
Template for submitting papers to IETE Journal of Research.

1

Vishal Krishna Singh, Gaurav Tripathi, Aman Ojha, Rajat Bhardwaj, and Haider Raza

V. K. Singh is the Head of Wireless Communications and Analytics Research Lab at Indian Institute of Information Technology, Lucknow, UP 226002 India

(corresponding author to provide phone: 639-481-7065; e-mail: vashukrishna@gmail.com).

G. Tripathi is with Wireless Communications and Analytics Research Lab at Indian Institute of Information Technology, Lucknow, UP 226002 India (e-mail:

gt.mnnit@gmail.com).
A. Ojha was with Wireless Communications and Analytics Research Lab at Indian Institute of Information Technology, Lucknow, UP 226002 India. He is now

with the Intel Corporation, Bengaluru, KA 560103 India (e-mail: amanojha33@gmail.com).

R. Bhardwaj is with H&M AI, Lucknow, UP 226002 India (e-mail: arjun67d@gmail.com).

H. Raza is with University of Essex, Wivenhoe Park, Colchester CO4 3SQ India (e-mail: h.raza@essex.ac.uk).

ABSTRACT

Traditional clustering algorithms are not suited for heterogeneous data of Sensor-Based Internet of Things. The accuracy of real-

time data processing, in such applications, is further compromised because of the noise and missing values in the data. Considering

the need for accurate clustering, a Graph Laplacian based heterogeneous data clustering is proposed in this work. Exploiting the

correlation structure of the data, weight graphs are used to generate a Graph Laplacian matrix to obtain co-related data points.

Eigen values are further used to obtain distance based accurate clusters. The proposed algorithm is validated on five different real-

world data sets and is able to outperform most of the existing algorithms. A detailed mathematical analysis followed by extensive

simulation on real-world data sets, proves the dexterity of the proposed method as the performance gap, with respect to the state-

of-the-art methods, in terms of accuracy and purity is as high as 30%.

Keywords:
Spectral Clustering, Heterogeneous Data, Machine Learning, Internet of Things, Sensor-based IoT, heterogeneous data.

1. INTRODUCTION

A Sensor-Based Internet of Things (SBIoT) ecosystem is

composed of hardware devices like sensors, micro-controllers,

and communication hardware such as gateways and CPUs to

transmit data on a web-enabled platform for real-time

processing. Often, the data obtained is not homogeneous and is

corrupted by noise and redundancy. The real-time processing of

such data necessitates the use of Machine Learning (ML) and

Artificial Intelligence (AI) for reliable data collection,

transmission, processing, and classification in various SBIoT

applications. The use of ML in SBIoT allows insights,

previously buried in data, allowing for faster and better

decision-making. However, in a SBIoT framework, the data

often received is not only heterogeneous but also hugely sparse

with null values. Considering the constraints, imposed due to

the heterogeneity of the SBIoT data, traditional clustering

algorithms are ineffective as homogeneous and clean dataset is

required without any missing values [16], [17], [18] and [19].

Existing research presents many interesting ideas to deal with

such issues like dimensionality reduction, filling of missing

values, interpolation, or approximation. These algorithms

address the issues of large data sets, missing value features, and

irregular data shapes. However, these methods are limited to

dealing with numerical characteristics. Other techniques, such

as those suggested by [1], [2], [3], [4] and [5], are not designed

to handle data ambiguity, which is a common issue in many

real-world applications. The authors in [6] and [7] proposed two

techniques that can handle both uncertainty and heterogeneous

data, by developing techniques on rough sets. Other methods

include, Adaptive Weights Clustering (AWC) [8], which is

based on the idea of locally weighting each point (document,

abstract) in terms of cluster membership, however, accuracy

and clustering purity remain open issues for further research.

The authors in [9] propose a method to cluster the dataset using

graph Laplacian by first approximating the graph and then

integrating the Laplacians for preserving all the cluster

information in multiple graphs. A method proposed in [10] uses

a matrix completion algorithm for fast similarity matrix

calculation. Although it retains the accuracy, but the

performance may further be improved by optimizing the

robustness of the proposed approach. A novel approach of

mixed order spectral clustering framework is proposed in [11]

to synchronously model second and third order structures both.

The limitation of this framework is that it cannot mix more than

two orders. Multi-view spectral clustering shows notable

performance while capturing correlations, but it is inefficient

and not suitable for large datasets. To address this issue [12]

proposes a multi-view spectral clustering model, that shows

significantly improved results than the existing methods.

Thus, to overcome the drawbacks of existing approaches on

Graph Laplacian for Heterogeneous Data

Clustering in Sensor-Based Internet of Things

mailto:vashukrishna@gmail.com
mailto:gt.mnnit@gmail.com
mailto:amanojha33@gmail.com
mailto:arjun67d@gmail.com
mailto:h.raza@essex.ac.uk

Template for submitting papers to IETE Journal of Research.

2

heterogeneous and noisy data sets, a novel graph Laplacian

based clustering algorithm is proposed in this work. The main

contributions of this paper are as follows:

1. A novel graph Laplacian based clustering algorithm for

heterogeneous and noisy data of SBIoT.

2. A detailed analytical analysis of the proposed method.

3. An extensive simulation study on 5 real world data sets

along with a detailed comparative analysis of the results.

2. PROBLEM DESCRIPTION

In an SBIoT framework, the data often received is not

homogeneous but hugely sparse and heterogeneous with null

values. Traditional clustering algorithms require homogeneous

and clean datasets without any missing values. Moreover, the

existing methods fail to overcome the challenges imposed due

to sparse data matrices and often suffer from data loss.

Dropping the null data, in such cases, results in almost empty

data matrices. On the other hand, speculating the missing

values, results in steep degradation in clustering accuracy. As

such, the existing methods fail to deliver accurate classification

of clustered data in case of sparse or small data sets. The issues

associated with clustering heterogeneous data in SBIoT

applications are thus summarized as:

1) Data, in the SBIoT framework, is often heterogeneous and

hugely sparse with null values. Moreover, cleaning data

like dropping data points with missing values often leads

to a huge loss of data.

2) Dimensionality Reduction and missing value speculation

often lead to low accuracy and high running cost.

3) The existing clustering methods suffer from the inability

to identify the non-convex patterns in the heterogeneous

data because of which, adversely impacts the clustering

accuracy.

3. SYSTEM MODEL

An SBIoT network with heterogeneous observations is

realized for a smart park, where simultaneous events are

observed and reported for real-time processing by randomly

deployed nodes. Although, many different types of events are

sensed and reported only five different observations are

considered to be reported by every node, viz. temperature,

humidity, pressure, light, and air quality. Events are reported as

and when they occur via the deployed network of nodes, which

are otherwise programmed to conserve energy. To realize a

real-world scenario, the smart park is assumed to have rough

weather conditions (i.e., frequent rain and wind) where data

loss, link loss, and node loss are frequent. The smart park is

equipped with smart lights and smart parking areas in addition

to dense trees, smart cycle track, and a pool as shown in Figure

1. The symbols used in this work are described in Table 1.

4. DATASET DESCRIPTION & PRE-PROCESSING

The performance of the proposed algorithm is tested on five

datasets, namely WINE, E.Coli, Abalone, HTRU2, and Stone

datasets. All of these data sets are obtained from the open-

source UCI repository forum. Table VII shows the various

Table 1: Symbols used

Symbol Description Symbol Description

l1
Manhattan Distance

(|𝑦2 − 𝑦1| + |𝑥2 − 𝑥1|)
D

Degree

matrix

l2

Euclidean Distance

(√(|𝑦2 − 𝑦1|2 + |𝑥2 − 𝑥1|2))
A

Adjacency

matrix

G Graph of size n L
Laplacian

 matrix

x Number of features ACC
Accuracy

Score

c Threshold weight di
degree of

the ith node

W Weight matrix of size n × n SIL
Silhouette

Score

N Number of objects (data points) k
Number of

clusters

tj
Classification which has the max

count for cluster ci
ci

Cluster in

C

a Average intra-cluster distance b

Average

inter-

cluster

distance

datasets used with a brief description. To meet the needs of the

proposed work, the data sets are introduced to a prepossessing

step which involves the introduction of different ratios of null

values to get different heterogeneous data sets. Precisely, a

maximum of 20% null values, in a complete data set, are

introduced for validating the proposed algorithm.

Table 2: UCI Real-world Dataset Description

 Samples Features Clusters

Wine 178 13 3

E-coli 336 7 8

Abalone 4177 8 28

HTRU2 17898 8 2

Stone 79 8 4

5. PROPOSED METHODOLOGY

The proposed scheme is based on the general idea that the

related observations, from an SBIoT device, exhibit a strong

correlation structure. As such, a weight graph is constructed to

get a relative distance between the participating nodes which is

used for creating a graph with edges of weight as the same

relative distance. This is followed by the construction of a graph

Laplacian matrix using degree matrix and adjacency matrix.

Finally, the graph Laplacian matrix is used to obtain the desired

clusters based on the eigenvalues and corresponding

eigenvectors.

5.1 Construction of Weight Graph

The stepwise construction of the weight graph is explained

below:

• Create a new matrix of size n × n where n is the total

number of rows in the data set. The default value is set to ∞ and

that will be the final weight matrix in end.

Template for submitting papers to IETE Journal of Research.

3

• Start from the first row, and for every data point or row,

iterate on all other data points ahead of it and get an intersection

of features of those two rows, and drop columns of both rows

not in the intersection.

• Compute all the relative distances and choose the one with

optimal accuracy.

The steps of the algorithm are shown in Algorithm 1. Since,

Algorithm 1, has 2 nested loops, the time complexity is

calculated as the number of times the innermost loop is

executed. As evident, the Inner loop runs 1 less number of times

the value of the outer loop, thus:

𝟏 + 𝟐 + ⋯ + (𝒏 − 𝟐) + (𝒏 − 𝟏) =
(𝒏−𝟏)(𝒏)

𝟐
= 𝑶(𝒏𝟐) (1)

Algorithm 1 Weight Graph
1. for iteration = 1,2,...,N do

2. for actor = iteration +1…N do
3. Take inner Join/Intersection of both data points as Z.

4. if Z==0 then

5. Since no common variables, Go To line 2.

6. end if

7. Compute pairwise distance or any optimal relative distance and store
 at position (iteration, actor)

8. end for

9. end for

Consider the case where six sensor nodes with the five

predefined feature sets, are deployed for reporting the events.

A sample node data set and the weight graph W for an N × N

matrix (N = number of samples = 6 in this case), are shown in

Table 2 and Table 3 respectively.

Table 3: Sensor Nodes Data Set

A B

C D E

- - C1 - -

A2 B2 C2 - -

A3 - C3 - -

- B4 - D4 E4

A5 B5 - - -

A6 B6 C6 D6 -

Figure 1: System Model

Table 4: Weight Graph

 1 2 3 4 5 6

1 ∞ ∞ 8 ∞ ∞ 8

2 ∞ ∞ 8 1 6 8

3 8 8 ∞ ∞ 1 3

4 ∞ 1 ∞ ∞ 2 5

5 ∞ 6 1 2 ∞ 6

6 8 8 3 5 6 ∞

A threshold weight c, chosen based on the optimized final

accuracy, is used for the construction of a similarity graph. The

entries up to c in the weight graph are marked as 1 and those

above c, are marked as 0. The similarity graph, thus obtained

for the weight graph W, is shown in Table 4.

Table 5: Similarity Graph (S): c = 5

 1 2 3 4 5 6

1 0 0 1 0 0 1

2 0 0 1 0 1 1

3 1 1 0 0 0 0

4 0 0 0 0 0 1

5 0 1 0 0 0 1

6 1 1 0 1 1 0

5.2 Construction of Graph Laplacian Matrix

The steps for the construction of graph Laplacian matrix,

are as follows:

• Create an adjacency matrix (A) using the similarity graph

created in subsection 4.1.

• Create a degree matrix (D) using the same similarity graph

created in subsection 4.1 using equation 2 and 3.

• Get the graph Laplacian matrix (L) using degree and

adjacency matrix by following equation 4.

The adjacency matrix (A) is created using the similarity

graph created in subsection 4.1. The degree matrix (D) is then

created by adding all the points of the specific row. It is

empirical to note that the cells are filled along the diagonal for

each row of the degree matrix. The points of the degree matrix

may be extracted by the degree of the corresponding node. The

degree of the ith node is given by:

𝑑𝑖 = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1|(𝑖,𝑗)𝜖𝐸 (2)

where wij is the edge/weight between the nodes i and j as

mentioned in the adjacency matrix (A). Thus, the degree matrix

is defined as:

𝑫𝒊𝒋 = {
𝒅𝒊, 𝒊 = 𝒋
𝟎, 𝒊 ≠ 𝒋

 (3)

The Table 5 shows the degree matrix obtained for the

example, as explained in subsection 4.1. To obtain the normal

Laplacian, the adjacency matrix is subtracted from the degree

matrix (as shown in equation 4). The Table 6 shows the Graph

Laplacian matrix (L) for the discussed example. The degree of

every node is shown by the Laplacian’s diagonal, while the

negative edge weights are represented by the off diagonal.

𝑳 = 𝑫 − 𝑨 (4)

Template for submitting papers to IETE Journal of Research.

4

Table 6: Degree Matrix (D)

 1 2 3 4 5 6

1 2 0 0 0 0 0

2 0 3 0 0 0 0

3 0 0 2 0 0 0

4 0 0 0 1 0 0

5 0 0 0 0 2 0

6 0 0 0 0 0 4

Table 7: Graph Laplacian Matrix (L)

 1 2 3 4 5 6

1 2 0 -1 0 0 -1

2 0 3 -1 0 -1 -1

3 -1 -1 2 0 0 0

4 0 0 0 1 0 -1

5 0 -1 0 0 2 -1

6 -1 -1 0 -1 -1 4

5.3 Compute Clusters using Eigenvalues

Once the Laplacian matrix (L) is obtained, the proposed

algorithm takes advantage of one of its special properties to

classify the data. Consider, if the graph (G) has K connected

components, then L has K eigenvectors with an eigenvalue of 0.

The steps are as follows:

• Calculate eigenvalues and eigenvectors of graph Laplacian

matrix obtained from the subsection 4.2.

• Sort the eigenvalues and get k non-zero positive

eigenvalues close to 0, where k is equal to the total number of

clusters desired.

• Select the eigenvector with different eigenvalues only for

best results. If case of same eigenvalues, it can be dropped.

• Stack those eigenvectors together to be clustered.

• Use k−means to classify the nodes based on their

corresponding values in the eigenvector.

The corresponding eigenvalues and their respective

eigenvectors are shown in the Figure 2. Since the example

under consideration, has only one component, one eigenvalue

is calculated as 0 out of the 6 eigenvalues. In a more

complicated graph, there can be multiple components and thus

multiple eigenvalues may be reported as 0. Figure 3a shows the

plot of all the 6 eigenvalues, where the least three eigenvalues

or the ones closest to 0, are selected and their respective

eigenvectors are plotted. Figure 3b shows the plot of the first

eigenvector with values closest to 0. Evidently, all the values

are the same in this vector. Although there is only one

eigenvalue with 0, Figure 3c shows the plot of the eigenvector

of second and third eigenvalues which are closest to 0, and the

second smallest eigenvalue.

Figure 2: Eigenvalues and Respective Eigenvector

5.4 Steps of the Algorithm

The goal is to construct a similarity graph with a data set such

that a few of the data points are completely different and some

are similar entries. Originally, the experiments included a

concept to charge some cost on different dissimilar features.

But multiple results proved not to go with the latter. Getting a

number between every data point is somewhat like getting a

distance between n-dimensional vector space where n is equal

to the number of variables similar in both data points.

The following is a step-by-step description of the proposed

algorithm:

Step 1: Construct a weight graph W using Algorithm 1.

Step 2: Define a threshold parameter c to create a similarity

graph.

Step 3: Define a degree matrix D and adjacency matrix A

from the similarity graph as described in subsection

4.2.

Step 4: Define a Laplacian matrix L as described in

subsection 4.2.

Step 5: Find k largest eigenvectors and stack it in columns.

Step 6: Form the new matrix Y by re-normalizing each of X’s

rows.

Step 7: Cluster each row of Y into k clusters using k-means or

any other method, using each row as a point in Rk.
Step 8: If the row i in the matrix Y was allocated to cluster j,

label the respective point si to cluster j.

6. ANALYTICAL ANALYSIS

 There are many common designs for turning a collection of

data points x1,...,xn into a graph with pairwise similarity sij or

pairwise distances dij. When creating similarity graphs, the aim

is to represent the data points’ local neighborhood connections.

All the nodes with a distance less than the pre-defined

threshold, as mentioned in subsection 4.1, are considered in this

analysis. Additionally, the selected weights for this analysis do

not give any additional information about that data set or for

any graph. It is empirical to note that the directions are not

considered and that all the edges are used to create undirected

graph. Consider that, G is an undirected, weighted graph with a

matrix W, and that wij = wji ≥ 0.. It is not always assumed that

eigenvectors of a matrix are normalized when utilizing them.

The fixed vector ⊮ and a multiple a⊮ with some a ≠ 0, are

considered as the same eigenvectors. The eigenvalues are

arranged in ascending order, with multiplicities taken into

account. The eigenvectors corresponding to the k lowest

eigenvalues are referred to as ”the first k eigenvectors.” The

unnormalized graph Laplacian matrix (used in the proposed

approach) is defined as in equation 4 i.e. L = D−A, where, the

matrix L has the below properties:

For every vector v ∈ Rn we have

𝑣′𝐿𝑣 =
1

2
∑ 𝑤𝑖𝑗(𝑣𝑖 − 𝑣𝑗)2𝑛

𝑖,𝑗=1 (5)

By the definition of di,

𝑣′𝐿𝑣 = 𝑣′𝐷𝑣 − 𝑣′𝑊𝑣 = ∑ 𝑑𝑖𝑣𝑖
2

𝑛

𝑖=1

− ∑ 𝑣𝑖𝑣𝑗𝑤𝑖𝑗

𝑛

𝑖,𝑗=1

Template for submitting papers to IETE Journal of Research.

5

=
1

2
(∑ 𝑑𝑖𝑣𝑖

2

𝑛

𝑖=1

− 2 ∑ 𝑣𝑖𝑣𝑗𝑤𝑖𝑗

𝑛

𝑖,𝑗=1

+ ∑ 𝑑𝑗𝑣𝑗
2

𝑛

𝑗=1

) (6)

= ∑ 𝑤𝑖𝑗(𝑣𝑖

𝑛

𝑖,𝑗=1

− 𝑣𝑗)2 (7)

• L is symmetric as it comes from the symmetry of D and

weight matrix.

• L is positive and semi-definiteness as it is proved directly

from the first property, which shows v′Lv ≥ 0 for all v ∈ Rn.

• The lowest eigenvalue of the Laplacian matrix is zero.

• L has x positive, real-valued eigenvalues (with at least one

0) 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

Let G be the same graph, as mentioned above, with nonnegative

weights. The multiplicity m of the eigenvalue zero of the

Laplacian matrix is the same as the number of connected

components C1,...,Cm in the graph. The eigen-space of the

lowest eigenvalue is depicted by the same vectors ⊮C1,...,⊮Cm of

those components.

Now consider the case where m = 1, which results in a

connected graph. Assume that v is an eigenvector of lowest

eigenvalue as zero, then

0 = 𝑣′𝐿𝑣 = ∑ 𝑤𝑖𝑗(𝑣𝑖 − 𝑣𝑗)2

𝑛

𝑖,𝑗=1

 (8)

Since the weights wij are always positive or zero, the equation

8 can only perish if all terms wij (vi − vj)2 goes off. If two vertices

vi and vj are joined (i.e., wij > 0), then vi needs to be same as vj.

It is seen from this explanation that v must be constant for all

nodes in the graph that may be joined by a path. Since all nodes

of the same component and an un-directed network may be

joined by a path, v must be fixed across the network. Now there

is only a constant vector ⊮ as eigenvector of eigenvalue zero in

a graph that is definitely the required vector of the joined

component.

Considering an alternate situation when there are k linked

components, it may be considered that the nodes are sorted as

per to the joined components they hold to, without removing

generality. Adjacency matrix A has a block diagonal shape in

this case, with matrix L also being the same as:

𝐿 = (

𝐿1

𝐿2

⋱
𝐿𝑘

) (9)

It is worth noting that every part of Li is itself a Laplacian

graph matrix, as the Laplacian respective to the sub-graph of

the ith joined component.

 The spectrum of Laplacian is given by the join of the spectra

of Li, as the respective eigenvectors of Laplacian are the

eigenvectors of Li containing zero at the locations of all the other

parts which is the same for all parts of the diagonal matrix.

Every Li has eigenvalue zero, and the respective eigenvector is

the fixed 1 vector on the ith joined component, as each Li is

Laplacian of a joined graph. As a result, the matrix L has joined

components the same as the number of eigenvalues equal to 0,

and their respective eigenvectors are the joined component

required vectors.

The key technique in the proposed method, described in section

4.3, is to alter the form of the abstract tuples ai to points bi ∈ Rk.

This shift of representation is helpful because of the

characteristics of the Laplacians matrix. This alters in

representation improves the data’s cluster characteristics,

allowing clusters to be identified with ease in the new form.

The basic k -means clustering method, in particular, has no

trouble detecting clusters in this new form.

7. SIMULATION SETUP

The system model, as explained in section III, is realized in

Python for obtaining heterogeneous observations from 200

nodes, deployed to cover an ROI of 150m × 150m. A Unix

based system with 4 GB 1600 MHz DDR4 memory and

Macintosh operating system and 3.2 GHz Intel Core i5

processor is used to run the simulations. Additionally, jupyter

notebook as IDE along with packages such as Pandas, Numpy,

ScikitLearn (specifically k-means, spectral clustering to

compare), Matplotlib, Scipy, etc. are used.

A comparative analysis of the proposed algorithm is presented

for:

• Spectral clustering algorithm proposed in [13]: For the

mentioned datasets, the proposed algorithm and the

algorithm in [13], are implemented and tested on the same

parameters.

• The algorithms proposed and used for comparative
evaluations in [14] and [15]:
For the mentioned datasets, the proposed algorithm and

the algorithms proposed and used for comparative

evaluations in [14] and [15], are implemented and tested

on the same parameters.

The performance evaluation matrices, for comparative

evaluation, are as follows:

• Purity is a unique parameter for evaluating cluster quality.

It gives the percent of the total number of nodes or rows

which were clustered correctly and is given by:

𝑃𝑢𝑟𝑖𝑡𝑦 =
1

𝑁
∑ max

𝑗
|𝑐𝑖 ∩ 𝑡𝑗|

𝑘

𝑖=1

 (10)

• Accuracy (ACC) is defined as the percentage of correct

predictions for the test data and is given by:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (11)

The silhouette (SIL) value is a measure of how similar an

object is to its cluster (cohesion) compared to other clusters

(separation). The silhouette ranges from -1 to +1.

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒𝑆𝑐𝑜𝑟𝑒 =
(𝑏−𝑎)

𝑚𝑎𝑥(𝑎,𝑏)
 (12)

Template for submitting papers to IETE Journal of Research.

6

8. RESULTS AND COMPARATIVE ANALYSIS

8.1 Comparative Analysis with Algorithm in [13]

The proposed algorithm, along with the algorithm in [13] are

implemented with common parameters and their performance

on the five datasets is presented in Table 8. As evident from the

results, the proposed algorithm is able to outperform the

algorithm in [13] on almost all the datasets and metrices, except

for purity in Wine and accuracy on Stone. The spectral

algorithm in [13] could not be implemented for HTRU2 dataset,

hence the results could not be compared. A comparative

analysis shows that the proposed algorithm is able to achieve

1.13% better accuracy on wine dataset, 29.6% better accuracy

on E.coli dataset, 1.17% better accuracy on Abalone dataset. A

simple reason for the improved accuracy is the ability of the

proposed method to identify the non-convex patterns in the

heterogeneous data.

Table 8: Comparative Analysis with Algorithm in [13]

 Metric Spectral [13] Proposed Algorithm

Wine
Purity 99.43 98.87

ACC 97.75 98.88

E-coli
Purity 60.41 68.45

ACC 14.54 44.14

Abalone
Purity 23.29 27.45

ACC 16.50 17.67

HTRU2
Purity - 96.56

ACC - 96.89

Stone
Purity 97.26 98.20

ACC 97.3 96.33

8.2 Comparative Analysis with Algorithm in [14] and [15]

Table 9 shows the complete comparison of the proposed

algorithm to standard K-means, SSC, KKmeans, RSFKC, CLR,

MEAP, k-MEAP, KMM as proposed and used in [14] and

adacluster in [15]. A detailed analysis of the algorithm’s

performance on all the data sets is presented next.

8.3 Results on Wine Dataset

A careful observation of Table 9 reveals the fact that the

proposed method is able to achieve up to 3% and 1%

improvement in both purity and accuracy scores respectively

compared to algorithms in [14] and [15]. It is empirical to note

the proposed algorithm is able to deliver acceptable results even

with null values while the other counterpart algorithms are

unable to even execute with null variables. The comparative

results with [13], [14], and [15] on purity and accuracy, shown

in Figure 4c, clearly show the efficacy of the proposed method

over existing methods.

Figure 4a shows the plot of eigenvalues of graph Laplacian

of Wine dataset. It is evident from figure 4a that the values are

not the same and only one eigenvalue is 0 which indicates

clearly the only component in the graph. Evidently, the results

obtained after k-means on the first 3 non-zero positive vectors,

are better. The reason being that there are 3 clusters to be

obtained for which the first 3 non-zero eigenvectors are used to

cluster with different values. Figure 4b shows the plot of

eigenvector of the 2nd, 3rd, and 4th smallest eigenvalues. Since

the number of clusters to be found is 3, only 3 eigenvectors are

selected here apart from 1st which is constant due to zero

eigenvalue. As discussed in section 4, the more the spread of

values, the better is the ability to divide the dataset into clusters.

It can be clearly seen that dividing the dataset into 3 sections,

using all the three vectors, gives better results.

8.4 Results on E.coli Dataset

Figure 5a shows the eigenvalues plot of graph Laplacian of

E.coli dataset. Since there is only 1 component in the graph, the

first eigenvalue is 0, but as shown in Figure 5a, all the other

eigenvalues are the same as 336. Thus, selecting all the

eigenvectors or only one won’t affect the result. It is also

important to note that although, the number of clusters desired

is 8, but only one eigenvector will also give the same result as

8 eigenvectors when clustered. Figure 5b shows the plot of

eigenvectors of second and third smallest eigenvalues as

discussed in section 4, where it is shown that both eigenvectors

will give the same results of dividing the data set. It can be seen

that dividing the graph into 8 sections by 7 horizontal lines will

remain the same, taking 1 or more eigenvectors. As evident

from the observations reported in Table 9 and Figure 5c, the

performance of the proposed algorithm is not at par with the

other compared algorithms. The performance degradation is due

to the same eigenvalues. However, as evident from Table 8, the

proposed algorithm outperforms the standard spectral algorithm

[13] implemented in scikit library. It showed up to 8%

improvement in purity score and up to 30% improvement in

accuracy score.

8.5 Results on Abalone Dataset

The performance comparison of the proposed approach, as

presented in Table 9, proves that the proposed method is almost

at par with the compared approaches in terms of purity.

Moreover, the comparative results presented in Table 8 show

the efficacy of the proposed algorithm over the standard

spectral algorithm [13] implemented in scikit library. An

improvement of 4% in purity score and up to 1% improvement

in accuracy score evidently from the reported observations.

Figure 6c presents the comparative results of the proposed

method with the algorithms in [13], [14], and [15]. The

eigenvalue plot (shown in Figure 6a) shows that there is only 1

component in the graph, thus the first eigenvalue is 0, but all the

other eigenvalues are the same as 210. Thus, selecting all the

eigenvectors or only 1, won’t affect the results. Therefore, even

though the number of clusters desired is 28, only one

eigenvector will also give the same result as 28 eigenvectors

when clustered.

Figure 6b shows the plot of eigenvectors of the second, third,

and fourth smallest eigenvalues. As discussed in Section 4,

Figure 6b proves that all the eigenvectors give the same results

of dividing the data set. It can be seen that dividing the graph

into 28 sections by 27 horizontal lines will be the same, taking

1 or more eigenvectors. Evidently, due to the same eigenvalues,

the reported accuracy and purity are at par with the other

methods in [14]. This is one of the prime reasons for the

improved performance of the proposed algorithm as compared

to the standard spectral algorithm [13].

8.6 Results on HTRU2 Dataset

The comparative results, as presented in Table 9 and Figure

7c, show that the proposed algorithm is able to achieve

significant improvement & shows up to 1.8% improvement in

Template for submitting papers to IETE Journal of Research.

7

(a) Total eigenvalues (b) Values in First eigenvector

 (c) Values in Second and Third eigenvector of eigenvalue Close to 0

Fig 3. Eigenvalues and eigenvectors

(a) Eigenvalues plot of Wine dataset (b) Eigenvectors plot of Wine dataset

 (c) Purity and Accuracy comparison of proposed algorithm on Wine dataset

Fig. 4. Wine dataset

Template for submitting papers to IETE Journal of Research.

8

(a) Eigen values plot of E.coli dataset (b) Eigenvectors plot of E.coli dataset

(c) Purity and Accuracy comparison of proposed algorithm on E.coli dataset

Fig. 5. E.coli dataset

(a) Eigenvalues plot of Abalone dataset (b) Eigenvectors plot of Abalone dataset

(c) Purity and Accuracy comparison of proposed algorithm on Abalone dataset

Fig. 6. Abalone dataset

Template for submitting papers to IETE Journal of Research.

9

(a) Eigenvalues plot of HTRU2 dataset (b) Eigenvectors plot of HTRU2 dataset

(c) Purity and Accuracy comparison of proposed algorithm on HTRU2 dataset

Fig. 7. HTRU2 dataset

(a) Eigen values plot of StoneFlakes dataset (b) Eigenvectors plot of StoneFlakes dataset

(c) Purity and Accuracy comparison of proposed algorithm on StoneFlakes dataset

Fig. 8. StoneFlakes dataset

Template for submitting papers to IETE Journal of Research.

10

both purity and accuracy scores compared to the KMM

algorithm in [14] with the highest score. It is important to note

that the proposed method gives a significantly, acceptable result

even with null values, unlike the other algorithms which are

unable to even execute under similar conditions. The plot of

eigenvalues of graph Laplacian of HTRU2 dataset (figure 7a)

and the plot of eigenvector of 2nd and 3rd smallest eigenvalue

(figure 7b) proves the supremacy of the proposed method over

existing approaches. Since the number of clusters to be found is

2, therefore, only 2 eigenvectors are selected, apart from 1st

which is constant due to zero eigenvalue. As discussed in

section 4, the more the spread of values, the better is the ability

to divide the dataset into clusters, but it can be clearly seen that

it’s very hard to divide the dataset into 2 sections that will give

the optimal results. Even in such adverse conditions, the

proposed algorithm is able to deliver significantly better results

as compared to all the other partition algorithms.

8.7 Results on StoneFlakes Dataset

The observations, as reported in Table 8 prove that the

proposed method has a better purity score (about 1%) as

compared to the standard spectral algorithm [13] implemented

in scikit library. A simple reason for the marginally low

accuracy of the proposed method is the high number of null

values in the StoneFlakes dataset. When compared to the other

methods, Table 9 and Figure 8b prove that the proposed
algorithm is able to outperform most of its counterpart methods

as the accuracy is as high as 8%. Figure 8a and 8b also confirm

the efficiency of the proposed scheme over existing methods

used for comparative analysis in [13] and [14].

9. CONCLUSION AND FUTURE WORK

A novel method using the weight graph and graph Laplacian

matrix for complete heterogeneous data set is proposed in this

work. The improved accuracy and purity in clusters is because

of the ability of the proposed method to consider non-convex

patterns in the heterogeneous data and its ability to consider null

values efficiently. Comparative analysis of the proposed

method with state-of-the-art algorithms on 5 different real-

world data sets proves the dexterity of the proposed algorithm.

The performance improvement is shown in terms of accuracy,

purity, and significantly better silhouette score (as high as 30%

improvement) is reported based on the simulation analysis on

the real-world data sets. We continue to work and test the

proposed approach on large scale datasets and aim to present a

detailed analysis in future.

REFERENCES

1. Shukla, Ankita, Vishal Krishna Singh, and Mala Kalra.

"Multimodal Device Clustering Using Mobile Agent for

Correlation in Sensor-Based IoT." Adhoc & Sensor Wireless

Networks 48 (2020).

2. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum

likelihood from incomplete data via the em algorithm,”

Journal of the Royal Statistical Society: Series B

(Methodological), vol. 39, no. 1, pp. 1–22, 1977.

3. S. Guha, R. Rastogi, and K. Shim, “Rock: A robust clustering

algorithm for categorical attributes,” Information systems,

vol. 25, no. 5, pp. 345– 366, 2000.

4. Z. Huang, “Extensions to the k-means algorithm for clustering

large data sets with categorical values,” Data mining and

knowledge discovery, vol. 2, no. 3, pp. 283–304, 1998.

5. D. Gibson, J. Kleinberg, and P. Raghavan, “Clustering

categorical data: An approach based on dynamical systems,”

The VLDB Journal, vol. 8, no. 3, pp. 222–236, 2000.

6. D. Parmar, T. Wu, and J. Blackhurst, “Mmr: an algorithm for

clustering categorical data using rough set theory,” Data &

Knowledge Engineering, vol. 63, no. 3, pp. 879–893, 2007.

7. P. Kumar and B. Tripathy, “Mmer: an algorithm for clustering

heterogeneous data using rough set theory,” International

Journal of Rapid Manufacturing, vol. 1, no. 2, pp. 189–207,

2009.

8. L. Adamyan, K. Efimov, C. Y. Chen, and W. K. Hardle,

“Adaptive¨ weights clustering of research papers,” Digital

Finance, vol. 2, no. 3, pp. 169–187, 2020.

9. A. Khan and P. Maji, “Approximate Graph Laplacians for

multimodal data clustering,” IEEE Trans. on Pattern analysis

and machine intelligence, vol. 43, no. 3, pp. 789–813, 2021.

10. X. Ma, S. Zhang, K. Pena-Pena, and G. R. Arce, “Fast spectral

clustering method based on graph similarity matrix

completion,” Signal Processing, vol. 189, 2021.

11. Y. Ge, P. Peng, and H. Lu, “Mixed-order spectral clustering

for complex networks,” Pattern Recognition, vol. 117, 2021.

12. H. Yang, Q. Gao, W. Xia, M. Yang, and X. Gao, “Multiview

Spectral Clustering With Bipartite Graph”, IEEE Trans. on

Image Processing, vol. 31, pp. 3591–3605, 2022.

13. U. Von Luxburg, “A tutorial on spectral clustering,” Statistics

and computing, vol. 17, no. 4, pp. 395–416, 2007.

14. F. Nie, C.-L. Wang, and X. Li, “K-multiple-means: A

multiple-means clustering method with specified k clusters,”

in Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2019,

pp. 959–967.

 Mteric K-means [14] SSC [14] KKmeans [14] RSFKC [14] CLR [14] MEAP [14] K-MEAP [14] KMM [14] AdaCluster [15] Proposed Algorithm

Wine

Purity 94.94 66.85 96.06 95.50 93.25 94.94 48.31 95.76 - 98.87

ACC 94.94 66.85 96.06 95.50 93.25 94.94 48.31 78 97.19 98.88

SIL - - - - - - - - - 43.71

E.coli

Purity 79.76 82.33 61.30 79.46 79.76 42.55 80.41 82.37 - 68.45

ACC 62.79 59.82 34.52 58.03 52.38 42.55 74.10 78.85 - 44.14

SIL - - - - - - - - - 56.34

Abalone

Purity 27.36 27.68 26.43 19.89 27.67 19.70 27.31 25.20 - 27.45

ACC 14.62 13.96 14.79 19.12 14.96 19.70 16.51 20.20 - 17.67

SIL - - - - - - - - - 00.57

HTRU2

Purity 91.89 93.35 90.84 92.17 - - - 95.49 - 96.56

ACC 91.85 92.22 59.29 92.17 - - - 95.49 - 96.89

SIL - - - - - - - - - 41.36

StoneFlakes

Purity - - - - - - - - - 98.20

ACC - - - - - - - - 87.96 96.33

SIL - - - - - - - - - 47.36

Table 9 Clustering Performance Comparison of Proposed Algorithm on Real-World Datasets (%)

Template for submitting papers to IETE Journal of Research.

11

15. M. E. Basbug and B. Engelhardt, “Adacluster: Adaptive

clustering for heterogeneous data,” arXiv preprint

arXiv:1510.05491, 2015.

16. Singh, V.K., Singh, C. and Raza, H., 2022. Event

Classification and Intensity Discrimination for Forest Fire

Inference With IoT. IEEE Sensors Journal, 22(9), pp.8869-

8880.

17. Singh, V.K., Singh, V.K. and Kumar, M., 2019. Network

health monitoring of WSNs using node loss rate calculations.

Wireless Personal Communications, 108(1), pp.253-268.

18. Shivhare, A., Singh, V.K. and Kumar, M., 2020.

Anticomplementary triangles for efficient coverage in sensor

network-based IoT. IEEE Systems Journal, 14(4), pp.4854-

4863.

19. Singh, V.K., Nathani, B. and Kumar, M., 2019. WEED-MC:

Wavelet transform for energy efficient data gathering and

matrix completion. IEEE Transactions on Parallel and

Distributed Systems, 31(5), pp.1066-1073.

Vishal K. Singh received
the bachelor’s degree in
Information Technology, in
2010, the master’s degree
in Computer Technology
and Application from
National Institute of
Technical Teachers’
Training and Teachers’
Training and Research,

Bhopal, India in 2013, and PhD degree in
Information Technology from Indian Institute of

Information Technology, Allahabad, India in
2018. He is currently working as an Assistant
Professor in the Department of Computer Science,
Indian Institute of Information Technology,
Lucknow, India and is the Head of Wireless
Communications and Analytics Research Lab at
IIIT Lucknow. His research interests include
compressed sensing, in-network inference,
markov random field, wireless sensor networks,
machine learning, Internet of things and data
analytics.

Gaurav Tripathi received the
bachelor’s degree in Information
Technology in 2013, the master’s
degree in Computer Science and
Engineering from SLIET,
Longowal, India in 2018. He is
now pursuing PhD from Indian

Institute of Information Technology, Lucknow,
India and is associated with Wireless
Communications and Analytics Research Lab at
IIIT Lucknow. His research interests include
Machine Learning, Internet of Things, and Data
Analytics.

Aman Ojha received the
bachelor’s degree in Information
Technology in 2016, the master’s
degree in Computer Science
from Indian Institute of
Information Technology,
Lucknow, India in 2021.

He worked at the Wireless Communications and
Analytics Research Lab at Indian Institute of
Information Technology, Lucknow and
currently is working in Intel, Bengaluru, India.
His research interests include Machine
Learning, Internet of Things, and Data
Analytics.

Rajat Bhardwaj was born in
Meerut, Uttar Pradesh, India. He
has completed Bachelors in
Technology in Computer Science
and Engineering and his Master
of Science in Data Science from
Lancaster University. Currently,

he is working as a Project Manager in the H&M
Artificial Intelligence department. His area of
research and interest include consumer behavior
analysis, financial risk modeling, anomaly
detection and recommendation systems.

Haider Raza received the
bachelor’s degree in Computer
Science & Engineering from the
Integral University, India, in
2008, the master’s degree in
Computer Engineering from the
Manav Rachna International Uni-

versity, India, in 2011, and the PhD degree in
computer science from the University of Ulster,
Derry Londonderry, U.K., in 2016. He worked
(July 2016 to Nov 2017) as a Research Officer
(Data Science) in the Farr Institute of Health
Informatics Research, Swansea University
Medical School, U.K. He is currently a Lecturer
in the School of Computer Science and
Electronics Engineering, UK.

Manuscript length should be limited up to 10 pages including figures, tables, references,

author’s bio and photo etc. After final checks, if the typeset manuscript exceeds 06 pages

length, the author will be charged (after 06) per page @ Rs.1,000/- (for Indian Authors) and

50 USD (for Foreign Authors).

	1. Introduction
	2. Problem Description
	3. System Model
	4. Dataset Description & Pre-processing
	5. Proposed Methodology
	5.1 Construction of Weight Graph
	5.2 Construction of Graph Laplacian Matrix
	5.3 Compute Clusters using Eigenvalues
	5.4 Steps of the Algorithm

	6. Analytical Analysis
	7. Simulation Setup
	8. Results and Comparative Analysis
	8.1 Comparative Analysis with Algorithm in [13]
	8.2 Comparative Analysis with Algorithm in [14] and [15]
	8.3 Results on Wine Dataset
	8.4 Results on E.coli Dataset
	8.5 Results on Abalone Dataset
	8.6 Results on HTRU2 Dataset
	8.7 Results on StoneFlakes Dataset

	9. Conclusion and Future Work
	References

