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Abstract

Semantic neural decoding aims to identify which semantic concepts an individual is focused

on at a given moment in time from recordings of their brain activity. This could be used by

brain-computer interfaces (BCIs) for communication. These semantic BCIs have the potential

to be highly intuitive by allowing direct communication of semantic concepts instead of

spelling one character at a time, as is the case with current state-of-the-art BCI systems. This

thesis explores the feasibility of semantic BCIs based on electroencephalography (EEG) and

functional near-infrared spectroscopy (fNIRS).

We designed an experiment to differentiate between the semantic categories of animals and

tools during a silent naming task (for the first time in fNIRS), and three novel and intuitive

sensory-based imagery tasks using visual, auditory, and tactile perception. Participants were

asked to visualize an object in their minds, imagine the sounds made by the object, and imagine

the feeling of touching the object. We showed the possibility of semantic neural decoding

in both neuroimaging modalities but with contrasting differences in comparison with other

state-of-the-art research. Furthermore, we investigated the influence of cue presentation on

EEG-based semantic decoding. We found that all EEG-based semantic decoding studies

published to date could exploit neural activity recorded during the cue presentation period

in their analyses. We showed that including the cue presentation period in the classification

pipeline significantly increases classification accuracies. While this research area involves

considerable challenges, this thesis made a step towards EEG/fNIRS-based semantic BCIs.
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Chapter 1

Introduction

This chapter introduces the motivation, research objectives, and structure of this thesis.

1.1 Motivation

Semantic concepts are mental representations within our minds. They are a crucial part of our

knowledge and understanding of the world and our thought processes [174].

Recent results in cognitive neuroscience, machine learning, and human language science

have shown the possibility of semantic neural decoding. Semantic neural decoding aims to

identify which specific semantic concepts an individual is focusing on, or thinking of, at a given

moment in time from recordings of their brain activity [1, 221].

Work by several groups has shown that several pairs of semantic categories can be differ-

entiated, for instance: animals and tools [240, 239, 120, 244, 113, 23, 45, 11, 161, 260], tools

and buildings [244, 113, 23, 45, 11, 161], and animals and body parts [286, 244, 113, 24, 23,

45, 11, 161]. Recent work has also shown that it is possible to differentiate more than two

categories at a time [256, 258, 23, 45, 52, 11].

This semantic neural decoding could be used by brain-computer interfaces (BCIs) for

communication [84, 182]. BCIs provide an alternative pathway between a human brain and



2 Introduction

external devices. BCIs are studied for a variety of applications ranging from helping people

with disabilities [133] to gaming and the entertainment industry for healthy people [130].

BCIs have been successfully used as a technological solution to aid communication for

people who experience difficulties communicating via other means [133, 94, 121]. For example,

this is required in a severe clinical condition called locked-in syndrome (LIS) [110]. LIS is

paralysis of all four limbs and the last cranial nerves without interfering with consciousness.

In other words, patients with LIS are conscious, but trapped within their bodies, unable to

move or communicate. LIS can result from a variety of clinical etiologies, such as amyotrophic

lateral sclerosis (ALS) or spinal cord injury. Individuals with ALS experience progressive loss

of motor function. LIS is divided into three varieties: classical, total, and incomplete [20].

Patients with classical LIS have intact eye movements or blinking. However, patients with total

LIS have absence of all voluntary movements, including eye movements. Lastly, patients with

incomplete LIS retain remnants of voluntary movement, such as a finger twitch. Apart from

LIS, other neurological or head and neck injuries can result in anarthria which is the inability

to speak, despite intact language comprehension and cognition. This differs from aphasia in

which the formulation or understanding of language is affected but some speech is possible.

Unfortunately, current BCI communication speeds and accuracies are relatively low in

comparison with other communication platforms [4, 245, 190]. The performance of BCIs is

often measured by information transfer rate that determines the amount of information that

is conveyed by a system’s output within a set time [151, 277, 235]. Information transfer rate

depends on the number of choices available to the user of the system, the accuracy of target

detection by the system, and the average selection time taken by the system. The majority

of current BCIs achieve average information transfer rates of 27 bits per minute [26, 283],

while other communication aids can achieve considerably higher information transfer rates.

For example, eye trackers can achieve average transfer rates of 41 bits per minute [265]. This

makes BCIs for communication only really useful when other interfaces are not feasible [190].
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According to surveys of potential BCI users [103, 102, 51, 95], a “good” BCI-based speller

system for communication should have an accuracy of at least 90%, a speed of at least 15-20

letters per minute (corresponding to an information transfer rate of at least 65 bits per minute),

and accidental exits from a standby mode no more than once every 2-4 hours.

Semantic BCIs based on semantic neural decoding could allow direct communication of

semantic concepts. Semantic BCIs could have the potential to be highly intuitive but it is

currently unknown if they might allow levels of accuracy and communication speed that meet

the requirements of BCI users.

The main difference between current state-of-the-art BCI systems and our proposed se-

mantic BCI system stems from the serial communication paradigm used in almost all current

BCI systems, in which communication proceeds 1 character at a time, with the meaning of the

concept transmitted becoming available only when a full word has been received. Contrary to

this, semantic BCIs could achieve a form of parallel communication by directly identifying

high-information semantic concepts. For example, instead of spelling out ‘I–A-M–H-U-N-G-

R-Y’ one letter at a time, semantic BCI would allow directly identifying the semantic concept

of ‘hunger’ allowing a faster and more natural communication.

While the most promising results to date have been reported using functional magnetic

resonance imaging (fMRI) [160, 161, 238, 239] which is a whole-brain neuroimaging modality,

semantic decoding using neural signals recorded from the scalp, such as electroencephalog-

raphy (EEG) or functional near-infrared spectroscopy (fNIRS), is of particular interest for

potential semantic BCIs. fMRI is a non-invasive neuroimaging technique which measures

brain activity by detecting changes associated with cerebral blood flow. Its main drawbacks

include application cost, non-portability, low temporal resolution, and the scanner environment

which greatly restricts the types of cognitive tasks and abilities that can be investigated. EEG

is a non-invasive technique which measures electrical activity from the surface of the scalp.

The signal is quite noisy and attenuated because currents need to go through several layers of
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non-neural tissue to reach electrodes. Thus, EEG has a lower spatial resolution of about 2 cm

in comparison with other neuroimaging techniques but it offers a millisecond-range temporal

resolution. Also, fNIRS is a non-invasive technique but it measures cortical brain activity up to

about 2 cm deep through hemodynamic responses associated with neuron behavior similarly to

fMRI. On the other hand, fNIRS is portable and cheaper than fMRI. This gives us a hope to

substitute fMRI with fNIRS [226].

The joint recordings of EEG and fNIRS seem like an ideal combination for semantic

BCIs. Both EEG and fNIRS are portable, relatively cheap, and provide better ecological

validity in comparison with fMRI. EEG provides a good temporal resolution while its poor

spatial resolution could be potentially improved by fNIRS, as these two techniques have

complementary strengths.

1.2 Research Objectives

This thesis aims to explore the feasibility of semantic BCIs based on EEG and fNIRS. The

main research objective is to identify or propose several mental tasks that would be suitable for

semantic BCI paradigms. This will allow us to address the following research questions:

1. Does including neural activity recorded during a cue presentation period into decoding

pipelines affect EEG-based semantic neural decoding in state-of-the-art?

2. Is it possible to differentiate between the semantic categories of animals and tools during

selected mental tasks from EEG data?

3. Is it possible to differentiate between the semantic categories of animals and tools during

a sequence of mental tasks from fNIRS data?
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1.3 Thesis Structure

Chapter 2 presents a systematic literature review of semantic neural decoding from a range of

neuroimaging modalities. It discusses specific neuroimaging methods, experimental designs,

and machine learning pipelines that are employed to aid the decoding of semantic concepts.

The chapter also discusses current challenges presented by this research area and discusses

some possible emerging and speculative future directions for this research area.

Chapter 3 introduces an experiment used throughout this thesis to explore the feasibility of

differentiation between the semantic categories of animals and tools in a silent naming task

and three novel and intuitive sensory-based imagery tasks using visual, auditory, and tactile

perception.

Chapter 4 explores the possibility of semantic neural decoding from the recorded EEG data.

Chapter 5 investigates the influence of cue presentation on semantic neural decoding in

EEG.

Chapter 6 explores the possibility of semantic neural decoding from the recorded fNIRS

data.

Chapter 8 provides some conclusions and makes suggestions for future research on semantic

neural decoding.





Chapter 2

A systematic literature review

This chapter presents a systematic literature review of semantic neural decoding from neural

activity recorded by any neuroimaging modality. This systematic literature review has been

published in [221].

2.1 Introduction

Our experience of the world has long been regarded by some philosophers as an internal

subjective experience that is individual to us [259, 33]. We may have tasted the same apples,

smelt the same roses, and heard the same bird song as our neighbors, but our individual mental

states have long been thought to have a very distinct and subjective nature [259].

Many philosophers refer to this individual introspective experience as our ‘qualia’, our

own introspectively accessible experience of the world [259, 33]. It has long been considered,

by some, to be impossible to know, with absolute certainty, how anyone else experiences the

world.

While this may remain true, modern neuroscience is increasingly beginning to reveal how

our brains respond to specific experiences within the world. We now know what specific

patterns of activity occur in the brain as we eat an apple, or smell a rose, and, broadly speaking,
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for many people the parts of the brain that become active during these experiences are similar

[145, 262, 33].

Indeed a significant portion of modern neuroscience is focused on exactly how our conscious

mental states as we experience the world (our ‘qualia’) relate to the activity in our brains [166].

This work has rapidly accelerated in recent years with the development of modern, non-invasive,

neuroimaging tools that are capable of observing activity in our brains in real-time [91].

Techniques such as fMRI (developed in the 1990’s [184, 25]) and EEG (developed between

the 1870’s to 1890’s [22], but much more recently coupled with powerful computer-driven

statistical analysis techniques) have been combined with studies of neurological aetiologies

to revolutionize our understanding of how semantic concepts are encoded in the brain. This

new understanding has given rise to a further field of study, semantic decoding, defined as the

decoding of semantic concepts from recordings of our brain activity.

Semantic decoding refers to a combination of hardware and software systems that may be

employed to identify the specific semantic concept(s) an individual is focused on, or thinking

of, from a recording of their brain activity [178]. It is a technique which opens the doors to a

wide range of exciting possibilities and future applications.

This chapter reviews the current state of the art in semantic decoding methods and discusses

current neuroimaging methods, experimental designs used in semantic decoding and how they

may be combined with machine learning pipelines to reveal which specific semantic concepts

an individual is focused on. It also discusses the current challenges in this research area,

including how to effectively combine multi-modal neuroimaging techniques to more accurately

decode semantic concepts and how to develop effective machine learning methods to deal with

the typically large, non-stationary, noisy, multi-dimensional datasets involved in this work.

Finally, this chapter discusses some current and future applications of this research area.
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Records identified from:
Pubmed (n = 4647)

Google Scholar (n = 21)

Records removed before 
screening:

Duplicate records removed 
(n = 552)
Records marked as ineligible 
by automation tools (n = 0)
Records removed for other 
reasons (n = 0)

Reports sought for retrieval
(n = 4116)

Reports not retrieved
(n = 1)

Reports assessed for eligibility
(n = 4115) Reports excluded:

Incl. criteria 1 unmet (n = 4033)
Incl. criteria 2 unmet (n = 36)
Incl. criteria 3 unmet (n = 0)
Excl. criteria 1 met (n = 13)

Records identified from:
Citation searching (n = 520)

Reports assessed for eligibility
(n = 296) Reports excluded:

Incl. criteria 1 unmet (n = 207)
Incl. criteria 2 unmet (n = 28)
Incl. criteria 3 unmet (n = 0)
Excl. criteria 1 met (n = 21)

Studies included in review
(n = 73)

Identification of studies via databases and registers Identification of studies via other methods

Reports sought for retrieval
(n = 296)

Reports not retrieved
(n = 0)

Records removed before 
screening:

Duplicate records removed 
(n = 224)
Records marked as ineligible 
by automation tools (n = 0)
Records removed for other 
reasons (n = 0)

Fig. 2.1 Study selection flowchart.

2.2 Literature review methods

2.2.1 Study selection

To review the topic of semantic decoding, the Preferred Reporting Items for Systematic reviews

and Meta-Analysis (PRISMA) guidelines [164] were followed. Figure 2.1 illustrates the process

of study selection and the resulting number of identified studies. PubMed and Google Scholar

databases were systematically searched to identify papers which report attempts at neural

semantic decoding. The search was run in January 2022 and the search queries used for each

database are listed in Table 2.1.1

Duplicate results that arose from the four search queries were removed. The records were

then screened for their relevance. Specifically, papers were included which described attempts

to build and evaluate models that are able to decode the individual discrete semantic concepts

an individual participant was focused on at a discrete moment of time from recordings of their

1This search and the screening procedure were primarily performed by Dr Ian Daly for [221], which describes
this systematic literature review of semantic neural decoding.
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Table 2.1 Search queries used to identify articles relating to neural semantic decoding.

Database Query

PubMed ((semantic AND decoding) OR (semantic AND prediction) OR (concept
AND prediction) OR (concept AND decoding) OR (noun AND prediction)
OR (noun AND decoding)) AND ("brain activity" OR neural)

PubMed ((semantic AND decoding) OR (semantic AND prediction) OR (concept
AND prediction) OR (concept AND decoding) OR (noun AND prediction)
OR (noun AND decoding)) AND (EEG OR electroencephalography OR
electroencephalogram OR fMRI OR "functional magnetic resonance imag-
ing" OR MEG OR "magnetoencephalogram" OR "magnetoencephalogra-
phy" OR fNIRS OR "functional near infrared spectroscopy" OR ECoG
OR "electrocortiography")

PubMed ((semantic AND decoding) OR (semantic AND prediction) OR (concept
AND prediction) OR (concept AND decoding) OR (noun AND predic-
tion) OR (noun AND decoding)) AND (‘intracranial EEG’ OR iEEG OR
‘stereotactic EEG’ OR sEEG OR ‘invasive EEG’ OR ‘depth electrodes’
OR ‘implanted electrodes’ OR ‘human single-unit’ OR ‘human single
neuron’ OR ‘concept cells’)

Google Scholar allintitle: (semantic AND decoding AND "brain activity") OR (semantic
AND decoding AND neural) OR (semantic AND decoding) OR (semantic
AND prediction AND "brain activity") OR (semantic AND prediction
AND neural) OR (semantic AND prediction) OR (concept AND predic-
tion AND "brain activity") OR (concept AND prediction AND neural)
OR (concept AND prediction) OR (concept AND decoding AND "brain
activity") OR (concept AND decoding AND neural) OR (concept AND
decoding) OR (noun AND prediction AND "brain activity") OR (noun
AND prediction AND neural) OR (noun AND prediction) OR (noun AND
decoding AND "brain activity") OR (noun AND decoding AND neural)
OR (noun AND decoding)
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Table 2.2 Screening criteria for records returned by search queries.

Criteria

Include Report describes an attempt to develop and evaluate, on humans, a model capable
of neural semantic decoding.

Include Clear description of methods and results in terms of decoding accuracy / efficacy.
Include Report published in a peer reviewed article (journal, conference, or peer-reviewed

book chapter).
Exclude Review, position, theory, and discussion articles.

neural activity. Consequently, the records were screened according to the criteria set out in

Table 2.2.

To further identify additional articles not found by the initial search queries, each of

the articles short-listed by applying the screening criteria in Table 2.2 were then inspected.

Specifically, the reference list from each article was also screened according to the criteria

in Table 2.2. This produced a final list of 73 articles which describe attempts to develop and

evaluate neural semantic decoders.

2.2.2 Definitions

2.2.2.1 Semantic concepts

At the most basic level a concept is the idea of what something is or how it works and may be

held in the mind or expressed in language. Semantics refers to the study of meaning. Thus, a

semantic concept may be defined as the meaning of what something is or how it works. This

may be distinguished from a perceptual concept, which defines how a concept is perceived

(e.g., how it looks or sounds).

Within the field of neuroscience it has been known for some time that different neural

systems exist for semantic processing of concepts and perceptual processing of those same

concepts [271]. Specifically, early work by Elizabeth Warrington described how patients could
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match perceptual features of objects without being able to match descriptions of the objects

with their names.

More recently, the specific neuro-anatomical basis of these systems have been identified in

detail by a series of neuroimaging studies as well as studies of individuals with neurological

aetiologies that effect their ability to access semantic memory [191]. Specifically, semantic

memory (the process of retrieving semantic information related to a concept) involves a

distributed-plus-hub network in which a distributed network of brain regions selectively respond

to modality specific features, while a central semantic hub acts to represent semantic similarity

between concepts. There is considerable evidence locating this hub within the left hemisphere

anterior temporal lobe [191].

A widely supported theory describing how semantic concepts are encoded in the brain is

embodiment theory. This states that the meaning of a concept is situated within our experience

of the world [154]. So for example, the concept of a tool is situated within our understanding

of how tools are used (they are held in the hands, they are used to manipulate other objects,

etc.). This may be contrasted with other approaches, which state that the meaning of a concept

is grounded in abstract symbols or in a universal organizational system [174].

Neuroimaging support for both embodiment theory and the distributed-plus-hub model

comes from fMRI studies, which report significant changes in blood flow within both brain

regions responsible for percepto-motor circuits during processing of words related to perception

of motion and the anterior temporal lobe. For example, processing of words related to tools has

been shown to activate the sensori-motor cortex [209].

A review of embodiment theories by Meteyard and others [154] divides the current theories

into four groups placed on a continuum from unembodied to strongly embodied. (1) Unembod-

ied theories represent fully symbolic systems in which semantic information is truly symbolic.

There is no role for sensory and motor information in semantic representation and thus it is com-

pletely independent from sensory-motor systems. Any interactions between semantic content
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and sensory-motor systems are explained by an indirect route. (2) In secondary embodiment

theories, semantic representations are amodal with a non-arbitrary relationship between seman-

tic information and sensory-motor content. These theories posit a region for amodal semantic

content plus modality specific regions which code experiential attributes. The above mentioned

distributed-plus-hub model belongs to this group. (3) Weak embodiment theories state that

semantic representations are at least partly constituted by sensory-motor information. There

are distributed networks of areas which code integral modal information which is proximal

to primary sensory and motor regions. (4) In strong embodiment theories, low level sensory

and motor information is activated in primary cortical areas as part of semantic processing.

They conclude that the fully symbolic, unembodied theories and strong embodiment theories

are not supported. An additional important finding is the ’anterior shift‘ [154] in which the

areas activated during the semantic processing are shifted anterior to those areas used in direct

experience.

For the purposes of this chapter, we define a semantic concept as an idea of what something

is or how it works that is independent of the perceptual features of the concept such as how it

looks or how it sounds.

2.2.2.2 Semantic encoding and decoding

Semantic encoding may be broadly described as the study of how the brain encodes specific

concepts. This includes studying how specific brain regions are involved in the encoding of

concepts, as well as exploring how networks of brain regions work together to encode specific

semantic concepts [257].

In general, semantic encoding and decoding may be realized by constructing encoding and

decoding models [128, 131]. Semantic encoding models are a group of modeling techniques

that seek to predict brain activity from stimuli, while semantic decoding models seek to predict

the stimuli from neural activity [178].
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Both types of model involve the development of signal processing and machine learning

pipelines to relate distinct semantic categories to recordings of neural activity. Consequently,

these models are frequently confused with one another in the literature [178]. Indeed, encoding

and decoding models are often closely related to one another. Although, an encoding model is

not a necessary prerequisite of a decoding model, it has two advantages over a decoding model.

Firstly, it can in principle provide a complete description of the related encoding process, while

a decoding model can provide only a partial description. Secondly, it can be transformed into

an optimal decoding model, a process which is more difficult the other way around [178].

Encoding and decoding models are applicable to a wide range of questions in neuroscience.

For example, decoding models have been developed to decode scenes from a TV show viewed

by individuals [264], faces seen by individuals [139], pieces of music heard by participants [96],

and the quantity of displayed objects [40].

In this chapter, we focus on decoding models applied to the problem of semantic decoding,

identifying the single coherent semantic concept an individual is focused on at a given discrete

epoch of time from recordings of their neural activity.

2.3 Semantic decoding literature

A wide range of different neuroimaging tools and methods have been employed by researchers

seeking to decode semantic concepts from the brain.

Semantic decoding models seek to identify the discrete semantic concepts an individual

is focused on at a given moment in time. Consequently, neural semantic decoding studies

start with an experiment that is designed to cue participants to focus their attention on single

semantic concepts for discrete periods of time. Neural activity is recorded while participants

are cued to pay attention to a single concept. This recorded neural activity is then processed

to remove signal noise and increase the signal to noise ratio of key discriminative features.
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Table 2.3 Modalities used for developing neural semantic decoding models.

Modality No. References

EEG 5 [240, 173, 5, 54, 24]
EEG + MEG 3 [172, 44, 246]
EEG + ECoG + SEEG 1 [168]
fMRI 45 [2, 3, 239, 238, 19, 120, 198, 148, 18, 113, 87,

64, 278, 237, 55, 268, 242, 69, 82, 66, 10, 134,
72, 39, 144, 17, 256, 258, 116, 236, 42, 73, 23, 7,
45, 213, 11, 140, 8, 161, 269, 206, 89, 56, 181]

fMRI + MEG 1 [35]
fNIRS 1 [286]
MEG 6 [244, 208, 99, 241, 52, 78]
Macro electrodes (ECoG, SEEG) 9 [272, 141, 107, 175, 233, 159, 260, 255, 223]
Micro electrodes 2 [129, 212]

Semantic decoding models are then trained on these features and evaluated in terms of their

decoding accuracy.

2.3.1 Neuroimaging methods

Table 2.3 lists the modalities used in neural semantic decoding studies.

The majority of decoding studies to date have used fMRI. This is due, in large part, to

the superior spatial resolution provided by fMRI, which allows whole brain neuroimaging.

However, the fMRI does have a number of disadvantages when it comes to studying brain

activity related to semantic meaning. Specifically, as already mentioned fMRI has a particularly

poor temporal resolution and is only able to detect and monitor changes in oxygenated blood

flow (BOLD) that follow electrophysiological neural activity by 2–4 seconds [83]. Additionally,

fMRI is extremely expensive, cumbersome, and requires participants to lie in a confined space

in tightly controlled conditions for extended periods of time. Consequently, fMRI studies

typically focus on small numbers of participants and are often only able to answer relatively

straightforward questions [1].
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In contrast, electrophysiological neuroimaging methods, such as EEG or magnetoen-

cephalography (MEG), provide a direct recording of neural activity in mainly cortical neurons

with a very high temporal resolution. This provides the potential to explore how semantic

encoding patterns change over time [208] at the cost of a considerably poorer spatial resolution.

EEG has been explored as a tool for semantic decoding by a relatively small number

of authors and has been demonstrated, in some circumstances, to be able to reveal activity

related to processing of a subset of semantic concepts. For example in work by Murphy and

colleagues [173] differences in EEG correlates of the concepts for ‘tools’ and ‘mammals’ were

reported to allow a mean decoding accuracy of 72 %. Additionally, work by Simanova and

colleagues [240] reported semantic decoding for the concepts of ‘animals’ and ‘tools’ with a

mean accuracy of up to 79 %.

Two alternative neuroimaging techniques that provide direct recordings of electrophysio-

logical neural activity with the same high temporal resolution as the EEG, while also affording

a high spatial resolution and specificity, are macro intracranial electrodes (such as electrocor-

ticogram (ECoG) and stereoelectroencephalography (SEEG)) and micro intracranial electrodes.

Macro intracranial electrodes record neural activity from large groups of neurons via a grid

of electrodes. This grid is either placed directly on the cortical surface under the skull, in the

case of ECoG [158], or can be placed at a wide range of locations in the brain, in the case of

SEEG [41]. On the other hand, micro intracranial electrodes allow activity to be recorded from

individual neurons at any position in the brain. Consequently, both techniques provide signals

with high spatial and temporal resolution that have high signal to noise ratios. However, this

comes at the cost of coverage (ECoG and SEEG only cover a limited region of the brain and

micro electrodes only allow recordings from a few dozen individual neurons) and with the

added risk from the brain surgery that is necessary to implant the electrodes. A set of studies

have demonstrated that recordings of ECoG signals, SEEG signals, and micro electrodes may

be used for semantic decoding [272, 141, 107, 175, 260, 255, 129, 223, 212].
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A recent work has also demonstrated that it is possible to differentiate semantic concepts

from fNIRS [286]. fNIRS records levels of oxygenated and de-oxygenated hemoglobin in

the cortex by shining an infra-red light through the skull and measuring how the reflected

and refracted light changes with blood flow. It measures the same physiological process as

fMRI, while allowing participants to sit or move more freely, which enables a wider range of

experiment designs at the cost of lower spatial resolution and coverage.

Techniques that record electrophysiological brain activity, such as EEG, provide a direct

measure of neural activity as it happens with very high time resolution, whereas blood flow

based neuroimaging methods, such as fNIRS, are only able to provide indirect measures of

neural activity via changes in the concentration of hemoglobin, a time delayed and spatially

imprecise response to electrophysiological neural activity [1]. An additional consideration

is that non-invasive technology, such as EEG and fNIRS, are relatively cheap and portable,

potentially allowing their use in experiments that better capture everyday use of semantic

concepts.

However, the considerably poorer spatial resolution of technologies such as EEG and fNIRS

presents a significant challenge when compared to technologies that provide a higher resolution

recording of brain activity such as fMRI, and this is reflected in the corresponding number

of semantic decoding publications that make use of each technique. This is because different

semantic concepts can be spatially encoded throughout the brain, including in sub-cortical

regions [161] which can be observed by fMRI but, conventionally, are harder to measure with

scalp based measurement technologies [119].

Indeed, work by Murphy and Poesio [172] suggests that the ability to identify semantic

concepts from the EEG is closely related to the ease with which the associated neural activity

may be identified from electrophysiological recordings of cortical brain activity (EEG and

MEG). For example, the concepts of ‘tools’ and ‘mammals’ are differentiable from EEG data

alone [173] and fMRI neuroimaging work by Pulvermüller and colleagues [209] has shown
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these two concepts involve activations in the sensorimotor and parietal cortices, which are

cortical regions observable via EEG. Conversely, other semantic concepts that are, perhaps,

more complex in nature (e.g., such as specific foods or ‘hunger’) have been shown to involve

sub-cortical brain areas, making them potentially considerably harder to identify via current

non-invasive neuroimaging techniques [161].

2.3.2 Open datasets

A small proportion of the neuroimaging datasets that have been recorded during studies devel-

oping and evaluating neural semantic decoders have been made publicly available, allowing

other research groups to re-use such datasets to develop and evaluate new methods. Table 2.4

lists publicly available datasets for developing and evaluating neural semantic decoders. It also

shows which study originally recorded the dataset and other studies which have made use of

the same dataset.

Note, a number of studies (such as [66, 8, 233, 255]) make use of datasets recorded in other

studies but not made publicly available. This is typically because the studies were conducted

within the same lab and re-used data that was available in the lab but not publicly available. A

small number of studies make use of data that is described as being available on request, either

to eligible researchers [120], or to all [278, 208]. However, these datasets are not published.

Finally, one study by Carlson and colleagues [42] used data that is described in the study

as publicly available. However, on further investigation the data was found to no longer be

publicly available because the archive site was taken down due to lack of funding. These

datasets are not included in Table 2.4.
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Table 2.4 Publicly available datasets for developing and evaluating semantic decoding models.

Modality Available at Reported Re-used in

ECoG http://klab.tch.harvard.edu/resources/liuetal_
timing3.html#sthash.BiYFH24Z.dpbs

[141] [107]

ECoG https://purl.stanford.edu/xd109qh3109 [159]
Micro electrodes https://github.com/rebrowski/

abstractRepresentationsInMTL
[212]

EEG https://www.cs.cmu.edu/~tom/science2008/ [161] [11]
fMRI https://openneuro.org/datasets/ds000105/

versions/00001
[89] [87]

fMRI https://datadryad.org/stash/dataset/doi:
10.5061/dryad.vmcvdncpf

[242]

fMRI https://www.cs.cmu.edu/~tom/science2008/ [161] [23, 11]

2.3.3 Experimental design

The experimental design is probably the most important set of decisions to make when attempt-

ing semantic decoding. Here, we review three crucial elements of experimental design: (1)

semantic concepts and categories, (2) mental tasks, and (3) stimulus or cue presentation.

2.3.3.1 Semantic concepts and categories

The semantic categories that neural semantic decoders have been trained to differentiate vary

from study to study. However, there are some groups of semantic categories that are frequently

used to train and evaluate neural semantic decoders. Figure 2.2 illustrates which pairs of

semantic categories neural decoders have been developed to differentiate between. Specifically,

the figure shows a network on semantic categories where each node represents an individual

category and each edge represents an attempt to build a decoder to differentiate those categories.

The size of the nodes is proportional to the number of studies that report attempts to build

decoders that recognize that category, while the widths of the edges between pairs of nodes

are proportional to the number of studies that report attempts to differentiate those pairs of

categories. Note that the positions of the concepts in the network diagram are arbitrary.

http://klab.tch.harvard.edu/resources/liuetal_timing3.html#sthash.BiYFH24Z.dpbs
http://klab.tch.harvard.edu/resources/liuetal_timing3.html#sthash.BiYFH24Z.dpbs
https://purl.stanford.edu/xd109qh3109
https://github.com/rebrowski/abstractRepresentationsInMTL
https://github.com/rebrowski/abstractRepresentationsInMTL
https://www.cs.cmu.edu/~tom/science2008/
https://openneuro.org/datasets/ds000105/versions/00001
https://openneuro.org/datasets/ds000105/versions/00001
https://datadryad.org/stash/dataset/doi:10.5061/dryad.vmcvdncpf
https://datadryad.org/stash/dataset/doi:10.5061/dryad.vmcvdncpf
https://www.cs.cmu.edu/~tom/science2008/
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The most frequently differentiated semantic categories include animals and tools [240, 239,

120, 244, 113, 23, 45, 11, 161, 260], tools and buildings [244, 113, 23, 45, 11, 161], and animals

and body parts [286, 244, 113, 24, 23, 45, 11, 161]. Several studies have also shown that it is

possible to differentiate more than two semantic categories at a time [256, 258, 23, 45, 52, 11].

There is a relatively dense network of semantic categories that are frequently decoded,

including tools, buildings, body parts, and animals. However, it is important to note that this

may not necessarily indicate that these specific concepts are easier to decode than other concepts,

as many authors simply opt to replicate and extend the work of other authors, particularly when

selecting which categories to attempt to decode.

A set of studies focused on differentiating individual concepts within a single category

[238, 161, 244, 148, 286, 120], for instance, physics concepts [148], sets of 180 words [198],

and sets of 240 sentences [269]. These studies are not included in Figure 2.2 to avoid over-

complicating it.

The selection of semantic categories and concepts is occasionally not clearly justified

and only a few studies have focused on this problem in detail. For instance, Bauer and

colleagues [19] used concepts based on a previous behavioral study that collected pairwise

dissimilarity ratings. However, a small number of studies employed a data-driven strategy to

generate the concepts or the semantic categories. For instance, Pereira and colleagues [198]

partitioned a semantic vector space, which was used to encode individual concepts (see Sec-

tion 2.3.4), by a clustering method and a core concept was selected from each region.

2.3.3.2 Mental tasks

A wide variety of different mental tasks have been used in semantic decoding studies to date.

These are listed in Table 2.5. They all share the common goal of encouraging participants to

hold a target concept in their minds, while at the same time many aim to also test participants

focus during the experiment.
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Table 2.5 Mental tasks used by the semantic decoding studies. Note, some studies employ two
or more task types and, therefore, appear in two or more rows.

Task type Specific task References

Naming Silent naming task [172, 173, 242, 246, 56]
Aloud naming task [272, 246, 256, 175, 99]

Properties Silent properties generation (think about a consis-
tent pre-generated set of properties)

[238, 161, 3, 2, 148, 19,
11, 18, 113, 237, 258,
39, 23, 45]

Think about sensory and motor properties of the
concept

[272, 242]

Think about taught features [17]
Think about characteristics of the concept [236]

Meaning Think freely about meaning of stimulus or evoked
memories

[286]

Contextual meaning reflection (think about the
meaning of the concepts in the given context)

[198, 233, 255]

Think about associated situation with the concept [10, 8]
Contextual meaning reflection (think about overall
meaning of a sentence/phrase)

[269, 7, 278, 134, 116,
206]

Read story then answer comprehension question [66]
Generate detailed mental images as similar as pos-
sible to pre-seen images

[213]

Category /
property
recognition

Out-of-category recognition [240, 239, 54]
In-category recognition [55, 24]
Yes/no questions [244]
Size judgment [44]
Orientation judgment [159]
Category specific judgment [168, 129, 212]
Answer whether it can be directly experienced with
senses

[73, 72]

Concept similarity judgment (scale 1–4) [144]
Semantic similarity of 2 words to a key word [268]
Semantic congruity judgment [140]
Name the color of the object or the background [99]
Silently name a word from a cued category with a
cued initial letter

[241]

Oddball task [35, 208, 78, 236, 260]
1-back task [208, 141, 107, 52]
1-back match task [82, 89, 223]
Delayed matching [42, 181]
Remember all six elements presented in a sequence [5]

Object
recognition

Name an object that was closest to the one shown
in the picture

[272]

Object identification + naming [120]
Passive Passive task (see text) [87, 69, 246, 64, 42]
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In the “silent naming” task [172, 173, 242, 246, 56], participants are asked to silently

name, in their minds, a semantic concept. An alternative, related task, is the “aloud naming”

task [272, 246, 256, 175, 99] in which participants name the concept aloud. This task has

the advantage that participant responses can be recorded but it also has the disadvantage that

other processes (such as action planning and execution) and muscular artifacts may make the

neuroimaging information worse.

Many studies [238, 161, 3, 2, 148, 19, 11, 18, 113, 237, 258, 39, 23, 45, 236] asked

participants to think of the same properties of the semantic concept in each experimental trial.

Each participant was asked to come up with a set of properties for each concept before the

start of the experiment. Several studies [272, 242] restricted the properties to various sensory

and motor properties. A study by Zinszer and colleagues [286] removed the constraint of

generating the properties before the experiment and let participants think freely about the

meaning of the given concept or any memory it evoked. Conversely, a study by Bauer and

Just [17] asked participants to think about features of animals that they had been taught about

thus far in the experiment. Pereira and colleagues [198] asked participants to think about the

meaning of the concept in the given context (in a sentence, with an accompanying image, or

with accompanying concepts). Additionally, a study by Reddy and colleagues [213] asked

participants to vividly imagine detailed mental images as similar as possible to pre-seen images

in the experiment. In a work by Anderson and colleagues [10, 8], participants were asked to

imagine a situation that they individually associated with the concept.

Some related research focused on more complex concepts or scenarios described by sen-

tences, typically one sentence was presented one word (or phrase) at a time and participants

were asked to think about the meaning of each phrase as it appeared and then the overall

meaning of the sentence [269, 7, 278, 134, 116]. For more information on this, see related

research on encoding or decoding of episodic recollection and autobiographical memory

[227, 88, 247, 228, 43, 34, 218, 46, 14], or procedural knowledge [149].
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In several studies [240, 239, 54, 55, 24], participants were presented with target and

non-target semantic categories and asked to respond upon the appearance of items from the

non-target (or target) category, for instance, by pressing a mouse button. While, in some studies

[208, 141, 107, 52], participants were asked to press a button if any image repeated itself

consecutively (1-back task) to ensure that participants were paying attention. Studies by a

few researchers [82, 89, 223] used a 1-back match task in which participants were asked to

judge whether the category matched the category presented immediately before. Studies by

Carlson and colleagues and by Niazi and colleagues [42, 181] used delay matching in which

participants indicated which choice of stimulus matched the target stimuli presented previously.

Additionally, a study by Alizadeh and colleagues [5] asked participants to remember all six

elements presented in a sequence.

Other studies focused on other semantic aspects of the concepts. For example, in a study

by Sudre and colleagues [244], participants answered semantic yes/no questions for concrete

nouns (e.g., “Was it ever alive?”, “Can you pick it up?”). In a study by Chan and colleagues [44],

participants responded based on a size judgment of the concept, whether it was smaller or

larger than 0.3 meters in any dimension, while in a study by Miller and colleagues [159] the

orientation of an image stimuli was used as a form of oddball task. Studies by Fernandino and

colleagues [73, 72] asked participants whether the stimulus, either a word or a pseudoword,

referred to something that can be experienced through the senses. In a study by Wei and

colleagues [272], participants were instructed to name a concept that was closest to the one

shown in the picture. Kivisaari and colleagues [120] provided three verbal clues for each

concept (e.g., “has 4 legs”, “is found in the savannah”, “has a trunk”) and participants attempted

to identify the concept. In a study by Simanova and colleagues [241], participants were asked

to internally produce a word in the cued semantic category with the initial cued letter. Dehghani

and colleagues [66] conducted a study in which participants were asked to read a story and then

answer a comprehension question. In a study by Mahon and Caramazza [144], participants
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were asked to judge the conceptual similarity of two objects on a scale from 1 to 4, while Wang

and colleagues [268] asked participants to judge which of two words was most similar to a key

word. In a study by Li and colleagues [140], participants were asked to silently judge semantic

congruity of the presented stimuli with a cued category. Finally, in a study by Honari-Jahromi

and colleagues [99] participants were asked to name the color of the object or the background

(in images).

Several studies used passive tasks, for instance, passive viewing of images [42, 87], passive

reading [69], and passive listening [246, 64]. It has been shown that the viewed object can

be identified from the passive viewing of images [252, 117, 162, 179, 48, 192]. The same

argument applies for instance for speech production and passive listening. For this reason,

passive tasks alone may not be sufficient to allow semantic decoding. To mitigate this issue and

ensure participants attention, several studies [35, 208, 78, 236, 260] included an oddball task in

which participants were asked to respond, typically by pressing a button, when a different type

of stimulus was presented.

2.3.3.3 Stimulus / cue

Table 2.6 lists stimulus modalities used to cue participants to focus on a particular semantic

category.

The most common modality used is the visual image presentation modality, which 41

studies used. Stimuli included photographs (gray-scale or colored) or line drawings of the

concepts the participants were instructed to focus on. In 12 studies written captions or spoken

words were added to the images. Written words or text, presented all at once or each word one

by one, were the second most used modality and were employed by 31 studies. Spoken words

(or speech) and natural sounds were used less often and were employed in only 12 studies.

A concern when using cues to instruct participants to focus on particular categories is that

the presentation of the stimulus may introduce potential perceptual mental processes that can
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Table 2.6 Stimulus presentation modalities used by the semantic decoding studies.

Modality References

Image [240, 238, 237, 45, 239, 173, 172, 272, 87, 55, 24, 35, 208,
256, 99, 134, 42, 52, 140, 141, 107, 260, 89, 129, 181, 223,
159, 212]

Image + written caption [2, 3, 244, 198, 17, 23, 11, 161, 206, 168]
Image + auditory (speech) [3, 286]
Auditory (speech) [240, 239, 44, 246, 54, 144, 213, 255, 82, 120]
Auditory (natural sounds) [239, 64]
Written word [240, 239, 19, 44, 148, 18, 113, 246, 237, 268, 242, 5, 10, 72,

39, 258, 236, 73, 241, 175, 8, 233]
Written text or phrases [198, 278, 69, 66, 116, 7, 78, 269, 134]

act as confounds into the classification process. For instance, focusing on a concept while

seeing its image raises the question of what is used for the differentiation between different

concepts: the visual processing of the image (low-level perceptual features), the imagination of

the concept, or some combination of brain activities related to both processes. Some studies

explicitly analyzed the influence of some of these possible confounds. For instance, Murphy

and colleagues [173] examined brightness, mean spatial frequency, and visual complexity of

the stimuli images. However, the set of potential confounds and methods (for instance, how

to measure image complexity) has not been comprehensively studied. An alternative method

is to use only certain brain regions or networks in the analysis, typically excluding visual

areas [198]. However, this approach is only feasible for neuroimaging techniques with good

spatial resolution, such as fMRI, intracranial electrodes, or ECoG. The separation of the task

and stimulus presentation can potentially avoid this issue, see also the related field of mental

imagery [192, 152, 125, 123, 176, 135]

2.3.4 Feature extraction

Depending on the recording modality, a wide variety of features can be used for semantic

decoding. In fMRI and fNIRS, signals are typically epoched from 4 up to 9 seconds after the
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stimulus onset to account for the hemodynamic delay in event-related designs. EEG, MEG,

and intracranial electrode recordings are traditionally analyzed in: (1) the temporal domain

(e.g., ERP analysis), (2) the frequency domain to reveal the signal power distribution over

frequencies, or (3) the time-frequency domain for varying spectral activities over time.

Apart from these traditional features, studies have started to use domain-specific multi-

dimensional information in which each concept is encoded by “semantic features”. The two

main approaches used can be categorized as attribute-based views and vector space models of

semantics, see also a recent review [38].

In the attribute-based view, a concept can be encoded according to its semantic attributes or

features. Each attribute is assigned a value or a set of values related to its probability, weight,

or importance [216, 27, 58, 79, 220]. A study by Sudre and colleagues in MEG [244] used

a semantic knowledge base consisting of 218 interpretable semantic attributes. This dataset

was collected by asking 218 questions to a group of Amazon Mechanical Turk users about the

semantic properties of 1000 concrete nouns [187, 244]. For example, some questions were

related to size, shape, surface properties, context, and typical usage, with answers on a scale of

1 to 5, and then rescaled to a range of -1 to 1. In particular, they employed a two-stage classifier

with a layer of intermediate semantic features between the input features and the class label.

Fernandino and colleagues [73, 72] used a semantic model based on five semantic attributes

directly related to sensory-motor processes: sound, color, shape, manipulability, and visual

motion. Ratings for these attributes on a scale from 0 to 6 were collected for 900 words.

In another example, Anderson and colleagues [7] used an experiential attribute model

with 65 attributes [27] that modeled semantic representation using people’s ratings of their

association with different attributes of experience on a scale of 0 to 6. Collected attributes

spanned sensory, motor, affective, spatial, temporal, causal, social, and abstract cognitive

experiences. Lastly, a study by Wang [269] developed a set of 42 concept-level semantic

features. These binary features included information from categories such as the perceptual and
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affective characteristics of an entity (e.g., whether it was man-made, size, color, temperature,

positive affective valence, and high affective arousal), animate beings (person, human-group,

animal), and time and space properties (e.g., unenclosed setting, change of location). For

example, the noun ‘judge’ was encoded with the following features: person, social norms,

knowledge, and communication. The study used an encoding regression model to determine

the mapping between 42 semantic features as well as 6 thematic role markers of phrases in

sentences and neural activation patterns assessed with fMRI.

In vector space models of semantics, automated methods can be used to learn semantic

features from the statistical properties of words and phrases in large text corpora [65, 136, 156,

196, 197]. Computational linguistics has shown that contextual information provides a good

approximation to word meaning [157, 49, 71, 254]. Mitchell and colleagues [161] developed a

model to learn predictive relationships between the statistics of word co-occurrences (with a

set of 25 verbs in a large text corpus) and fMRI neural activation patterns (BOLD activation

patterns). Zinszer and colleagues [286] used representational similarity-based neural decoding

to test whether semantic information of words and pictures represented by textual co-occurrence

frequency in large text corpora is encoded in fNIRS.

More recently, word2vec [155, 156] and GloVe [196] have become popular semantic spaces

[16, 197]. In word2vec, semantic vector representations are learnt in a way that a word can

be predicted given the average semantic vector of the other words in the context (e.g., 5

words before and 5 words after the word of interest). In GloVe, representations are created

in a way that the dot product of two vectors equals the logarithm of the probability of the

associated words co-occurring in text. For instance, Pereira and colleagues [198] used GloVe

to decode individual word meanings in fMRI while participants were instructed to think about

the meaning of a target word in the given context (either in a sentence, with an accompanying

image or accompanying words). Djokic and colleagues [69] investigated processing of literal

and metaphoric sentences in fMRI using GloVe, a visual model, and a compositional model.
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While, Kivisaari and colleagues [120] used word2vec to decode a semantic concept in fMRI

while participants read brief verbal descriptions of the target concept. Participants received

clues about individual concepts in the form of three isolated semantic features, given as verbal

descriptions. Dehghani and colleagues [66] used an extension of word2vec for paragraph

vectors to decode specific stories participants were reading in fMRI. Honari-Jahromi and

colleagues [99] used word2vec to investigate neural representations of words within phrases in

MEG.

2.3.5 Feature selection

Nowadays, multivariate analyses methods, such as multivariate pattern analysis (MVPA) in

fMRI literature, utilizing information from multiple channels (voxels in fMRI, electrodes in

EEG, etc.) are dominant, while historically many studies used to apply univariate analyses

methods to the semantic decoding problem. Feature selection methods are thus typically

needed to decrease the number of features from inherently high-dimensional neuroimaging

data. Furthermore, feature selection methods may be used to attempt to address inter-person

differences in neural encoding.

A basic method is to restrict the neuroimaging data, for instance to certain channels, time

points, or frequencies. For example, the analysis can be performed on anatomically defined

regions of interest or performed iteratively on small local areas (searchlight analysis in fMRI

literature). Many studies [161, 238, 148, 286, 269, 19, 120] attempt to select the most stable

channels over presentations of concepts within a participant, while some studies [148, 269]

have applied a two-level hierarchical factor analysis to select brain locations over multiple

participants.

Figure 2.3 shows which regions of the brain are most commonly used in semantic neural

decoding studies. Specifically, we coarse grain the brain regions into 8 regions: frontal, parietal,

temporal, and occipital brain regions in the left and right hemispheres. We then report the
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Fig. 2.3 Illustration of the most informative brain lobes for semantic decoding. Values represent
percentages from the number of studies that reported this information, typically inspected in a
post-analysis. Left and right frontal, parietal, temporal, and occipital lobes were chosen for a
broad overview, which could be useful for a wide range of neuroimaging modalities including
EEG and fNIRS decoding.

percentage of neural semantic decoding studies which make use of information from each

region.

It can be seen that the left temporal lobe is most frequently used as the basis for extracting

features for semantic decoding. This is not a surprising result as the left temporal lobe of the

brain has been widely reported to be involved in conceptual naming [97] and, as we saw in

Section 2.3.3.2, naming tasks are used in several studies, while, as we saw in Section 2.3.3.3,

many studies use written or spoken concept names to present concepts to study participants.

Furthermore, the anterior temporal lobe is well-known to be the hub, within the distributed-

plus-hub model, for semantic memory retrieval in the brain [111, 191].

Statistical-based feature selection methods making use of the category labels can also

be used. For instance, some studies [3, 2, 69] used channel selection based on ANOVA.

Alternatively, supervised machine learning can be used to drive the channel selection.
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Dimensionality reduction methods that project the data into a smaller subspace are popular.

For example, principal component analysis (PCA) projects the data into a space with compo-

nents that successively maximize the variance of the projected data, independent component

analysis (ICA) decomposes the data into statistically independent components, and common

spatial patterns (CSP) [169, 32] (used to aid binary classification) projects the data into a space

that maximizes the signal variance for one class, while simultaneously minimizing the signal

variance for the opposite class. These projections are then followed by a selection of only a

certain number of dimensions, typically the ones that describe the most useful aspects of the

data. It is important to note this decomposition can be spatial (over channels), temporal (over

time), spectral (over frequencies), or any combination of these dimensions.

2.3.6 Machine learning models

Machine learning methods are used within semantic decoding to identify the specific semantic

concept(s) an individual is focused on from a recording of their brain activity. Thus, the core

aim of the machine learning part of the semantic decoding process is to categorize and classify

recordings of brain activity into labels describing the associated semantic concepts.

Machine learning methods may, in general, be grouped into two distinct categories: unsu-

pervised methods and supervised methods.

Unsupervised machine learning methods do not make use of any underlying category labels

in order to process the data. Thus, they are best suited to aiding the categorization process

by, for example, reducing the dimensionality of the feature space. However, they cannot, by

themselves, be used to classify data [29].

Supervised machine learning methods, by contrast, make use of category labels in order to

attempt to identify rules by which the data may be classified [29]. For example, supervised

machine learning methods may be used to identify rulesets or thresholds to separate neural

feature sets into their associated semantic category labels.
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Table 2.7 Machine learning classifiers used by the semantic decoding studies. Note, some
studies employ two or more classifiers and, therefore, appear in two or more rows.

Method References

Support vector machine [239, 173, 172, 19, 272, 44, 64, 242, 82, 54, 134, 236, 23, 45,
213, 140, 175, 141, 5, 17, 233, 255, 56, 212]

Logistic regression [2, 3, 240, 18, 268, 241, 181]
Naive Bayes [238, 272, 148, 113, 278, 237, 55, 24, 39, 258, 116, 23]
Regression [120, 244, 66, 72, 198, 99, 73, 7, 78, 161, 269, 116, 260]
Linear discriminant analysis [35, 208, 42, 52, 56, 129, 159]
K-nearest neighbors [256, 23, 107, 246]
Neural network [87, 10, 107, 206]
Correlation-based [286, 69, 11, 144, 8, 89, 223]

Table 2.7 lists the machine learning classifiers used for semantic decoding. The most

frequently used machine learning methods were support vector machines, naive Bayes classi-

fiers, and regression based methods. Somewhat surprisingly, there have not been any semantic

decoders to date that make use of deep learning methods such as convolutional neural networks

or long short-term memory networks [137]. This is despite the rapid recent growth of the use

of these methods in many related domains of neuroscience [57]. We anticipate that semantic

decoding studies that use these advanced machine learning methods will begin to appear in the

near future. We think the limiting factor is that the size of datasets gathered with humans is

quite small in comparison with what is typically needed to train a deep ML model.

2.3.7 Measuring performance

The final step of any decoding pipeline is to evaluate the decoding performance. When only

a few classes are being distinguished, standard machine learning evaluation methods can be

used for binary or multi-class classification problems, such as classification accuracy, F1 score,

Cohen’s kappa, or preferably a confusion matrix.

With an increasing number of classes to distinguish, the above methods do not tell us the

whole picture, for instance, the class may be incorrectly predicted but it would be the second
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choice of a multi-class classifier or it may be semantically similar to the true class (if this

makes sense in the application context). In these cases, several studies used rank accuracy

[238, 19, 198, 148, 18, 113, 278, 72, 39, 17, 258, 116, 45, 161, 269], which is defined as the

percentile rank of the correct class in the classifier’s rank output. The list of predicted classes is

rank-ordered from most to least likely and the normalized rank of a correct class in a sorted list

is computed. Rank accuracy ranges from 0 to 1 and the chance level performance is 0.5.

Several studies used leave-two-out pairwise comparison [161, 244, 198, 120, 286, 66, 208,

99, 42, 11, 78, 8, 89]. This procedure leaves two samples s1 and s2 for testing during cross-

validation. With two classes C1 and C2, it compares two predicted classes and decides which

order is a better match whether (s1 =C1 and s2 =C2) or (s1 =C2 and s2 =C1). The chance

level performance is 0.5. For two samples and two classes, this is mathematically equivalent to

the area under the receiver operating characteristic (ROC) curve measure. However, this metric

makes comparisons between studies difficult unless more information is provided. Furthermore,

performance measured this way is not appropriate for many real-world use-case scenarios

where only two samples could be predicted and it does not consider the same class for the two

samples. To make this issue more confusing, several studies incorrectly refer to this procedure

as leave-two-out cross-validation. Whereas, from a machine learning perspective, leave-two-out

cross-validation leaves two samples from the training and then classifies each sample separately

to which class it belongs (from all possible classes). On a related note, a small number of

studies only reported mean or individual pairwise accuracies from multi-class classification

(e.g., from one-vs-one or one-vs-rest strategies) without trying to aggregate them together.

Nevertheless, we must acknowledge that the main research focus of many studies, presented

here, was on localization of brain regions involved in semantic decoding or encoding. Thus,

not all reported performance metrics are useful when attempting to compare decoding accuracy

between studies.
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Overall, the selection of the evaluation metrics ultimately depends on the application

scenario. We strongly suggest reporting everything necessary, such as confusion matrices, so

that one can compute any other metric of interest, whenever this is feasible. Nevertheless,

it is important to note that these metrics do not represent the whole picture of the approach

used. This issue is similar to the issue of the information transfer rate (ITR) metric, which is a

popular metric in BCI systems and measures the amount of information in bits that is conveyed

by a system’s output within a given time [151, 277, 235] (see Equation 2.2 in Section 2.3.8).

Whereas, in real-case BCI scenarios, users’ states, such as fatigue and perceived ease of use of

the BCI must also be taken into consideration.

2.3.8 Decoding information transfer rate

We compared semantic decoding performance between studies. Due to differences in reporting

metrics used in different studies it was not possible to compare performance of all the studies

in this chapter. However, to make at least a partial comparison, we decided to use ITR to

compare decoding performance. ITR incorporates the number of classes the semantic decoder

is attempting to differentiate, the time taken to decode the concepts, and the reported decoding

accuracy. It is defined, in [26], by

B = log2C+ p log2 p+(1− p) log2

(
1− p
C−1

)
(2.1)

ITR =
B
T

(2.2)

where C denotes the number of classes, p denotes the classification accuracy, and T denotes

the time taken to make a selection in minutes.

This allows meaningful comparisons of decoding performance to be made between semantic

decoding studies, even when different numbers of semantic categories and/or different time

windows are employed. For comparison, consider the case where studies are compared in terms
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of accuracy, or some similar metric such as the area under the ROC curve. Such a comparison

is only meaningful when the number of classes and the time windows are the same across

studies. For example, an accuracy of 50 % may be good when there are 4 different classes, but

could be no better than random chance when there are only 2 classes.

Figure 2.4 shows ITRs in bits per minute for studies that reported decoding accuracies.

Nevertheless, this information represents an optimistic view. To compute ITR, we ignored

inter-stimulus intervals in experimental paradigms and instead only considered the end of the

time window after the stimulus onset, that is the time window which was used for classification.

It is important to note that all studies were conducted offline. In real-time semantic decoding

applications, ITR would most probably be significantly lower.

As expected, neuroimaging techniques affected by a slow hemodynamic delay, such as

fMRI, require longer times and thus they typically have lower ITRs (in a range from 0.02 to 9.08)

in comparison with electrophysiological neuroimaging methods (with ITRs in a range from

0.09 to 149.83), even though they typically achieve greater accuracies. Indeed, if performance

is measured without taking into account the length of the time window needed by the decoder

for each of the neuroimaging modalities, fMRI would out-perform scalp based measures such

as EEG. However, given the rapidity with which human thought can switch between semantic

concepts we considered it appropriate to incorporate the length of the time window into our

comparison of decoder performance.

It is worth noting that ITR is not a perfect metric for comparing semantic decoding studies as

it does not take into account the semantic similarity of concepts. For example, pairs of concepts

that are semantically unrelated to one another are likely to be much easier to decode than

concepts that are closely related. This can be seen in Figure 2.2, which shows that categories

that are quite distinct from one another, such as ‘animals’ and ‘tools’, are frequently used

in semantic decoding studies, whereas more similar concepts, such as ‘celery’ and ‘carrots’,

are rarely used. An ideal metric for measuring the performance of semantic decoders would
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Fig. 2.4 Information transfer rate (ITR) in bits per minute for semantic decoding studies, for
which it was possible to calculate ITR. Macro electrod. indicates macro intracranial electrodes
such as ECoG or SEEG, while Micro electrod. indicates micro intracranial electrodes used for
single unit recordings.

also incorporate some measure of the semantic similarity of the concepts that were decoded.

However, as semantic similarity between concepts varies across languages, cultures, and even

individuals, such a measure could prove challenging to develop and is beyond the scope of this

review.

2.4 Key challenges

Semantic neural decoding has considerable potential to aid understanding of how concepts are

held and processed in the brain. However, it is first necessary to overcome current gaps in our

understanding of how the brain works. For example, more accurate characterization of activity

patterns in terms of location, timing, and morphology has the potential to enable more accurate

semantic neural decoding.
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It is also necessary to improve current machine learning methods used to identify se-

mantic concepts from neural data. This may include using joint recording methods, such as

simultaneous EEG and fMRI to improve the accuracy of semantic decoding.

An additional challenge is identifying the most appropriate combinations of methods to

differentiate specific sets of semantic concepts and determine which methods may be employed

for particular applications. For example, fMRI may be used to differentiate a wide range of

different semantic concepts, but is impractical for many possible applications of semantic

decoding (for example, building a practical semantic communication device, see Section 2.5.3).

It is also important to note that the specific concepts that semantic decoders are able to

differentiate currently depends largely on the neuroimaging methods employed. In general, I

observed that decoders that used techniques with higher spatial resolution — such as fMRI

or intracranial electrodes — were better able to decode concepts that are more semantically

similar to one another than neuroimaging techniques with lower spatial resolution, such as EEG

or fNIRS. Advances in signal processes techniques for the EEG and fNIRS may help to close

this gap in future, but it is likely to remain the case that a higher spatial resolution is needed to

more accurately decode more semantically similar concepts.

Finally, differences in inter-participant and inter-language neural encodings of semantic con-

cepts represent a considerable challenge [2]. Ideally, one would wish to build a decoding model

from one sub-group of individuals and be able to apply this with any new individual. However,

neural signatures of semantic encoding vary considerably across individuals and even across

experiments with the same individual [1]. There are a variety of reasons for this. In particular

neuroanatomical differences between individuals mean that direct one-to-one mappings of

neural encoding patterns for a given semantic concept between participants are not possible [1].

In addition, non-stationarity in neural representations of meaning results in differences in neural

encoding patterns between experimental sessions with the same participant [90].
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Some of these differences can be corrected for by pre-processing the recorded neural

data. For example, fMRI recordings can be fit to common templates via a series of warping

and translation steps to provide some degree of neuroanatomical homogeneity, at the cost of

reduced spatial precision and resolution [77]. However, conceptual organization of semantic

concepts differs between individuals as different people relate concepts to one another quite

differently. For example, while one individual may relate the concept of ‘celery’ to the concept

of ‘hunger’ another may not. These differences in conceptual organization result, according

to embodiment theory, in differences in neuroanatomical localization of encoding patterns

for concepts. Consequently, even with correct inter-person neuroanatomical alignment there

may still be considerable differences in encoding patterns between individuals. Methods to

address this include searching for signatures of semantic concepts within neural data [132] or

joint feature ranking selection [2]. For example, joint feature ranking identifies signatures of

concepts across different neuroanatomical structures and localization by searching for temporal

dynamic modulations of neural activity that co-vary with presentations of specific semantic

concepts.

An additional consideration is differences in neural encoding of semantic concepts by

individuals who speak different languages. A semantic concept may be, to some extent,

independent of language; the concept of ‘food’ (for example) is a universal one. However, the

way specific concepts are encoded in our brain is determined by multiple factors including,

but not limited to, mappings to other related concepts, and societal and cultural views of the

concept. Moreover, the meaning of concepts can change over the life span [70].

Emerging evidence suggests a mixed picture, with some similarities in neural representa-

tions reported (e.g., [279, 285]). However it is not certain that these similarities will generalize

well across all languages. Therefore, inter-participant / language differences (e.g., in neu-

roanatomical structure, as well as in structuring of neural encoding) need to be accounted for

when attempting to understand semantic encoding or build semantic decoding models [1]. Meth-
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ods have been developed to attempt to help overcome these differences, such as hyper-alignment

analysis [90] or mutual similarity relationships [132, 210].

2.5 Current and future applications and directions

Semantic decoding allows the identification of the specific semantic concept(s) an individual

is presented with or focused on at a given moment in time. This emerging field of research

suggests many application areas.

2.5.1 Tools for neuroscience

Semantic decoding has the potential to provide a useful toolset to neuroscientists seeking

to investigate how our brains store, relate, and process semantic concepts. For example,

the multivariate pattern analysis method used in some semantic decoding studies has also

been widely used to understand which brain regions are involved in representing semantic

concepts [170]. Semantic decoding has also been used to build and test models of memory

re-consolidation after receiving further, refining, information from input sentences [253].

A more specific example of this is the use of semantic decoding to explore neural represen-

tations of naturalistic stimulus complexity in the early visual and auditory cortices. A recent

neuroscientific study by Güçlütürk and colleagues [86] used semantic decoding methods to

identify how complex natural stimuli are encoded in these parts of the brain.

Other researchers have used tools developed for semantic decoding to explore how con-

cepts at different ‘levels’ are encoded in our brains. For example, early work by Rosch and

colleagues [217] defined a ‘basic level’ concept upon which other more complex concepts

may be constructed. For example, Rosch defined a ‘bird’ as a basic level concept while more

specific concepts (such as ‘robin’ or ‘crow’) exist at subordinate levels in this hierarchy.
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This early conceptual framework has been shown, via the application of semantic decoding

tools, to map to specific organizational structures for semantic encoding in the brain. For

example, work by Bauer and Just [18] showed that ‘basic level’ concepts occupied more

spatially distributed neural encoding patterns, while subordinate level concepts occupied less

widely distributed, more concentrated brain areas.

This, in turn, relates to the distributed-plus-hub model of semantic memory retrieval in the

brain. Under this model, visual, perceptual, and motor related features of individual concepts

involve a distributed network of brain regions located within the brain regions responsible for

the associated cognitive processes [191]. So for example, the concept of ‘tools’ is likely to

be associated with motor-related cognitive processes and involves a distributed network that

includes the motor cortex. This distributed network is then bound together in a central amodal

hub, located within the anterior temporal lobe, which is responsible for relating semantic

concepts to one another. So, for example, basic level and more complex concepts are related to

one another in the anterior temporal lobe and semantic decoding studies can aid understanding

of this process.

2.5.2 Clinical applications

The ability to accurately decode and classify concepts from recordings of brain activity has po-

tential clinical applications in treating disease. An early review in this area suggested that many

of the computational and neuroimaging techniques developed for semantic neural decoding

could be employed to classify brain disorders such as schizophrenia and depression [36].

This approach was shown to be usable in the diagnosis of developmental dyscalculia in

a small study with 13 individuals with dyscalculia and 36 control participants [167]. A time-

resolved multivariate analysis method was used to analyze fMRI recorded from participants

while they judged the correctness of multiplication results. The results showed detailed
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differences between the groups, indicating that neural decoding techniques could be adopted

for clinical diagnosis in future.

Following on from this early work, neural decoding techniques have also been applied to

attempt to understand and treat aphasia [189]. Aphasia is a disorder of language that results

from damage to the brain and causes deficits in the production and/or comprehension of speech.

Pasley and Knight [189] suggested that neural decoding of semantic concepts could be used

to understand how semantic encoding is affected by aphasia. Furthermore, they suggested

that, during attempted treatment of aphasia, semantic decoding could be used to judge the

effectiveness of the treatment. Treatments could then be adjusted according to this neural

measure of their efficacy.

Semantic neural decoding has also been shown to be able to differentiate between individuals

with schizophrenia and healthy controls [108]. Specifically, a multivariate state space model

was used to analyze the representations of mental processes of individuals as they performed

the Sternberg Item Recognition Paradigm [243]. Significant differences were found between

controls and individuals with schizophrenia, suggesting a possible further clinical application.

More recently, neural decoding techniques have been shown, in two separate studies, to be

able to differentiate between individuals with autism and control participants [114, 93].

Another recent exciting example of this is the suggestion that neural decoding of semantic

concepts may be used as a potential test for Alzheimer’s disease [9]. Alzheimer’s disease is

a progressive neuro-degenerative disease that leads to gradual loss of cognitive function and,

in many cases, ultimately leads to death. One of the symptoms of Alzheimer’s disease is a

loss of semantic knowledge that begins years before the onset of dementia [186] and it has

been suggested that this early loss of semantic knowledge could be used as an early test for

Alzheimer’s disease. Specifically, it was suggested in [9] that the semantic neural decoding

methods developed in fMRI studies and extended to use with other neural imaging technologies,

could be deployed as a test for Alzheimer’s disease. However, there are considerable challenges
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that first need to be overcome before this potential application can be realized. Specifically, the

relationships between semantic knowledge decline and specific Alzheimer’s disease pathologies

needs to be more thoroughly investigated.

As a final example, neural decoding has also been demonstrated to allow identification

of individuals who are engaged in suicidal ideation. Specifically, a fMRI study by Just

and colleagues [115] was used to identify neural signatures related to the concepts of ‘death’,

‘cruelty’ and other concepts related to suicide in 17 suicidal ideators and 17 controls. Significant

differences in neural encoding patterns for these concepts allowed differentiation of these

groups with a 91 % accuracy, suggesting semantic decoding could potentially be used to

identify individuals at risk of suicide.

2.5.3 Communication aids

The possibility to accurately decode the concept an individual is focused on also suggests an

application as a communication aid; specifically, as a unique form of BCI.

Some work in the field of BCI is already moving in this direction. For example, the use of a

single shot decoding to attempt to identify the concept an individual is focused on is one of the

first attempts in BCI to deploy semantic decoding techniques as a communication paradigm

[219, 244, 120, 150].

Related BCIs have been developed based on semantic relations. Geuze and colleagues [81]

introduced a BCI based on EEG to determine which prime word a user had in mind. Users were

presented with a probe word, the BCI detected whether the word is related to the prime word,

and a new probe word was chosen from an association network. This process was repeated until

a certain confidence threshold was met. An average decoding accuracy of 38 % was reported

using 100 probes and 150 possible words. Additionally, Wenzel and colleagues [273] used a

combination of EEG and eye gaze. Users looked for words belonging to a semantic category

of interest from a stream of words on the screen. The online BCI detected whether the words
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were subjectively relevant to the category. An average rank for the category of interest among

the five categories was 1.62 after a hundred words had been read.

Some related research focuses on identification of cognitive concepts from neural signals

in cognitive BCIs [6]. However, these cognitive BCIs make use of implanted electrodes (a

technology which fundamentally limits their utility due to the inherent safety and ethical

concerns entailed in such an approach), and are not based on semantic concepts, but rather the

broader concept of cognitive states (which includes emotions, intention, executive function,

motor commands, etc.) [6].

2.5.4 Other applications and privacy concerns

Finally, the ability to identify the specific semantic concept an individual is focused on, or

thinking of, has numerous other potential applications that, to date, have only been briefly

suggested in the literature.

One such application is the use of neural decoding in the field of “neuromarketing”. This

field suggests the use of neuroscientific techniques to develop, refine, and test marketing

strategies for commercial products, for example by measuring neural signature of affective

(emotional) responses to particular products [13].

Semantic decoding methods may be used to identify which specific concepts an individual

focuses on when shown advertising material. This could, in turn, be used to identify more

effective advertising strategies.

However, applications such as this and other similar possible uses of semantic decoding

suggest the need to consider the privacy and ethical issues raised by semantic decoding [91].

Specifically, neural decoding offers the possibility to decode and interpret a part of an indi-

viduals current mental state. This could, theoretically, be done without the permission of the

individual, for example as a part of a criminal investigation.
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The associated privacy and ethical issues are rarely considered in the majority of the

literature on semantic neural decoding, perhaps because the technology is currently at a very

early stage where such applications feel a long way off. However, one recent discussion

paper [153] begins to consider these issues and develops an evaluation framework to consider

issues of privacy and ethics in the field of neural decoding. We anticipate considerably more

discussion on these issues as the field develops further.

2.6 Discussion

We systematically sought records of studies that attempted to develop semantic neural decoders.

The search methodology included searches of PubMed records and Google Scholar and included

all relevant peer reviewed articles that we could identify on these databases. However, no

literature review can ever be completely comprehensive and we may have neglected to include

some studies that describe semantic neural decoders, either because the title and abstract did

not indicate that this was attempted in the study, or because we misunderstood the title and

abstract and incorrectly excluded the paper. Thus, while this review considers the majority of

semantic neural decoding studies it may not be fully comprehensive. Nevertheless, we are able

to draw some key conclusions from our analysis of this literature.

Specifically, the majority of neural semantic decoders make use of the fMRI to record

neural data, while a smaller number of studies use other methods such as EEG or MEG. The

range of concepts that these decoders attempt to identify is relatively large but there is a core

subset of concepts (such as animals and tools) that are very frequently decoded. Experimental

designs vary considerably across studies with a wide range of different types of cues and

experimental tasks used. On the other hand the range of machine learning methods used by

semantic decoders is relatively modest, comprised largely of support vector machines and

regression based methods.
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The relationship between semantic encoding models and decoding models is not always

consistently described in the literature. Indeed some studies confuse these two terms and present

an encoding study as a decoding study or vice versa. We have endeavored to only include

studies that present semantic decoding models. However, an important caveat is that some

encoding models are constructed in such a way that adapting the model to achieve semantic

decoding would be extremely trivial. Indeed, in some cases an encoding model is also, in effect,

a decoding model because the predicted encoding maps the model identifies are explicitly

linked to discrete semantic concepts. In such cases we have included the study in our review.

Understanding how our brains encode semantic concepts is an important goal in modern

neuroscientific research and enables many new and exciting areas of research. Not least among

these is the rapidly developing area of semantic decoding, the attempt to develop processing

pipelines and decoding models to identify the specific semantic concept an individual is focused

on from recordings of their brain activity.

We have identified several key methods employed to tackle the challenge of semantic

decoding. Although there are many challenges inherent in developing and evaluating effective

models, semantic decoding has the potential to identify, sometimes with quite high levels of

accuracy, the specific concept an individual is focused on. This may, in future, enable a wide

range of applications such as new clinical diagnostic tests or fast and accurate communication

aids.





Chapter 3

Experiment

This chapter introduces an experiment which was designed to explore the feasibility of differ-

entiating between the semantic categories of animals and tools in a silent naming task and three

novel and intuitive sensory-based imagery tasks using visual, auditory, and tactile perception.

Participants were asked to visualize an object in their minds, imagine the sounds made by the

object, and imagine the feeling of touching the object. Recorded data via simultaneous EEG

and fNIRS are analyzed in the following chapters.

3.1 Key choices

Chapter 2 reviewed studies exploring the possibility of semantic neural decoding, a technique

which aims to identify specific semantic concepts an individual is focused on, or thinking of, at

a given moment in time from their neural activity.

3.1.1 Neuroimaging methods

While the most promising results to date have been reported using fMRI (see Sections 2.3.1

and 2.3.8), semantic decoding using neural signals recorded from the scalp, such as EEG or

fNIRS, is of particular interest for potential semantic BCIs. EEG and fNIRS are portable,
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relatively cheap, and provide better ecological validity in comparison with fMRI. EEG provides

a good temporal resolution but has a poor spatial resolution. This could potentially be improved

by combining it with fNIRS, as these two techniques have complementary strengths. Thus, the

joint recording of EEG and fNIRS was used, more information on this is in Section 3.6.

3.1.2 Mental tasks

Semantic decoding studies to date have used a variety of different mental tasks (see Table 2.5

in Section 2.3.3.2). However, not all these mental tasks would be suitable for BCI applications.

An important difference with respect to research on semantic decoding is that, in semantic BCIs,

users would freely choose and focus on a semantic concept of their choice (from a supported

set of recognizable concepts). In other words, there would not be an external cue that is used to

drive their particular choice. We selected four different mental tasks that could potentially be

used for semantic BCIs.

First, the silent naming task, in which participants are asked to silently name in their minds

a presented object on the screen, has been used in previous research in EEG [173, 172, 171].

However, the silent naming task has not been tested in fNIRS yet. Therefore, we test its

feasibility for semantic decoding in fNIRS.

Many studies asked participants to think about the properties or meaning of the concept

or to generate mental images of the concept (see task types for ‘Properties’, and ‘Meaning’ in

Table 2.5). In general, many studies have shown that similar patterns of brain activity arise

when perceiving and imagining objects [192, 48, 138, 213]. We follow their lead but we want

to use a mental task based on pure imagination. This is analogous to motor imagery tasks

in which participants imagine an action involving movement, for instance, moving a leg or

an arm, or walking on a beach [180, 200, 225]. Thus, we move toward mental imagery tasks

[152, 192, 125, 123] in which participants could freely use their mental imagery to think about

concepts. Mental imagery is considered a fundamental ability of the human mind, which most
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of us have [192, 230, 176]. We thus consider mental tasks based on mental imagery to be

natural mental tasks to most of us. We propose three novel and intuitive sensory-based imagery

tasks using visual, auditory, and tactile perception. We asked participants to visualize an object

in their minds, imagine the sounds made by the object, and imagine the feeling of touching

the object. There is more detail on this in Section 3.2. We considered these three modalities

to be the most intuitive for mental imagery tasks that were also used in some forms in mental

imagery research [152, 192, 125, 230, 199].

Although each imagery task instructs participants to use a different sensory modality, we

do not expect participants to use only that modality. For instance, visual imagery will probably

be used during the tactile imagery task. However, the focus here is not on the particular sensory

modality but on whether the mental task instruction could be used for semantic neural decoding.

Research suggests a shared neural network for mental imagery between different sensory

modalities. For example, a review by McNorgan [152] investigating modality-specific imagery

in the auditory, tactile, motor, gustatory, olfactory, and visual domains found a general imagery

network across all modalities, while modality-specific imagery overlapped with corresponding

somatosensory processing and motor execution areas. This shared network could then be used

to investigate the feasibility of semantic neural decoding regardless of the modalities employed

by participants.

In the silent naming task, participants might use ‘internal speech’ in addition to silently

naming the concept. This behavior might also be present during the imagery tasks but probably

to a lesser extent. The decoding algorithm could then exploit neural features related to internal

speech instead of the concept. This would confound the decoding process and create false

positives for semantic neural decoding. Neural correlates should be investigated for how much

they are shared between the silent naming task and the imagery mental tasks for these possible

confounds. However, successful speech decoding has primarily been reported in invasive
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neuroimaging techniques with much less success in EEG [12, 207, 63] so this might not be an

issue here.

Although not implemented in our experiment, in theory, all four mental tasks could be used

without an external cue to drive participants’ choice. The participants could voluntarily think

about the concept they wish to communicate. This makes the mental tasks also suitable for use

outside the lab settings. Without the need for external cues, BCI paradigms could be directly

adapted for use outside the lab settings with relative ease, in contrast with the majority of the

reviewed mental tasks from Section 2.3.3.2. However, it is unknown whether semantic BCIs

would require any synchronization for the decoding process (to indicate the mental task start

and intentional control) or self-paced BCIs would be possible.

The performance, and thus usability, of BCI systems is impacted by several interconnected

factors, such as, users’ engagement, motivation, attention, cognitive load, or fatigue [163, 109,

266, 118, 146]. Our idea is to use mental tasks that elicit a high degree of neural activity

related to each concept while keeping the participants engaged. However, we did not perform

any preliminary experiments to investigate the difficulty of the chosen mental tasks. If the

mental tasks were too easy or too difficult, participants could be either bored, resulting in mind

wandering, or anxious due to the task difficulty. In both cases, this would negatively affect

the BCI performance. As mental imagery is considered to be innate to most of us, we did not

consider these mental tasks to be difficult, providing enough time to perform them. We decided

that 3 seconds is the optimal amount of time to perform mental imagery, see Section 3.4

for the experimental design. Nevertheless, imagery vividness and strength vary between

individuals [194, 61]. Adapting the mental task length to participant psycho-physiological

states could improve the system [163, 109]. To initially test the feasibility of the chosen mental

tasks in the simplest scenario, we postpone these considerations for future research.
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3.1.3 Semantic categories

To determine the feasibility of the proposed mental tasks, we attempt to differentiate between

the semantic categories of animals and tools. This pair of semantic categories has been mostly

used in existing semantic decoding studies (see Section 2.3.3.1). More on this is in Section 3.3.

3.1.4 Stimuli

Before using the mental tasks without any external cue in BCIs, the mental tasks must first be

tested in an experimental design which cues participants for a particular semantic concept. We

use a visual modality in the form of images to cue participants because this modality has been

most frequently used in semantic decoding studies (see Section 2.3.3.3) and it is appropriate

for all mental tasks.

In contrast with most semantic decoding studies, we attempt to ensure a separation between

the cue presentation period and the mental task period. More on this is in Section 3.4. As

discussed in Section 2.3.3.3, this separation avoids the problem of potential processing-related

confounds in the classification process that is present in many studies. For instance, focusing

on a concept while seeing its image raises the question of what is used for the differentiation

between different concepts: the visual processing of the image (low-level perceptual features),

the imagination of the concept, or some combination of brain activities related to both processes.

This is a pertinent question as it has been shown that the viewed object can be identified from

passive viewing of images [192, 48]. This study design mitigates this problem. This issue is

further examined in Chapter 5. Additionally, a mask is used after the image presentation period

to reduce visual persistence [214].
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3.2 Mental tasks

Participants were presented with images of concepts from the two semantic categories of

“animals” and “tools” to focus on. Each image presentation was followed by a set of four

individual mental tasks: silent naming, visual, auditory, and tactile imagery. The order of

mental tasks was randomized across blocks (see Section 3.4).

Silent naming task In the silent naming task, participants were asked to name the presented

object in their minds, in their mother tongue (English), see Figure 3.1.

Fig. 3.1 Example of the silent naming task from a part of the material shown to participants.

Visual imagery task In the visual imagery task, participants were asked to visualize the

presented object. They were instructed to try not to visualize the particular image they had seen

but their own representation of the concept, see Figure 3.2.

Fig. 3.2 Example of the visual imagery task from a part of the material shown to participants.



3.2 Mental tasks 53

Auditory imagery task Similarly in the auditory imagery task, participants were asked to

imagine sounds made by the presented object when they interact with it. For instance, the

sounds made by an animal (such as the mewing of a cat) or the sounds produced when using a

tool (such as the banging of a hammer), see Figure 3.3.

Fig. 3.3 Example of the auditory imagery task from a part of the material shown to participants.

Tactile imagery task Lastly, in the tactile imagery task, participants were asked to imagine

the feeling of touching the presented object. For instance, when petting an animal or touching

different parts of a tool, see Figure 3.4.

Fig. 3.4 Example of the tactile imagery task from a part of the material shown to participants.
Participants were instructed to imagine the feeling of touching the presented object during the
tactile imagery task, for instance, petting a cat or touching a hammer in this example.

Participants were presented with the above-mentioned descriptions of the mental tasks

(including the examples reported) but instructed to use the imagery strategy that came most

naturally to them. For all imagery tasks, they were instructed to be engaged for the whole
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mental task duration (3 seconds). They were also instructed to try to avoid eye movements,

facial muscle contractions, and head or body movements during the mental tasks.

Additionally, we did try not to influence the participants’ interpretation of images. They

were shown all images before the experiment. We named a particular image only if they could

not recognize it. Otherwise, we let them use their own interpretations.

3.3 Stimuli

A set of 18 animals and 18 tools were selected. We selected as many concepts from previous

studies [240, 173] as possible. We used concepts that are suitable for all mental tasks and

recognizable by most people. For instance, many animals were excluded from the initial set

as they were unsuitable for the auditory imagery task because we judged that a considerable

number of people would not be able to recall, and then imagine, the sound such animals make.

Images (with a license allowing non-commercial reuse with modifications) were sourced from

the Internet. They were converted to gray-scale, cropped, resized to 400× 400 pixels, and

contrast stretched. In all images, the object was presented on a white background. We used

photos instead of line drawings because we did not want to be constrained by their limited

variety. The selected concepts are listed below. Figure 3.5 shows their corresponding images.

Animals: bear, cat, cock, cow, crab, crow, dog, donkey, duck, elephant, frog, lion, monkey,

owl, pig, sheep, snake, and tiger.

Tools: axe, bottle-opener, broom, chain saw, computer keyboard, computer mouse, corkscrew,

hammer, hand saw, hoover, kettle, knife, microwave, pen, phone, scissors, shovel, and tooth-

brush.
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(a) Animals (b) Tools

Fig. 3.5 Images of concepts presented during the experiment.
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Fig. 3.6 Illustration of one concept trial. The order of mental tasks is randomized across blocks.

3.4 Experimental design

Figure 3.6 illustrates one concept trial. Each concept trial started with a black fixation cross on

a white background for 1-2 seconds (uniformly distributed). The image of a concept was then

presented for 0.6 seconds. A mask (the image of a checkerboard) followed for 0.6 seconds to

reduce visual persistence and thus to get rid of potential effects of perceptual processing related

neural activity from the image presentation after this mask presentation [214]. A blank white

screen was shown for 0.5 seconds before a sequence of all four mental tasks. Each mental task

lasted for 3 seconds and was separated from the following one by a blank white screen for 0.2

seconds. The type of the mental task was indicated by text presented on the screen for the

whole mental task duration: “Silently name”, “Visualize”, “Listen”, or “Feel”. The last mental

task was followed by a short break for 2 seconds indicated by a blank screen, which changed

color over time from white to black and back. In total, one concept trial took 17.3–18.3 seconds

depending on the duration of the fixation cross.

Each concept was presented five times, for a total of 90 trials per category (18 concepts, 5

repetitions each). The experiment was split into 15 blocks with 12 concepts per block (207.6–

219.6 seconds). Blocks were separated by breaks of at least 30 seconds. There was also a

longer break of at least 3 minutes in the middle of the experiment.
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Table 3.1 Participants information.

Participant Age Sex Handedness fNIRS montage

1 26 female right frontal
2 32 female right frontal
3 57 male right frontal
4 47 female right frontal
5 23 female right frontal
6 21 female right frontal
7 29 female right temporal
8 50 female right temporal
9 27 female right temporal
10 33 female right temporal
11 28 male right temporal
12 20 male right temporal

The experiment started with two additional short blocks (86.5–91.5 seconds, containing a

random subset of 5 concepts, each repeated two times) for familiarization with the experiment.

The order of concepts and mental tasks was pseudo-randomized with the following con-

straints. No concept was repeated twice in succession. All mental tasks in one block had the

same order. Different blocks had different orders of mental tasks and no order in a given block

was repeated in the following block.

3.5 Participants

Twelve right-handed native English speakers were recruited from the student and staff popula-

tion of the University of Essex (3 males and 9 females, age range 20–57, mean 32.75, standard

deviation 11.55; see Table 3.1 for more information). The recruitment search was limited to

native English speakers to avoid a potential problem of differences in neural representations

of semantic concepts by individuals who speak different languages [279, 285], which could

be particularly important for the silent naming task (see Section 3.2). All participants had

normal or corrected-to-normal vision. Participants received compensation of £16 for their time.
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They all read, understood, and signed a consent form. The study was approved by the Ethics

Committee of the University of Essex on 25th October 2018.

3.6 Neuroimaging data

EEG data were acquired with a BioSemi ActiveTwo system with 64 electrodes positioned

according to the international 10-20 system, plus one electrode on each earlobe as references.

Additionally, 2 electrodes placed on the left hand measured galvanic skin response and a

respiration belt around the waist measured respiration. The sampling rate was 2048 Hz. fNIRS

data were acquired with a NIRx NIRScoutXP continuous wave imaging system equipped with

4 light detectors, 8 light emitters (sources), and low-profile fNIRS optodes. Both electrodes and

optodes were placed in a NIRx NIRScap for integrated fNIRS-EEG layouts. EEG and fNIRS

signals were synchronized by sending a trigger at the onset of each event in the experiment

from the computer running the experiment to both systems simultaneously via a parallel port

and an active parallel port splitter box.

The brain regions selected for fNIRS channel placement were based on a review by Binder

and colleagues [28] which analyzed 120 functional neuroimaging studies to locate the se-

mantic system for semantic processing, which refers to the cognitive act of accessing stored

knowledge about the world. Their analysis showed a left-lateralized network comprised of

7 regions: posterior inferior parietal lobe (angular gyrus and adjacent supramarginal gyrus),

middle temporal gyrus (and posterior portions of the inferior temporal gyrus), fusiform and

parahippocampal gyri, dorsomedial prefrontal cortex, inferior frontal gyrus (especially pars

orbitalis), ventromedial prefrontal cortex, and posterior cingulate gyrus (and adjacent ventral

precuneus). These findings are consistent with semantic decoding studies that were reviewed

in Chapter 2. We focused on regions close to the scalp which could potentially be studied by

fNIRS, namely left-lateralized: posterior inferior parietal lobe, middle temporal gyrus, and

dorsomedial prefrontal cortex.



3.6 Neuroimaging data 59

Fp1 Fpz Fp2
AF7

AF3
AFz

AF4

AF8

F7

F5
F3

F1 Fz F2
F4

F6

F8

FT7
FC5

FC3 FC1 FCz FC2 FC4
FC6

FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7
CP5

CP3 CP1 CPz CP2 CP4
CP6

TP8

P9

P7

P5
P3

P1 Pz P2
P4

P6

P8

P10
PO7

PO3
POz

PO4

PO8
O1 Oz O2

Iz

Frontal montage

Sources

Detectors

Channels

Temporal montage

Sources

Detectors

Channels

AFF5h

FFC2h

AFF1h

FFC3h

FCC1h

AFp2

FFT7h

FCC5h

FFC1h

AFp1

FFC5h

AFF2h

FFT9h

FTT7h

CCP5h

TPP7h

PPO9h

CPP3h

PPO5h

TTP7h

TPP9h

FTT9h

CPP5h

Fig. 3.7 The frontal and temporal montages used for fNIRS data acquisition with the joint
EEG with 64 electrodes following the international 10-20 system. fNIRS sources (circles) and
detectors (squares) positioned in the 10-5 system form channels (small circles) shown between
them.

We designed two fNIRS montages because the lab’s equipment did not include enough

channels to record from all regions of interest. Figure 3.7 shows our two fNIRS montages. The

first montage focused on the left temporal lobe and the posterior inferior parietal lobe. The

montage was selected based on the fOLD toolbox [284], which allows for probe arrangement

guided by brain regions of interest, with regions of interest in the left-lateralized inferior parietal

lobe, angular gyrus, middle and inferior temporal gyrus. We selectively eliminated optodes

with the lowest specificity for the regions of interest until the number of optodes satisfied the

lab’s equipment limitations. This montage used 4 detectors and only 7 sources creating 11

channels with a sampling rate of fs = 8.92 Hz. The second montage focused on the left frontal

cortex. The montage was selected using the same method based on the fOLD toolbox with

regions of interest in Brodmann areas 9 and 46. This montage used 4 detectors and 8 sources

creating 14 channels with a sampling rate of fs = 7.81 Hz. The inter-optode separations were
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Fig. 3.8 Number of mental task appearances as the first, second, third, and fourth task in the
shared order of mental tasks in participants 2 to 12.

approximately 3 cm. For the first six participants, the frontal montage was used and for the

final six, the temporal montage was used (see Table 3.1).

3.7 Order of tasks

In the course of data analysis, we discovered a minor error in the experiment script that was

used to present stimuli to participants. All participants except participant 1 had the same seed

for the random number generator and they thus shared the same order of mental tasks and

concepts. Figure 3.8 shows how many times mental tasks appeared as the first, second, third,

and fourth mental task in blocks. The distribution is clearly not uniform. It was skewed to

present the auditory and tactile imagery tasks more frequently as the first mental task and the

auditory imagery task as the second mental task.

If the ease of semantic decoding depends on the mental task position during the sequence of

four mental tasks, the randomization seed error might negatively affect the results. For example,

if the first presented mental task, regardless of the type of the mental task, provided the most

useful features to differentiate between the semantic categories, the tactile and auditory imagery

tasks might have an unfair advantage. These mental tasks were presented more often than the
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other two mental tasks, especially in comparison with the visual imagery task, resulting in

providing more samples for the training process in the classification pipeline. Thus, they might

be able to achieve higher classification accuracies.

We prepared a post-hoc analysis to investigate how much the results depend on different

distributions of the order of task appearances. A particular analysis would be re-computed

on subsets of blocks from the experiment by excluding individual blocks from the analysis

to simulate different distributions. We used subsets of blocks with sizes from 7 to 14 blocks

and only considered subsets in which all mental tasks appeared as the first, second, third, and

fourth task. From these 4023 subsets, 100 were randomly selected. We would then check

whether or not the original results would fall within the “middle” of the distribution. If yes,

the results would be significant even if the order of the tasks had been correctly randomized

across participants. In other words, the error we discovered in the experiment script would not

adversely affect the results. However, as we will see in analyses of the EEG and fNIRS data in

Chapters 4 and 6, the mean classification accuracies across participants were not statistically

significant in any mental task. Thus, we did not perform this post-hoc analysis.

Ideally, we should inspect semantic decoding performance of each mental task for each

task appearance position during the sequence of four mental task separately, for instance,

classification accuracies when the silent naming task appears as the first task, then as the second

task, and so on. This analysis would provide insights into the effects of the mental task position

on semantic decoding while also providing answer whether or not this error negatively affected

the results. Unfortunately, there is not enough data for each mental task at each position to

perform this analysis.

If the mental task order is essential and affects the decoding performance, we expect to see

some mental tasks achieve higher classification accuracies than other mental tasks. However,

this is not the case, as we will see in our EEG and fNIRS analyses in Chapters 4 and 6. Mean

classification accuracies were not statistically significant for any mental task in all exploratory
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analyses. These results cannot be fully attributed to the mental task order. Thus, random seed

error did not adversely affect the results.



Chapter 4

Semantic decoding in EEG

This chapter explores the possibility of semantic decoding with EEG in the experiment presented

in Chapter 3.

4.1 Methods

We investigated the feasibility of differentiating between the semantic categories of animals

and tools by a set of different analyses. All analyses presented in this chapter used a stratified

15-fold cross-validation to assess the decoding performance.

4.1.1 EEG data preprocessing

The EEG signals were referenced to the mean of electrodes placed on the left and right earlobe.

Channels with bad signal quality were manually identified and removed (7.5±7.3% of channels,

mean and standard deviation, see “Bad EEG channels” column in Table 4.1). The EEG data

were high-pass filtered to remove slow drift artifacts by an IIR 4th-order Butterworth filter with

1 Hz cutoff (forward-backward filtering which creates an effective order of 8 with −6.02 dB at

a 1 Hz cutoff, sosfiltfilt method from SciPy [263] using second-order sections to reduce

numerical errors). Epochs representing concept trials (a presentation of a concept image with a
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Table 4.1 Number of bad channels and bad concept trials in the EEG recording from each
participant. EEG contains 64 channels in total. The experiment contains 180 concept trials in
total.

Participant Bad EEG channels Bad EEG concept trials

1 5 17
2 16 16
3 4 18
4 12 37
5 3 21
6 1 30
7 5 12
8 excluded excluded
9 2 29
10 1 24
11 0 15
12 4 29

sequence of all tasks, see Section 3.4) were extracted from the last second of the fixation cross,

before the image presentation, until the end of the last task (14.3 seconds after the image onset).

We inspected the concept trials for artifacts in any channel and marked bad concept trials that

were then excluded from further analysis (12.5±4.2% of concept trials, see “Bad EEG concept

trials” column in Table 4.1).

Artifacts from eye blinks were suppressed by independent component analysis (ICA)

[112, 106]. Spatial ICA (FastICA from SciPy [263] with default settings but with a maximum

number of iterations set to 1000 and with a number of components corresponding to a number

of valid channels) was fitted on the valid concept trials for each participant. The ICA component

explaining largest amount of the variance always represented eye blinks; we manually checked

this. Finally, this component was removed from the high-pass filtered data.

Participant 8 was excluded from further analysis due to overall bad signal quality and

artifacts in most concept trials.
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4.1.2 Temporal analysis

We explored the possibility of differentiating between the semantic categories of animals and

tools in the temporal domain using specific EEG frequency bands.

We selected the two most widely used frequency bands from previous EEG-based semantic

decoding studies (see Table 5.1): 1–30 and 4–30 Hz. In both cases, the preprocessed EEG

data were first high-pass filtered by an IIR 4th-order Butterworth filter (1 or 4 Hz cutoff with

−6.02 dB at the cutoff, forward-backward filtering, sosfiltfilt method) and then convolved

with a FIR low-pass filter (designed by the firwin method from SciPy [263], 0.661 s length,

30 Hz cutoff, 5 Hz bandwidth) [275]. Additionally, we used individual frequency bands

of delta 1–4 Hz, theta 4–8 Hz, alpha 8–14 Hz, beta 14–20 Hz, and low gamma 20–30 Hz.

This selection was based on [24]. For these frequency bands, the preprocessed data were

filtered by a FIR band-pass filter (designed by the firwin method) with settings based on

filtering recommendations from the MNE framework [85]. Concretely, settings (filter length,

lower bandwidth, upper bandwidth) were (6759 samples (3.3 s), 1 Hz, 2 Hz) for 1–4 Hz,

(3381 samples (1.651 s), 2 Hz, 2 Hz) for 4–8 Hz, (3381 samples (1.651 s), 2 Hz, 3.5 Hz) for

8–14 Hz, (1931 samples (0.943 s), 3.5 Hz, 5 Hz) for 14–20 Hz, and (1353 samples (0.661 s),

5 Hz, 7.5 Hz) for 20–30 Hz. In all cases, the filtered EEG data were then downsampled to

64 Hz. Finally, data were restructured into epochs from 0 to 3 seconds after the individual

mental task onset (with the exception of data from the excluded concept trials).

Two approaches for the classification were investigated: a sliding window approach and

the classification of the whole mental-task period. The sliding window approach was used to

investigate the temporal evolution of semantic decoding. A temporal window was shifted in

steps of half the window size in the mental task period. A classifier was separately trained in

each position of the temporal window by using only time points from that window. Different

lengths of the temporal window were investigated: 0.25, 0.5, and 1 second that correspond to

16, 32, and 64 time points at the sampling frequency of 64 Hz. In the classification of the whole
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mental task period, the classifier could use information from all time points in the mental task

period.

As a classifier, we chose a support vector machine (SVM) with a radial basis function

kernel (from scikit-learn [195], default settings, C = 1). This is because SVM is the most used

classifier in semantic decoding studies (see Table 2.7 in Section 2.3.6). We also tested other

classifiers: logistic regression (LR) with L1 or L2 norm, and linear discriminant analysis (LDA).

Even though there were several (minor) differences, the main message was the same and we

will, thus, report only the results achieved with the SVM (unless it is specified otherwise).

The SVM could use information from all channels. Data in each temporal window or in

the whole mental task period were normalized (z-scored) for each channel separately, based

on training folds during cross-validation. A single channel classification was initially tested.

However, we decided to only present all channels classification in this chapter to make the

presentation clearer because the main message was the same for both approaches. (The results

of single channel classification for analyses in this section are shown in the next chapter in

Sections 5.3.1 and 5.3.4 for the frequency bands of 1–30 and 4–30 Hz.)

Naturally, using information from all channels might result in too many features for the

classifier, which might cause overfitting. This problem might be solved by decomposition

techniques which reduce the number of input features to a smaller set of highly informative

ones. We investigated using the two decomposition techniques described in the following

sections.

4.1.3 Decomposition by PCA

We used a spatial PCA to decrease data dimensionality in channel space. The preprocessed

EEG data from Section 4.1.1 were filtered for the same selection of frequency bands and

downsampled to 64 Hz as in Section 4.1.2. The filtered and downsampled data were projected

into a smaller subspace by keeping only the first N PCA components. We tested a selection
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of N ∈ {2,5,10,15,20,25,30} components and also the number of components that explains

{85%,90%,95%,98%} variance in the data. Similarly to the previous section, we investigated

the possibility of semantic decoding using two approaches: sliding window and whole mental

task period classification. In both approaches, the selected components were normalized

(z-scored) separately.

4.1.4 Decomposition by CSP

We also used a CSP [169, 32, 211] algorithm to decrease data dimensionality in channel space.

The CSP is a popular supervised decomposition method for EEG signal analysis to distinguish

between two classes. This is in contrast with the PCA algorithm described in the previous

section which is an unsupervised decomposition method. The CSP method finds spatial filters

that maximize the signal variance for one class while simultaneously minimizing the signal

variance for the opposite class. Section B.2 in Appendix B offers a more in depth description

of the CSP algorithm and its possible implementations.

Similarly to previous sections, the preprocessed EEG data were filtered with the same

selection of frequency bands and downsampled to 64 Hz. This transformed data were spatially

filtered by CSP and a subset of N CSP components were extracted. The subset contained the

N/2 CSP components with the largest eigenvalues and the N/2 components with the smallest

eigenvalues. This is a typical approach in CSP applications, see Section B.2 in Appendix B.

The log variance of the selected CSP components was extracted and used as an input for the

SVM. We tested N ∈ {2,4,6,8,10} CSP components. This approach was again tested with the

sliding window and the whole mental task period classification.

4.1.4.1 An issue of decreased dimensionality of EEG data

The CSP algorithm assumes that covariance matrices of the EEG data have full rank. However,

the ICA used for eye blinks suppression in the preprocessing step (see Section 4.1.1) removed
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one IC and thus reduced the dimensionality of the EEG data. Apart from being mathematically

incorrect, this issue leads to potential errors in the CSP decomposition and decreased classifica-

tion accuracies [222]. Appendix B describes this issue in detail and shows one possible solution

by using spatial PCA that is employed here. This analysis of the effectiveness of different CSP

implementations has been published in [222].

In order to have full rank covariance matrices, a dimensionality reduction method, such

as spatial PCA, can be used to project the EEG data into an appropriate space. In this case,

the spatial PCA projects the EEG data into a space with a number of dimensions equal to the

number of channels minus one. The number of dimensions was decreased by one because one

IC was removed. This dimensionality reduction is employed before the CSP.

4.1.4.2 Nested-cross-validation approach

Additionally, we investigated the possibility of automatic selection of a number of CSP compo-

nents by a nested-cross-validation approach. The number of CSP components was selected

based on the maximal mean classification accuracy from the inner stratified 10-fold cross-

validation.

4.1.4.3 Spatio-spectral CSP

In this section we explore whether or not the decoding performance improves when the classifier

can use information from multiple frequency bands. We only considered the delta, theta, alpha,

beta and gamma frequency bands for this approach. We used a spatio-spectral CSP, that is

CSP filtering in the joint channel and frequency space. The number of dimensions of this

space corresponds to the number of channels (up to 64 channels) multiplied by the number of

frequency bands (5 frequency bands), that is up to 320 dimensions. We performed the PCA

operation before the CSP to reduce the number of dimensions to the number of channels minus

one multiplied by the number of frequency bands.
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In this approach, we considered a selection of N ∈ {2,4,6,8,10,12,14,16,18,20} CSP

components. We then used a nested-cross-validation approach to automatically select the

number of CSP components in the same manner as described before.

4.1.4.4 Grid search

The previously selected frequency bands may not always be appropriate for analysis using

CSP for all participants. Several EEG-based semantic decoding studies first searched for

participant-specific frequency bands [173, 172, 246]. We employed a grid search to test all

time-frequency windows for each participant and mental task.

The mental task period (3 seconds) was split into a grid with a step of 0.2 seconds. All

possible temporal windows on this grid were then considered: 0–0.2, 0–0.4, . . . , 0–3, . . . ,

0.2–0.4, 0.2–0.6, . . ., and 2.8–3 seconds. This resulted in 120 temporal windows in total.

Similarly, the frequency domain in the frequency range 0–50 Hz was split into a grid with

5 Hz steps. This resulted in 55 frequency windows in total. We filtered the data with a FIR

band-pass filter (designed by the firwin method) with automatic filter settings based on the

MNE filter method following the framework filtering recommendations. To avoid aliasing,

the EEG signals were downsampled to 128 Hz instead of 64 Hz.

All combinations of 120×55 = 6600 time-frequency windows were tested. Additionally,

classification in each time-frequency window was explored with more options than before.

Namely, we tested N ∈ {4,6,8,10,12} CSP components and different classifiers: SVM with

C ∈ {0.01,0.1,1,10,100}, LR with L1 or L2 norm, and LDA.

4.1.5 Time-frequency representation

The epochs were transformed into a time-frequency representation by a wavelet decomposition

using Morlet wavelets. The EEG signals were preprocessed as described in Section 4.1.1 with

a high-pass filter with a cut-off frequency of 1 Hz and keeping the original sampling frequency
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of 2048 Hz. Frequencies were extracted from 1 to 40 Hz with a step of 1 Hz. The number

of cycles for each frequency was set to the half of this frequency. The temporal domain of

time-frequency representation was then downsampled (decimated) to 128 Hz. To avoid edge

artifacts, each epoch was extended by 0.5 seconds before and after the epoch period before the

decomposition and cropped to the original period afterwards. We used the signal power of this

time-frequency representation.

We used a spatio-spectral PCA to decrease data dimensionality in the joint channel and

frequency space. The number of dimensions of this space corresponds to the number of

channels (up to 64 channels) multiplied by the number of frequencies (40 frequencies), that is

up to 2560 dimensions.

Signal powers were normalized (z-scored) for each channel and frequency separately. This

data was then projected into a smaller subspace by keeping only the N PCA components that

explain most of the data variance. We tested N ∈ {1, . . . ,100}.

We used a sliding window approach to inspect the decoding performance over time. In each

temporal window, values of each component were averaged to further decrease the number of

features. The number of features thus equals the number of components. These features were

normalized (z-scored) before being passed to the SVM (C = 1) mentioned before.

We tested temporal window lengths of 125 ms (16 time points) and 250 ms (32 time points).

4.1.6 Event-related (de)synchronization

Event-related (de)synchronization (ERD/S) maps were explored for each mental task regard-

less of the semantic category. The preprocessed EEG data from Section 4.1.1 (removal of

bad trials and suppression of eye blinks) were further transformed by the spatial Laplacian

to reduce the negative impact of volume conduction (compute_current_source_density

method from MNE). Time-frequency representations were computed by multitaper method

(tfr_multitaper method from MNE) for the frequency range of 2–35 Hz. Epochs in time-
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frequency representations were baseline corrected with the break period of 2 seconds to compute

relative changes in percentages. Statistical significance was accessed by a cluster-based per-

mutation test (permutation_cluster_1samp_test method from MNE, 105 permutations,

p < 0.05).

4.2 Results

The classification accuracy of a single participant was tested for statistical significance by

comparing it with that of a random classifier by using a one-sided Binomial test for a significance

level of p < 0.05. The probability distribution of the random classifier for two categories (i.e.,

the semantic categories of animals and tools) can be described by the binomial distribution.

The binomial distribution with parameters n and q describes the number of successes in a

sequence of n independent experiments, each with a Boolean-valued outcome for success (with

probability q) or failure (with probability 1−q). The semantic category of animals or tools for

each epoch represents the Boolean-valued outcome and is independent from other epochs due

to the random generation of the concept order. Thus, the binomial distribution can be used to

describe the random classifier with n set to the number of epochs. Due to the removal of bad

epochs during the preprocessing step, the categories of animals and tools were not balanced

which is reflected by setting the parameter q to the ratio of samples between the two categories.

A one-sided Binomial test is then used to measure the statistical difference of deviations from

this theoretically expected distribution.

Significance for the mean classification accuracy across participants was calculated using a

bootstrapping simulation (based on 106 simulations using a classifier which randomly choose

a class). Significance borderlines were then 56.6% for p = 0.05, 59.33% for p = 0.01, and

62.25% for p = 0.001. Note that if the numbers of epochs were the same for all participant,

this bootstrapping would be equivalent to a Binomial test.
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4.2.1 Temporal analysis

Figure 4.1 shows the results for two representative participants obtained with the sliding

temporal window of 0.5 second when the SVM (C = 1) can use information from all channels.

The figure shows statistically significant classification accuracies (p< 0.05, one-sided Binomial

test) for each mental task and frequency band. There was considerable variability in the temporal

locations of significant classification accuracies between different participants for each mental

task and frequency band, see Figure C.1 in Appendix C for the results from all participants. It

was, therefore, not possible to select a temporal window across all participants that would allow

discrimination between the semantic categories for any mental task in any frequency band. Due

to this, it was not possible to compare which mental task and frequency band performs better

for semantic decoding in the sliding window approach. This was also true for all other tested

options of different window sizes and classifiers.

When the classifier can use information from the whole mental task period and all channels,

mean classification accuracies across participants were not statistically significant in any

frequency band and mental task. Due to this, it was not again possible to compare which mental

task and frequency band performs better for semantic decoding.

4.2.2 Decomposition by PCA

Figure 4.2 shows the results for two representative participants for each mental task obtained

with the sliding temporal window of 0.5 second when the SVM can use information from the

first N PCA components. The results revealed variability in the temporal locations of significant

classification accuracies between different participants for each mental task and frequency band,

see Figures C.2, C.3, C.4, and C.5 in Appendix C for the results from all participants for each

mental task. As a result, mean classification accuracies across participants were not statistically

significant in any temporal window for all tested options, including different window sizes
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Fig. 4.1 Classification accuracies for two participants (1 and 6) obtained with the sliding
temporal window of 0.5 second when the classifier can use information from all channels, see
Section 4.1.2. Columns represent different frequency bands. The top row is participant 1 and
the bottom row is participant 6. The Y axes are limited to statistically significant classification
accuracies from p = 0.05 to p = 10−5. Subfigures show the results achieved using different
classifiers.
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Fig. 4.2 Classification accuracies for two participants (1 and 6) obtained with the sliding
temporal window of 0.5 second when the SVM (C = 1) can use information from the first N
PCA components, see Section 4.1.3. Rows represent different mental tasks. Columns indicate
different frequency bands. The Y axes are limited to statistically significant classification
accuracies from p = 0.05 to p = 10−5.
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and classifiers. In the whole mental task classification, mean classification accuracies across

participants were not statistically significant in any tested option.

4.2.3 Decomposition by CSP

Figure 4.3 shows the results for two representative participants for each mental task obtained

with the sliding temporal window of 0.5 second when the SVM can use information from N CSP

components. Once again, the results revealed variability in the temporal locations of significant

classification accuracies between different participants for each mental task and frequency

band, see Figures C.6, C.7, C.8, and C.9 in Appendix C for the results from all participants

for each mental task. Mean classification accuracies across participants were not statistically

significant in any temporal window for all tested options, including different window sizes

and classifiers. In the whole mental task classification, mean classification accuracies across

participants were not statistically significant in any tested option.

4.2.3.1 Nested-cross-validation approach

Figure 4.4 shows the results for two representative participants obtained with the sliding

temporal window of 0.5 second and the SVM. The nested-cross-validation approach was used to

select the number of CSP components which were used in the classification, see Section 4.1.4.2.

There was variability in the temporal locations of significant classification accuracies between

different participants for each mental task and frequency band, see Figure C.10 in Appendix C

for the results from all participants. Mean classification accuracies across participants were

not statistically significant in any temporal window for all tested options, including different

window sizes and classifiers. In the whole mental task period classification, mean classification

accuracies across participants were not statistically significant in any tested option.
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Fig. 4.3 Classification accuracies for two participants (1 and 6) obtained with the sliding
temporal window of 0.5 second when the SVM (C = 1) can use information from N CSP
components, see Section 4.1.4. Rows represent different mental task, while columns indicate
different frequency bands. The Y axes are limited to statistically significant classification
accuracies from p = 0.05 to p = 10−5.
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Fig. 4.4 Classification accuracies for two participants (1 and 6) obtained with the sliding
temporal window of 0.5 second when the SVM (C = 1) can use information from the number of
CSP components that was selected by the nested-cross-validation approach, see Section 4.1.4.2.
Rows represent different participants, while columns indicate different frequency bands. The Y
axes are limited to statistically significant classification accuracies from p = 0.05 to p = 10−5.
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Fig. 4.5 Classification accuracies for two participants (1 and 6) obtained with the sliding
temporal window of 0.5 second when the classifier can use information from the number of
CSP components from the joint channel and frequency space that was selected by the nested-
cross-validation approach, see Section 4.1.4.3. Rows represent different participants, while
columns indicate different mental tasks. The Y axes are limited to statistically significant
classification accuracies from p = 0.05 to p = 10−6.
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4.2.3.2 Spatio-spectral CSP

Figure 4.5 shows the results for two representative participants obtained with the sliding

temporal window of 0.5 second. The nested-cross-validation approach was used to select the

number of CSP components from the joint channel and frequency space, which were used in

the classification, see Section 4.1.4.3. There was variability between different participants and

mental tasks in the temporal locations where statistically significant classification accuracies

were found, see Figure C.11 in Appendix C for the results from all participants. Mean

classification accuracies across participants were not statistically significant in any temporal

window for all tested options, including different window sizes and classifiers. In the whole

mental task period classification, mean classification accuracies across participants were not

statistically significant in any tested option.

4.2.3.3 Grid search

Due to the difficulty of visualizing high-dimensional space of all possible time-frequency

windows, numbers of CSP components, and classifiers (see Section 4.1.4.4), let’s first explore

what would be the best achievable classification accuracies with the SVM, which was used in

all previous analyses.

Figure 4.6 shows summarized results for frequency and temporal domains separately for

two representative participants. For each temporal window shown in this figure, all temporal

windows from the grid search that make use of this temporal range were consider across all

tested options of different numbers of CSP components and frequency windows. A value of

90% quantile is then computed from their classification accuracies and shown in this figure. A

similar procedure was applied to the frequency domain. The temporal and spectral locations

where statistically significant accuracies were found varied between different participants and

different mental tasks, see Figures C.12, C.13, C.14, and C.15 in Appendix C for the results

from all participants. Overall, for the majority of participants and the majority of mental tasks
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Fig. 4.6 Summary of the “best” achievable classification accuracies for two participants (1 and 6)
from the grid search for the CSP analysis using the SVM (C = 1), see Section 4.1.4.4. Columns
indicate different mental tasks. The top row represents temporal windows and the bottom row
represents frequency windows. The Y axes show the start of the window and the X axes show
the end of the window. For each temporal window shown in the top row, all temporal windows
from the grid search that make use of this temporal range were consider across all tested options
of different numbers of CSP components and frequency windows. A value of 90% quantile is
then computed from their classification accuracies and shown in this figure. A similar procedure
was applied to the frequency domain. Classification accuracies in colorbars represent significant
borderlines for p-values of p ∈ {0.05,0.01,0.001,0.0001,0.00001}. White represents non-
significant classification accuracies.
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it was possible to find time-frequency regions that allow significant classification accuracies.

However, these regions were not shared between different participants with the exception of

the auditory imagery task in which the mean of maximal accuracies across all participants

(bottom-right plot in Figure C.14) contained statistically significant regions. This was not

present in any other mental task. The results when using other tested classifiers showed a

similar variability in the spectral and temporal locations between different participants and

mental tasks.

It is worth noting that we examined maximal accuracies across different options in this

exploratory analysis. In a realistic classification analysis, accuracies would most probably be

significantly lower.

4.2.4 Time-frequency representation

Both temporal window sizes of 125 and 250 ms had visually similar results in the sliding

window approach when spatio-spectral PCA was employed to decrease the dimensionality of

the time-frequency representation, see Section 4.1.5. We thus report here only the results for

the temporal window size of 125 ms.

Figure 4.7 shows the results for two representative participants when the SVM can use

information from up to 100 components from the spatio-spectral PCA of signal powers. The

results revealed variability in temporal locations where statistical significant classification

accuracies occurred between different participants for each mental task, see Figures C.16,

C.17, C.18, and C.19 in Appendix C for the results from all participants. Mean classification

accuracies across participants were not statistically significant in any mental task.

4.2.5 Event-related (de)synchronization

Figures 4.8, 4.9, 4.10, and 4.11 show ERD/S (ERD/ERS) maps for each mental task regardless

of the semantic category for twenty representative electrodes, see Section 4.1.6. Overall, all
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Fig. 4.7 Classification accuracies for two participants (1 and 6) with the sliding temporal
window of 125 ms when the SVM can use information from up to N spatio-spectral PCA
components from the joint channel and frequency space, see Section 4.1.5. The left col-
umn is participant 1 and the right column is participant 6. Rows represent different mental
tasks. Classification accuracies in colorbars represent significant borderlines for p-values
of p ∈ {0.05,0.01,0.001,0.0001,0.00001}. White represents non-significant classification
accuracies.
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Fig. 4.8 ERD/S maps for the silent naming task of twenty representative electrodes. X axes are
from 200 ms before to 3 seconds after the mental task onset. Y axes show the frequency range
of 2–35 Hz. Only statistically significant values are shown (cluster-based permutation test), see
Section 4.1.6.
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Fig. 4.9 ERD/S maps for the visual imagery task of twenty representative electrodes. X axes
are from 200 ms before to 3 seconds after the mental task onset. Y axes show the frequency
range of 2–35 Hz. Only statistically significant values are shown (cluster-based permutation
test), see Section 4.1.6.
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Fig. 4.10 ERD/S maps for the auditory imagery task of twenty representative electrodes. X axes
are from 200 ms before to 3 seconds after the mental task onset. Y axes show the frequency
range of 2–35 Hz. Only statistically significant values are shown (cluster-based permutation
test), see Section 4.1.6.
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Fig. 4.11 ERD/S maps for the tactile imagery task of twenty representative electrodes. X axes
are from 200 ms before to 3 seconds after the mental task onset. Y axes show the frequency
range of 2–35 Hz. Only statistically significant values are shown (cluster-based permutation
test), see Section 4.1.6.
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four mental tasks had visually similar ERD/S maps with the strongest ERD/S activities in

parietal and occipital electrodes and partially in central and temporal electrodes in the frequency

band of 8–11 Hz.

The silent naming task had the strongest ERD/S in Pz, P2, and CPz with 2.16, 2.15, and

2.08% synchronization increase in comparison with the baseline, respectively. The visual

imagery task had the strongest ERD/S in P2, CPz, and Pz with 2.12, 2.01, and 1.96%. The

auditory imagery task had the strongest ERD/S in PO8 (2.82%), P2 (2.28%), P8 (2.28%), P4

(2.15%), P10 (2.14%), Pz (2.12%), PO4 (2.06%), and CPz (2.06%). The tactile imagery task

had the strongest ERD/S in PO8 (2.97%), P8 (2.71%), PO4 (2.57%), O2 (2.40%), P10 (2.22%),

POz (2.21%), P2 (2.11%), Pz (2.05%), and CPz (2.02%).

The strongest ERD/S were in the tactile and auditory imagery tasks both in PO8 (2.97 and

2.82% respectively) and P8 (2.71 and 2.28% respectively). The tactile and auditory imagery

tasks had 9 and 8 electrodes with ERD/S above 2%, while the silent naming and visual imagery

tasks had only 3 and 2 electrodes. Even though visually similar activities were located across

both hemispheres, the strongest ERD/S were primarily right-lateralized.

While it is not possible to precisely locate corresponding brain regions from these results

alone due to volume conduction, the strongest ERD/S electrodes were distributed across all

modality-specific regions employed here. We did not expect a clear separation between modali-

ties, as discussed in Section 3.1.2 for the imagery mental tasks. The mental task instructions

gave freedom to perform the mental tasks in any way that was natural to each participant.

Indeed, some participants mentioned that they used visual imagery while performing tactile and

auditory imagery. These ERD/S maps are in line with embodiment theories, see Section 2.2.2.1.

However, it is not possible to differentiate between secondary, weak, and strong embodiment

theories from these EEG results. Therefore, we cannot answer whether or not primary cortical

areas for sensory and motor information were activated to distinguish between strong and weak

embodiment theories. Note that the embodiment theory review [154] rejected the validity of
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strong embodiment outside conscious imagery. Similarly, it is unknown whether or not an

amodal hub (or multiple hubs) is used due to visually similar activities across all mental tasks.

4.3 Discussion

Our results suggest the possibility of semantic decoding in EEG, but there is considerable vari-

ability in time and frequency locations of semantic information between different participants

and mental tasks.

By using the sliding window approach to inspect the temporal evolution of semantic

decoding, multivariate classification of all channels (see Section 4.2.1), spatial PCA features

(see Section 4.2.2), spatial or spatio-spectral CSP features (see Section 4.2.3), and spatio-

spectral PCA features of the signal power (see Section 4.2.4) revealed a variability in the

temporal locations where statistically significant classification accuracies occurred between

different participants, mental tasks, and frequency bands (where used). Due to this variability in

temporal windows, it was not possible to select a single temporal window across all participants

that would allow discrimination between the semantic categories for any mental tasks in any

of the tested options. This variability was further highlighted by using a grid search over all

possible time-frequency windows in the CSP analysis (see Section 4.2.3.3).

In the whole mental task period classification, while it was possible to differentiate between

the semantic categories in a few participants, mean classification accuracies, for specific time-

frequency windows, across participants were not statistically significant in any analyses. The

only exception was the auditory imagery task in the CSP grid search analysis (see Figure C.14 in

Section 4.2.3.3). However, this analysis presented the best achievable classification accuracies.

The time-frequency windows identified by this analysis must be further assessed in future

research.
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Semantic decoding might thus be feasible in each mental task for only a subset of partici-

pants, with each participant using a different temporal window and sometimes also a different

frequency window.

Our results are in contrast with the EEG-based semantic decoding studies identified in

Chapter 2. These EEG studies were able to achieve information transfer rates of 0.21–24.09

bits per minute (see Section 2.3.8) with classification accuracies up to 79% for 2 classes [240].

We believe there are several possible interconnected reasons for this difference.

4.3.1 Time variance

EEG-based semantic decoding studies employed a variety of different mental tasks: out-of-

category recognition [240, 54], in-category recognition [24], silent naming [173, 172, 246],

size judgment [44], semantic judgment [168], memorization of all six elements presented in a

sequence [5], and passive listening [246],

In comparison, the silent naming task was used in several studies [173, 172, 246]. For

instance, Murphy and colleagues [173] were able to differentiate between the semantic cate-

gories of mammals and tools with a mean classification accuracy of 72%, while participants

viewed images and performed the silent naming task. Their analysis used a temporal window of

95–360 ms (after the task onset) and a frequency window of 4.1–18.3 Hz to extract epochs that

were then spatially filtered by CSP. Two CSP components (in log variance) were then classified

by the SVM (C = 1). This analysis is similar to our CSP analysis in Section 4.2.3. In contrast,

we did not find mean classification accuracies that were better than chance in the silent naming

task.

On the other hand, no similar mental tasks to our proposed imagery tasks have been

published in studies that made use of EEG. When other neuroimaging modalities were used,

the most similar mental tasks were task types based on ‘Properties’, such as silent properties
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generation, or ‘Meaning’, such as thinking freely about the meaning of a stimulus, as shown in

Table 2.5.

Our experimental design was unfortunately quite complicated in retrospect. Due to the

sequence of four different mental tasks, participants were required to quickly change between

different mental tasks. With short gaps of only 200 ms between the mental task this may have

caused a high degree of variability in the timing of when participants started performing the

mental task between different trials. If this is the case, and the inter-trial variability was indeed

high, it is not surprising that all tested analyses fail: they were all time-invariant analyses.

All tested analyses in this chapter and even all analyses from the EEG-based semantic

decoding studies inherently assumed time-invariant neural activity (for each participant) or

with only a slight shift in time. However, our results suggest that time-variant analyses might

be required.

4.3.2 Image presentation confound

In contrast with most semantic decoding studies, we attempted to ensure separation of the

image presentation period and the mental task period. As discussed in Section 2.3.3.3, this

separation avoids the problem of potential processing-related confounds in the classification

process that is present in many studies. For instance, focusing on a concept while seeing its

image raises the question of what is used for the differentiation between different concepts: the

visual processing of the image (low-level perceptual features), the imagination of the concept,

or some combination of brain activities related to both processes. This is a pertinent question

as it has been shown that the viewed object can be identified from passive viewing of images

[192, 48]. Our experimental design mitigated this problem. We will examine this issue in

detail in Chapter 5. We will show that all EEG-based semantic decoding studies published to

date could exploit the cue presentation in their analyses. Furthermore, we will show that by
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including the image presentation period into a classification process it will also be possible to

achieve statistically significant mean classification accuracies across participants.



Chapter 5

The effect of cue presentation on

EEG-based semantic decoding

Previous semantic decoding studies, that were reviewed in Chapter 2, make use of neural data

that include both semantic and perceptual processing. For semantic BCIs, it is important to

investigate what happens when these processes are separated in time. Therefore, we ensured a

separation between the cue presentation and mental task period in our experiment presented

in Chapter 3. This chapter investigates the consequences of this separation in contrast with

previous EEG-based semantic decoding studies.

5.1 Introduction

Semantic decoding studies have shown the possibility of semantic neural decoding. Most

of these semantic decoding studies use experiments that are designed to cue participants to

focus their attention on instances of particular semantic concepts for short periods of time, for

example by presenting visual or auditory stimuli. Neural activity is recorded while participants

perform mental tasks involving the cued semantic concepts, for example, by silently naming
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the instance of the concept. This recorded activity is then processed to attempt to differentiate

between semantic concepts.

An important difference between semantic BCIs and the majority of semantic decoding

studies is that in semantic BCIs, users would freely choose and focus on a semantic concept

of their choice (from a supported set of recognizable concepts). In other words, in a semantic

BCI, there would not be an external cue that is used to drive participant’s particular choice.

Many semantic decoding studies employ experimental designs where the cue is present

(e.g., as an image on screen) while participants perform mental tasks, other studies do not, but

they differentiate between different semantic concepts using neural activity that was recorded

during the cue presentation together with activity recorded during the mental task. In these

case, semantic decoders might exploit perceptual processing related neural activity to increase

their decoding performance.

Note that this is a general issue applicable to all neuroimaging modalities including fMRI

with which the most promising results of semantic neural decoding have been obtained. How-

ever, we primary focus on EEG here. Table 5.1 shows a subset of semantic decoding studies

from Chapter 2 that used EEG (alone or in combination with other neuroimaging modalities).

If “Cue present” column is “Yes”, there is no clear separation between the cue and the task.

As indicated, semantic decoders in all of these EEG-based semantic decoding studies could

exploit the cue presentation in one way or another.

In this chapter, we show that decoding of purely imagined concepts without any external

cue, that is when semantic decoders can use only semantic activation caused by concept related

mental tasks, may pose a more challenging problem with respect to the current state-of-the-art

suggesting that semantic decoding is possible. There are at least two (interconnected) reasons

for this: (1) an exploitation of perceptual processing by semantic decoders when the cue is

presented, and (2) a lower degree of semantic activation caused only by the concept related
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Table 5.1 Semantic decoding studies from Chapter 2 using EEG. The column ‘Pres. Mod.’
represents presentation modalities used: visual (V) (image), auditory (A) (spoken word), or
orthographical (O) (written word). Multiple letters indicate that multiple modalities were tested
separately, while V+O is an image with a corresponding written name. The column ‘Cue
present’ refers to whether or not the cue is present in temporal window used by the semantic
decoding model for classification.

Temporal features Spectral features Task Pres.
Mod.

Cue
present

Ref.

0-700ms 1-30Hz out-of-category recogni-
tion

VAO Yes [240]

95-360ms 4.1-18.3Hz silent naming task V Yes [173,
172]

200-700ms
(category), 250-
500ms (individual
words)

1-30Hz size judgment AO Yes [44]

0-1.2s optimized for
each participant
(0.5-55Hz)

passive listening, silent
naming task

AO Yes [246]

0-1s 0.1-40Hz remember all six ele-
ments presented in a se-
quence

O Yes [5]

0-1s 1-12Hz out-of-category recogni-
tion

A Yes [54]

0-700ms 1-30Hz in-category recognition V Yes [24]
0-3500ms 2-100Hz semantic judgment V+O Yes [168]

mental tasks (when performing pure imagination or recollection of semantic concepts). We

focus on the first issue here.

That this is an issue is further supported by several studies that explored experimental

designs with different stimulus presentation modalities and reported significantly different

decoding accuracies for each stimulus modality, even though it has been shown that semantic

processing is independent of stimulus presentation modality [191, 271]. For instance, an EEG

study by Simanova and colleagues [240] reported a higher mean classification accuracy when

participants were cued by images in comparison with when they were cued by spoken or written

words.
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For these reasons, we argue that, when attempting to build and evaluate semantic decoding

models with the focus towards semantic BCIs, the cue presentation should be separated from

the mental task period. We designed an experiment, presented in Chapter 3, with this separation

between the cue presentation period (i.e., an image presentation) and the mental task period.

We will explore the effect of cue presentation on EEG-based semantic decoding by applying the

same analyses during the cue presentation period and during different mental tasks attempted

after the presentation of the cue. When using recorded neural activity only from the mental task

period, semantic decoders cannot use perceptual processing from the cue presentation period,

but there may still be some leftover from semantic activation caused by perceiving the cue (and,

of course, there is semantic activation caused by the concept related mental tasks).

5.2 Methods

This chapter only focuses on EEG data from our experiment presented in Chapter 3. To

investigate the effect of the cue presentation period on differentiating between the semantic

categories of animals and tools, we present six analyses that were conducted on cue presentation

periods in addition to the mental task periods. The EEG data were preprocessed as described in

Section 4.1.1 in Chapter 4.

5.2.1 Analysis in the temporal domain

To explore the possibility of differentiating between the semantic categories of animals and

tools, we used the most prevalent analysis approach from the prior EEG-based semantic

decoding studies in Table 5.1 which is an analysis in the temporal domain.

This was conducted in the two most widely used frequency bands (see Table 5.1): 1–30

and 4–30 Hz. In both cases, the preprocessed EEG data were first high-pass filtered by an

IIR 4th-order Butterworth filter (1 or 4 Hz cutoff, forward-backward filtering, sosfiltfilt
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method) and then convolved with a FIR low-pass filter (designed by the firwin method from

SciPy [263], 0.661 s length, 30 Hz cutoff, 5 Hz bandwidth) [275]. Lastly, the filtered data

were downsampled (decimated) to 64 Hz and restructured into epochs (excluding data from the

excluded concept trials).

To investigate the effect of the cue (image) presentation period on differentiating between

the semantic categories, all the following analyses were also conducted on concept trials in

addition to different mental task types.

5.2.2 Analysis 1 (single channel classification)

In order to investigate the temporal evolution of semantic decoding, a classifier was trained in a

stratified 15-fold cross-validation over a sliding temporal window for each channel separately.

The temporal window of 109.375 ms was used (7 time points at a sampling frequency of 64 Hz)

with a step of half the window size. Data in each window were normalized (z-scored) for each

channel separately, based on training folds during cross-validation.

We chose a SVM (from scikit-learn [195], default settings, C = 1) because it was the

most used classifier in semantic decoding studies (see Table 2.7 in Section 2.3.6). We also

tested other classifiers: linear regression with L1 or L2 norm, naive Bayes classifier, and linear

discriminant analysis. As before, even though there were several (minor) differences, the main

message is the same and thus we report only the results achieved with the SVM.

5.2.3 Analysis 2 (all channels classification)

Next, the same analysis as before was used with the only difference that all channels instead of

a single channel were used in the sliding window approach detailed above. As before, each

channel in a particular temporal window was separately normalized (z-scored).

In this approach, the number of features provided to the classifier was the size of the

temporal window (7 time points) multiplied by the number of channels recorded from a
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particular participant (from 48 to 64 channels, mean 59.18) resulting in up to 7× 64 = 448

features. To avoid having more features than samples (and the curse of dimensionality), we

also re-ran this analysis but instead of using all time points from each channel, only mean

and standard deviation of each channel in that temporal window were used as features. This

approach reduced the maximal number of features to 2× 64 = 128. However, results from

those two approaches were (qualitatively) similar so we report only the results using all time

points.

5.2.4 Analysis 3 (selecting an optimal temporal window)

We tested identifying an optimal temporal window for classification using a nested-cross-

validation approach for each channel separately. The analysis is the same as before with the

only difference that instead of using a sliding temporal window, an optimal temporal window

was selected (for each channel separately) by the maximal mean classification accuracy from

all temporal windows using inner stratified 10-fold cross-validation (on the training folds from

the outer cross-validation).

5.2.5 Analysis 4 (full period classification)

To take into consideration the full task period, all time points from a task period were used for

classification, instead of using only time points from a particular temporal window as before.

This was done using a single channel or all channels. Additionally, the mental task period was

concatenated with the image presentation period to investigate the effect of cue presentation

on classification accuracy. Note that the number of features for the classifier depends on a

particular period length.
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5.2.6 Analyses 5 and 6 (replication studies)

To further stress the need for separating the cue presentation period and the mental task period,

we replicated analyses from two studies that used an image stimulus as a cue during the mental

task period (from Table 5.1). This was done not to criticize these studies but to show the

potential issue with attempting semantic category decoding using the neural data recorded

during the cue presentation period.

In a study by Murphy and colleagues [173], participants were presented with images of

mammals and tools. They were asked to silently name the shown object and to press a mouse

button when finished (with a timeout of 3 seconds). The image was shown for the whole task

duration. Their analysis used a temporal window of 95–360 ms (after the task (or image) onset)

and a frequency window of 4.1–18.3 Hz to extract epochs that were then spatially filtered by

common spatial patterns (CSP) [169, 32]. A subset of N CSP components (in log variance)

were classified by an SVM (C = 1). They were able to achieve a mean classification accuracy

of 72% (with N = 2).

We replicated their analysis in the following pipeline. The preprocessed EEG data were

filtered and all epochs were extracted. We used a dimensionality reduction by principal

component analysis (PCA) before the CSP to avoid the issue of decreased dimensionality of

EEG signals after ICA for eye blinks suppression during the preprocessing phase [222], see

Appendix B for more information. The number of dimensions was decreased by one because

one IC was removed (see Section 4.1.1). Then this data were spatially filtered by CSP and

a subset of N CSP components was extracted. The first half of N selected CSP components

had the largest eigenvalues and the second half had the smallest eigenvalues, which is typical

in CSP applications (see Section B.2 in Appendix B). The log variance of the selected CSP

components was classified by an SVM (C=1). We tested N ∈ {2,4,6,8,10}.

In a study by Simanova and colleagues [240], participants were presented with either

images (line drawings), written words, or spoken words of animals and tools. They were asked
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to respond, by pressing a mouse button, upon appearance of items from the non-target task

categories (clothing or vegetables). In the case of image stimulus, the image was shown for

300 ms followed by a blank screen for 1000–1200 ms. However, their analysis used a temporal

window of 0–700 ms after the stimulus onset which includes the cue presentation period. The

filtered signals, in the frequency band 1–30 Hz, from all channels were classified by logistic

regression (LR) (Bayesian logistic regression with a multivariate Laplace prior). They achieved

a mean classification accuracy of 79% when participants were cued by images.

We replicated their analysis in the following pipeline. The preprocessed EEG data were

filtered and all epochs were extracted. Each channel was separately normalized (z-scored). A

classifier used all channels for the classification. We tested two different classifiers. The first

classifier was LR with L1 norm (from scikit-learn [195], default settings but with a maximum

number of iterations of 105), which is similar to the approach of [240] (but without explicitly

using a Bayesian approach). The second classifier was an SVM (C=1) because it was used in

all other analyses. Additionally, both classifiers were also trained using nested-cross-validation

(with inner stratified 10-fold cross-validation) to choose an appropriate parameter C in case

of SVM and regularization strength in case of LR. Because our image presentation was only

600 ms, in comparison with their 700 ms, a temporal window of 600 ms was used for all

classified periods except for the blank screen period before the first task which was only 500 ms.

Note that this analysis is similar to Analysis 4, in Section 5.2.5, using all channels, but it uses

only 600 ms after the mental task onset in comparison with the full 3 seconds in Analysis 4.

5.3 Results

5.3.1 Analysis 1 (single channel classification)

Analysis 1 revealed considerable variability in the temporal locations of significant classification

accuracies (p < 0.05, one-sided Binomial test) between different participants for each mental
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Fig. 5.1 Mean classification accuracies during the image presentation period for each channel
(Analysis 1). Times represent the start and the end of each temporal window after the image
onset. Scalp maps indicate performance above the significance borderline (p = 0.05, 56.6%).
White represents non-significant classification accuracies.

task. Due to this variability, it was not possible to select a temporal window across all

participants that would allow discrimination between the semantic categories for any mental

task. Figures D.1 and D.2 in Appendix D show this variability across all participants.

On the other hand, it was possible to differentiate between the semantic categories during

the image presentation period across all participants. Figure 5.1 shows scalp maps indicating

for which channels mean classification accuracies were statistically significant during the

image presentation period. Figures D.3 and D.4 in Appendix D show the variability across

all participants. The peak of the mean classification accuracies across all participants was in

the temporal window of 140.6–234.3 ms after the image onset in both frequency bands, see

Figure D.5 in Appendix D for variability in classification accuracies across participants in this

temporal window.
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Fig. 5.2 Mean classification accuracies during the image presentation period when the classifier
can use information from all channels (Analysis 2). Classification accuracies are shown with
mean and 95% confidence interval. Horizontal lines represent significance borderlines for
p = 0.05 (56.6%, solid), p = 0.01 (59.33%, dashed), and p = 0.001 (62.25%, dotted).

5.3.2 Analysis 2 (all channels classification)

Similarly to the results of the single channel classification in Analysis 1, there was variability

across participants in the temporal locations of significant classification accuracies in the mental

tasks in comparison with the temporal locations in the image presentation period. Due to this

variability, it was not possible to select a temporal window across all participants that would

allow discrimination between the semantic categories for any mental task.

On the other hand, it was possible to differentiate between the semantic categories during

the image presentation period across all participants. Figure 5.2 shows mean classification

accuracies during the image presentation period. The peak mean classification accuracy was

61%, again, in the temporal window of 140.6–234.3 ms after the image onset in both frequency

bands. It was not possible to select a temporal window across all participants to discriminate

between the semantic categories for any mental task, or for other periods within the trial (mask

presentation or blank screen). Figure D.6 in Appendix D shows the variability across all

participants.
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Fig. 5.3 Percentages of channels with significant classification accuracies (p < 0.05) for each
participant using the selected optimal temporal windows during the nested-cross-validation
(Analysis 3).

5.3.3 Analysis 3 (selecting an optimal temporal window)

The feasibility of selecting an optimal temporal window for each channel separately was

assessed by a nested-cross-validation approach. Figure 5.3 shows the percentage of the EEG

channels with significant classification accuracies (p < 0.05). Significantly more channels were

found to contain information that allowed significant differentiation of the semantic categories

during the image presentation period than during any of the other tasks (p < 0.01 except the

visual and tactile imagery tasks in the 4–30 Hz frequency band with p < 0.05, one-sided

Wilcoxon signed-rank test). Figures D.7 and D.8 in Appendix D show scalp maps indicating

for which channels classification accuracies were statistically significant.

5.3.4 Analysis 4 (full period classification)

In a single channel classification, Figure 5.4 shows the percentage of the EEG channels

with significant classification accuracies (p < 0.05). Markedly more channels had significant

classification accuracies during the image presentation than during any of the other tasks

(p < 0.01, one-sided Wilcoxon signed-rank test). The concatenation of the mental-task and
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Fig. 5.4 Percentages of channels with significant classification accuracies (p < 0.05) for each
participant using all time points from the corresponding period(s) (Analysis 4).
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Fig. 5.5 Classification accuracies of all channels and all time points from corresponding
period(s) (Analysis 4). Horizontal lines represent significance borderlines for p = 0.05 (56.6%,
solid), p = 0.01 (59.33%, dashed), and p = 0.001 (62.25%, dotted).
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the image-presentation periods increased the number of channels with significant classification

accuracies in comparison with the mental-task period alone (p < 0.01 except the silent naming

task in 4–30 Hz with p < 0.05). On the other hand, the concatenation of the mental-task with

either mask-presentation or blank-screen period did not significantly increase the number of

channels with significant accuracies.

Figure 5.5 shows classification accuracies when the classifier can use information from

all channels. In the frequency band of 1–30 Hz, it was possible to significantly differentiate

between the semantic categories during the image presentation period in 9 out of 11 participants.

While, for instance, the silent naming task had significant classification accuracies only in 1

participant but in 7 participants when it was concatenated with the image presentation period.

Similarly, in the frequency band 1–40 Hz, significant semantic decoding was possible in 8

participants during the image presentation period. Overall, classification accuracies for the

image presentation period were significantly greater than in any other task (p< 0.001, one-sided

Wilcoxon signed-rank test). The concatenation of the mental-task and the image-presentation

period significantly increased classification accuracies in comparison with the mental-task

period alone (p < 0.01 except the silent naming and auditory imagery task in 4–30 Hz with

p < 0.05).

5.3.5 Analyses 5 and 6 (replication studies)

Figure 5.6(a) shows the results of Analysis 5 replicating the analysis from a study by Murphy

and colleagues [173], which used CSP. It was possible to significantly differentiate between the

semantic categories during the image presentation period in 7 out of 11 participants with 10

CSP components, in 6 participants with 8 components, in 5 participants with 6 or 4 components,

and in none with 2 components. Classification accuracies were significantly greater in the

image presentation period in comparison with the mental tasks with 10 (p < 10−6, one-sided

Wilcoxon signed-rank test), 8 (p < 0.001), and 6 (p < 0.01) CSP components, while with 4
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Fig. 5.6 Classification accuracies from the studies replication. Horizontal lines represent
significance borderlines for p = 0.05 (56.6%, solid), p = 0.01 (59.33%, dashed), and p = 0.001
(62.25%, dotted).
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CSP components for all mental tasks except the visual imagery task (p < 0.05), and only for

the tactile imagery task with 2 CSP components (p < 0.05).

Figure 5.6(b) shows the results of Analysis 6 based on a study by Simanova and col-

leagues [240], which uses all channels and a 600 ms period. It was possible to significantly

differentiate between the semantic categories during the image presentation period in 9 out of 11

participants with the SVM (C = 1 and C set by the nested-cross-validation), in 5 participants

with LR, and in 6 participants with LR with regularization strength chosen by the nested-cross-

validation. Classification accuracies for the image presentation period were significantly greater

in comparison with the mental tasks for both SVMs (p < 10−7) and both LRs (p < 10−6 and

p < 10−7 with the nested-cross-validation).

Overall, both analyses revealed the possibility of differentiating between the semantic

categories from only the image presentation period.

5.4 Discussion

Our results indicate a potential issue when the semantic decoder is allowed to use neural activity

recorded in the cue presentation period. We used six analyses on the mental tasks and the

beginnings of concept trials, which include the image presentation, mask presentation, and

blank screen periods.

The results of the temporal evolution of classification accuracies by using a single channel

in Analysis 1 (see Section 5.3.1) or all channels in Analysis 2 (see Section 5.3.2) suggest

that semantic decoding might be feasible in each mental task for only a subset of participants,

with each participant utilizing a different temporal window. On the other hand, neural activity

recorded during the image presentation period allowed for significant differentiation between

the semantic categories, especially in the temporal window of 140–234 ms after the image

onset across all participants.
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To account for the variability in temporal locations of significant accuracies from Analysis 1

in the mental tasks, the results of selecting an appropriate temporal window in Analysis 3 (see

Section 5.3.3) suggest that the semantic decoding in the mental tasks and image presentation

period might be feasible with an appropriate subset of channels. However, there were markedly

more channels that allowed significant differentiation of the semantic categories during the

image presentation period than in any other tasks.

The presence of this issue was also corroborated by Analysis 4 (see Section 5.3.4), which

used all time points in a particular task period. Markedly more channels allowed significant

differentiation between the semantic categories from the image presentation period then any

other task. Furthermore, classification of neural activity from the mental task with the addition

of neural activity from the image presentation period markedly increased the number of

channels that allowed significant differentiation. This is in spite of possible overfitting because

concatenated neural activity is longer and thus presents more features to the classifier in

comparison with only the image presentation period. Additionally, the classifier using all

channels allowed semantic decoding in most participants for the image presentation period.

Finally, replicated analyses from two studies (see Section 5.3.5) also allowed significant

discrimination between the semantic categories for the image presentation period but with

much less success for the mental task periods of the trials.

Overall, it was easier to differentiate between the semantic categories of animals and tools

during the image presentation period than during the mental tasks (by all of the analyses pre-

sented in this chapter). Semantic decoding may thus be more challenging when the classifier is

not allowed to exploit the perceptual processing related neural activity from the cue presentation

period.

If the image presentation period had not been separated from the mental task period

or if neural activity recorded during the image presentation period had been included with

neural activity recorded during the mental task period, we could have claimed the possibility
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of semantic decoding with our presented analyses. Mean classification accuracies across

participants for the image presentation period were up to 61.6±4.9% (mean ± std) in Analysis

4, up to 59.5 ± 6.1% in Analysis 5, and up to 61.8 ± 4.9% in Analysis 6. While, mean

classification accuracies for any of the mental tasks were below 56.6% in Analysis 4, 5,

and 6 and were significantly lower in comparison with the image presentation classification

accuracies.

Only a few semantic decoding studies, reviewed in Chapter 2, attempted semantic decoding

during a free recall paradigm with minimal cue support [239, 168, 206]. During free recall,

participants are often instructed to recall semantically related items consecutively. This is the

most similar paradigm to our experimental design. For instance, a fMRI study [239] presented

participants with semantic categories of animals and tools in four modalities: spoken words,

written words, images, and natural sounds. Participants were asked to respond upon appearance

to out-of-category exemplars. Additionally, the experiment ended with two free recall blocks in

which participants were presented with a category name for 2 seconds and then instructed to

recall all the entities from the cued category, seen during the experiment, in a 40 second period.

A classifier was trained on the data from actual stimulus presentation and then tested on the

recall data. Mean classification accuracies across 14 participants were significant only when

the classifier was trained on a combination of all modalities (67%) and partly when trained

on a natural sounds modality (65%, p = 0.01, but below the p-value threshold for statistical

significance used by the study). In general, studies that examined neural activity during free

recall showed the rise and fall of the category-specific neural activity with different effects in

different neuroimaging modalities [168, 206, 234, 80, 142, 147, 205].

This effect of cue presentation on semantic decoding is also likely to be present in state of

the art results from semantic decoding studies using neuroimaging modalities affected by a slow

hemodynamic delay, such as fMRI and fNIRS. The effect of perceptual processing induced

by the cue presentation on the recorded neural activity might be present for a longer period
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due to the hemodynamic delay. This recorded neural activity is then more easily exploited by a

classifier for differentiating between the semantic concepts.

A possible solution to partly avoid this issue, when the experimental design uses the cue

presentation, is to exclude brain areas that are involved in perceptual processing from the

analysis, for example, visual areas that are used for visual processing. However, while this

approach is applicable to neuroimaging modalities with high degrees of spatial specificity, such

as fMRI or ECoG, it is not very viable in neuroimaging modalities with low spatial resolution,

such as EEG.



Chapter 6

Semantic decoding in fNIRS

This chapter investigates whether or not semantic decoding is possible solely with the fNIRS

data recorded from the experiment presented in Chapter 3.

6.1 Methods

6.1.1 fNIRS data preprocessing

6.1.1.1 Bad channels removal

Bad channels were identified and removed based on the scalp coupling index (SCI) [204]. The

main visible artifact in the fNIRS signal is due to the cardiac cycle, which is approximately

1 Hz. Its presence is related to intracranial physiological parameters and indicates a good

contact between the optical probe and the scalp [251, 250].

To compute an SCI, raw fNIRS data were band-pass filtered between 0.5 and 2.5 Hz

(4th-order Butterworth filter, forward-backward filtering by the sosfiltfilt method from

SciPy [263]) and z-scored. For each channel, the SCI was computed as the Pearson correlation

coefficient between the fNIRS signals of the two wavelengths, 785 and 830 nm, defining the

channel. In-phase and counter-phase identical waveforms have an SCI of 1 and −1, respectively,
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Table 6.1 Number of bad channels in fNIRS recordings for each participant. The frontal
montage contains 14 channels in total, while the temporal montage contains 11 channels in
total.

Participant Montage Bad fNIRS channels

1 frontal 2
2 frontal 2
3 frontal 1
4 frontal 7
5 frontal excluded
6 frontal 5
7 temporal 3
8 temporal 1
9 temporal 6
10 temporal 1
11 temporal 0
12 temporal excluded

whereas uncorrelated signals have an SCI of 0. Channels with a mean SCI across all blocks

below 0.75 were removed (i.e., −1 ≤ SCI < 0.75). This threshold was suggested in [204].

Two participants (participants 5 and 12) were excluded from further fNIRS analysis because

they had all channels removed. Table 6.1 shows the number of excluded channels for each

participant.

6.1.1.2 Motion correction

Motion artifacts caused by relative motion between fNIRS optical fibers and the scalp were cor-

rected with a wavelet transform [165, 53, 37] using the hmrMotionCorrectWavelet method

from the Homer2 software package [105] with an interquartile range of 1.5, as suggested in the

function’s documentation.

6.1.1.3 Changes in oxy/deoxy-genated hemoglobin

Motion-corrected fNIRS signals with a wavelength of 785 and 830 nm were converted to

changes in concentration of oxygenated and deoxygenated hemoglobin (in units M (molar
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concentration)) using the modified Beer-Lambert law [68] (see Section A.2 in Appendix A for

more information) with differential path length factors (unitless), DPF785 = 7.25 and DPF830 =

6.38, and molar absorption coefficients (in M−1 cm−1) α785
HbO2

= 1798.643, α785
Hb = 2295.285,

α830
HbO2

= 2321.424 and α830
Hb = 1791.734.

6.1.1.4 Filtering

The extracted changes in oxygenated and deoxygenated hemoglobin were filtered between 0.01

and 0.7 Hz by two filters. This choice was based on recommendations from the literature [201,

177, 231]. First, an IIR high-pass 9th-order Butterworth filter with 0.01 Hz cutoff reduced

very low-frequency oscillations which are below 0.04 Hz (forward-backward filtering which

creates an effective order of 18, sosfiltfilt method from SciPy [263] using second-order

sections to reduce numerical errors). Then, a FIR low-pass filter with 0.7 Hz cutoff designed

by the firwin method from SciPy [263] reduced the influence from heart rate which is around

1 Hz. The filter length was ⌊42 fs⌋ (374 for the temporal montage, 328 for the frontal montage)

because 21 seconds was the shortest length after the last block before the end of the experiment

from all participants. The usage of an IIR filter followed by a FIR filter was based on practical

experience and suggested in [275].

6.1.2 Single concept trial analysis

Chapter 5 described the influence of image presentation on semantic decoding in EEG. This

issue may be even worse in fNIRS. The effect of the image presentation period is present

in fNIRS signals for a long time due to the hemodynamic delay. We thus started with an

exploration of the whole concept trial period, which starts from the image presentation onset

and includes the sequence of four mental tasks. In effect, this approach disregards different

mental task types.
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We explored a single concept trial analysis of two types of signals. First, the preprocessed

data were used. We will refer to this data as ‘no-GLM’. Second, the preprocessed fNIRS signals

were modeled via a general linear model [77, 47] to remove noise and influences from previous

concept trials. We will refer to this data as ‘GLM’. The GLM approach will be described in

detail in Section 6.1.3. Epochs of concept trials were then extracted and further processed in

the same way for both approaches.

Epochs were extracted from 1 second before the image presentation (i.e., the last 1 second

of the fixation cross) until 20 seconds after the image presentation. The last mental task ends

14.3 seconds after the image onset. So, this 20 seconds period thus contains 8.7 seconds of the

hemodynamic response of the last mental task.

Epochs were further preprocessed before any analysis by using: (1) linear detrending by

subtracting each epoch’s least squares fit and (2) baseline correction by subtracting the mean

of the 1 second period before the image presentation. All the following analyses were tested:

(1) no detrending and no baseline correction, (2) detrending but no baseline correction, (3)

no detrending but baseline correction, and (4) detrending and baseline correction. Although,

there were differences between each setting, the overall message was the same for all of them.

Only one setting is thus reported here to simplify the presentation in which only the detrending

(option (2) above) is used.

Finally, data were downsampled by a factor of 4 that is from 7.81 to 1.9525 Hz for the

frontal montage and from 8.92 to 2.23 Hz for the temporal montage.

6.1.3 GLM approach

Each fNIRS channel (i.e., changes of concentration in oxygenated or deoxygenated hemoglobin)

was modeled by a general linear model (GLM) [77, 47] to reduce noise and influences from

preceding mental tasks. This is important due to the short gap (200 ms) between mental tasks.
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Since fNIRS records brain activity in a similar way to fMRI, the GLM approach adopted for

fMRI [77] can be applied to fNIRS [232, 202, 122, 280].

A single fNIRS channel can be modeled by the GLM as follows:

y = Xβ + ε (6.1)

ε ∼ N (0,σ2IN) (6.2)

where y ∈ RN represents N time samples of the fNIRS signal, X ∈ RN×P is a design matrix, P

is the number of parameters, β ∈ RP are unknown parameters, ε are normally distributed error

terms with zero mean and variance σ2, and IN ∈ RN×N is the identity matrix. The ordinary

least squares estimates of β are given by

β̂ = (XT X)−1XT y (6.3)

6.1.3.1 Design matrix

The design matrix X models the experiment from the beginning of the first block until the

end of the last block. Each row represents a different time step in the experiment. Columns

represent regressors modeling the experiment. The first 90 regressors are the result of the

convolution of 10 conditions modeled in the experiment and a set of 9 temporal basis functions.

We modeled the following 10 conditions: four conditions represent the execution of 4

mental tasks for the animal category, four conditions represent the execution of 4 mental tasks

for the tools category, one condition represents the presentation of an image, and one condition

represents the mask. An element of a particular condition is 1 if the condition was taking place

at the time represented by the element. All other elements are 0. Figure 6.1 illustrates this

process. Conditions are represented as long sequences on the left. One convolved condition is

shown in the middle of the figure. All convolved conditions are placed in the columns of the

design matrix X in the right of the figure.
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Fig. 6.1 Illustration of the process of creating the design matrix X with three conditions.
Condition B (e.g., visual imagery task) is separately convolved by each function from the
temporal basis set. The results are regressors placed in the corresponding columns of X .

We used a temporal basis set based on the B-spline functions (see Figure 6.1). The first

function is non-zero from 0 to 2 seconds with a peak at 1 second. The following function is

shifted by 1 second and so on. This basis set is flexible enough to model different hemodynamic

responses, with different timing between oxygenated and deoxygenated hemoglobin [104].

The set contains 9 functions with the last peak at the 9th second. So, the overall maximum

duration for any function expressible in this basis is 10 seconds. The number of functions was

chosen based on the canonical hemodynamic response function to include its most informative

segment.

All conditions and temporal basis functions were sampled at a higher temporal resolution

(16 fs) and then downsampled (decimated) back to fs after the convolution, similarly to the de-

fault setting in the fMRI SPM toolbox implementation (defaults.stats.fmri.t = 16) [77].

The last 2 regressors are one column representing the respiration signal and one column of ones

representing an offset. The model contains P = 92 parameters to be estimated. The respiration

signal was filtered between 0.01 and 0.7 Hz by the same filters used for the fNIRS signals

during the preprocessing step and resampled to the sample rate of the fNIRS signal, fs.
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6.1.3.2 Correction for temporal correlations

The error term εt at time point t in the fNIRS signal is correlated with its temporal neighbors

due to several slow physiological processes, such as respiration, heartbeat, and blood pressure

changes. This temporal correlation has to be modeled. Most of the fNIRS-GLM analysis

studies have used pre-whitening based on an autoregressive model (AR) of the error terms

[202, 98, 15]. A first-order autoregressive model (AR(1)) of the error terms is

εt = a1εt−1 +υt (6.4)

υt ∼ N (0,σ2
w) (6.5)

where the value of εt at the current time t depends on the value from the previous time t −1 and

the normally distributed error term υt with zero mean and variance σ2
w. First, the ordinary least

squares estimates are calculated, as per Equation 6.3. The parameter a1 is estimated by fitting

AR(1) to the resulting residuals. Then, the Cochrane-Orcutt method [50] is used to reduce

temporal correlation. This is defined as

yt −a1yt−1 = Xtβw −a1Xt−1βw + εt −a1εt−1 (6.6)

which can be rewritten as

yW
t = XW

t βw +υt , (6.7)

where yW
t = yt − a1yt−1 and XW

t = Xt − a1Xt−1 represent the pre-whitened data and design

matrix respectively, and βw ∈ RP are new unknown parameters. We will use the superscript

W to denote the pre-whitened data (yW ) and design matrix (XW ). Then, the transformed GLM

with reduced temporal correlation is given by

yW = XW
βw +υ , (6.8)
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and the ordinary least squares estimates of βw are given by

β̂w = (XW T
XW )−1XW T

yW . (6.9)

6.1.3.3 Cross-validation

The GLM approach for a single fNIRS channel was adapted for the classification of evoked

hemodynamic responses to differentiate between the semantic categories of animals and tools

in a 15-block-wise cross-validation analysis in which one block is used for testing, while other

blocks were used for training.

In one step of the cross-validation, let Xtrain be a modified version of the full design matrix

X where all rows outside the training folds are set to zero. Data blocks were extended 5 seconds

beyond the end of the experimental blocks to compensate for the hemodynamic delay and

before possible artifacts in the fNIRS signal at the beginning of the breaks. Similarly, let ytrain

be the fNIRS signal zeroed outside the training folds. Keeping the original dimensions (but

zeroing rows) makes things easier for overall manipulations, fitting AR(1) and pre-whitening

without any time discontinuities. The terms a1 and β̂w are then estimated from Xtrain and ytrain.

6.1.3.4 Extraction of evoked hemodynamic responses

The next step is to extract evoked hemodynamic responses. All four mental tasks in one concept

trial share the same underlying hidden variable about the semantic category. Thus, it is not

possible to extract the evoked hemodynamic response for an individual mental task. Instead,

the evoked hemodynamic response must be extracted for the sequence of four mental tasks.

Let T be one such sequence of four mental tasks in one concept trial for which we want to

extract the evoked hemodynamic response. The estimated GLM is used to remove influence

from preceding trials and thus to isolate the evoked hemodynamic response for T . Let XT be

another modification of the design matrix X with the difference that, before the convolution,
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the elements of the corresponding conditions for T are set to 0, instead of 1, when T is taking

place. In other words, the design matrix XT is excluding T from the design matrix X as if T did

not take place in the experiment. The evoked hemodynamic response r for T , plus the normally

distributed error, is then computed via

r = yW −XW
T β̂w. (6.10)

In order to use the same analysis pipeline as for the non-GLM approach, the extracted

hemodynamic responses were de-whitened. This approach brings the signal back to the original

fNIRS space. To undo the effect of pre-whitening from Equation 6.7, the de-whitened response

rD is estimated from r, which is in the whitened space, as

rD
t = rt +a1rt−1 +a2

1rD
t−2 (6.11)

with starting conditions rD
0 = 0 and rD

1 = 0.

6.1.4 Univariate classification

In order to investigate the temporal evolution of semantic decoding in a single channel, the

sliding window approach was used. A temporal window was shifted in steps of half the window

size in the concept trials, which start from the image presentation onset until 20 seconds after

the image presentation onset. The window size was 4 samples, which correspond to about

2 seconds (2.04 seconds for the frontal montage and 1.79 seconds for the temporal montage).

The data in each temporal window and each channel were classified separately in 15-block-

wise cross-validation. In each temporal window, the data were normalized (z-scored) and

classified by a SVM (C = 1) with a radial basis function kernel.



118 Semantic decoding in fNIRS

6.1.5 Multivariate classification with PCA features

An approach based on spatial PCA was employed to decrease data dimensionality in the channel

space while allowing the classifier to use information from all channels. The same sliding

temporal window approach presented above was used.

In each temporal window, each channel was normalized (z-scored) separately. Spatial

PCA then projected the data onto a smaller subspace by keeping only the N ∈ {1,2, . . . ,10}

PCA components which explain most of the data variance. The selected components were

normalized (z-scored) separately before being passed as features to the SVM mentioned above.

6.1.5.1 Feature selection

The sliding window approach was adapted for automatic feature selection by nested cross-

validation. In an outer 15-block-wise cross-validation, each channel was normalized (z-scored)

separately, as before, and spatial PCA was used to preserve N components.

The sliding temporal window was then used in the same configuration as before. Classifica-

tion accuracies were computed in an inner stratified 10-fold cross-validation for each temporal

window and each component separately. A maximum number of W temporal windows which

had the highest accuracies were then selected. Only windows achieving significant accuracies

(p < 0.05, more on this below) were considered.

The selected windows were then used for the test fold in the outer cross-validation. Con-

cretely, the data in each window were normalized (z-scored) separately and the concatenation of

all these windows were features for the same SVM mentioned above. We tested W ∈ {1, . . . ,20}

that correspond from 4 to 80 features and N ∈ {1, . . . ,10} PCA components.
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6.2 Results

Given the number of epochs in the experiment and the balance in the two classes, a classifier

can be said to have a classification accuracy that is statistically significantly above chance level

when its accuracy is above 56.11% for a significance level of p < 0.05 (one-sided Binomial test

(n = 180, q = 0.5)), 58.89% for a significance level of p < 0.01, and 61.67% for a significance

level of p < 0.001. This is the same statistical test that was discussed in Section 4.2 for the

EEG analysis. Briefly, the Binomial distribution describes the probability distribution of a

random classifier for two classes and the Binomial test is then used to access the deviation from

this distribution. Significance for a mean classification accuracy across participants was again

calculated using the Binomial test and validated by a bootstrapping simulation (based on 106

simulations using a classifier that randomly choose a class).

6.2.1 Univariate classification

Figure 6.2 shows classification accuracies for the no-GLM and GLM data obtained with

the sliding window approach. Statistically significant accuracies (p < 0.05) are shown for

temporal windows starting from the image onset. Note that differences in temporal locations of

classification accuracies may appear between the no-GLM and GLM approaches due to pre-

and de-whitening in the GLM approach.

Each participant had at least one channel that allowed significant differentiation between the

semantic categories of animals and tools. Even though this analysis disregarded the individual

mental task types, temporal locations where significant accuracies occurred were found across

the whole concept trial presentation period. Note that significant classification accuracies that

occurred before 6–9 seconds may still be partially attributed to the image presentation due to

the effect of the hemodynamic delay.

Figure 6.3 shows hemodynamic responses from participant 1 for the no-GLM approach.

The generality of the temporal basis set adopted allows the timing of the main peak, if present,
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Fig. 6.2 Single channel classification accuracies obtained with the sliding temporal window
starting from the image onset and the SVM (C = 1), see Section 6.1.4. Rows represent different
participants, while columns indicate whether or not the GLM approach was used. The Y axes
are limited to statistically significant classification accuracies from p = 0.05 to p = 0.00001.
Solid lines indicate oxygenated channels, while dashed lines indicate deoxygenated channels.
Vertical dashed lines represent events in concept trials.
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Fig. 6.3 Hemodynamic responses from participant 1 that were extracted using all blocks from
the no-GLM data.
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to vary for each channel type. Hemodynamic responses follow the expected relationship

between changes in oxygenated and deoxygenated hemoglobin.

6.2.2 Multivariate classification with PCA features

Figures 6.4 and 6.5 show classification accuracies for the no-GLM and GLM data, respectively.

Spatial PCA was used on only oxygenated, only deoxygenated, or both channel types together.

This was done to inspect possible different temporal locations where statistically significant

accuracies occur between oxygenated and deoxygenated channels.

The results from no-GLM and GLM data mostly shared similar temporal locations of

significant classification accuracies. However, in participant 3, significant accuracies after 8

seconds in the GLM data were not prominent in the no-GLM data.

Some temporal locations where statistical significant accuracies occurred for either oxy-

genated or deoxygenated channels were not statistically significant when the PCA was used on

both channel types together. For instance, participant 9 had a peak with deoxygenated channels

under 5 seconds when using many different numbers of components. This peak was not present

when spatial PCA was used together with the oxygenated channels.

6.2.2.1 Feature selection

Mean classification accuracies across participants for either frontal or temporal montages were

not statistically significant when using only oxygenated, only deoxygenated, or both channel

types in either the GLM or no-GLM approach.

Figures 6.6 and 6.7 shows how many participants had significant accuracies in the no-GLM

and GLM approaches, respectively. It is difficult to statistically compare the results between

different montages, channel types, or the no-GLM and GLM approaches when there are only

5 participants for the comparison and mean classification accuracies were not statistically

significant in all tested options.
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Fig. 6.4 Classification accuracies for the no-GLM approach obtained with the sliding temporal
window starting from the image onset when the SVM (C = 1) can use information from the
N PCA components, see Section 6.1.5. Rows represent different participants, while columns
indicate channel types used. The Y axes are limited to statistically significant classification
accuracies from p = 0.05 to p = 0.00001. Vertical dashed lines represent events in concept
trials.
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Fig. 6.5 Classification accuracies for the GLM approach obtained with the sliding temporal
window starting from the image onset when the SVM (C = 1) can use information from the
N PCA components, see Section 6.1.5. Rows represent different participants, while columns
indicate channel types used. The Y axes are limited to statistically significant classification
accuracies from p = 0.05 to p = 0.00001. Vertical dashed lines represent events in concept
trials.
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Fig. 6.6 Number of participants with significant classification accuracies for the no-GLM
approach with feature selection achieved via the nested-cross-validation approach, see Sec-
tion 6.1.5.1.

The frontal montage had more participants with significant classification accuracies. This

should not be surprising because participants with the frontal montage had more time windows

with statistically significant classification accuracies in comparison with participants with the

temporal montage in the previous analysis without this time window selection, see Figures 6.4

and 6.5. The nested-cross-validation could then select these significant time windows resulting

in more participants with significant classification accuracies. Similar observations can be made

about differences between different channel types, and the no-GLM and GLM approaches based

again on the analysis without this time window selection. However, it is unknown whether or

not these observations would generalize with more participants because it was not possible to

evaluate these observations with statistical tests.
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Fig. 6.7 Number of participants with significant classification accuracies for the GLM approach
with feature selection achieved via the nested-cross-validation approach, see Section 6.1.5.1.

6.3 Discussion

Our results suggest the possibility of semantic decoding in fNIRS. Nevertheless, more future

research is required to give us a conclusive answer as to whether or not semantic decoding is

possible solely with fNIRS.

We used two analyses with the GLM and no-GLM data and a sliding window approach

to inspect the temporal evolution of semantic decoding in the whole concept trial period.

Univariate classification (see Section 6.2.1) and multivariate classification with PCA features

(see Section 6.2.2) were able to achieve statistically significant classification accuracies for the

majority of participants.
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The temporal locations of semantic information varied between participants. These differ-

ences in temporal locations might be related to the variability in timing of when participants

started performing the mental task between different trials, which was discussed in the chapter

on EEG analysis (see Section 4.3). Due to the sequence of four different mental tasks, partici-

pants were required to quickly change between different mental tasks. With short gaps of only

200 ms between the mental tasks, this may have caused a high degree of variability in when

participants started performing the mental task between different trials. However, this may be

less of an issue for fNIRS signals than for EEG signals due to the hemodynamic delay, which

acts as a low-pass filter. Additionally, the presented analyses disregarded mental task types and

if the neural correlates of semantic decoding are not shared between mental tasks (i.e., do not

generalize between mental tasks), this might have caused an additional difficulty for a classifier.

These results were achieved on the whole concept trial presentation. Significant classifica-

tion accuracies that occurred before 6–9 seconds may still be partially attributed to the image

presentation due to the effect of the hemodynamic delay. Chapter 5 described the influence of

image presentation on semantic decoding in EEG. This issue may be even worse in fNIRS. The

effect of the image presentation period is present in fNIRS signals for a long time due to the

hemodynamic delay. Future research is required to further disentangle the influence of image

presentation and mental task on the evoked hemodynamic response.

While our experimental design of the sequence of four different mental tasks and short

gaps of only 200 ms between mental tasks is sufficient for EEG recordings, it might not have

been the best decision for fNIRS recordings in terms of conclusiveness of the results. Due to

the short gap between mental tasks, a classifier could exploit information from preceding and

following mental task(s). While the GLM approach can model different mental tasks, it is not

possible to remove the influence of preceding mental tasks in the same concept trial because all

mental tasks share the same underlying information about the semantic category. This issue
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should be partly mitigated by the random order in which the mental tasks were presented across

different blocks.

There has been only one other fNIRS-based semantic neural decoding study to date. A study

by Zinszer and colleagues [286] discriminated between semantic categories of animals and

body parts while participants focused on audiovisual stimuli (photographs with a simultaneous

auditory presentation of the object names) and thought about the meaning of that stimulus

or any memory it evoked. Each stimulus was presented for 3 seconds and followed by an

interstimulus interval of 6–9 seconds composed of fireworks and a short musical clip. Mean

accuracies were 66%. Data were epoched from 6.5 to 9.0 seconds after the stimulus onset. I was

not able to achieve similar mean classification accuracies. However, we were able to achieve

significant classification accuracies for several participants in the range 60–65%. Additionally,

the results achieved from ours and their study may still be affected by the cue presentation

period.

In future experiments to further investigate the neural correlates of semantic decoding in

fNIRS, we would modify our experimental design in the following ways. First, we would

use only a single mental task after the image presentation. Second, a longer interstimulus

interval should be employed, such as a canonical 6–9 seconds interval from fMRI research, to

properly identify evoked hemodynamic responses. Lastly, to suppress the influence of image

presentation, a longer interval between the image presentation and the mental task could be

also used.

Additionally, future experiments should use additional short-distance detectors to detect

and directly remove extracerebral signals close to the source [224, 281]. Components of

fNIRS signals that are not driven by neuronal activity (i.e., neurovascular coupling) can act as

possible confounds. These components include extracerebral hemodynamics and intracerebral

hemodynamics caused by mental task-related systemic activity. They act as confounds as

they may mimic the presence of, or attenuate, the neuronally induced hemodynamic response
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[231, 248, 249]. In the GLM approach, the inclusion of the respiration signal as a regressor in

the GLM and autoregressive model reduced the influence of only some of these components.

However, we also tested using two preprocessing methods for fNIRS signals before the model

estimation to further mitigate this issue. The results from both methods had the same message to

the one presented in this chapter so they were not included in this chapter for simplicity. The first

method was based on the PCA to remove global interference by removing an eigenvector with

the highest eigenvalue [282, 76]. The second method was the common average reference [21].

Both methods were applied to the oxygenated and deoxygenated channels separately.

Overall, our results showed the exciting possibility of semantic decoding in fNIRS. However,

we discovered that more research is required to give us a conclusive answer as to whether or

not semantic decoding, without associated perceptual processing, is truly possible with fNIRS.

Decoding of fNIRS signals entail additional challenges due to the slow hemodynamic delay in

comparison with EEG signals. For this reason, future experiments must be designed with a

special care to try to disentangle the effects of cue presentation and mental task on the evoked

hemodynamic responses. This is an especially important prerequisite for semantic BCIs in

which the cue presentation would not be present.





Chapter 7

Discussion

It is still an open question how semantic information, in general, is encoded, retrieved, and

processed in the brain. While many theories have been proposed over the years and some

theories have been rejected by a growing body of evidence, for instance, symbolic representation

[193, 192, 154], there is still much we do not know.

This thesis focused on a decoding approach instead of trying to progress our understanding

of the semantic system. Decoding approaches attempt to identify the current mental state of

an individual from recordings of their neural activity by developing neural decoding models.

These decoding models have been developed to decode a variety of activities, including, but

not limited to, visual information [86, 101], affective states [127], visual imagery during

sleep [100], story meaning [66], and music [62]. This thesis started testing the feasibility of

semantic neural decoding for BCIs for communication.

The current research suggests an exciting possibility of semantic neural decoding, see

Chapter 2. However, this suggestion comes from a variety of different neuroimaging studies,

which differ in their research questions and, thus, mental tasks and experimental designs.

It is unknown whether it is possible to translate these results reported in the literature to

BCI applications. The majority of the studies used fMRI. However, neuroimaging techniques

that provide better ecological validity and allow use outside the lab are particularly interesting
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for BCI applications. For these reasons, this thesis used EEG and fNIRS, two modalities which

can be adapted for use outside the lab with relative ease. It is unclear whether or not the results,

reported in the literature, based on BOLD signals, with a low temporal resolution and affected

by the slow hemodynamic response, would translate to EEG, and other electrophysiological

neuroimaging methods with a faster temporal resolution. On the other hand, EEG and fNIRS

offer a lower spatial resolution in comparison with fMRI, and fNIRS can measure only cortical

areas.

We selected four mental tasks that satisfy the requirements for semantic BCIs. These mental

tasks could be used without any external cue. This property is in contrast with the majority of

mental tasks, reviewed in Chapter 2, which would be difficult or near impossible to use outside

their experimental designs. We designed an experiment to test the feasibility of differentiating

between the semantic categories of animals and tools.

Even though neuroimaging studies suggested the possibility of semantic neural decoding,

our mental tasks and experimental design significantly differed. We thus explored the recorded

data with many different analyses to investigate whether or not the recorded neural activity

contains any discriminative features that can be used for semantic neural decoding. However,

no exploratory research can ever be completely comprehensive and we may have neglected

to include some methods and approaches. This thesis presented exploratory analyses starting

from the most simple features and methods to more complex ones. We explored more methods

than presented in this thesis, but we omitted them if they did not provide any new insights or

have the same message. For example, Behroozi and colleagues [24] discriminated semantic

categories from the phase of the EEG signals. They reported that significant accuracies were

achieved in a low-frequency band (1–4 Hz) using the phase but not the power of the EEG signal.

On the other hand, the signal power provided significant accuracies in a high-frequency band

(20–30 Hz). These accuracies were higher than when the phase was used. We also tested using

the phase information alone and in combination with the signal power (as in Section 4.1.5).
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However, the results were similar to using only the power of the EEG signals and the overall

message was the same. We thus did not report these analyses.

7.1 Mental tasks

ERD/S maps revealed visually similar activities across all four mental tasks in Section 4.2.5

with the strongest ERD/S in parietal and occipital electrodes and partially in central and

temporal electrodes. We believe that it is likely that visual imagery was included in the auditory

and tactile imagery tasks. Thus, it is expected to see a large spatial overlap in those three mental

imagery tasks.

The strongest ERD/S were in the tactile and auditory imagery tasks. However, this behavior

might be related to the random seed error, which will be further discussed in Section 7.4. The

tactile and auditory imagery tasks were most frequently presented as the first tasks during the

sequence of four mental tasks in all but one participant, see Section 3.7. If this is indeed the

case, the first mental task was the most important for semantic neural decoding.

For the silent naming tasks, Murphy and colleagues [173] reported that a wide range

of occipital, parietal and frontal areas played a role in separating the semantic categories

of mammals and tools in EEG. Soto and colleagues [242] reported significant decoding of

semantic categories in fMRI in the middle temporal gyrus, anterior and inferior temporal,

inferior parietal lobe, and prefrontal regions. Though prefrontal regions are typically thought to

be involved in semantic control rather than in representing semantic knowledge [267, 203, 274].

No similar mental tasks to the proposed imagery tasks have been published in semantic

decoding studies using EEG. When other neuroimaging modalities were used, the most similar

mental tasks were task types based on ‘Properties’, such as silent properties generation, or

‘Meaning’, such as thinking freely about the meaning of a stimulus, as shown in Table 2.5.

Nevertheless, our mental tasks should rather be compared with the results of mental imagery

research [192, 152, 125, 123, 176, 135].
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A review by McNorgan [152] found a general imagery network shared between different

modalities. The review surveyed auditory, tactile, motor, gustatory, olfactory, and visual imagery

in fMRI and PET studies. Shared activations between modalities (regardless of task) were found

in bilateral dorsal parietal, left inferior frontal, and anterior insula regions. Modality-specific

imagery for most modalities was also associated with activations in corresponding sensorimotor

regions (but not necessarily in primary sensorimotor areas), primarily left-lateralized.

Specifically, auditory imagery did not activate the primary auditory cortex but it did activate

the bilateral secondary auditory cortex (auditory associative areas) and the bilateral inferior

frontal cortex [152].

Mental imagery research typically separates tactile and motor imagery [152]. However,

there was no direct modality separation in the tactile imagery task employed here. Consider the

examples given to participants: petting an animal or touching different parts of a tool, from

Section 3.2. Both examples contain instructions for both motor and tactile imagery. According

to the review [152], tactile imagery activates the left-lateralized primary sensorimotor cortex

(primary somatosensory cortex) but it does not activate the primary motor cortex. Motor

imagery activates the premotor cortex and primary somatosensory cortex but it does not activate

the primary motor cortex.

The current evidence suggests that the early visual cortex is involved in visual imagery

when the imagery task requires high-fidelity representations [124, 152]. Though visual imagery

may activate the early visual cortex, different aspects of visual input are facilitated by upstream

visual areas specialized, for instance, for color (neurons in area V4), motion (neurons in area

V5/MT), and form perception (the lateral occipital complex) [152].

Whether or not the primary areas are activated during the mental tasks is an important

discriminating factor between weak and strong embodiment theories [154]. However, the

embodiment theory review [154] rejected the validity of strong embodiment outside conscious

imagery.
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A presentation of a stimulus image causes semantic priming. This form of visual priming

could enhance performance of the visual imagery task in comparison with using a non-visual

stimulus [229, 192, 123]. This prior semantic processing can also enhance subsequent picture

naming performance [92]. However, we are not able to validate these potential issues due to

none statistically significant mean classification accuracies.

Only a few semantic decoding studies, reviewed in Chapter 2, attempted semantic decoding

during a free recall paradigm with minimal cue support [239, 168, 206]. During free recall,

participants are often instructed to recall semantically related items consecutively. This is the

most similar paradigm to the experimental design used here. For instance, an fMRI study [239]

presented participants with semantic categories of animals and tools in four modalities: spoken

words, written words, images, and natural sounds. Participants were asked to respond upon

appearance to out-of-category exemplars. Additionally, the experiment ended with two free

recall blocks in which participants were presented with a category name for 2 seconds and

then instructed to recall all the entities from the cued category seen during the experiment in a

40 second period. A classifier was trained on the data from the actual stimulus presentation

and then tested on the recall data. Mean classification accuracies across 14 participants were

significant only when the classifier was trained on a combination of all modalities (67%) and

partly when trained on a natural sounds modality (65%, p = 0.01, but below the p-value

threshold for statistical significance used by the study). In general, studies that examined neural

activity during free recall showed the rise and fall of the category-specific neural activity with

different effects in different neuroimaging modalities [168, 206, 234, 80, 142, 147, 205].

7.2 Cue presentation confound

We showed that it is possible to differentiate between the semantic categories of animals and

tools during the image presentation period from EEG in Chapter 5. We argued that this image

presentation period should not be used in the decoding process to avoid confounds from: (1)
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perceptual processing from the image presentation period and (2) semantic activation caused

by perceiving the image. Semantic BCIs would not use an external cue so we were primarily

interested in semantic activation caused by the concept-related mental tasks.

Although semantic neural decoding was possible during the image presentation, it cannot be

fully contributed to perceptual processing from perceiving the image. The temporal evolution

of single channel classification showed that significant mean classification accuracies moved

from occipital (visual) areas to parietal, central, and frontal areas during the image presentation

period, see Figure 5.1. The highest mean classification accuracies were located in parietal,

central, and frontal areas in a 140.6–234.3 ms temporal window after the image onset. However,

spatial locations of significant classification accuracies in this temporal window varied in

individual participants, including occipital areas, see Figure D.5.

The image presentation informed participants about the concept that will be used in the

following mental tasks. This was our effort to suppress the effect of external cues for semantic

BCIs. However, this implementation does not necessary reflect the same neural activity that

we would expect to be present in semantic BCIs. In semantic BCIs, users could start thinking

about a particular concept of their own choice. On the other hand, participants had information

about the concept in their minds before the onset of mental tasks from the image presentation

period. In other words, our experimental design misses the initial semantic activation in mental

tasks because this is only present during the image presentation.

7.3 Time-variant approaches

Our exploratory analyses showed a considerable variability in temporal and spectral locations of

statistically significant classification accuracies across participants and mental tasks. Based on

these results and due to the contrasting decoding difficulties in comparison with state-of-the-art

research reported in the literature, we think that (non-phase-locked) time-variant approaches
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are required. Examples of these methods are, for instance, recurrent neural networks such as

long short-term memory networks [137, 57].

All presented exploratory analyses were, in effect, time-variant analyses to a certain degree.

In other words, the discriminative features used by the classifier across different trials should

be temporally located close to each another. However, this conclusion could be affected by the

experiment design issues, which will be discussed in Section 7.4. Consequently, the task start

time variance across trials could be responsible for this behavior.

7.4 Experiment shortcomings

The experiment had two shortcomings: the sequence of four mental tasks and the random seed

error. The experimental design introduced the concept presentation followed by the sequence

of four mental tasks. However, this design choice negatively affected the results’ significance

and conclusiveness for several reasons.

First, the sequence of four mental tasks required participants to keep switching between

mental tasks. Each mental task lasted for 3 seconds and they were separated by only 200 ms. As

we already discussed, this quick mental task switching with a short gap of 200 ms might have

caused a high trial variability in mental task start times. In effect, time-invariant analyses would

be inappropriate for this data. This issue could also explain the high variability in temporal

locations of significant classification accuracies in all analyses.

Second, neural activity from the preceding mental task might still be present in the EEG

signals due to the 200 ms gap between mental tasks. This could explain the visually similar

ERD/S maps across all mental tasks.

Third, the mental task position in the sequence might be important for the performance

of semantic neural decoding. For instance, the first mental task may be the easiest to decode.

However, this might be related to the first issue of mental task start time variance. The

first mental task neural activity might be more time-locked in regards to its starting time in
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comparison with other mental tasks. In effect, its features would provide more discriminative

information for semantic neural decoding in comparison with the following mental tasks.

Finally, the sequence was inappropriate for fNIRS analyses. It was not possible to make any

claims regarding any particular mental task for two reasons. The 200 ms between mental tasks

was too short, considering the slow hemodynamic responses and mental tasks in one sequence

shared a variable about the category information. This proved to be ineffective for the GLM

analysis.

The second shortcoming was the random seed error. The experiment had a fixed random

seed for all but one participant, as discussed in Section 3.7. The effected participants shared

the same order of mental tasks and concepts. However, the main issue was the shared order

of mental tasks. Due to this issue, the mental task presentation at each position was not

uniformly distributed across participants. For instance, the auditory and tactile imagery tasks

were presented more frequently as the first mental task in comparison with the silent naming and

visual imagery tasks. The strongest ERD/S were also in the tactile and auditory imagery tasks.

The first mental task could have been the most important for semantic neural decoding. This

might be for several reasons. As the first mental task, the neural activity was more “time-locked”

to the mental task onset, while the temporal variability across trials could be higher for the

following tasks because of the switching between mental tasks. The first mental task might have

also produced neural activity with the most discriminative features for the decoding process.

The degree of semantic neural activity might be lower in the following tasks in comparison with

the first task. This lower degree of neural correlates might make the extraction of discriminate

features more difficult.

If the ease of semantic decoding depends on the mental task position, this random seed

error might have negatively affected the results. Then, we would expect to see that some mental

tasks achieve higher classification accuracies than other mental tasks. However, this was not

the case because mean classification accuracies were not statistically significant in any analyses.
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We believe these results cannot be fully attributed to the mental task order. Thus, this random

seed error did not adversely affect the results. Nevertheless, it is still possible that it affected

the results but its influence was hidden by the previously mentioned experimental design issues

resulting in insignificant classification accuracies.

7.5 Future research

The results from our exploratory analyses suggested the feasibility of semantic neural decoding

for all four mental tasks. However, an additional experiment is required to conclusively confirm

the results due to the discussed experimental design issues. Unfortunately, it was not possible to

do another experiment with an improved experimental design due to the COVID-19 pandemic.

Thus, this thesis could not compare mental tasks and make conclusive suggestions about their

future potential for semantic BCIs.

A new experiment should fix the following issues in our experimental design. First, the

sequence of four mental tasks should not be used. Instead, only a single mental task should

be present after the concept presentation. This mental task would then be used in all trials

in a single block (to avoid switching between different mental tasks). This change would

test whether or not the time-variant analysis is indeed needed to get rid of the task order

position confound and to remove the shared category variable for the fNIRS-GLM analysis.

Second, testing the feasibility of four mental tasks was too much for a single experiment. A

subset of mental tasks should be used instead. Based on the thesis results, the most promising

mental tasks seem to be the auditory and tactile imagery tasks. The auditory imagery tasks

had statistically significant mean classification accuracies in grid search for CSP analysis in

Section 4.2.3.3. Both of these mental imagery tasks are also likely to contain visual imagery,

which can help with semantic neural decoding. Third, gaps between trials should be longer

for the fNIRS analysis to compensate for the hemodynamic delay. Fourth, electrooculography

(EOG) recordings should be employed to suppress eye blinks and movements. This would
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remove the need for eye blink suppression by ICA employed in this thesis for EEG. Fifth, an

explicit baseline period should be introduced for fNIRS analysis. Finally, whole-brain fNIRS

recordings would remove the need to use two different montages. Semantic neural decoding

utilizes many different brain areas. However, the use of two separate montages limited our

view only to a few brain areas. The whole-brain fNIRS activity would allow the inspection of

the temporal evolution of semantic neural decoding across multiple bilateral brain regions.

Additional considerations for any BCI systems are user psycho-physiological states. The

BCI system performance is impacted, for instance, by user’s engagement, motivation, attention,

cognitive load, or fatigue [163, 109, 266, 118, 146]. While “true” users of semantic BCIs

for communication are likely to have a strong internal motivation during the mental tasks to

communicate their desires to the outside world, we do not know the levels of engagement and

motivation of participants in our experiment. Future research should consider increasing the

participants’ engagement, for instance, by providing feedback, gamification, or adapting to

their psycho-physiological states to keep them in flow [143, 60, 59, 215, 163].
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Conclusions and future research

This chapter summarizes the main contributions of this thesis, discusses the limitations of this

work, and suggests possible future research towards semantic BCIs.

8.1 Contributions

The current research suggests an exciting possibility of semantic neural decoding on which se-

mantic BCIs could be built. Our systematic literature review in Chapter 2 showed a large variety

of semantic concepts, mental tasks, experimental designs, and machine learning pipelines that

have been employed to achieve semantic neural decoding. However, not all these mental tasks,

experimental designs, and machine learning pipelines would be suitable for BCI scenarios. I

needed to step back and first identify and test appropriate mental tasks for semantic BCIs.

In our experiment, presented in Chapter 3, we used one previously used mental task (a

silent naming task) and proposed three novel and intuitive sensory-based imagery tasks using

visual, auditory, and tactile perception. These mental tasks were then tested to differentiate

between the semantic categories of animals and tools.

Our results suggested, and thus confirmed, the possibility of semantic decoding in EEG in

Chapter 4 and in fNIRS in Chapter 6. However, we found contrasting differences in comparison
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with other state-of-the-art research from the literature that suggested this possibility of semantic

neural decoding. We discussed several interconnected reasons for this difference: the effect

of cue presentation period on semantic decoding, the need of time-variant analysis, and our

experimental design.

In contrast with most semantic decoding studies, we attempted to ensure the separation of

the cue presentation period and the mental task period. We investigated this potential issue for

EEG-based semantic decoding in Chapter 5. We found that all EEG-based semantic decoding

studies published to date could exploit neural activity recorded during the cue presentation

period in their analyses. When excluding the image presentation period, it was not possible to

achieve similar levels of classification accuracies in comparison with these studies. However,

this changed by including the image presentation period into the classification pipeline.

To summarize, for the main research objective, four mental tasks were identified that would

be suitable for semantic BCI paradigms: the silent naming task and three novel imagery tasks

using visual, auditory, and tactile perception. All these mental tasks would not require external

cues in semantic BCI paradigms. The main contributions of this thesis, in regards to the

research questions from Section 1.2, are the following:

1. This thesis identified an issue that affects many state-of-the-art semantic decoding studies.

It is possible to differentiate between the semantic categories of animals and tools during

the image presentation period in EEG. Including neural activity recorded during the

cue presentation period into decoding pipelines negatively affects the conclusiveness of

EEG-based semantic neural decoding.

2. It is possible to differentiate between the semantic categories of animals and tools

during the four mental tasks from the EEG data. This thesis identified the need for a

non-phase-locked and time-variant decoding analysis.

3. It is possible to differentiate between the semantic categories of animals and tools during

the sequence of four mental tasks from the fNIRS data.
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8.2 Limitations and future work

More research is required to investigate the effect of cue presentation period on semantic neural

decoding. This is an especially important prerequisite for semantic BCIs in which the cue

presentation would not be present. In addition to EEG, this effect of the cue presentation period

might also influence state-of-the-art results from semantic decoding studies using neuroimaging

modalities affected by the slow hemodynamic delay, such as fMRI and fNIRS.

Our EEG results in Chapter 4 revealed considerable variability in the time and frequency

locations of semantic information between different participants and mental tasks. This suggests

that time-variant analyses might be required. Alternatively, these differences in temporal

locations could be caused by our experimental design. Due to the sequence of four mental

tasks and short gaps of 200 ms between the mental tasks, participants were required to quickly

switch between different mental tasks. This may have caused a high degree of variability when

participants started performing the mental task between different trials. Future research is

necessary to disentangle this issue.

Our fNIRS results in Chapter 6 were unfortunately influenced by not the most appropriate

experimental design for fNIRS. Due to the slow hemodynamic response, fNIRS signals were

affected by the above mentioned image presentation period and the sequence of four mental

tasks with 200 ms gaps between them. While our results suggest the possibility of semantic

neural decoding, future research with different experimental designs is needed to gain a better

understanding of the evoked hemodynamic responses and to give us a conclusive answer as to

whether or not fNIRS-based semantic decoding is truly achievable.

In this thesis, EEG and fNIRS signals were analyzed separately. However, a combined

analysis of EEG and fNIRS could further improve decoding accuracy as these two techniques

have complementary strengths.
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It is important to note that this study and the majority of semantic decoding studies have

been conducted offline. It is currently unknown whether similar results could be achieved in an

online experimental paradigm for BCI applications.

Further research is needed to investigate which modality of mental imagery is the most

suitable for semantic neural decoding and whether a single modality or a sequence of modalities

performs better. Multimodal (multisensory) mental imagery could be especially promising [176,

152, 135]. In informal talks with participants during and after the experiment, some participants

mentioned that they were unable to distinguish between different mental tasks. For instance,

imagining touching an object included visualizing the object itself. This was not a problem

here because the goal was to choose the mental tasks that elicit clear neural correlates for

differentiation between the semantic categories of animals and tools. These questions are

ultimately interconnected with imagery mental strategies and mental task instructions given to

participants. Nevertheless, imagery vividness and strength vary between individuals [194, 61].

In potential BCI applications, the mental imagery strategy should be specifically selected for

each individual according to their abilities and needs. Additionally, future research should

investigate to what extent semantic decoding performance generalizes across different mental

tasks.

This thesis was based on an exciting line of research that suggests the possibility of semantic

neural decoding. In addition to semantic BCIs used for communication, this research has the

potential to allow for universal communication based on cross-language neural decoding.

While this research area involves considerable challenges (such as one-to-one mappings of

neural encoding patterns for a given semantic concepts, neuroanatomical differences between

participants, changes in concept meaning over the life span, and societal and cultural views of

the concept), this thesis made a step towards EEG/fNIRS-based semantic BCIs.
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Appendix A

Functional near-infrared spectroscopy

This appendix briefly overviews principles behind near-infrared spectroscopy and describes

the Modified Beer-Lambert law (MBLL). The MBLL converts measured light intensities into

changes in oxygenated and deoxygenated hemoglobin. These changes are then used as indirect

measurements of underlying cortical neural activity.

A.1 Overview

Near-infrared spectroscopy (NIRS) is a non-invasive neuroimaging method that takes advantage

of an optical window in the near-infrared (NIR) spectrum between 650–950 nm [231]. The

NIR light can penetrate up to several centimeters of tissue of the head through skin and skull

where it may interact with tissue chromophores (absorbing compound), such as hemoglobin.

The dominant chromophores in human tissue in the visible and near-infrared light are

oxygenated and deoxygenated hemoglobin and water. Light below 650 nm is strongly absorbed

by hemoglobin and above 950 nm too strongly by water. In this optical window, oxygenated

and deoxygenated hemoglobin have different minima and maxima in their absorption spectra.

Other substances have higher absorption coefficients but they are present only at relatively

low concentrations. Oxygenated and deoxygenated hemoglobin can thus be considered as the
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main chromophores. We denote oxygenated hemoglobin as HbO2 despite different notations in

literature (HbO2, O2Hb, HbO) and deoxygenated hemoglobin as Hb despite different notations

in literature (Hb, HHb, HbR).

NIR measurements of the brain are done by placing optodes (optical sensor devices) on the

scalp. A measurement channel is formed by an optical emitter (source) and receiver (detector).

The emitter sends the NIR light to the head. The tissue of the human head is highly scattering.

Only a small fraction of the emitted light reached the surface of the head at a specific detector

position. The light entering at a source location and exiting the head at a detector position

samples a diffuse volume between these positions. The depth and shape of the probing volume

is a complex function of the source-detector distance, local tissue optical properties, and other

aspects of measurement geometry. Over time, changes in the detected light occur due to

changes in optical absorption by the underlying tissue (i.e., changes in tissue chromophore

concentrations).

Continuous wave NIRS (cwNIRS) is solely based on a light intensity measurement. It uses

a stable light source to send a continuous NIR light into the tissue. The intensity of detected

light is used to determine the amount of optical absorption. Other forms of NIRS techniques,

such as frequency domain or time domain methods, additionally measure the time that light

needs to travel though the tissue, for more information see a recent review [231]. They can be

used for absolute measurement of chromophore concentration. The disadvantage of cwNIRS

systems are that they cannot fully determine the optical properties of the tissue. Therefore,

concentrations of tissue chromophore cannot be determined absolutely. However, with a few

reasonable assumptions it is possible to quantify changes in their concentration. On the other

hand, cwNIRS systems have a higher temporal resolution, lower cost, can be miniaturized and

be wireless. We will focus on cwNIRS from now on because our lab have equipment of this

type.
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A.2 Modified Beer-Lambert law

The Beer-Lambert law states that attenuation in the light intensity is proportional to the

concentration of chromophores in a non-absorbing medium and the path length of the photons.

However, biological tissue is highly scattering medium. The MBLL [68] extends the Beer-

Lambert law by introducing an additive term to account for scattering loss and a term for

the change in the optical path length. Let I be the detected light intensity (in units V) and I0

the incident light intensity (i.e., intensity of emitted light) of the wavelength λ . The MBLL

describes the optical density ODλ (sometimes called attenuation A, unitless) as

ODλ (t) =− log10

(
Iλ (t)
Iλ
0 (t)

)
= ∑

i
ε

λ
i ci(t)DPFλ d +Gλ . (A.1)

The index i denotes all investigated chromophores. ci are chromophore concentrations (in

units M (molar concentration), or as mol ·L−1). ελ
i are (molar) extinction coefficients (in

units M−1 cm−1; not to be mistaken with the molar absorption coefficient α = ln(10)ε or the

absorption coefficient µa = αc in cm−1 when using the natural logarithm instead of base 10

logarithm in Equation A.1). DPFλ is the differential path length factor (unitless) to account

for the increased path length due to the scattering. d is the source-detector separation (in cm).

Gλ is a geometric factor incorporating the scattering loss (unitless). Assuming that Gλ is

time-invariant, it can be neglected when determining the change in optical density

∆ODλ (∆t) = ODλ (t1)−ODλ (t0) (A.2)

for a time point t1 against an initial time point t0. Additionally, we assume that the emitter

intensity I0 is constant and therefore this term cancels out. The differential form of the MBLL

(dMBLL) is

∆ODλ (∆t) =− log10

(
Iλ (t1)
Iλ (t0)

)
= ∑

i
ε

λ
i ∆ciDPFλ d, (A.3)
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where

∆ci = ci(t1)− ci(t0) (A.4)

is the temporal change in chromophore concentration. Given that oxygenated and deoxygenated

hemoglobin are dominant chromophores, we get from Equation A.3

∆ODλ (∆t) = DPFλ d
(

ε
λ
Hb∆[Hb]+ ε

λ
HbO2

∆[HbO2]
)
. (A.5)

To obtain ∆[Hb] and ∆[HbO2], Equation A.5 is evaluated at two or more wavelengths. The

resulting matrix formula for two wavelengths λ1 and λ2 is

 ∆[Hb]

∆[HbO2]

=

ε
λ1
Hb ε

λ1
HbO2

ε
λ2
Hb ε

λ2
HbO2


−1 ∆ODλ1

DPFλ1 d
∆ODλ2

DPFλ2 d

 (A.6)

with the exact solution:

∆[Hb] =
ε

λ1
HbO2

∆ODλ2

DPFλ2d
− ε

λ2
HbO2

∆ODλ1

DPFλ1d
ε

λ1
HbO2

ε
λ2
Hb − ε

λ2
HbO2

ε
λ1
Hb

,

∆[HbO2] =
ε

λ1
Hb

∆ODλ2

DPFλ2d
− ε

λ2
Hb

∆ODλ1

DPFλ1d
ε

λ1
Hbε

λ2
HbO2

− ε
λ2
Hbε

λ1
HbO2

.

(A.7)

The dMBLL is based on two assumptions: a homogeneous change in chromophore concen-

trations in homogeneous medium and constant scattering loss. The first assumption does not

hold true for measurements of the head. The head is not a homogeneous medium. However,

this it not a problem because the inhomogeneity remains constant and is mostly covered by

the constant G, which cancels out. On the other hand, the concentration change in oxygenated

and deoxygenated hemoglobin is not homogeneous, that is it occurs only in the brain and not

in other tissues such as skin and skull. This leads to an error in quantification. The MBLL
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strongly underestimates the size of changes in oxygenated and deoxygenated hemoglobin. In

principle, this error can be corrected by taking partial differential path lengths into account.

This can be achieved by incorporating anatomical volumetric data from fMRI or computerized

tomography to define the spatial boundaries of the skull and scalp. Additionally, DPF was

found to be age, gender, and wavelength dependent and varies between participants.





Appendix B

Potential pitfalls of widely used

implementations of common spatial

patterns

During the course of my PhD research, we have uncovered serious flaws in handling EEG

signals with a decreased rank in implementations of the CSP algorithm. The CSP algorithm

assumes covariance matrices of the signal to have full rank. However, preprocessing techniques,

such as artifact removal using independent component analysis, may decrease the rank of the

signal, leading to potential errors in the CSP decomposition. We inspect what could go wrong

when CSP implementations do not take this into consideration on a binary motor imagery

classification task. We review CSP implementations in open-source toolboxes for EEG signal

analysis (FieldTrip, BBCI Toolbox, BioSig, EEGLAB, BCILAB, and MNE). We show that the

unprotected implementations decreased mean classification accuracy by up to 32%, with spatial

filters resulting in complex numbers, for which corresponding spatial patterns do not have a

clear interpretation. We encourage researchers to check their implementations and analysis

pipelines.

This appendix has been published in [222].
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B.1 Introduction

The CSP algorithm [169, 32, 211] is a popular supervised decomposition method for EEG

signal analysis, which is used to distinguish between two classes (conditions). It finds spatial

filters that maximize the signal variance for one class, while simultaneously minimizing the

signal variance for the opposite class. Derivations of CSP assume that two covariance matrices

of two classes have full rank. However, preprocessing techniques may decrease the rank of

the signal. This issue is highlighted using independent component analysis (ICA) for artifact

removal [112, 106]. This appendix focuses on ICA but this message applies for any technique

with this feature.

A general solution has been shown in the literature [188]. Nevertheless, several studies

using ICA for artifact removal followed by CSP in the original channel space struggle with this

issue and often walk around the problem. For instance, work reported in [276] computed CSP

on independent components (ICs) to avoid the issue, while work in [74] used a preprocessing

transformation to obtain a full rank matrix. On the other hand, many studies use the same

pipeline without mentioning the issue. This issue is highlighted here because in many cases it

is unclear how other authors have solved this issue.

This appendix shows what could happen when CSP implementations do not take this issue

into consideration on a binary motor imagery classification task of EEG trials from the BCI

competition III dataset IVa [31]. Additionally, we review implementations in open-source

toolboxes for EEG signal analysis.

B.2 Common spatial patterns

Here, we review the CSP algorithm and its two main implementation approaches. We assume

that the EEG is already band-pass filtered and centered. Let Xi ∈ RC×T be the EEG signal of

trial i where C is the number of channels and T is the number of samples per trial. We compute
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the spatial covariance R1 ∈ RC×C by averaging over trials of class 1:

R1 =
1

|I1| ∑
i∈I1

XiXT
i

trace(XiXT
i )

(B.1)

where I1 is the set of indices corresponding to trials belonging to class 1, |I1| denotes the size

of the set I1, and trace is the trace of a matrix. The spatial covariance R2 matrix is calculated

equivalently for class 2. In the following derivations of CSP, we assume that R1 and R2 have

full rank (i.e, rank(R1) = rank(R2) =C).

The goal of CSP is to find a decomposition matrix W ∈ RC×C that projects the signal

x(t) ∈ RC in the original channel space to xCSP(t) ∈ RC as follows:

xCSP(t) =W T x(t) (B.2)

with the following properties:

W T R1W = D1 (B.3)

W T R2W = D2 (B.4)

and scaling such that

D1 +D2 = IC (B.5)

where IC ∈ RC×C is the identity matrix. In other words, R1 and R2 share the same eigenvectors

and the sum of the corresponding eigenvalues is always 1. The eigenvector with the largest

eigenvalue for class 1 has the smallest eigenvalue for class 2 and vice-versa. Columns of W are

spatial filters while columns of a matrix A = (W T )−1 represent spatial patterns.
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B.2.1 Geometric approach

We factorize the composite spatial covariance R1 +R2 as

R1 +R2 = EFET (B.6)

where E is the orthogonal matrix of eigenvectors (in columns) and F is the diagonal matrix of

their corresponding eigenvalues. We define the whitening transformation matrix U as

U = F−1/2ET (B.7)

and whiten matrix R1

S1 =UR1UT . (B.8)

We factorize matrix S1 as

S1 = PD1PT (B.9)

where P is the orthogonal matrix of eigenvectors and D1 is the diagonal matrix of their

corresponding eigenvalues. We define the decomposition matrix W T as

W T = PTU. (B.10)

Then this W satisfies (B.3) and also (B.4) using (B.5).

B.2.2 Generalized eigenvalue problem

We can directly solve W by getting W T from (B.5) [188] and by inserting this into (B.3) we get

R1W = D1(R1 +R2)W, (B.11)
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which is an equation of the generalized eigenvalue problem.

B.2.3 Covariance matrices without full rank

If the covariance matrices R1 and R2 do not have full rank, the above CSP derivations do

not hold. Putting aside mathematical incorrectness, what could go wrong in their direct

implementations?

In the geometric approach, the first eigendecomposition in (B.6) may have some zero

eigenvalues. In the case of using ICA for artifact removal, the number of zero eigenvalues

equals the number of removed ICs. The whitening transformation U in (B.7) is undefined due

to division by zero. We can remove dimensions with zero eigenvalues at this point and the

rest would work. This is similar to dimensionality reduction by principal component analysis

(PCA) before CSP.

In the generalized eigenvalue problem approach, the generalized eigendecomposition

in (B.11) may have a complex solution. The complex spatial filters and their corresponding

complex spatial patterns do not have a clear interpretation.

In both cases, the EEG should be first projected into a space with the number of dimensions

equal to the rank of the EEG before CSP decomposition. We use PCA here, see [188] for a

general solution and [32] for the difference of the CSP solution on spatially filtered data. The

covariance matrices will have full rank in this space. Note that, to compute spatial patterns

on the original EEG channels, we must first multiply W T with the PCA transformation matrix

before the inversion.
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B.3 Methods

B.3.1 Evaluation

We evaluated CSP implementations on a binary motor imagery classification task using ICA for

artifact removal in a preprocessing step. We chose this pipeline because it is commonly used

and the complex number problem is hidden by the classifier. We used public dataset IVa from

the BCI competition III [31]. The single-trial EEG signals were recorded from five healthy

participants during imagination of right hand and right foot movement without feedback (140

trials per class), see [31] for more details.

First, EEG signals were preprocessed by removing artifacts. EEG signals were FIR band-

pass filtered between 1–40 Hz to remove slow drifts in the signal and high-frequency noise.

For each participant, ICA (FastICA) was trained on all windows 0–4.5 s after the task onset.

Artifactual components were identified by thresholding peak amplitudes of the EEG time

series [183, 75]. A scalp projection of each IC was thresholded to ±100 µV and peak-to-peak

differences between maximum and minimum amplitudes in each window and channel were

thresholded to 60 µV, with ICs exceeding any criterion marked for removal (35, 32, 37, 63, and

23 ICs were removed from a total of 118 for the 5 participants).

We adopted the winning solution from the BCI competition using CSP [270]. EEG signals

were FIR band-pass filtered between 12–14 Hz and trials were extracted from 0.5–4.5 s after

the task onset. Additionally, dimensionality reduction by PCA on all trials was used if it was

required by a particular CSP implementation.

For each CSP implementation, We trained a classifier using stratified 10-fold cross-

validation and measured classification accuracy from all test folds. CSP was trained and

even numbers of CSP components, columns of W , from 2 to 20 were selected. Components

were ordered by sorting their corresponding eigenvalues in ascending order and the first k/2 and

last k/2 components were selected for a desired k components. We choose 20 as a maximum
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because we have not seen any usage of more CSP components reported. The winning solution

from the BCI competition, which was adopted here, used 2 CSP components. The classifier

features were the log-variance of the selected components [169, 32, 211]. The LDA and SVM

(with the radial basis function kernel and the regularization parameter C = 1) were used as

classifiers.

B.3.2 Implementations

In Python, there are two eigendecomposition methods, for the geometric approach, eig and eigh

in the numpy and scipy packages. Implementations in both packages have the same behavior.

The eigh is a specialized method for a real symmetric matrix, which always produces a real

solution, while eig is for a general matrix. Nevertheless, eigh does not check this assumption

and only uses the upper or lower triangular part. Similarly, two generalized eigendecomposition

methods eig and eigh are implemented in the scipy package with the same logic as above. The

eigh method raises an exception when the second matrix, R1 +R2 in (B.11) here, is not definite

positive. We will refer to the used method in parentheses. In Matlab, there is only one method

eig for everything.

We tested CSP implementations in Python 3.6 and Matlab R2018b Update 4, both 64-bit,

with all the above permutations. The classification pipeline was implemented in Python and

the only difference was a particular CSP implementation that ran in its required environment,

directly Python or Matlab in a subprocess. 1 In the geometric approach, the same eigende-

composition method is used for both eigendecompositions in (B.6) and (B.9), and with and

without removing dimensions during the whitening step with eigenvalues smaller than 10−14

after (B.6). All these possibilities are used with and without dimensionality reduction by PCA

before CSP. We refer to the CSP implementation with the correct mathematical background

‘protected’ CSP and otherwise refer to CSP as ‘unprotected’.

1Source code for the classification pipeline with all CSP implementations is available at https://github.com/
milan-rybar/csp_evaluation.

https://github.com/milan-rybar/csp_evaluation
https://github.com/milan-rybar/csp_evaluation
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B.3.3 EEG Toolboxes

We review CSP implementations in popular open-source toolboxes for the EEG analysis in

Matlab and Python.

FieldTrip

FieldTrip (v. 20191025, October 2019) [185] for Matlab implements a geometric approach but

uses singular value decomposition instead of eigenvalue decomposition. During the whitening

step, it removes dimensions with eigenvalues of absolute value smaller than 10−14.

BBCI Toolbox

BBCI Toolbox (commit a30ce0bc8d, March 2019) [30] for Matlab implements a geometric

approach. During the whitening step, it keeps dimensions with eigenvalues larger than the

fraction 10−10 of the largest eigenvalue. It shows a warning of this dimensionality reduction

when it is applied.

BioSig

BioSig (v. 3.6.0, April 2019) [261] for Matlab implements both approaches. Both of them are

unprotected. The implementation always returns only four spatial filters, two per class, thus we

excluded it from the evaluation.

EEGLAB, BCILAB

EEGlab [67] for Matlab has 2 plugins with CSP implementations. CSP plugin (v. 1.1)

implements a geometric approach and BCILAB (v. 1.1) [126] solves a generalized eigenvalue

problem. Both of them are unprotected. Both implementations are difficult to adapt for a

programmatic evaluation on given trials outside their desired processing pipelines without

taking the code outside, thus we excluded them from the evaluation.
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MNE

MNE (v. 0.17.2, April 2019) [85] for Python solves a generalized eigenvalue problem. It uses

the eigh method for real symmetric matrices, which raises an exception when the covariance

matrix R1 +R2 in (B.11) is not definite positive.

B.4 Results

We mainly compare our CSP implementations in Python and Matlab because we can guarantee

that they differ only in the inspected part. Other implementations may differ in their definition

of the covariance matrix in (B.1) and selection of CSP components. For instance, MNE

implements different selection criterion based on [32]. Their results are provided mainly as

a reference. Two methods are compared by their differences in classification accuracies on

each test fold from cross-validation (10) and each participant (5). Both the LDA and SVM

classifiers gave similar results, thus only results for LDA are reported here as a simpler classifier.

Figure B.1 shows mean classification accuracies for all tested CSP implementations.

B.4.1 Geometric approach

Unprotected Python (eigh) encountered division by zero in (B.7) due to zero eigenvalues. On

the other hand, unprotected Python (eig) is a little bit tricky. The eig function has a complex

solution in (B.6) and it depends on the particular data how “close” the complex eigenvalues are

to zero, as to whether it raises division by zero or not in (B.7).

Reducing dimensionality during the whitening step (i.e, removing eigenvectors with zero

eigenvalues after (B.6)) or dimensionality reduction by PCA before the CSP (or both together)

had equivalent results on the classification pipeline for any classifier, Python (eig, eigh) and

Matlab implementation. We will group their results together and call them protected regardless

what dimensionality reduction is used. However, Python (eig) with dimensionality reduction



182 Potential pitfalls of widely used implementations of common spatial patterns

2 4 6 8 10 12 14 16 18 20
Number of CSP components

50

60

70

80

90

A
cc

ur
ac

y

****

Geometric approach

Python (eig)
Matlab
PCA→(Python, Matlab)
Fieldtrip, BBCI

2 4 6 8 10 12 14 16 18 20
Number of CSP components

50

60

70

80

90

A
cc

ur
ac

y

**** *** **

Generalized eigenvalue problem

Python (eig)
Matlab
PCA→(Python (eigh), Matlab)
PCA→ Python (eig)
PCA→MNE

Fig. B.1 Mean classification accuracy over all test folds from cross-validation (10) and all
participants (5) for different CSP implementations. Unprotected CSP implementations are
shown with dashed lines, protected with solid lines, and external implementations with dotted
lines. Error bars are 95% confidence intervals. Points for a particular number of CSP compo-
nents are offset on the X axis for better visibility. Intervals of numbers of CSP components
with asterisks represent statistically significant differences between the CSP implementations
for the particular number of CSP components, as assessed by Friedman test, where **** is
p < 0.0001, *** is p < 0.001, and ** is p < 0.01. ‘PCA→’ denotes dimensionality reduction
by PCA before the CSP algorithm.

during the whitening step (without PCA) returned W and eigenvalues expressed in complex

numbers but with zero imaginary parts. Matlab did not have this issue. Additionally, these

methods also gave equivalent results to protected Python (eigh) and protected Matlab in the

generalized eigenvalue problem approach.

The difference in classification accuracy between unprotected Python (eig) and protected

Python (eig, eigh) or Matlab, which were equal as described above, was statistically significant

when using any number of CSP components (p < 0.0001, one-sided Wilcoxon signed-rank test

with Pratt modification for zero-differences). The difference decreased from 32±2.1 (mean

± standard error) for 2 components to 11.7±1.3 for 20 components. The difference between

unprotected Matlab and protected Matlab was statistically significant for 2 to 16 components

(p < 0.0001), and 18 components (p < 0.01). The difference decreased from 29.5±2.2 for 2
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components to 9.5±2.7 for 18 components. Both unprotected Python (eig) and Matlab had

complex solutions, thus the resulting W and eigenvectors were complex.

B.4.2 Generalized eigenvalue problem

Unprotected Python (eigh) raised an exception because the covariance matrix R1 +R2 is not

definite positive.

The difference in classification accuracy between unprotected Python (eig), protected

Python (eig), and protected Python (eigh) was statistically significant for 2 to 12 components

(p < 0.0001, Friedman test), and for 14 components (p < 0.01). The difference in classification

accuracy between unprotected Python (eig) and protected Python (eigh) or Matlab, which were

equal to protected CSP in geometric approach as described above, was statistically significant

for 2 to 10 components (p < 0.0001, one-sided Wilcoxon test) and for 12 to 14 components

(p < 0.01). The difference decreased from 22.4± 2.2 for 2 components to 3.6± 1.4 for 14

components. Similarly, the difference between unprotected Python (eig) and protected Python

(eig) was statistically significant for 2 to 10 components (p < 0.0001), for 12 components

(p < 0.001), and for 14 components (p < 0.01). The difference decreased from 22.2±2.2 for

2 components to 4.2±1.3 for 14 components. The difference between unprotected Matlab and

protected Matlab was statistically significant for 2 to 6 components (p < 0.0001), 8 components

(p < 0.01), and less for 10 components (p < 0.05). The difference decreased from 20.6±2.4

for 2 components to 6.7±2.1 for 8 components.

Unprotected Python (eig) and unprotected Matlab had a complex solution, thus the resulting

W and eigenvectors were complex. Protected Python with eig and eigh did not have equivalent

results, but they were not statistically different for any number of CSP components (two-

sided Wilcoxon test). Surprisingly, protected Python (eig) had complex eigenvalues with zero

imaginary parts but a W with real numbers (before components selection). Further inspection
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showed that the difference in their eigenvalues D1 was always less than 10−12 but their W were

different, not just with flipped signs or reverse ordering.

B.5 Conclusion

We showed that unprotected CSP implementations in Python and Matlab can significantly

decrease accuracy on a binary motor imagery classification task. Our results suggest that the

less CSP components that are used the higher the decrease in classification accuracy between

protected and unprotected CSP implementations. In Python, we strongly recommend using the

eigh method in both CSP implementation approaches. We encourage researchers to check their

implementations.



Appendix C

Additional figures for Chapter 4

This appendix complements the results from Chapter 4.
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Fig. C.1 Classification accuracies obtained with the sliding temporal window of 0.5 second
when the SVM (C = 1) can use information from all channels, see Section 4.1.2. Rows represent
different participants, while columns indicate different frequency bands. The Y axes are limited
to statistically significant classification accuracies from p = 0.05 to p = 10−5.
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Fig. C.2 Classification accuracies for the silent naming task obtained with the sliding temporal
window of 0.5 second when the SVM (C = 1) can use information from the first N PCA
components, see Section 4.1.3. Rows represent different participants, while columns indicate
different frequency bands. The Y axes are limited to statistically significant classification
accuracies from p = 0.05 to p = 10−5.
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Fig. C.3 Classification accuracies for the visual imagery task obtained with the sliding temporal
window of 0.5 second when the SVM (C = 1) can use information from the first N PCA
components, see Section 4.1.3. Rows represent different participants, while columns indicate
different frequency bands. The Y axes are limited to statistically significant classification
accuracies from p = 0.05 to p = 10−5.
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Fig. C.4 Classification accuracies for the auditory imagery task obtained with the sliding
temporal window of 0.5 second when the SVM (C = 1) can use information from the first N PCA
components, see Section 4.1.3. Rows represent different participants, while columns indicate
different frequency bands. The Y axes are limited to statistically significant classification
accuracies from p = 0.05 to p = 10−5.
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Fig. C.5 Classification accuracies for the tactile imagery task obtained with the sliding temporal
window of 0.5 second when the SVM (C = 1) can use information from the first N PCA
components, see Section 4.1.3. Rows represent different participants, while columns indicate
different frequency bands. The Y axes are limited to statistically significant classification
accuracies from p = 0.05 to p = 10−5.
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Fig. C.6 Classification accuracies for the silent naming task obtained with the sliding temporal
window of 0.5 second when the SVM (C = 1) can use information from N CSP components, see
Section 4.1.4. Rows represent different participants, while columns indicate different frequency
bands. The Y axes are limited to statistically significant classification accuracies from p = 0.05
to p = 10−5.



192 Additional figures for Chapter 4

60

65

Pa
r.
1

A
cc
ur
ac
y

1–4 Hz 4–8 Hz 8–14 Hz 14–20 Hz 20–30 Hz 1–30 Hz 4–30 Hz

60

65

Pa
r.
2

A
cc
ur
ac
y

60

65

Pa
r.
3

A
cc
ur
ac
y

60

65

Pa
r.
4

A
cc
ur
ac
y

60

65

Pa
r.
5

A
cc
ur
ac
y

60

65

Pa
r.
6

A
cc
ur
ac
y

60

65

Pa
r.
7

A
cc
ur
ac
y

60

65

Pa
r.
9

A
cc
ur
ac
y

60

65

Pa
r.
10

A
cc
ur
ac
y

60

65

Pa
r.
11

A
cc
ur
ac
y

1 2 3

Time [s]

60

65

Pa
r.
12

A
cc
ur
ac
y

Number of CSP components
2 4 6 8 10

1 2 3

Time [s]
1 2 3

Time [s]
1 2 3

Time [s]
1 2 3

Time [s]
1 2 3

Time [s]
1 2 3

Time [s]

Fig. C.7 Classification accuracies for the visual imagery task obtained with the sliding temporal
window of 0.5 second when the SVM (C = 1) can use information from N CSP components, see
Section 4.1.4. Rows represent different participants, while columns indicate different frequency
bands. The Y axes are limited to statistically significant classification accuracies from p = 0.05
to p = 10−5.



193

60

65

Pa
r.
1

A
cc
ur
ac
y

1–4 Hz 4–8 Hz 8–14 Hz 14–20 Hz 20–30 Hz 1–30 Hz 4–30 Hz

60

65

Pa
r.
2

A
cc
ur
ac
y

60

65

Pa
r.
3

A
cc
ur
ac
y

60

65

Pa
r.
4

A
cc
ur
ac
y

60

65

Pa
r.
5

A
cc
ur
ac
y

60

65

Pa
r.
6

A
cc
ur
ac
y

60

65

Pa
r.
7

A
cc
ur
ac
y

60

65

Pa
r.
9

A
cc
ur
ac
y

60

65

Pa
r.
10

A
cc
ur
ac
y

60

65

Pa
r.
11

A
cc
ur
ac
y

1 2 3

Time [s]

60

65

Pa
r.
12

A
cc
ur
ac
y

Number of CSP components
2 4 6 8 10

1 2 3

Time [s]
1 2 3

Time [s]
1 2 3

Time [s]
1 2 3

Time [s]
1 2 3

Time [s]
1 2 3

Time [s]

Fig. C.8 Classification accuracies for the auditory imagery task obtained with the sliding
temporal window of 0.5 second when the SVM (C = 1) can use information from N CSP
components, see Section 4.1.4. Rows represent different participants, while columns indicate
different frequency bands. The Y axes are limited to statistically significant classification
accuracies from p = 0.05 to p = 10−5.
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Fig. C.9 Classification accuracies for the tactile imagery task obtained with the sliding temporal
window of 0.5 second when the SVM (C = 1) can use information from N CSP components, see
Section 4.1.4. Rows represent different participants, while columns indicate different frequency
bands. The Y axes are limited to statistically significant classification accuracies from p = 0.05
to p = 10−5.
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Fig. C.10 Classification accuracies obtained with the sliding temporal window of 0.5 second
when the SVM (C = 1) can use information from the number of CSP components that was
selected by the nested-cross-validation approach, see Section 4.1.4.2. Rows represent different
participants, while columns indicate different frequency bands. The Y axes are limited to
statistically significant classification accuracies from p = 0.05 to p = 10−5.
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Fig. C.11 Classification accuracies obtained with the sliding temporal window of 0.5 second
when the classifier can use information from the number of CSP components from the joint
channel and frequency space that was selected by the nested-cross-validation approach, see
Section 4.1.4.3. Rows represent different participants, while columns indicate different mental
tasks. The Y axes are limited to statistically significant classification accuracies from p = 0.05
to p = 10−6.
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Fig. C.12 Maximal classification accuracies for the silent naming task for each time-frequency
window from all tested N CSP components with the SVM (C = 1), see Section 4.1.4.4.
Classification accuracies in colorbars represent significant borderlines for p-values of p ∈
{0.05,0.01,0.001,0.0001,0.00001}. White represents non-significant classification accura-
cies. Not all labels for X and Y axis are shown for simplicity.
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Fig. C.13 Maximal classification accuracies for the visual imagery task for each time-
frequency window from all tested N CSP components with the SVM (C = 1), see Sec-
tion 4.1.4.4. Classification accuracies in colorbars represent significant borderlines for p-values
of p ∈ {0.05,0.01,0.001,0.0001,0.00001}. White represents non-significant classification
accuracies. Not all labels for X and Y axis are shown for simplicity.
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Fig. C.14 Maximal classification accuracies for the auditory imagery task for each time-
frequency window from all tested N CSP components with the SVM (C = 1), see Section 4.1.4.4.
Classification accuracies in colorbars represent significant borderlines for p-values of p ∈
{0.05,0.01,0.001,0.0001,0.00001}. White represents non-significant classification accuracies.
Not all labels for X and Y axis are shown for simplicity.
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Fig. C.15 Maximal classification accuracies for the tactile imagery task for each time-
frequency window from all tested N CSP components with the SVM (C = 1), see Sec-
tion 4.1.4.4. Classification accuracies in colorbars represent significant borderlines for p-values
of p ∈ {0.05,0.01,0.001,0.0001,0.00001}. White represents non-significant classification
accuracies. Not all labels for X and Y axis are shown for simplicity.
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Fig. C.16 Classification accuracies for the silent naming task with the sliding temporal window
of 125 ms when the SVM can use information from up to N spatio-spectral PCA components
from the joint channel and frequency space, see Section 4.1.5. Classification accuracies in color-
bars represent significant borderlines for p-values of p ∈ {0.05,0.01,0.001,0.0001,0.00001}.
White represents non-significant classification accuracies.
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Visual imagery task

Fig. C.17 Classification accuracies for the visual imagery task with the sliding temporal window
of 125 ms when the SVM can use information from up to N spatio-spectral PCA components
from the joint channel and frequency space, see Section 4.1.5. Classification accuracies in color-
bars represent significant borderlines for p-values of p ∈ {0.05,0.01,0.001,0.0001,0.00001}.
White represents non-significant classification accuracies.
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Auditory imagery task

Fig. C.18 Classification accuracies for the auditory imagery task with the sliding tempo-
ral window of 125 ms when the SVM can use information from up to N spatio-spectral
PCA components from the joint channel and frequency space, see Section 4.1.5. Clas-
sification accuracies in colorbars represent significant borderlines for p-values of p ∈
{0.05,0.01,0.001,0.0001,0.00001}. White represents non-significant classification accura-
cies.
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Tactile imagery task

Fig. C.19 Classification accuracies for the tactile imagery task with the sliding temporal window
of 125 ms when the SVM can use information from up to N spatio-spectral PCA components
from the joint channel and frequency space, see Section 4.1.5. Classification accuracies in color-
bars represent significant borderlines for p-values of p ∈ {0.05,0.01,0.001,0.0001,0.00001}.
White represents non-significant classification accuracies.
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Additional figures for Chapter 5

This appendix complements the results from Chapter 5.
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Fig. D.1 Classification accuracies for the 1–30 Hz frequency band for single channel classi-
fication over a sliding temporal window (Analysis 1). Rows represent different participants.
Columns are different mental tasks. In each plot, the Y axis represents EEG channels but the Y
label does not include all channel names to improve readability. Classification accuracies in col-
orbars represent significant borderlines for p-values of p∈ {0.05,0.01,0.001,0.0001,0.00001}
for each participant. Note that accuracy borderlines differ between different participants due to
the different number of epochs. White represents non-significant classification accuracies.
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Fig. D.2 Classification accuracies for the 4–30 Hz frequency band for single channel classi-
fication over a sliding temporal window (Analysis 1). Rows represent different participants.
Columns are different mental tasks. In each plot, the Y axis represents EEG channels but the Y
label does not include all channel names to improve readability. Classification accuracies in col-
orbars represent significant borderlines for p-values of p∈ {0.05,0.01,0.001,0.0001,0.00001}
for each participant. Note that accuracy borderlines differ between different participants due to
the different number of epochs. White represents non-significant classification accuracies.
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Fig. D.3 Classification accuracies for the 1–30 Hz frequency band for single channel classi-
fication over a sliding temporal window (Analysis 1) for the beginning of the concept trials
(image presentation, mask, and blank screen). Rows represent different participants. In each
plot, the Y axis represents EEG channels but the Y label does not include all channel names to
improve readability. Classification accuracies in colorbars represent significant borderlines for
p-values of p ∈ {0.05,0.01,0.001,0.0001,0.00001} for each participant. Note that accuracy
borderlines differ between different participants due to the different number of epochs. White
represents non-significant classification accuracies.
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Fig. D.4 Classification accuracies for the 4–30 Hz frequency band for single channel classi-
fication over a sliding temporal window (Analysis 1) for the beginning of the concept trials
(image presentation, mask, and blank screen). Rows represent different participants. In each
plot, the Y axis represents EEG channels but the Y label does not include all channel names to
improve readability. Classification accuracies in colorbars represent significant borderlines for
p-values of p ∈ {0.05,0.01,0.001,0.0001,0.00001} for each participant. Note that accuracy
borderlines differ between different participants due to the different number of epochs. White
represents non-significant classification accuracies.
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(b) 4–30Hz

Fig. D.5 Classification accuracies during the image presentation period from each channel in
the temporal window of 140.6–234.3 ms (i.e., the sliding temporal window from Analysis 1)
after the image onset. This temporal window had the highest classification accuracy when
averaged over all channels and all participants in both frequency bands. Scalp maps indicate
performance above the significance borderline (p = 0.05, 56.6%). White represents non-
significant classification accuracies.
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(b) Concept trials, 1–30 Hz
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(c) Concept trials, 4–30 Hz

Fig. D.6 Classification accuracies for all channels over a sliding temporal window (Analysis 2)
for the mental tasks and for the beginning of the concept trials (image presentation, mask,
and blank screen). Classification accuracies in colorbars represent significant borderlines for
p= 0.05 (56.6%), p= 0.01 (59.3%), p= 0.001 (62.3%), p= 0.0001 (64.8%), and p= 0.00001
(66.9%). White represents non-significant classification accuracies.
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Fig. D.7 Classification accuracies for the 1–30 Hz frequency band using the nested-cross-
validation approach to select an optimal temporal window (Analysis 3). Columns represent
different periods. Rows correspond to different participants. Scalp maps indicate perfor-
mance above the significance borderline (p = 0.05, 56.6%). White represents non-significant
classification accuracies.
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Fig. D.8 Classification accuracies for the 4–30 Hz frequency band using the nested-cross-
validation approach to select an optimal temporal window (Analysis 3). Columns represent
different periods. Rows correspond to different participants. Scalp maps indicate perfor-
mance above the significance borderline (p = 0.05, 56.6%). White represents non-significant
classification accuracies.
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