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ABSTRACT 

Traditional clustering algorithms are not suited for heterogeneous data of Sensor-Based Internet of Things. The accuracy of real-

time data processing, in such applications, is further compromised because of the noise and missing values in the data. Considering 

the need for accurate clustering, a Graph Laplacian based heterogeneous data clustering is proposed in this work. Exploiting the 

correlation structure of the data, weight graphs are used to generate a Graph Laplacian matrix to obtain co-related data points. 

Eigen values are further used to obtain distance based accurate clusters. The proposed algorithm is validated on five different real-

world data sets and is able to outperform most of the existing algorithms. A detailed mathematical analysis followed by extensive 

simulation on real-world data sets, proves the dexterity of the proposed method as the performance gap, with respect to the state-

of-the-art methods, in terms of accuracy and purity is as high as 30%. 
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1. INTRODUCTION 

A Sensor-Based Internet of Things (SBIoT) ecosystem is 

composed of hardware devices like sensors, micro-controllers, 

and communication hardware such as gateways and CPUs to 

transmit data on a web-enabled platform for real-time 

processing. Often, the data obtained is not homogeneous and is 

corrupted by noise and redundancy. The real-time processing of 

such data necessitates the use of Machine Learning (ML) and 

Artificial Intelligence (AI) for reliable data collection, 

transmission, processing, and classification in various SBIoT 

applications. The use of ML in SBIoT allows insights, 

previously buried in data, allowing for faster and better 

decision-making. However, in a SBIoT framework, the data 

often received is not only heterogeneous but also hugely sparse 

with null values. Considering the constraints, imposed due to 

the heterogeneity of the SBIoT data, traditional clustering 

algorithms are ineffective as homogeneous and clean dataset is 

required without any missing values [16], [17], [18] and [19]. 

Existing research presents many interesting ideas to deal with 

such issues like dimensionality reduction, filling of missing 

values, interpolation, or approximation. These algorithms 

address the issues of large data sets, missing value features, and 

irregular data shapes. However, these methods are limited to 

dealing with numerical characteristics. Other techniques, such 

as those suggested by [1], [2], [3], [4] and [5], are not designed 

to handle data ambiguity, which is a common issue in many 

real-world applications. The authors in [6] and [7] proposed two 

techniques that can handle both uncertainty and heterogeneous 

data, by developing techniques on rough sets. Other methods 

include, Adaptive Weights Clustering (AWC) [8], which is 

based on the idea of locally weighting each point (document, 

abstract) in terms of cluster membership, however, accuracy 

and clustering purity remain open issues for further research. 

The authors in [9] propose a method to cluster the dataset using 

graph Laplacian by first approximating the graph and then 

integrating the Laplacians for preserving all the cluster 

information in multiple graphs. A method proposed in [10] uses 

a matrix completion algorithm for fast similarity matrix 

calculation. Although it retains the accuracy, but the 

performance may further be improved by optimizing the 

robustness of the proposed approach. A novel approach of 

mixed order spectral clustering framework is proposed in [11] 

to synchronously model second and third order structures both. 

The limitation of this framework is that it cannot mix more than 

two orders. Multi-view spectral clustering shows notable 

performance while capturing correlations, but it is inefficient 

and not suitable for large datasets. To address this issue [12] 

proposes a multi-view spectral clustering model, that shows 

significantly improved results than the existing methods.  

Thus, to overcome the drawbacks of existing approaches on 
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heterogeneous and noisy data sets, a novel graph Laplacian 

based clustering algorithm is proposed in this work. The main 

contributions of this paper are as follows: 

1. A novel graph Laplacian based clustering algorithm for 

heterogeneous and noisy data of SBIoT. 

2. A detailed analytical analysis of the proposed method. 

3. An extensive simulation study on 5 real world data sets 

along with a detailed comparative analysis of the results. 

2. PROBLEM DESCRIPTION 

In an SBIoT framework, the data often received is not 

homogeneous but hugely sparse and heterogeneous with null 

values. Traditional clustering algorithms require homogeneous 

and clean datasets without any missing values. Moreover, the 

existing methods fail to overcome the challenges imposed due 

to sparse data matrices and often suffer from data loss. 

Dropping the null data, in such cases, results in almost empty 

data matrices. On the other hand, speculating the missing 

values, results in steep degradation in clustering accuracy. As 

such, the existing methods fail to deliver accurate classification 

of clustered data in case of sparse or small data sets. The issues 

associated with clustering heterogeneous data in SBIoT 

applications are thus summarized as: 

 

1)  Data, in the SBIoT framework, is often heterogeneous and 

hugely sparse with null values. Moreover, cleaning data 

like dropping data points with missing values often leads 

to a huge loss of data. 

2)  Dimensionality Reduction and missing value speculation 

often lead to low accuracy and high running cost. 

3)  The existing clustering methods suffer from the inability 

to identify the non-convex patterns in the heterogeneous 

data because of which, adversely impacts the clustering 

accuracy. 

3. SYSTEM MODEL 

An SBIoT network with heterogeneous observations is 

realized for a smart park, where simultaneous events are 

observed and reported for real-time processing by randomly 

deployed nodes. Although, many different types of events are 

sensed and reported only five different observations are 

considered to be reported by every node, viz. temperature, 

humidity, pressure, light, and air quality. Events are reported as 

and when they occur via the deployed network of nodes, which 

are otherwise programmed to conserve energy. To realize a 

real-world scenario, the smart park is assumed to have rough 

weather conditions (i.e., frequent rain and wind) where data 

loss, link loss, and node loss are frequent. The smart park is 

equipped with smart lights and smart parking areas in addition 

to dense trees, smart cycle track, and a pool as shown in Figure 

1. The symbols used in this work are described in Table 1. 

4. DATASET DESCRIPTION & PRE-PROCESSING 

The performance of the proposed algorithm is tested on five 

datasets, namely WINE, E.Coli, Abalone, HTRU2, and Stone 

datasets. All of these data sets are obtained from the open-

source UCI repository forum. Table VII shows the various 

Table 1: Symbols used 

Symbol Description Symbol Description 

l1 
Manhattan Distance  

(|𝑦2 − 𝑦1| + |𝑥2 − 𝑥1|) 
D 

Degree 

matrix 

l2 

Euclidean Distance  

(√(|𝑦2 − 𝑦1|2 + |𝑥2 − 𝑥1|2)) 
A 

Adjacency 

matrix 

G Graph of size n L 
Laplacian

 matrix 

x Number of features ACC 
Accuracy 

Score 

c Threshold weight di 
degree of 

the ith node 

W Weight matrix of size n × n SIL 
Silhouette 

Score 

N Number of objects (data points) k 
Number of 

clusters 

tj 
Classification which has the max 

count for cluster ci 
ci 

Cluster in 

C 

a Average intra-cluster distance b 

Average 

inter-

cluster 

distance 
 

datasets used with a brief description. To meet the needs of the 

proposed work, the data sets are introduced to a prepossessing 

step which involves the introduction of different ratios of null 

values to get different heterogeneous data sets. Precisely, a 

maximum of 20% null values, in a complete data set, are 

introduced for validating the proposed algorithm. 

Table 2: UCI Real-world Dataset Description 

 Samples Features Clusters 

Wine 178 13 3 

E-coli 336 7 8 

Abalone 4177 8 28 

HTRU2 17898 8 2 

Stone 79 8 4 

5. PROPOSED METHODOLOGY 

The proposed scheme is based on the general idea that the 

related observations, from an SBIoT device, exhibit a strong 

correlation structure. As such, a weight graph is constructed to 

get a relative distance between the participating nodes which is 

used for creating a graph with edges of weight as the same 

relative distance. This is followed by the construction of a graph 

Laplacian matrix using degree matrix and adjacency matrix. 

Finally, the graph Laplacian matrix is used to obtain the desired 

clusters based on the eigenvalues and corresponding 

eigenvectors. 

5.1 Construction of Weight Graph 

The stepwise construction of the weight graph is explained 

below: 

• Create a new matrix of size n × n where n is the total 

number of rows in the data set. The default value is set to ∞ and 

that will be the final weight matrix in end. 
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• Start from the first row, and for every data point or row, 

iterate on all other data points ahead of it and get an intersection 

of features of those two rows, and drop columns of both rows 

not in the intersection. 

• Compute all the relative distances and choose the one with 

optimal accuracy. 

The steps of the algorithm are shown in Algorithm 1. Since, 

Algorithm 1, has 2 nested loops, the time complexity is 

calculated as the number of times the innermost loop is 

executed. As evident, the Inner loop runs 1 less number of times 

the value of the outer loop, thus: 

𝟏 + 𝟐 + ⋯ + (𝒏 − 𝟐) + (𝒏 − 𝟏) =
(𝒏−𝟏)(𝒏)

𝟐
= 𝑶(𝒏𝟐)           (1) 

 

Algorithm 1 Weight Graph 
1. for iteration = 1,2,...,N do 

2.     for actor = iteration +1…N do 
3.         Take inner Join/Intersection of both data points as Z. 

4.         if Z==0 then 

5.             Since no common variables, Go To line 2. 

6.         end if 

7.         Compute pairwise distance or any optimal relative distance and store  
            at position (iteration, actor) 

8.     end for 

9. end for 

 

Consider the case where six sensor nodes with the five 

predefined feature sets, are deployed for reporting the events. 

A sample node data set and the weight graph W for an N × N 

matrix (N = number of samples = 6 in this case), are shown in 

Table 2 and Table 3 respectively. 

 

Table 3: Sensor Nodes Data Set 

A B 
 

C D E 

- -  C1 - - 

A2 B2  C2 - - 

A3 -  C3 - - 

- B4  - D4 E4 

A5 B5  - - - 

A6 B6  C6 D6 - 

 

 
Figure 1: System Model 

Table 4: Weight Graph 

 1 2 3 4 5 6 

1 ∞ ∞ 8 ∞ ∞ 8 

2 ∞ ∞ 8 1 6 8 

3 8 8 ∞ ∞ 1 3 

4 ∞ 1 ∞ ∞ 2 5 

5 ∞ 6 1 2 ∞ 6 

6 8 8 3 5 6 ∞ 

 

A threshold weight c, chosen based on the optimized final 

accuracy, is used for the construction of a similarity graph. The 

entries up to c in the weight graph are marked as 1 and those 

above c, are marked as 0. The similarity graph, thus obtained 

for the weight graph W, is shown in Table 4.  

 

Table 5: Similarity Graph (S): c = 5 

 1 2 3 4 5 6 

1 0 0 1 0 0 1 

2 0 0 1 0 1 1 

3 1 1 0 0 0 0 

4 0 0 0 0 0 1 

5 0 1 0 0 0 1 

6 1 1 0 1 1 0 

5.2 Construction of Graph Laplacian Matrix 

The steps for the construction of graph Laplacian matrix, 

are as follows: 

• Create an adjacency matrix (A) using the similarity graph 

created in subsection 4.1. 

• Create a degree matrix (D) using the same similarity graph 

created in subsection 4.1 using equation 2 and 3. 

• Get the graph Laplacian matrix (L) using degree and 

adjacency matrix by following equation 4. 

The adjacency matrix (A) is created using the similarity 

graph created in subsection 4.1. The degree matrix (D) is then 

created by adding all the points of the specific row. It is 

empirical to note that the cells are filled along the diagonal for 

each row of the degree matrix. The points of the degree matrix 

may be extracted by the degree of the corresponding node. The 

degree of the ith node is given by: 

 

𝑑𝑖 =  ∑ 𝑤𝑖𝑗
𝑛
𝑗=1|(𝑖,𝑗)𝜖𝐸                                   (2) 

 

where wij is the edge/weight between the nodes i and j as 

mentioned in the adjacency matrix (A). Thus, the degree matrix 

is defined as: 

𝑫𝒊𝒋 = {
𝒅𝒊, 𝒊 = 𝒋
𝟎, 𝒊 ≠ 𝒋

                                       (3) 

 

The Table 5 shows the degree matrix obtained for the 

example, as explained in subsection 4.1. To obtain the normal 

Laplacian, the adjacency matrix is subtracted from the degree 

matrix (as shown in equation 4). The Table 6 shows the Graph 

Laplacian matrix (L) for the discussed example. The degree of 

every node is shown by the Laplacian’s diagonal, while the 

negative edge weights are represented by the off diagonal. 

𝑳 = 𝑫 − 𝑨                                       (4) 
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Table 6: Degree Matrix (D) 

 1 2 3 4 5 6 

1 2 0 0 0 0 0 

2 0 3 0 0 0 0 

3 0 0 2 0 0 0 

4 0 0 0 1 0 0 

5 0 0 0 0 2 0 

6 0 0 0 0 0 4 

 

Table 7: Graph Laplacian Matrix (L) 

 1 2 3 4 5 6 

1 2 0 -1 0 0 -1 

2 0 3 -1 0 -1 -1 

3 -1 -1 2 0 0 0 

4 0 0 0 1 0 -1 

5 0 -1 0 0 2 -1 

6 -1 -1 0 -1 -1 4 

5.3 Compute Clusters using Eigenvalues 

Once the Laplacian matrix (L) is obtained, the proposed 

algorithm takes advantage of one of its special properties to 

classify the data. Consider, if the graph (G) has K connected 

components, then L has K eigenvectors with an eigenvalue of 0. 

The steps are as follows: 

• Calculate eigenvalues and eigenvectors of graph Laplacian 

matrix obtained from the subsection 4.2. 

• Sort the eigenvalues and get k non-zero positive 

eigenvalues close to 0, where k is equal to the total number of 

clusters desired. 

• Select the eigenvector with different eigenvalues only for 

best results. If case of same eigenvalues, it can be dropped. 

• Stack those eigenvectors together to be clustered. 

• Use k−means to classify the nodes based on their 

corresponding values in the eigenvector. 

The corresponding eigenvalues and their respective 

eigenvectors are shown in the Figure 2. Since the example 

under consideration, has only one component, one eigenvalue 

is calculated as 0 out of the 6 eigenvalues. In a more 

complicated graph, there can be multiple components and thus 

multiple eigenvalues may be reported as 0. Figure 3a shows the 

plot of all the 6 eigenvalues, where the least three eigenvalues 

or the ones closest to 0, are selected and their respective 

eigenvectors are plotted. Figure 3b shows the plot of the first 

eigenvector with values closest to 0. Evidently, all the values 

are the same in this vector. Although there is only one 

eigenvalue with 0, Figure 3c shows the plot of the eigenvector 

of second and third eigenvalues which are closest to 0, and the 

second smallest eigenvalue. 

 

 
Figure 2: Eigenvalues and Respective Eigenvector 

5.4 Steps of the Algorithm 

The goal is to construct a similarity graph with a data set such 

that a few of the data points are completely different and some 

are similar entries. Originally, the experiments included a 

concept to charge some cost on different dissimilar features. 

But multiple results proved not to go with the latter. Getting a 

number between every data point is somewhat like getting a 

distance between n-dimensional vector space where n is equal 

to the number of variables similar in both data points.  

The following is a step-by-step description of the proposed 

algorithm: 

 

Step 1:  Construct a weight graph W using Algorithm 1. 

Step 2:  Define a threshold parameter c to create a similarity 

graph. 

Step 3:  Define a degree matrix D and adjacency matrix A 

from the similarity graph as described in subsection 

4.2. 

Step 4:  Define a Laplacian matrix L as described in 

subsection 4.2. 

Step 5:  Find k largest eigenvectors and stack it in columns. 

Step 6:  Form the new matrix Y by re-normalizing each of X’s 

rows. 

Step 7:  Cluster each row of Y into k clusters using k-means or 

any other method, using each row as a point in Rk. 
Step 8:  If the row i in the matrix Y was allocated to cluster j, 

label the respective point si to cluster j. 

6. ANALYTICAL ANALYSIS 

    There are many common designs for turning a collection of 

data points x1,...,xn into a graph with pairwise similarity sij or 

pairwise distances dij. When creating similarity graphs, the aim 

is to represent the data points’ local neighborhood connections. 

All the nodes with a distance less than the pre-defined 

threshold, as mentioned in subsection 4.1, are considered in this 

analysis. Additionally, the selected weights for this analysis do 

not give any additional information about that data set or for 

any graph. It is empirical to note that the directions are not 

considered and that all the edges are used to create undirected 

graph. Consider that, G is an undirected, weighted graph with a 

matrix W, and that wij = wji ≥ 0.. It is not always assumed that 

eigenvectors of a matrix are normalized when utilizing them. 

The fixed vector ⊮ and a multiple a⊮ with some a ≠ 0, are 

considered as the same eigenvectors. The eigenvalues are 

arranged in ascending order, with multiplicities taken into 

account. The eigenvectors corresponding to the k lowest 

eigenvalues are referred to as ”the first k eigenvectors.” The 

unnormalized graph Laplacian matrix (used in the proposed 

approach) is defined as in equation 4 i.e. L = D−A, where, the 

matrix L has the below properties:  

For every vector v ∈ Rn we have 

𝑣′𝐿𝑣 =
1

2
∑ 𝑤𝑖𝑗(𝑣𝑖 − 𝑣𝑗)2𝑛

𝑖,𝑗=1                       (5) 

By the definition of di, 

𝑣′𝐿𝑣 = 𝑣′𝐷𝑣 − 𝑣′𝑊𝑣 = ∑ 𝑑𝑖𝑣𝑖
2

𝑛

𝑖=1

− ∑ 𝑣𝑖𝑣𝑗𝑤𝑖𝑗

𝑛

𝑖,𝑗=1
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=
1

2
(∑ 𝑑𝑖𝑣𝑖

2

𝑛

𝑖=1

− 2 ∑ 𝑣𝑖𝑣𝑗𝑤𝑖𝑗

𝑛

𝑖,𝑗=1

+ ∑ 𝑑𝑗𝑣𝑗
2

𝑛

𝑗=1

) (6)   

 

= ∑ 𝑤𝑖𝑗(𝑣𝑖

𝑛

𝑖,𝑗=1

− 𝑣𝑗)2     (7) 

 

• L is symmetric as it comes from the symmetry of D and 

weight matrix. 

•  L is positive and semi-definiteness as it is proved directly 

from the first property, which shows v′Lv ≥ 0 for all v ∈ Rn. 

•  The lowest eigenvalue of the Laplacian matrix is zero. 

•  L has x positive, real-valued eigenvalues (with at least one 

0) 0 = λ1 ≤ λ2 ≤ ... ≤ λn. 

Let G be the same graph, as mentioned above, with nonnegative 

weights. The multiplicity m of the eigenvalue zero of the 

Laplacian matrix is the same as the number of connected 

components C1,...,Cm in the graph. The eigen-space of the 

lowest eigenvalue is depicted by the same vectors ⊮C1,...,⊮Cm of 

those components. 

Now consider the case where m = 1, which results in a 

connected graph. Assume that v is an eigenvector of lowest 

eigenvalue as zero, then 

0 = 𝑣′𝐿𝑣 = ∑ 𝑤𝑖𝑗(𝑣𝑖 − 𝑣𝑗)2

𝑛

𝑖,𝑗=1

 (8) 

Since the weights wij are always positive or zero, the equation 

8 can only perish if all terms wij (vi − vj)2 goes off. If two vertices 

vi and vj are joined (i.e., wij > 0), then vi needs to be same as vj. 

It is seen from this explanation that v must be constant for all 

nodes in the graph that may be joined by a path. Since all nodes 

of the same component and an un-directed network may be 

joined by a path, v must be fixed across the network. Now there 

is only a constant vector ⊮ as eigenvector of eigenvalue zero in 

a graph that is definitely the required vector of the joined 

component. 

Considering an alternate situation when there are k linked 

components, it may be considered that the nodes are sorted as 

per to the joined components they hold to, without removing 

generality. Adjacency matrix A has a block diagonal shape in 

this case, with matrix L also being the same as: 

𝐿 = (

𝐿1

𝐿2

⋱
𝐿𝑘

)                              (9) 

It is worth noting that every part of Li is itself a Laplacian 

graph matrix, as the Laplacian respective to the sub-graph of 

the ith joined component. 

    The spectrum of Laplacian is given by the join of the spectra 

of Li, as the respective eigenvectors of Laplacian are the 

eigenvectors of Li containing zero at the locations of all the other 

parts which is the same for all parts of the diagonal matrix. 

Every Li has eigenvalue zero, and the respective eigenvector is 

the fixed 1 vector on the ith joined component, as each Li is 

Laplacian of a joined graph. As a result, the matrix L has joined 

components the same as the number of eigenvalues equal to 0, 

and their respective eigenvectors are the joined component 

required vectors. 

The key technique in the proposed method, described in section 

4.3, is to alter the form of the abstract tuples ai to points bi ∈ Rk. 

This shift of representation is helpful because of the 

characteristics of the Laplacians matrix. This alters in 

representation improves the data’s cluster characteristics, 

allowing clusters to be identified with ease in the new form. 

The basic k -means clustering method, in particular, has no 

trouble detecting clusters in this new form. 

7.  SIMULATION SETUP 

The system model, as explained in section III, is realized in 

Python for obtaining heterogeneous observations from 200 

nodes, deployed to cover an ROI of 150m × 150m. A Unix 

based system with 4 GB 1600 MHz DDR4 memory and 

Macintosh operating system and 3.2 GHz Intel Core i5 

processor is used to run the simulations. Additionally, jupyter 

notebook as IDE along with packages such as Pandas, Numpy, 

ScikitLearn (specifically k-means, spectral clustering to 

compare), Matplotlib, Scipy, etc. are used. 

A comparative analysis of the proposed algorithm is presented 

for: 

• Spectral clustering algorithm proposed in [13]: For the 

mentioned datasets, the proposed algorithm and the 

algorithm in [13], are implemented and tested on the same 

parameters. 

• The algorithms proposed and used for comparative 
evaluations in [14] and [15]: 
For the mentioned datasets, the proposed algorithm and 

the algorithms proposed and used for comparative 

evaluations in [14] and [15], are implemented and tested 

on the same parameters. 

 

The performance evaluation matrices, for comparative 

evaluation, are as follows: 

• Purity is a unique parameter for evaluating cluster quality. 

It gives the percent of the total number of nodes or rows 

which were clustered correctly and is given by: 

𝑃𝑢𝑟𝑖𝑡𝑦 =
1

𝑁
∑ max

𝑗
|𝑐𝑖 ∩ 𝑡𝑗|

𝑘

𝑖=1

 (10) 

 

• Accuracy (ACC) is defined as the percentage of correct 

predictions for the test data and is given by: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                          (11) 

 

The silhouette (SIL) value is a measure of how similar an 

object is to its cluster (cohesion) compared to other clusters 

(separation). The silhouette ranges from -1 to +1. 

 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒𝑆𝑐𝑜𝑟𝑒 =
(𝑏−𝑎)

𝑚𝑎𝑥(𝑎,𝑏)
                            (12) 
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8. RESULTS AND COMPARATIVE ANALYSIS 

8.1 Comparative Analysis with Algorithm in [13] 

The proposed algorithm, along with the algorithm in [13] are 

implemented with common parameters and their performance 

on the five datasets is presented in Table 8. As evident from the 

results, the proposed algorithm is able to outperform the 

algorithm in [13] on almost all the datasets and metrices, except 

for purity in Wine and accuracy on Stone. The spectral 

algorithm in [13] could not be implemented for HTRU2 dataset, 

hence the results could not be compared. A comparative 

analysis shows that the proposed algorithm is able to achieve 

1.13% better accuracy on wine dataset, 29.6% better accuracy 

on E.coli dataset, 1.17% better accuracy on Abalone dataset. A 

simple reason for the improved accuracy is the ability of the 

proposed method to identify the non-convex patterns in the 

heterogeneous data. 

 

Table 8: Comparative Analysis with Algorithm in [13] 

 Metric Spectral [13] Proposed Algorithm 

Wine 
Purity 99.43 98.87 

ACC 97.75 98.88 

E-coli 
Purity 60.41 68.45 

ACC 14.54 44.14 

Abalone 
Purity 23.29 27.45 

ACC 16.50 17.67 

HTRU2 
Purity - 96.56 

ACC - 96.89 

Stone 
Purity 97.26 98.20 

ACC 97.3 96.33 

8.2 Comparative Analysis with Algorithm in [14] and [15] 

Table 9 shows the complete comparison of the proposed 

algorithm to standard K-means, SSC, KKmeans, RSFKC, CLR, 

MEAP, k-MEAP, KMM as proposed and used in [14] and 

adacluster in [15]. A detailed analysis of the algorithm’s 

performance on all the data sets is presented next. 

8.3 Results on Wine Dataset 

A careful observation of Table 9 reveals the fact that the 

proposed method is able to achieve up to 3% and 1% 

improvement in both purity and accuracy scores respectively 

compared to algorithms in [14] and [15]. It is empirical to note 

the proposed algorithm is able to deliver acceptable results even 

with null values while the other counterpart algorithms are 

unable to even execute with null variables. The comparative 

results with [13], [14], and [15] on purity and accuracy, shown 

in Figure 4c, clearly show the efficacy of the proposed method 

over existing methods.  

Figure 4a shows the plot of eigenvalues of graph Laplacian 

of Wine dataset. It is evident from figure 4a that the values are 

not the same and only one eigenvalue is 0 which indicates 

clearly the only component in the graph. Evidently, the results 

obtained after k-means on the first 3 non-zero positive vectors, 

are better. The reason being that there are 3 clusters to be 

obtained for which the first 3 non-zero eigenvectors are used to 

cluster with different values. Figure 4b shows the plot of 

eigenvector of the 2nd, 3rd, and 4th smallest eigenvalues. Since 

the number of clusters to be found is 3, only 3 eigenvectors are 

selected here apart from 1st which is constant due to zero 

eigenvalue. As discussed in section 4, the more the spread of 

values, the better is the ability to divide the dataset into clusters. 

It can be clearly seen that dividing the dataset into 3 sections, 

using all the three vectors, gives better results. 

8.4 Results on E.coli Dataset 

Figure 5a shows the eigenvalues plot of graph Laplacian of 

E.coli dataset. Since there is only 1 component in the graph, the 

first eigenvalue is 0, but as shown in Figure 5a, all the other 

eigenvalues are the same as 336. Thus, selecting all the 

eigenvectors or only one won’t affect the result. It is also 

important to note that although, the number of clusters desired 

is 8, but only one eigenvector will also give the same result as 

8 eigenvectors when clustered. Figure 5b shows the plot of 

eigenvectors of second and third smallest eigenvalues as 

discussed in section 4, where it is shown that both eigenvectors 

will give the same results of dividing the data set. It can be seen 

that dividing the graph into 8 sections by 7 horizontal lines will 

remain the same, taking 1 or more eigenvectors. As evident 

from the observations reported in Table 9 and Figure 5c, the 

performance of the proposed algorithm is not at par with the 

other compared algorithms. The performance degradation is due 

to the same eigenvalues. However, as evident from Table 8, the 

proposed algorithm outperforms the standard spectral algorithm 

[13] implemented in scikit library. It showed up to 8% 

improvement in purity score and up to 30% improvement in 

accuracy score. 

8.5 Results on Abalone Dataset 

The performance comparison of the proposed approach, as 

presented in Table 9, proves that the proposed method is almost 

at par with the compared approaches in terms of purity. 

Moreover, the comparative results presented in Table 8 show 

the efficacy of the proposed algorithm over the standard 

spectral algorithm [13] implemented in scikit library. An 

improvement of 4% in purity score and up to 1% improvement 

in accuracy score evidently from the reported observations. 

Figure 6c presents the comparative results of the proposed 

method with the algorithms in [13], [14], and [15]. The 

eigenvalue plot (shown in Figure 6a) shows that there is only 1 

component in the graph, thus the first eigenvalue is 0, but all the 

other eigenvalues are the same as 210. Thus, selecting all the 

eigenvectors or only 1, won’t affect the results. Therefore, even 

though the number of clusters desired is 28, only one 

eigenvector will also give the same result as 28 eigenvectors 

when clustered. 

Figure 6b shows the plot of eigenvectors of the second, third, 

and fourth smallest eigenvalues. As discussed in Section 4, 

Figure 6b proves that all the eigenvectors give the same results 

of dividing the data set. It can be seen that dividing the graph 

into 28 sections by 27 horizontal lines will be the same, taking 

1 or more eigenvectors. Evidently, due to the same eigenvalues, 

the reported accuracy and purity are at par with the other 

methods in [14]. This is one of the prime reasons for the 

improved performance of the proposed algorithm as compared 

to the standard spectral algorithm [13].  

8.6 Results on HTRU2 Dataset 

The comparative results, as presented in Table 9 and Figure 

7c, show that the proposed algorithm is able to achieve 

significant improvement & shows up  to 1.8%  improvement in 
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(a) Total eigenvalues                  (b)   Values in First eigenvector  

 

 
    (c) Values in Second and Third eigenvector of eigenvalue Close to 0 

Fig 3. Eigenvalues and eigenvectors 

 

    
(a) Eigenvalues plot of Wine dataset             (b) Eigenvectors plot of Wine dataset 

 

 
   (c) Purity and Accuracy comparison of proposed algorithm on Wine dataset 

Fig. 4. Wine dataset 
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(a) Eigen values plot of E.coli dataset             (b)  Eigenvectors plot of E.coli dataset 

 

 
(c)  Purity and Accuracy comparison of proposed algorithm on E.coli dataset 

Fig. 5. E.coli dataset 

      
(a) Eigenvalues plot of Abalone dataset            (b) Eigenvectors plot of Abalone dataset 

 

 
(c) Purity and Accuracy comparison of proposed algorithm on Abalone dataset 

Fig. 6. Abalone dataset 
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(a) Eigenvalues plot of HTRU2 dataset            (b)   Eigenvectors plot of HTRU2 dataset 

 

 
(c) Purity and Accuracy comparison of proposed algorithm on HTRU2 dataset 

Fig. 7. HTRU2 dataset 

      
(a) Eigen values plot of StoneFlakes dataset         (b)   Eigenvectors plot of StoneFlakes dataset 

 

 
(c) Purity and Accuracy comparison of proposed algorithm on StoneFlakes dataset 

Fig. 8. StoneFlakes dataset 
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both purity and accuracy scores compared to the KMM 

algorithm in [14] with the highest score. It is important to note 

that the proposed method gives a significantly, acceptable result 

even with null values, unlike the other algorithms which are 

unable to even execute under similar conditions. The plot of 

eigenvalues of graph Laplacian of HTRU2 dataset (figure 7a) 

and the plot of eigenvector of 2nd and 3rd smallest eigenvalue 

(figure 7b) proves the supremacy of the proposed method over 

existing approaches. Since the number of clusters to be found is 

2, therefore, only 2 eigenvectors are selected, apart from 1st 

which is constant due to zero eigenvalue. As discussed in 

section 4, the more the spread of values, the better is the ability 

to divide the dataset into clusters, but it can be clearly seen that 

it’s very hard to divide the dataset into 2 sections that will give 

the optimal results. Even in such adverse conditions, the 

proposed algorithm is able to deliver significantly better results 

as compared to all the other partition algorithms. 

8.7 Results on StoneFlakes Dataset 

The observations, as reported in Table 8 prove that the 

proposed method has a better purity score (about 1%) as 

compared to the standard spectral algorithm [13] implemented 

in scikit library. A simple reason for the marginally low 

accuracy of the proposed method is the high number of null 

values in the StoneFlakes dataset. When compared to the other 

methods, Table 9 and Figure 8b prove that the proposed 
algorithm is able to outperform most of its counterpart methods 

as the accuracy is as high as 8%. Figure 8a and 8b also confirm 

the efficiency of the proposed scheme over existing methods 

used for comparative analysis in [13] and [14]. 

9.   CONCLUSION AND FUTURE WORK 

A novel method using the weight graph and graph Laplacian 

matrix for complete heterogeneous data set is proposed in this 

work. The improved accuracy and purity in clusters is because 

of the ability of the proposed method to consider non-convex 

patterns in the heterogeneous data and its ability to consider null 

values efficiently. Comparative analysis of the proposed 

method with state-of-the-art algorithms on 5 different real-

world data sets proves the dexterity of the proposed algorithm. 

The performance improvement is shown in terms of accuracy, 

purity, and significantly better silhouette score (as high as 30% 

improvement) is reported based on the simulation analysis on 

the real-world data sets. We continue to work and test the 

proposed approach on large scale datasets and aim to present a 

detailed analysis in future. 
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