most of the studies employ a linear approximation for National Renewable 

Energy Laboratory (NREL) costs module for corn-stove biorefinery (Konda, Singh, 

Simmons, & Klein-Marcuschamer, 2015; Korzen, Peled, Zemah Shamir, Shechter, & 

Gedanken, 2015; Seghetta, Hou, Bastianoni, Bjerre, & Thomsen, 2016).  

The economic analysis of agriculture has a long history of applicating 

mathematical programming approaches to multi-stage supply chains for homogeneous 

final output (Hazell & Norton, 1986; Berg, 1987; Spiegel, Britz, Djanibekov, & Finger, 

2020). Some studies included also sensitivity analysis for learning (Acs, Berentsen, 

Huirne, & Van Asseldonk, 2009). Several recent studies have addressed the questions 

of agricultural ISC (Du, Lu, Reardon, & Zilberman, 2016; Lu, Reardon, & Zilberman, 

2016; Zilberman, Lu, & Reardon, 2017). These studies focused on the decision of 

contracting the production of feedstock versus self-production under various 

conditions. Lu, Reardon, and Zilberman (2016) investigated the impact of technology 

adoption on supply chain design.  Yet the studies investigate static models and lack an 

explicit investigation of learning and its role in investment decisions in a multi-stage 



 

supply chain with co-production. Zilberman, et al., (2022) present a stylized dynamic 

model, without a real-world application. 

To summarize, for an accurate representation of the ISC of the macroalgae-

bioeconomy, the analytical methodology should incorporate the key features of the 

multiple-stage production process: farming of the feedstock and biorefining of the 

feedstock into multiple outputs. Another crucial feature is for the cost function to allow 

for non-linearities and the possibility for costs to decline through LBD. The important 

prior works set the stage for ISC analysis by investigating its distinct features. The 

present article contributes to the literature by designing the first dynamic optimal 

control model for a two-stage supply chain with co-production, incorporating the 

variation in yields and conversion factors through LBD elasticities in non-linear cost 

functions.  

4. Materials and methods 

To analyze the potential of investment in the seaweed-based supply chain, the following 

procedure was applied (Figure 1. Scientific procedure 

): we develop a dynamic conceptual framework with two stages of the supply chain – 

feedstock cultivation and processing into multiple outputs. Next, parameters of the cost 

function in the macroalgae-based industry are calculated, and the model is validated for 

the case of the Philippines. Finally, the application for two case studies (the Philippines 

and Ireland) is evaluated using Monte-Carlo simulations to quantify uncertainties based 

on random experiments to estimate possible ranges and distributions of prices and LBD 

elasticities. 



 

Table 1 is about here 

This section briefly presents the optimal control model of the supply chain, 

consisting of the feedstock cultivation in the first stage of production, which is the input 

for biorefinery that processes the feedstock into outputs a and b in the second stage. At 

each stage of production and for each output, we assume non-linear cost functions with 

LBD. Denote the cumulative production of feedstock by 𝑋#$%, then 𝑥 is the production 

of feedstock (macroalgae or other) at this particular moment so that the state equation 

is:  

(2) 𝑥(𝑡) = &'!"#
&(

 

Define a(t) as the share of feedstock used for the production of output a (e. g. 

proteins) at time t (assuming	1	to	1	conversion),	and xa as the production of proteins 

at this particular moment. Hence, 𝑥(𝑡)𝑎(𝑡) = 	𝑥). Then, denote for all 𝑡, 𝑠 ∈ 𝑇: 

(3)  𝑋),#$% =	∫ 𝑥(𝑠)𝑎(𝑠)𝑑𝑠(
+ ,	 

Where 𝑋),#$% is the cumulative production of proteins by time t. Similarly, 

𝑋,,#$% =	∫ 𝑥(𝑠)𝑏(𝑠)𝑑𝑠(
+ , where Xb,cum is the cumulative production of output b (e. g. 

sugars - carrageenan), b(t) is the share of feedstock at time t used for the production of 

sugars and xb is the production of sugars at this particular moment. In what follows 

each equation applies to time t. We eliminate the time argument for readability. 

For simplicity, assume that 𝑋#$% = 𝑋),#$% + 𝑋,,#$% and 𝑥 = 𝑥) +	𝑥, meaning 

no waste or residuals occur in the production process. The definition implies that 𝑋#$% ,

𝑋),#$% , and	𝑋,,#$%	are state variables and 𝑥, 𝑥) , 𝑥, are non-negative control 

variables.  

Next, we assume non-linear production costs of proteins (Ca), sugars (Cb), and 

feedstock (C) that decline with LBD:  



 

(4) 𝐶) =
-.$

%

'$,!"#
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Where 𝜇, 𝜁, 𝜓 > 0 are the elasticities of LBD that define the effectiveness with 

which the learning process takes place in the processing of seaweed into proteins and 

sugars, and seaweed farming, respectively. The parameters	𝜙, 𝜉 ≥ 1 indicate the 

marginal cost growth rate. Thus, unlike most previous studies, we allow for the more 

general form of the production costs at the second stage of production. For example, if 

𝜙, 𝜉 = 1, all the production costs follow the standard (linear) form with LBD (Arrow, 

1962; Chen, Khanna, & Yeh, 2012). Whereas for 𝜙, 𝜉 = 2, the cost function of the 

second stage of production is of quadratic form incorporating LBD. 

The parameters A, B, and J are costs of the first unit produced that may be 

calculated using one given point of the curve, usually the starting point (Kahouli-

Brahmi, 2008), for example: 

(5) 𝐽 = 4,
'!"#,

+ 

Now, denote by 𝑃)(𝑡) and 𝑃,(𝑡) the prices of outputs 𝑎 and 𝑏 respectively. Let 

the discount factor be 𝑟, then e−rt is the continuous time discounting factor. Then, the 

investor in ISC maximizes the present discounted value of expected lifetime profits:  
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The framework allows the revenue and cost functions to decline over time due 

to dynamic processes of learning. If potential revenues increase over time and costs of 

cultivation and/ or processing decline, production will increase. First order conditions 

are developed and proved in Appendix A. 

Rearranging F.O.C. allows investigating the factors that impact the growth of 

output: 
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Where 𝑥̇)	is a time derivative of output 𝑥) and 𝑃̇) is a time derivative of price of 

a. As the cost function for output b is symmetrical to a, similar rules apply. From 

Equation (7) we identify the key effects driving the dynamics of the supply chain, 

presented here for output a and symmetric for output b:  

1. The price dynamics effect 7/̇!
/!
− 𝑟:, is the relative price growth comparing to 

the discounted rate.  

2. The learning effect ? 6

𝑋𝑎,𝑐𝑢𝑚
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#

/!
A, is the joint contribution of learning and 

cost. 

3. The discount effect 𝑟 ' 01!!
#-,
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)0, reflects discount cost saving 

for cultivation and processing as a result of learning.	

From the F.O. C. the following propositions are derived (find the proof in Appendix 

B: Propositions and proofs):  

Proposition 1. The expected output of the innovative technology increases, if the 

learning effect is greater than the price effect when prices decline.  

As long as prices of output increase, the production is profitable. But, the prices 

of novel technologies usually follow a downward trajectory: as the production expends, 

the prices decline if demand is not perfectly elastic. Therefore, Proposition 1 identifies 

condition whether production remains profitable when prices decline. If the price is 

decreasing over time, the output increases if the learning effect and the discount effect 

are greater than the price effect, i. e. if the sum of the learning and discount effects is 

greater than the decline of discounted price growth (Equation 7). The cost function 

implies there may be an increase in the volume of production and a reduction in price.  



 

The next propositions describe the comparative statics of the profit function.  

Proposition 2. Production of one or both co-outputs may occur in the early period even 

if at least one of them is not profitable, to accumulate learning of feedstock that will 

result in a profitable supply chain in the longer term.   

The more profitable output of the second stage of the supply chain contributes to 

the increase in productivity in the first stage of ISC (cultivation) that serves as input 

also to the less profitable output of the second stage (processing). The feedstock 

accumulates faster, resulting in cheaper unit costs to the benefit of all co-produced 

outputs of a biorefinery. The economic meaning is that co-production has a positive 

complementarity effect of learning. 

Proposition 3a. The output growth rate is non-decreasing in output price growth and 

increases, if its price growth is higher than the interest rate. 

This result is particularly interesting. Time derivatives of outputs, which are equal 

to growth rates for small changes, clarify that the growth rate of output is smaller than 

the growth rate of prices. Yet if the price increases over time, the output also grows. 

The dynamic nature of the model clarifies the intuition that if prices grow less than the 

discount rate, the growth rate of output declines, as the investor may choose the 

alternative of a ‘risk-free’ bank return.  

Proposition 3b.  If learning is faster than the increase in costs, then output grows faster 

than prices. 

The result implies from time derivatives of output with respect to the time 

derivative of own price.  

In the following sections, the key parameters are evaluated and the profitability 

conditions of the proposed optimal-control supply-chain design model are 

demonstrated.  



 

To summarize, the conceptual model emphasizes the importance of learning 

effect, interest rate and price dynamics. More elastic demand would require slower 

reduction of outputs. Low interest rates and high learning increase profitability and the 

rate of growth of second stage co-outputs. The concept applies to the final stage of ISC 

where the initial pre-commercialization investment in the innovative technology is 

checked for profitability. 

5. Application to macroalgae  

Several organizations try to decide whether they build an experimental farm and learn 

about profitability in production (Zeichner, 2020). For example, Norway is encouraging 

research institutions, industries, and public authorities to develop a bioeconomy based 

on the production and processing of cultivated seaweeds (Stévant, Rebours, & 

Chapman, 2017). The targeted production potential has not been reached yet since only 

part of the companies that received a permit for seaweed cultivation, and processing 

since 2014 are currently in operation and most have still reduced production capacity 

(Broch, et al., 2019). AKUA is a Meat-alt company based in the US making plant-based 

foods from seaweeds. It has successfully completed a recent fund-raising round to 

create a platform of clean-label (Republic, 2022). Those are few of the many examples 

to the macroalgae industry in the stage to decide on the commercialization of the new 

technologies.  

We apply the theoretical framework to farm-level decisions regarding investment 

in innovative technologies in the cultivation and biorefining of seaweeds. Following 

Ingle, et al. (2017), we consider investments into Red macroalgae (Kappaphycus 

alvarezii) production (first stage of ISC) and processing into two outputs: industrial 

proteins and unique polysaccharides - carrageenan (second stage). The macroalgae-

based industry is characterized by traditional methods of cultivation and drying in Asia, 



 

and by the developing novel technologies of cultivation and processing in developed 

countries (Hochman & Palatnik, 2022). Accordingly, we apply the model to two case 

studies: the Philippines, as the representative of the world leader with traditional 

macroalgae economy in East Asia with low-value applications (Cai, et al., 2021), and 

Ireland, as the representative of the developed economy that promotes advances in 

macroalgae-based bioeconomy (Araújo, et al., 2021). 

The actual data on model parameters is collected to provide insights into the true 

profitability of macroalgae utilization to proteins and carrageenan. A major effort to 

collect consistent data on the seaweed industry and derivatives by countries over time 

was performed. The most detailed and consistent dataset was identified in UN 

COMTRADE. Monthly trade value (in USD) and net weight (kg) for seaweeds, 

thickeners derived from vegetable products (including Carrageenan) and textured 

protein substances allowed for calculating the average monthly prices of the traded 

commodities.  

Even though the trade volumes of seaweed in the reported period are of a similar 
scale, the two countries chosen for case studies represent very different industries for 

 ,in carrageenan is much largerhe volume of trade T .based commodities-macroalgae
volume and  Thethan in Ireland. in the Philippines are on average lower and the prices 

than  higherof protein substances exported from Ireland are by merit of order prices the 
of  quality the is can be partly explained by the fact thatThPhilippines. the those of 

(FAO,  proteins exported from the Philippines is on average lower than that of Ireland
.2019)

Table 1  is about here 

To base the estimation of the profitability of the macroalgae industry on cost 
parameters that reflect its specifications, we reviewed the LBD estimations available in 

the literature. 

Table 1 reports for each model-parameter: its description, average value and 

range, setup values for Monte Carlo analysis for the Philippines and Ireland, and the 

source. 



 

 

6. Results 

To illustrate the outcomes of the dynamic optimal control model, we first validate the 

consistency for the case of the Philippines. Next, the stochastic modeling analysis 

including Monte Carlo simulations of profitability for the two case studies is performed.  

6.1. Model verification 

For validation, we apply the modeling framework to the mean values of all the 

parameters of the case of the Philippines (Table 1): 𝑃# = 5000	$/ton; 𝑃$ =

	5500$/ton; 𝐴 = 4200$/ton; 𝐵 = 4500$/ton; 𝐽 = 1600$/ton; 𝜓 = 0.19; 𝜁 = 	0.35; 𝜇 =

0.42. The result is positive production of the feedstock and both outputs with NPV of 

about USD 220M in 2016 values (Figure 2). The accumulated production doubles 3 

times within the period of 10 years, implying much room for learning.  

 Moreover, the marginal profits (marginal revenue minus marginal costs) for both 

goods are negative at the beginning but become positive after some point. The 

profitability of producing output b (carrageenan) is higher, and it grows relatively 

faster in the beginning due to the higher LBD and initial price. However, over time, the 

accumulation of feedstock production (and therefore knowledge and experience) 

reduces the costs of the first stage for output a (protein) as well. This result reinforces 

the positive complementarity effect of learning expressed in Proposition 2.  

In addition, the higher price growth for output a ultimately leads to higher 

profitability of protein over carrageenan. This result supports the intuition that even 

though the production of high-value chemicals in East Asia is not well-established and 

the industry is still centered around traditional technologies, the knowledge gained in 

cultivation of feedstock and the processing of complementary low-value outputs can 



 

facilitate the profitable production of high-value chemicals that ultimately increase the 

profitability of the entire supply chain.  

Figure 2 about here 

Increasing first unit cost of the first stage to	𝐽 = 4000	$/ton reduces the optimal 

production plan to zero at the average learning rates. However, if we change the 

learning rates to the upper bound, we observe the positive production plans and 

profitable production from the very beginning. Hence, there is a substitution between 

the learning effect and first-unit costs. Note that the FAO (2013) report of observed 

costs of K. alvarezii cultivation in developing countries indicates that most of the 

investment and capital costs (i.e. first unit costs- J) of seaweed are within the range of 

USD 600- 1600 per ton. The USD 4000 per ton simulated here is the far-end outlier. 

Therefore, supporting Proposition 2 the results show that LBD reverses non-profitable 

production, even for the relatively high costs of cultivation that usually characterize 

aquafarms in developed countries. 

Following the above verification of the developed dynamic optimal control 

model, we continue investigating the impact of uncertainty in prices and yields on 

profitability of ISC using Monte Carlo simulations. 

6.2. Monte Carlo simulations 

We continue the analysis with Monte-Carlo simulations (Boyle, 1977) to obtain 

possible distributions for the economic return of macroalgae-based ISC for two 

representative case studies: the Philippines and Ireland. Our investigation focuses on 

prices and learning elasticities due to the high variation of observed prices of outputs 

and the uncertainty in yields in all stages of the supply chain.  

For the following Monte Carlo simulations of profitability, the common setup 

includes the growth rates of marginal costs of outputs a (protein) and b (carrageenan) 



 

that are held constant over all the scenarios and equal to ϕ=1.05 and ξ= 1.1 respectively. 

The price growth rates are kept constant to the estimated average level inferred from 

the 7% price growth rate for output a, and 4% for output b. The discount rate is fixed 

to r=4%. Other parameters are specific for the Philippines and Ireland as presented in 

Table 1.  

Before each simulation, we determine the 7-dimensional vector of parameters (for 

prices, prices growth rates, and LBD elasticities), which completely parametrize the 

intertemporal optimization problem. LBD elasticities are assumed to be normally 

(independently) distributed between the estimated lower and upper bounds.  

The price related parameters are randomly drawn from the database for Ireland 

and for the Philippines. We consider the joint distribution of the prices and price growth 

rates for both outputs. This assumption is necessary to account for potential correlations 

between prices and changes in the prices of outputs. 

We consider time horizons of 3 and 10 years to identify the payback time widely 

used in agricultural investment planning (Brandes, Budde, & Sperling, 1980). This is 

the time needed to recover a given investment outlay, including compound interest 

through future revenues (Zweifel, Praktiknjo, & Erdmann, 2017). For each time period, 

1000 Monte Carlo simulations are conducted by drawing a random vector of parameters 

(given the distributions above) and solving the intertemporal profit maximization 

problem.  

The general observation from the simulations refers to the production plans for 

both cases. The results indicate that the production can be split into phases of (1) 

learning (2) exploitation. In the learning period, the firm focuses on the production of 

feedstock and processing it into single output that has a comparative advantage, rarely 

switching between the outputs. LBD stimulates producing more of the output given that 



 

the more of the good is generated the cheaper it becomes to produce it. The second 

phase is the exploitation period. In this phase parallel to exploiting the profit from the 

good that the firm has learned to produce it also learns to produce the complementary 

output of processing. Given that the first-stage good has already become profitable the 

firm learns to produce the second good much more aggressively than it used to with the 

first output. This outcome reinforces the results from optimization analysis for the 

Philippines and yet again supports the theoretical intuition of Propositions 2 -3.  

6.2.1. The Philippines 

Figure 3 presents the impact of learning effect of each of the stages of ISC on the 

profitability within three years for the case of Philippines. Evidently, reaching 

profitability within 3 years for the range of LBD elasticities reported in the literature is 

plausible but not certain.  The simulations confirm the observed stage of the industry in 

the Philippines, where for current rates of LBD elasticities the supply chain of seaweed 

cultivation and processing to carrageenan is mostly profitable within a short period of 

time, while profitability of processing to high value output is not certain. For the time 

horizon of 3 years, the LBD and first-unit cost parameters play the prevalent role over 

the prices in the decision of what to produce. The NPV is the most sensitive to 𝜓 -the 

LBD elasticity of the output a (proteins), while second correlate is	 𝜇	 -	 the LBD of 

feedstock cultivation.  

Figure 3 about here 

Figure 4 investigates the substitutability of LBD elasticities for profitable 

production. It plots the results of NPV given different LBD rates using Support Vector 

Machine (SVM) (Chapelle, Vapnik, Bousquet, & Mukherjee, 2002). SVM is the 

supervised machine learning classification technique, which identifies the separating 

hyper-curve using the labeled data. Here, instead of a simple linear estimator, the 



 

nonlinear SVM is implemented using the “kernel trick”. The highlighted SVMs are 

those defining the separating curve. This analysis supports previous results in 

identifying the sensitivity of profitable ISC to LBD elasticities with 𝜓 as the most 

important, then 𝜇 followed by 𝜁. Moreover, the results reveal a constrain of at least 0.1 

for 𝜓 to insure profitable ISC, no matter what learning elasticities are in the other stages. 

In other words, a learning rate of about 7% in processing macroalgae into proteins is 

required to reach profitability within 3 years.    

Figure 4 about here 

Importantly Figure 4 demonstrates by reconstructing the separating hyperplane 

using SVM that to keep the profitability of the ISC a change of 0.1 in 𝜓 is corresponding 

to about 0.2 change in 	𝜇. The economic meaning is that to maintain profitability, a 

reduction of 7% in costs of processing macroalgae into proteins is equivalent to 13% 

decline in costs of seaweed farming for each doubling of cumulative production. 

Figure 5 presents the results of the simulations for the horizon of 10 years.  

Figure 5 about here 

The profitability in this case is almost always positive implying that high pace of 

learning is less critical.  However,  𝜓 remains the primary correlate to profitability, 

although the spread for other learning elasticities is reduced. Therefore, the relative 

importance of learning in the longer horizon is reduced reflecting opportunities to 

exploit the output with lower LBD as well. 

6.2.2. Ireland 

Figure 6 presents the results for profitability of macroalgae-based ISC over 3 

years in Ireland. We observe that reaching payback period for the ISC in the developed 

country is highly unlikely within the range of LBD elasticities reported in the literature.  



 

Generally, the probability for profit in the short run is low. Both 𝜓 and 𝜇 might affect 

profitability, while the impact of 𝜁 is negligible. The major reason for this is that J – the 

first unite cost of farming - is relatively larger in Ireland comparing to the Philippines.  

Figure 6 about here 

Figure 7 presents the results of the simulations for the horizon of 10 years. The 

probability of profitability increases but is not very high even in the long run.  The 

impact of LBD elasticities is increased, with the general ordering remaining similar to 

the Philippines. Yet again, 𝜓 is the primary correlate to profitability, and the overall 

impact of LBD outweighs the effect of prices.  

Figure 7 is about here. 

The outcomes for Ireland indicate that to ensure profitable investment in 

developed countries, either a high pace of learning over a long term horizon or a 

technological breakthrough is essential.  

7. Discussion and conclusion  

There is a growing interest in the assessment of bio-based supply chains. As 

macroalgae cultivation and utilization technologies are under development, this study 

focuses on assessing the profitability of investment in testing and initial 

commercialization of the technology, taking into account the potential gain from 

learning at different stages of the production process. We focus on the investment in 

innovative technologies when the uncertainty in yields and outputs requires further 

learning during application that validates the team's expertise and the technology's 

viability. This phase is the borderline between ISC and PSC when the initial model for 

a PSC is assessed. Following the initial learning and refinement analyzed here, the 

tactical timing decision might be considered using the RO approach. 



 

The contribution of this article to the literature on the assessment and 

implementation of innovations is by developing a dynamic model of the two-stage 

supply chain with non-linear cost functions, learning and heterogeneous co-outputs. 

The modeling framework addresses the main challenges of the seaweed-bioeconomy, 

taking into consideration the main characteristics of natural resource utilization: the 

ability for multi-output production at the biorefinery; and uncertainly of yields and 

prices.  The article incorporates non-linear profitability impacts and explicitly evaluates 

LBD dynamics.   

The theoretical contributions are illustrated using a numerical simulation 

calibrated with real data and providing solutions to production choice problem. The ISC 

starts with cultivation of Kappaphycus that is utilized as the feedstock to the bio-

refinery; the two simultaneous co-outputs of the bio-refinery are industrial protein and 

carrageenan. Next, Monte Carlo simulations reflect the impact of prices, learning rates 

and ISC horizon on the profitability for two representative case studies: Ireland and the 

Philippines. This work comes in response to the needs of decision makers in the 

governance of bioeconomy to evaluate emerging technologies with the aim of utilizing 

renewable natural sources for sustainable economic growth.  

Investigating the profitability of the supply chain in different time horizons allows 

evaluating the time to profitable commercialization. Importantly, the results reveal that 

the probability for profitable investment in the developed countries with emerging 

macroalgae-based ISC in the short-run is low. Yet, for the 10 years planning horizon 

the likelihood of profitable production sharply increases. In developing countries with 

traditional technologies of seaweed farming, the probability of reaching profitable 

production is high even in the short run. Accordingly, the results show that given the 

learning rates from the literature and the actual costs and prices for developed and 



 

developing countries, the payback period for the industry in the Philippines is up to 3 

years, while western financiers should plan for a long-term investment and maintain 

high learning rates to reach profitable commercialization.  

Interesting results for the Philippines show the potential to diversify investment 

strategy by adding utilization of seaweed into proteins in coproduction with low value 

application (e.g. carrageenan). 

The results indicate the significance of the LBD as an indicator of the profitability 

of novel technologies.  Empirical results highlight that a relatively high learning rate of 

7% in biorefining of seaweed to proteins is required for a profitable production. Gaining 

knowledge and experience in best offshore cultivation practices is also important to 

boosting the mass utilization of the renewable resource – macroalgae. Stakeholders 

from the industry confirmed these results.  

 Moreover, the simulations indicate that production costs in developed countries 

can be sensitive to the learning effect. The first unit cost of cultivation of USD 4000 

per ton (in 2016 prices) appears to be the threshold where LBD can reverse non-

profitable production. 

The results emphasize that the value of a technology depends on the initial (fixed) 

costs, output prices and learning. Of major importance is the early period learning, 

when the entrepreneur absorbs losses for the sake of future profits. We show that for 

every learning rate, the time to maturity of the technology declines with the increase in 

output prices, output of the co-product, but increases with first unit costs.  

The empirical results for both countries stress the importance of the investment 

in R&D in the production of algae and in the purification of protein in order to reduce 

the costs of natural resource utilization and increase the overall profitability of the 



 

supply chain. Naturally, prices change and once the technology is mature timing 

considerations should be introduced.  

Our focus on macroalgae is driven by high yields of this renewable natural 

resource, which does not compete with food crops for arable land or potable water, and 

is a potential feedstock for sustainable food, high value chemicals and biofuels, 

allowing also for carbon sequestration. Carbon pricing can increase the demand for the 

outputs of biorefinery while reducing costs seaweed farming leading to the adoption 

macroalgae-based bioeconomy (Zilberman, Reardon, Silver, Lu, & Heiman, 2022). 

Developing novel uses to proteins and sugars and other unique chemicals extracted 

from macroalgae at the biorefinery can boost the viability of the utilization. To 

generalize, rather than competing with existing goods, the scientific challenge can be 

the investigation of the potential to utilize macroalgae for unique foods, high value 

chemicals and fuels. 

This work can be extended in several directions. First, incorporating 

entrepreneurs’ attitudes toward risk considerations (Zilberman, Lu, & Reardon, 2017). 

The reliability of the volume, timing, and intermediary input quality may be uncertain 

(Zilberman, Reardon, Silver, Lu, & Heiman, 2022). Risk aversion will lead to 

producing less total output. Similarly, riskier processing of the intermediary input is 

likely to lower production (Lu, Reardon, & Zilberman, 2016). Over time, learning and 

adaptation may reduce the risk of supply and processing activities and increase overall 

production. In practice, entrepreneurs operate under credit constraints, which are more 

restrictive in developing countries and reflect asymmetric information between 

borrowers and lenders (Stiglitz & Weiss, 1986). Furthermore, entrepreneurs need 

opportunities to invest in protective measures to increase resilience of their supply 

chains to extreme weather risks.  



 

Another conceivably important aspect that was beyond the scope of this article is 

the innovation spillover. As proteins and sugars are produced simultaneously from a 

given quantity of the seaweed, the accumulation of R&D and experience in processing 

seaweeds into proteins can stimulate the efficiency in production of sugars, and vice 

versa. Therefore, the possibility of correlation between learning rates of co-outputs of 

the biorefinery should be investigated. 

Finally, the present article evaluated the profitability of natural resource 

utilization without considering the environmental and social externalities. Large-scale 

macroalgae cultivation involves direct and external effects on marine environment, 

carbon absorption, potable water, land use and employment. If macroalgae-based 

products, e.g. biofuels, proteins and sugars, crowd-out the use of substitutes, the 

negative effects of fossil and crop-based energy might be mediated (Zilberman, 

Rajagopal, & Kaplan, 2017). Further analysis on macroalgae external costs and 

benefits, as well as social welfare analysis, is required for an accurate policy 

intervention. The analysis on the technological prospects of macroalgae biorefinery 

should evaluate the social net benefit too. Consequently, the recommendation upon 

optimal mix of outputs is to be based on social (versus private) costs. 
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Table 1: Model Parameters, Value, Range and Source 

Para-

meter 

Description Mean 

Value 

Monte Carlo Setup Notes 

Philippines  Ireland 

A First unit cost of 

output a (protein) 

USD 2016 per ton  

4,200  6,000  5,500 Self-calculated based on the price 

B First unit cost of 

output b 

(carrageenan) 

USD 2010 per ton 

4,500 

 

6,500 5,000  (Brown, 2015) 

Range 4,000-6,500  

J First unit cost of 

feedstock 

(seaweed) 

USD 2010 per ton 

1,600  2,200  

 

3,600 

 

(Buck & Buchholz, 2004; Valderrama, eds. 2013) 

Range 600-7,000  

𝝓 Marginal cost 

growth of a 

5% 5% 5% Assumed based on experts' evaluation 

Range 0-20% 



 

𝝃 Marginal cost 

growth of b 

5% 5% 5% Assumed based on experts' evaluation 

Range 0-45% 

Pa Price of output a 

(protein) 

USD per ton 

10,000  3,031 4,200 Prices calculated from value and quantity of the corresponding exporters 

Source: UN COMTRADE; commodity 210610 protein; concentrates and textured 

protein substances 
Range 1,000-11,000  4,000-26,000  

𝑷̇𝒂 Annual growth of 

Price output a 

(protein) 

4% 4% 4% Price growth rates own calculations based on: UN COMTRADE; commodity 

210610 protein; concentrates and textured protein substances Range -43% to 92%  

Pb Price of output b 

(carrageenan) 

USD per ton 

11,000  5,852 3,123 Prices calculated from value and quantity of the corresponding exporters 

Source: UN COMTRADE; commodity HS130239 (mucilages and thickeners). Range 5,000-48,000 3,000-61,000 

𝑷̇𝒃 Annual growth of 

Price output b 

(carrageenan) 

4% 4% 4% Price growth rates own calculations based on: UN COMTRADE; commodity 

HS130239 (mucilages and thickeners). 
Range -11% to 53% 



 

𝝍 

 

elasticity of LBD 

in processing of 

seaweed to 

proteins  

0.19 0.25  

(0.23) 

0.39 

(0.4) 

(Weiss, Junginger, Patel, & Blok, 2010) 

Range 0.10 - 0.36 

𝜻 elasticity of LBD 

in processing of 

seaweed to sugars 

- Carrageenan 

0.35 0.29 

 (0.14) 

0.41 

(0.21) 

(Chen, Zhang, Fan, Hu, & Zhao, 2017) 

Range 0.29-0.41 

μ elasticity of LBD 

in seaweed 

farming –

Kappaphycus 

0.42 0.45  

(0.27) 

0.38 

(0.4) 

(Weiss, Junginger, Patel, & Blok, 2010) 

Range 0.15-0.69 

r Annual discount 

rate 

4% 4% 4% interest rate for mid-term loans 

Range 0-10% 
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Figure 2. Co-outputs a and b Marginal profit (MP in USD per ton) and production (ton per year) in the average scenario  

 

 

 

  

 



 

 
 

Figure 3: Profitability of the supply chain in the Philippines for 3 years as a function of LBD elasticities.  

Blue dots represent positive profit while red indicate negative NPV. Black lines draw the trend and dashed lines show the range of LBD elasticities.   
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Figure 4: Substitutability between LBDs for Profitable supply chain in the Philippines (3 years).  

Legend: Blue dots represent positive profit while red indicate negative NPV. Circled dotes indicate support vector.   

   
Figure 5: Profitability and Substitution between LBDs in the Philippines (10 years).  
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Figure 6: Profitability and Substitution between LBDs in Ireland (3 years).  
Blue dots represent positive profit while red indicate negative NPV. Black lines draw the trend and dashed lines show the range of LBD elasticities. Circled 
dotes indicate support vector.   

      
Figure 7: Profitability and Substitution between LBDs in Ireland (10 years).  
Blue dots represent positive profit while red indicate negative NPV. Black lines draw the trend and dashed lines show the range of LBD elasticities. Circled 
dotes indicate support vector.   
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Appendix A: First order conditions 

Let H to define the temporal Hamiltonian:  
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and apply the Hamiltonian equation as a first order condition for the optimization 

problem: 
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Where 𝑥̇) , 𝑥̇,	are time derivatives of outputs 𝑥) and 𝑥, respectively, which are 

equal to growth rates for small changes. Accordingly 𝑃̇) , 𝑃̇, are time derivatives of 

prices. To find the solution, we solve the system of equations (A.8): 
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Then we obtain the following first order conditions (FOCs): 
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Lemma: The solution to FOCs is a global maximum of the firm problem. 

Proof. Let us check that strict globalized version of Legendre condition is 

satisfied, since the second derivative 𝛻..	𝐻: 

A. 10 𝛻..	𝐻 =	
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⎢
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⎢
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0 −𝐵𝜉(𝜉 − 1) .(
)8O
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* 𝑒!8(⎦

⎥
⎥
⎥
⎤
	 

𝛻..	𝐻 is negative definite whenever 𝜉, 𝜙 > 1. Therefore, we can apply the strict 

Weierstrass condition and guarantee that the obtained solution is a strong local 

maximum. Note as well, that since 𝜋(𝑥) , 𝑥,) is a concave function, then the second 

variation would be negative, therefore, the local maximum is also a global one. 

Appendix B: Propositions and proofs 

Propositions B1 and B2 are validating the economic intuition of the model: 

Proposition B1. The present discounted value of expected life-time profit is 

increasing in prices Pa, Pb and the elasticities of learning by-doing ψ, ζ, μ.  

Proof. This statement is evident from FOCs (Equation A.9, Appendix A). 

Proposition B2.  The profit is decreasing in first-unit costs A, B, J, and marginal 

cost growth of output φ and ξ. 

Proof. Propositions B1 and B2 can be proven by taking the derivatives of profit 

function with respect to the corresponding parameters. Note that none of the parameters 

depends on time. Therefore, taking the derivative of the integral functional is the same 

as taking the derivative of the functional under the integral sign. 



 

Proposition 1. The expected output of the innovative technology increases, if the 

learning by doing effect is greater than the price effect when prices decline. 

Proof. Rearranging F.O. C. (Equation A.9, 0Appendix A) we can derive: 
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We can further rearrange the term: 
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Where the left hand side is the growth of output and the right hand side (RHS) 

denotes affecting it factors.  

As 𝜙 ≥ 1, the first three terms on the right hand side of Equation (B.2), which 

represent learning effect on the marginal cost, are negative. The last term, representing 

production growth effect, can be positive or negative depending on the growth rate of 

output a. Therefore, the cost function implies there may be an increase in volume of 

production and a reduction of price. Equation B.2 states that even if prices decline over 

time, production indeed remains profitable. As the cost function for output b is 

symmetrical to a, similar rule applies.   

The next propositions describe the comparative statics of the profit function.  

Proposition 2.  Production of one or both co-outputs may occur in early period 

even if at least one of them are not profitable, to accumulate learning of feedstock that 

will result in profitable supply chain in the longer term.   

Proof: From Equations A.6 and A.7, it is evident that the more feedstock is 

produced in the first stage (macroalgae cultivation), the faster is learning at the first 

stage of production, and the unit production costs decrease, no matter whether the 

feedstock is mainly processed into output a or b.  The economic meaning is that co-

production has a positive complementarity effect of learning. The more profitable 



 

output contributes to the increase in productivity in the first stage of ISC (cultivation) 

that serves as an input also to the less profitable output of the second stage (processing). 

The feedstock accumulates faster, resulting cheaper unit costs to the benefit of all co-

produced outputs a biorefinery.  

Proposition 3a. The growth rate of output is non-decreasing in output price 

growth and increasing if its price growth is higher than the interest rate. 

Proof. Derive 𝑥̇) or 𝑥̇, (time derivatives of outputs a and b which are equal to 

growth rates for small changes) from F.O.C. (Equation A.9): 
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Evidently the growth rate of output is smaller than the growth rate of prices. Yet 

if price increases over time, the output increases over time too.  

The dynamic nature of the model clarifies the intuition that if the price growth is 

higher than the discount rate, then increasing production is profitable.  

Proposition 3b.  If learning is faster than the increase in costs, then output grows faster 

than prices. 

The output growth is non-decreasing in output price growth, and non-increasing 

in output price level.  

Proof: The time derivatives of output with respect to the time derivative of own 

price is (for output a, since for b they would look symmetric):  

B. 4 6.̇$
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Keeping in mind that the numerator in Equation B.4 represents learning and the 

denominator represents costs of the second stage of production, the result indicates that 

if learning is faster than the increase in costs, output grows faster than prices. 


