
Mathematics and Computer Science
2023; 8(1): 19-38
http://www.sciencepublishinggroup.com/j/mcs
doi: 10.11648/j.mcs.20230801.13
ISSN: 2575-6036 (Print); ISSN: 2575-6028 (Online)

Application of the Plant Propagation Algorithm and NSGA-II
to Multiple Objective Linear Programming

Paschal Bisong Nyiam, Abdellah Salhi

Department of Mathematical Sciences, University of Essex, Colchester, United Kingdom

Email address:
pbnyia@essex.ac.uk (Paschal Bisong Nyiam), nyiampaschal@unical.edu.ng (Paschal Bisong Nyiam), as@essex.ac.uk (Abdellah Salhi)

To cite this article:
Paschal Bisong Nyiam, Abdellah Salhi. Application of the Plant Propagation Algorithm and NSGA-II to Multiple Objective Linear
Programming. Mathematics and Computer Science. Vol. 8, No. 1, 2023, pp. 19-38. doi: 10.11648/j.mcs.20230801.13

Received: May 3, 2022; Accepted: May 31, 2022; Published: February 10, 2023

Abstract: Multiple Objective Linear Programming (MOLP) problems are usually solved by exact methods. However,
nature-inspired population based stochastic algorithms such as the plant propagation algorithm are becoming more and more
prominent. This paper applies the multiple objective plant propagation algorithm (MOPPA) and nondominated sorting genetic
algorithm II (NSGA-II) for the first time to MOLP and compares their outcomes with those of prominent exact methods.
Computational results from a collection of 51 existing MOLP instances suggests that MOPPA compares favourably with four of
the most prominent exact methods namely extended multiple objective simplex algorithm (EMSA), affine scaling interior
MOLP algorithm (ASIMOLP), Benson’s outer-approximation algorithm (BOA) and parametric simplex algorithm (PSA), and
returns best nondominated points which are of higher quality than those returned by NSGA-II. However, the nondominated
points approximated by NSGA-II are evenly distributed across the nondominated front. The methods compare well with the
four exact methods especially on the large instances which the exact methods failed to solve even when given generous amounts
of computation times.

Keywords: Multiple Objective Linear Programming, Plant Propagation Algorithm,
Nondominated Sorting Genetic Algorithm II, Penalty Function Method, Best Nondominated Point

1. Introduction
We stated in [60] that multiple objective linear programming

(MOLP) is a branch of Multiple Criteria Decision Making
(MCDM) that seeks to optimize two or more linear objective
functions subject to a set of linear constraints. MOLP has
been an active area of research since the 1960s because of its

relevance in practice, [27]. Indeed, many real world decision
making problems involves more than one objective function
and can be formulated as MOLP problems. Consequently,
MOLP has been widely applied in many fields and has become
a useful tool in decision making, [65]. Formally, it can be
written as

min cT1 x = f1

...

cTq x = fq

subject to x ∈ X = {x ∈ Rn : Ax = b, b ∈ Rm, x ≥ 0} ,

(1)

where c1, ..., cq are n-vectors containing the coefficients of the
multiple objective functions, A is an m × n constraint matrix
and b is the right hand side vector.

We also noted in [60] that in practice, MOLP is typically
solved by the Decision Maker (DM) with the support of the
analyst who look for a most preferred (best) solution in the
feasible region X . This is because optimizing all of the



20 Paschal Bisong Nyiam and Abdellah Salhi: Application of the Plant Propagation Algorithm and NSGA-II to
Multiple Objective Linear Programming

objective functions simultaneously is often not possible due
to their conflicting nature, [61]. Consequently, the concept of
optimality is replaced with that of efficiency.

The purpose of MOLP is to obtain either all the efficient or
nondominated points or a subset of either, or a most preferred
point depending on the purpose for which it is needed.

In the last six decades, a number of exact methods have been
introduced for solving the problem. Some of them have proven
to be effective on small and medium scale MOLP instances.

Real life MOLP problems are difficult to solve. In a worst-
case situation all vertices might be efficient, meaning that the
problem would be intractable as there might be exponentially
many efficient vertices, [47]. It is, therefore, clear that
MOLP is intractable in the worst-case. Moreover, looking
at [46] which shows that listing all vertices of a polyhedron
is NP-hard, one can deduce that MOLP is also NP-hard
since in the worst-case scenario all vertices must be found
to determine the efficient ones. Thus, exact methods are
sometimes inefficient and costly, especially when the problem
size is large. Instead of finding efficient and nondominated
points, heuristics generally find good approximations or near
efficient solutions in acceptable computational times. For this
reason, they are widely used in multi-objective optimisation
(MOO). Given that finding all efficient solutions of MOLP is
NP-hard since it is equivalent to enumerating all vertices of
the feasible region [13], it is astonishing to note that only one
approximate method, namely NSGA [78], has been applied to
it [14]. It is worth investigating these methods as an alternative
solution approach to the problem.

This paper applies nature-inspired population based
stochastic algorithms namely multiple objective strawberry
plant propagation algorithm (MOPPA) [33] and nondominated
sorting genetic algorithm II (NSGA-II) [19, 20] which
were originally meant to solve multiple objective non-linear
programming problems to solve MOLP problems using the
penalty function method to handle general constraints. The
paper then compares the outcomes of these two approximate
methods with those of EMSA [59], ASIMOLP [5], BOA [10]
and PSA [68] which are prominent exact methods. Note that
EMSA [59] is an extension of the multiple objective simplex
algorithm of Evans and Steuer [31] to generate the set of
all nondominated points of the problem. In order to apply
MOPPA and NSGA-II to MOLP, we will reformulate (1)
to penalize each of the objective function for any constraint
that is violated, and to achieve the comparison we shall
compute a Most Preferred Nondominated Point (MPNP)
whose components are as close as possible to an unattainable
ideal objective point from the nondominated set returned by
exact methods to compare with the Best Nondominated Point
(BNP) returned by MOPPA and NSGA-II.

To the best of our knowledge, no application of MOPPA and
NSGA-II to MOLP or their comparison with exact methods
has been conducted before. We intend to fill this gap here.

This paper is organized as follows. Section 2 introduces
MOLP and basic notation. Section 3 is a brief review of the
relevant literature. Section 4 discusses heuristic approaches
to multi-objective optimisation. We present the strawberry

plant in Section 5. Section 6 presents the basic plant
propagation algorithm. The solution procedure is presented
in Section 7. We illustrated MOPPA and NSGA-II in Section
8. Section 9 discusses the determination of MPNPs in exact
methods. Section 10 presents experimental results obtained
with approximate and exact methods. Summary of results is
presented in Section 11. Finally, a conclusion is presented in
Section 12.

2. Notation and Definitions

We also stated in [60] that an alternative and compact
formulation of (1) is as follows

min Cx

subject to Ax = b

x ≥ 0,

(2)

where C is a q × n criterion matrix consisting of the rows cTk ,
k = 1, 2, ..., q, A and b are as described earlier. The feasible
set in the decision space is X = {x ∈ Rn : Ax = b, x ≥ 0}
and in the objective space it is Y = {Cx : x ∈ X} . The set Y
is also referred to as the image of X , [58]

A nondominated point in the objective space is the image
of an efficient solution in the decision space; nondominated
points form the nondominated set, [60].

An efficient solution of an MOLP problem is a solution
that cannot improve any of the objective functions without
deteriorating at least one of the other objectives. A weakly
efficient solution is one that cannot improve all the objective
functions simultaneously, [60]. Let x̂ ∈ X be a feasible
solution of (2) and let ŷ = Cx̂:

1. x̂ is called efficient if there is no x ∈ X such that
Cx ≤ Cx̂ and Cx 6= Cx̂; correspondingly, ŷ = Cx̂
is called nondominated.

2. x̂ is called weakly efficient if there is no x ∈ X such that
Cx < Cx̂; and ŷ = Cx̂ is called weakly nondominated
[26].

The set of all efficient solutions and the set of all weakly
efficient solutions of (2) are denoted by XE and XWE

respectively. The sets YN = {Cx : x ∈ XE} and
YWN = {Cx : x ∈ XWE} are the nondominated and weakly
nondominated sets in the objective space of (2) respectively,
[60]. The nondominated faces in the objective space of a given
problem constitutes the nondominated frontier and the efficient
faces in the decision space of the problem constitutes the
efficient frontier. The ideal objective point y∗ is the minimum
criterion values over the efficient set XE . The ideal objective
values are easy to obtain by simply minimizing each objective
function individually over the feasible region X [2].

3. Literature Review

Several exact methods have been introduced in the last six
decades for computing either the entire efficient decision set



Mathematics and Computer Science 2023; 8(1): 19-38 21

XE or the nondominated set YN or a subset thereof, or a most
preferred solution to the problem.

We stated in [60] that Eiselt and Sandblom [29] note that,
Evans and Steuer [31], Philip [63], and Zeleny [90] derived
generalized versions of the simplex method known as MSA.
That of Philip [63] first determines if an extreme point is
efficient and subsequently checks if it is the only one that
exists. If not, the algorithm finds them all. This MSA
approach, however, may fail at a degenerate vertex. In Philip
[64], it was modified to overcome this difficulty, [60].

The MSA of Evans and Steuer [31] also generates all the
efficient extreme points and unbounded efficient edges of
MOLPs; see also Algorithm 7.1, on page 178 of Ehrgott [26].
The algorithm first establishes that the problem is feasible and
has efficient solutions. Thereafter, it generates all of them. An
LP test problem is solved to determine the pivots that lead
to efficient vertices and the algorithm is implemented as a
software called ADBASE in [80].

As was also noted in [60] that the MSA variant of Zeleny
[90] also uses an LP test problem to determine the efficiency
of extreme points. But, here, vertices are tested for efficiency
after they have been obtained unlike in [31] where the test
problem determines pivots leading to efficient vertices.

In [85, 87] Yu and Zeleny used the method in [90] to
generate the set of all efficient solutions and presented a formal
procedure for testing the efficiency of extreme points. The
efficient extreme points are derived from the efficient faces,
in a top-to-down search strategy. Numerical examples using
problems with three objectives were used to demonstrate the
effectiveness of the method. In a similar paper, Yu and Zeleny
[86] applied their approach expanded in [87] to parametric
linear programming. Two basic forms of the problem and
two computational procedures for computing the efficient set
were presented: the direct decomposition of the parametric
space into subspaces associated with extreme points and
the indirect algebraic method. Numerical illustration show
that, the indirect algebraic approach is superior to the direct
decomposition.

We also noted in [60] that Isermann [41] proposed a variant
of the MSA of Evans and Steuer [31] that solves fewer LPs
when determining the entering variables. The algorithm first
establishes whether an efficient solution for the problem exists,
and solves a test problem to determine pivots leading to
efficient vertices. It was implemented as a software called
EFFACET in [40].

In [35], Gal presented an MSA that computes the set of
all efficient solutions and higher-dimensional faces of the
problem. This method is meant to address the problem
of determining efficient faces and higher dimensional faces
not resolved in [31] and [63]. Here, efficient solutions are
computed using a test problem. The algorithm also determines
higher-dimensional efficient faces for degenerate problems
which were only discussed in [41] and [90] but were not
solved. The efficient faces are generated in a bottom-to-top
search strategy as we noted in [60].

Steuer [79] used the MSA of Evans and Steuer [31] to solve
parametric and non-parametric MOLP problems. Different

methods for obtaining an initial efficient extreme point as well
as different LP test problems were also presented. Efficient
extreme points are generated through the decomposition of the
weight space into finite subsets that provide optimal weights
corresponding to extreme point solutions, [60]. Similary,
Ehrgott [26] also used the MSA of Evans and Steuer [31] to
solve MOLP problem instances with two and three objective
functions, [58].

In [24] was proposed a variation on the algorithm of Evans
and Steuer [31]. The authors noted that algorithms usually start
from an initial efficient extreme point and moved to an adjacent
one following the solution of an LP problem. The proposed
method does not require the solution of any LP problem to
test for the efficiency of extreme points and the feasible region
needs not be bounded. The algorithm enumerates all efficient
extreme points and appears to have computational advantage
over other methods.

We stated in [60] that Ecker et al. [23] presented yet
another variant of MSA. The algorithm first determines the
maximal efficient faces incident to a given efficient vertex (i.e.
containing the efficient vertex) and ensures that previously
generated efficient faces are not regenerated. This is done
following a bottom-to-top search strategy as in [35], which
dramatically improves computation time. The proposed
approach was illustrated with a degenerate example given in
[87], to demonstrate its applicability. It was computationally
more efficient than the method in [87].

We also noted in [60] that the MSA of Armand and Malivert
[7] determines the set of efficient extreme points even for
degenerate MOLPs. The approach follows a bottom-to-top
search strategy and utilizes a lexicographic selection rule to
choose the leaving variables which proves effective when
solving degenerate problems. It was tested successfully on a
number of degenerate problems. A numerical example with
five objectives and eight constraints which was solved in [87]
was also used to demonstrate its effectiveness. The proposed
MSA was superior to that in [87].

In [58], we stated that a modification of the PSA for
single objective LP to solve bounded bicriterion LP problems
was presented in [69]. The approach was applied to a
large mean-risk portfolio optimization problem for which the
nondominated portfolios were generated.

Ehrgott et al. [25] presented a primal-dual simplex
algorithm for bounded MOLP problems. This algorithm finds
a subset of efficient solutions that are enough to generate the
whole efficient frontier. The algorithm starts with a coarse
partitioning of the weight space which continues in each
iteration as well as solves an expensive LP in each iteration.
A vertex enumeration is then performed in the last step to
obtain efficient solutions. Numerical illustrations show the
applicability of the algorithm.

In [68] Rudloff et al. introduced a PSA for the problem.
The algorithm is a generalization of the algorithm in [69]
and is similar to that of Ehrgott et al. [25]. It works for any
dimension, solves bounded and unbounded problems (unlike
that in [25] and [69]), and does not find all the efficient
solutions just like that in [25]. Instead, it finds a solution



22 Paschal Bisong Nyiam and Abdellah Salhi: Application of the Plant Propagation Algorithm and NSGA-II to
Multiple Objective Linear Programming

based on the idea of Löhne [49], i.e. a subset of efficient
extreme points and directions that allows to generate the whole
efficient frontier. This is the so called PSA. The algorithm
does pivoting for just one leaving variable among the set of
all possible leaving variables. It was compared with a version
of BOA in [37] and MSA of Evans and Steuer [31] using
small MOLP instances which were randomly generated with
3 and 4 objectives and up to 50 variables and constraints. The
numerical results show that the proposed algorithm is superior
to BOA for non-degenerate problems. However, BOA is better
for highly degenerate problems. PSA was also found to be
computationally more efficient than the algorithm of Evans and
Steuer [31].

In [59], we presented an extension of the MSA of Evans and
Steuer [31] to generate the set of all nondominated points of
the problem and no redundant ones. This extended version was
compared to the primal variant of BOA [10] that also computes
the set of all nondominated points of the problem. Numerical
results on a collection of 56 existing MOLP instances show
that the total number of nondominated points returned by
EMSA is the same as that returned by BOA for most of the
problems considered.

Of all the MSA variants discussed so far, it was noted in [73]
that, the MSA of Evans and Steuer [31] is the most popular
and successful for computing all efficient extreme points of
the problem.

We noted in [60] that MSA and its variants make explicit
use of the vertices of the feasible region while interior-point
approaches on the other hand, generate iterates in the interior
of the feasible region. Various such approaches have been
suggested for the problem. The difference between them
depends on the methodology employed to assess the suitability
of points used to derive a combined search direction along
which one heads towards the next iterate, [60].

As we also stated in [60] that the first to adapt a variant of
Karmarka [45] interior-point algorithm, to solve MOLP seems
to be Abhyankar [1]. The author relies on the method of
centers and utilizes a parameterization of ellipsoids in the n-
dimensional space to approximate the efficient frontier of the
problem in polynomial time.

In [4], Arbel modified and adapted a variant of Karmarka
[45] algorithm resulting in the so called Affine Scaling
Interior MOLP (ASIMOLP) algorithm. He used the convex
combination of individual directions to derive a combined
direction along which to step toward the next iterate.
Specifically, the algorithm generates step direction vectors
based on the objectives of the problem. The relative
preference of these directions is then assessed using a utility
(or preference) function to obtain the points used in combining
them into a single direction vector that moves the current
iterate to a new one. The process is repeated until the algorithm
converges to a most preferred efficient solution after meeting
some termination conditions, [60].

In [5] was proposed yet another ASIMOLP algorithm.
This approach offers another means of assessing preference
information to establish a combined search direction rather
than using the DM’s utility function. The Analytic Hierarchy

Process (AHP) developed in [70] was applied to obtain
the relative preference of points used to derive a combined
direction along which the next step is taken. It is based on
the assessed preferences to weigh the step direction vectors
for each of the objectives in order to derive a combined step
direction vector. This process continues to generate search
directions and new feasible points at each iteration, until the
algorithm converges to a most preferred point on the efficient
frontier, [60].

We noted in [60] that another ASIMOLP algorithm based on
the AHP was introduced in [6]. Here, the derived preference
information is applied to the projected gradients in order to
obtain anchoring points and cones used in searching for a most
preferred solution. The boundaries of the constraints polytope
are constantly probed to make more directions available, which
enables one to arrive at a most preferred solution.

Wen and Weng [82] modified the ASIMOLP algorithm
in [4] in order to resolve zigzagging issues. However, the
modified algorithm may not yield a most preferred efficient
solution.

Lin et al. [48] also proposed a modification of the algorithm
in [4]. They adopted the utility function trade-off method
to weigh the objective functions involved and compared the
modified algorithm with that in [82] and the simplex method.
Numerical experiments show that their algorithm is superior.
On computing efficiency, the interior point based algorithms
outperform the simplex-based ones on large scale problems,
[60].

In [83], Weng and Wen introduced yet another ASIMOLP
based algorithm. The proposed algorithm computes a
weighted sum of the different search directions involved using
a utility function. These search directions are then normalized
with the weights to obtain a combined direction that moves
the current solution to an anchor point. Computational
experiments show that the proposed algorithm is suitable for
solving large scale instances.

We noted in [58] and [60] that, due to the various difficulties
arising from solving MOLP problems in the decision space
(such as having different efficient solutions that map onto the
same point in the objective space), efforts were made to look
at the possibility of solving them in the objective space. See
also Dauer [16], Dauer and Liu [17], Dauer and Saleh [18] and
Benson [10].

In [59] we stated that, Benson [10] presented a detailed
account of decision set based methods and proposed an
algorithm for generating the set of all nondominated points
in the objective space. This is the so called BOA. According
to him, this algorithm is the first of its kind. Computational
results suggest that the objective space based methods are
better than the decision space based ones. A further analysis
of the objective space based method for the problem was
presented in [11]. Here, the outer approximation algorithm
also generates the set of all weakly nondominated points,
thereby enhancing the usefulness of the algorithm as a decision
aid, [60].

Benson [12] suggested yet another algorithm for solving the
problem in the objective space. This time a hybrid method



Mathematics and Computer Science 2023; 8(1): 19-38 23

that partitions the objective space into simplices that lie in
each face so as to compute the set of nondominated points.
This idea was earlier presented in [9]. The algorithm is quite
similar to that in [10]. The difference between them is in the
manner in which the nondominated vertices are found. While a
vertex enumeration procedure is employed in [10], a simplicial
partitioning technique is used in the latter, [60].

In [75], Shao and Ehrgott modified the algorithm of Benson
[10]. While in [10], a bisection method that requires the
solution of several LPs in one step is required, here, solving
just one LP achieves the desired result and in the process
improves computation time. Again in [76], Shao and Ehrgott
introduced an approximate dual variant of the algorithm of
Benson [10] for obtaining approximate nondominated points
of the problem. The proposed algorithm was applied to
the beam intensity optimization problem of radio therapy
treatment planning for which approximate nondominated
points were generated. Numerical application suggests that the
method is faster than solving the primal directly.

We noted in [60] that the explicit form of the algorithm of
Benson [10] as modified by Shao and Ehrgott [75] is presented
in [49]. This version solves two LPs in each iteration during
the process of obtaining the nondominated extreme points.
In [50] Löhne presented a Matlab implementation of this
modified version called BENSOLVE-1.2, for computing the
entire set of nondominated points and directions (unbounded
nondominated edges) of the problem.

Csirmaz [15] also modified and introduced an improved
version of the algorithm of Benson [10] that solves one LP
and a vertex enumeration problem in each iteration. While in
Benson [10], solving two LPs to determine a unique boundary
point and a supporting hyperplane of the image is required in
two steps of the algorithm, here, the two steps are merged into
one and solving just one LP does both tasks, thereby improving
computation time. The algorithm was used to generate all
the nondominated vertices of the polytope defined by a set of
Shannon inequalities on four random variables so as to map
their entropy region. Numerical results show the applicability
of the method to medium and large instances, [60].

In [37], Hamel et al. presented new variants and extensions
of the algorithm of Benson [10]. The primal and dual variants
of the algorithm that solves only one LP problem in each
iteration. Numerical testing reveal a reduction in computation
time.

We noted in [58] that Löhne et al. [51] also extended the
primal and dual variants of the algorithm of Benson [10] to
approximately solve convex vector optimization problems in
the objective space.

More recently Dörfler, D. et al. [22] presented an algorithm
for approximately solving bounded vector optimization
problems in the objective space. The proposed algorithm is
an improvement and a modification of the algorithm in [37]
where a new selection rule for vertex enumeration is presented
to improve the over all efficiency of the algorithm. Numerical
illustrations suggests that the new algorithm may be faster than
that in [37].

Having discussed exact methods to the problem, we now

turn our attention to heuristics or approximate approaches
that seek to find good approximations or near efficient or
nondominated points in acceptable computational times. As
stated earlier, heuristics or approximate methods have been
commonly applied to nonlinear and discrete multi-objective
optimisation and not so much to MOLP.

In [14], Chakraborty and Ray applied multi-objective
parametric fuzzy programming and NSGA [78] to MOLP
transportation problem. Here, the MOLP problem is
transformed into a single objective parametric problem with
interval parameters. Numerical illustration using a coal energy
resource allocation problem show the applicability of the
method. NSGA has been widely applied in different discrete
and continuous multi-objective optimisation problems. In
[8], Bagchi applied NSGA to several scheduling problems
for which efficient solutions were found. For extensive
applications of NSGA to chemical engineering problems,
see [57]. NSGA-II [19, 20] which is an improved version
of NSGA [78] and arguably the most popular in the
context of nonlinear multi-objective problems has also had
tremendous applications in different nonlinear multi-objective
optimisation. It was successfully applied in the energy
generation expansion planning problem in [44] for which the
minimum investment and outage costs were approximated.
Similarly, Hu et al. [39] also applied NSGA-II to solve
a real-life combined gas and electricity network expansion
planning problem in Hainan province (China) with an aim
of minimizing investment, production and carbon emission
costs. The problem was formulated as a bicriterion nonlinear
multi-objective optimisation problem and solved using NSGA-
II for which the nondominated front was determined. In [55],
Massobrio et al. applied NSGA-II to the taxi sharing problem
in order to determine the minimum cost of journey and
delay time by passengers from the same location to different
destinations. The problem was formulated as a bicriteria
multi-objective optimisation problem and solved with NSGA-
II and greedy heuristics. Numerical results show that NSGA-
II outperform the greedy algorithms by achieving significant
improvements in both objectives in acceptable computational
time. Recently, NSGA-II was applied in the communication
industry to solve the spectrum assignment problem in [54].
Here, the spectrum assignment problem was also formulated as
a bicriterion multi-objective optimisation problem and solved
using NSGA-II. It was observed from the results obtained
that there is an improvement in throughput at the cost of
spectral efficiency which offers useful guidelines to the service
provider to maintain customer satisfaction in the spectrum
sharing network. In [21], a modification of NSGA-II [19, 20]
was presented and applied to solve the combined economic
and emission dispatch problem. The authors noted, however,
that NSGA-II ensures diversity along the nondominated front
using the concept of crowding distance, but lateral diversity
may be lost due to the lack of diversity in a particular decision
variable which may push the search towards the nondominated
front. The modified version is aimed at resolving this issue by
incorporating controlled elitism into NSGA-II and replacing
the crowding distance operator with a dynamic version which



24 Paschal Bisong Nyiam and Abdellah Salhi: Application of the Plant Propagation Algorithm and NSGA-II to
Multiple Objective Linear Programming

appears to solve the problem.
Salhi and Fraga [71] presented a plant propagation

algorithm (PPA) to solve the survival optimisation problem.
This is the so called PPA. The algorithm emulates the way
plants and in particular, the strawberry plant propagate by
sending many short runners when they are in good spots and
sending fewer but longer runners to explore the environment
when they are in not so good spots. It was tested on a
complex nonlinear process design problem and compared
with the Nelder-Mead algorithm. Experimental results show
the effectiveness of the proposed method and it performs
significantly better than the Nelder-Mead search method. In
[33], Fraga and Amusat extended the PPA in [71] to solve
multi-objective nonlinear programming problems. A novel
fitness function that emphasizes the end-points is introduced
into the extended version and applied to the integrated energy
systems design for off-grid mining operations problem for
which good designs that achieve the desired objectives were
approximated. Recently, Rodman et al. [67] applied the
extended multi-objective PPA (MOPPA) to the industrial beer
fermentation process in order to minimize the production time
and maximize ethanol production. The problem was modelled
as a bicriteria nonlinear dynamic optimisation problem and
solved with MOPPA. Numerical results show the effectiveness
of MOPPA in solving complex multi-objective optimisation
problems. Some well-known heuristic methods to multi-
objective optimisation will be discussed in the following
section.

4. Heuristic Approaches to
Multi-objective Optimisation

4.1. Genetic Algorithm

The Genetic Algorithm (GA) was developed by Holland
in 1975, [38]. It is based on the idea of natural selection.
The algorithm works with three operators which are referred
to as genetic operators namely; crossover, mutation and
reproduction.

4.1.1. Crossover
The crossover operator selects a random point which shows

a position on the individual. Then, parts of two selected
individuals are exchanged to generate two new individuals.
This procedure is called a single-point crossover. Another
type is called two-point crossover. In this variant, two random
positions are selected and parts of parents are exchanged.

4.1.2. Mutation
A predetermined number of individuals are mutated. This is

done by changing/flipping some of the entries of an individual.
This operator helps exploration of the search space.

4.1.3. Reproduction
This copies good individuals into the new population as they

are.

It was noted in [74] that to implement GA the following are
needed:

1. Initial Population: A predetermined number of
individuals is randomly generated to form an initial
population. The basic GA starts with this population.

2. Fitness Function: This measure is essential for the
implementation of GA. It allows to rank individual
solutions in the population. It is often the objective
function of the optimisation problem.

3. Selection of Parents: The main idea of selection is
choosing individuals from the population to be parents
to new individuals. The latter are expected to be better
than the parents. There are different selection methods
such as the Roulette Wheel and Tournament Selection,
[66].

4.1.4. Stopping Criteria
The algorithm stops when the number of generations

reaches a predetermined maximum number of generations.
Another commonly used stopping criterion is the maximum
number of generations without improvement in the current
solutions, [38, 74].

4.2. Vector Evaluated Genetic Algorithm (VEGA)

VEGA is the first population-based evolutionary multi-
objective genetic algorithm (MOGA) applied to multi-
objective optimisation problems. It was introduced by Schaffer
[72]. Here, the population is divided randomly into equal
sub-populations at each iteration. Fitness values are assigned
to all the solutions in a sub-population based on one of the
objective functions and each objective is used to evaluate
members in the population. In each sub-population, a fitness
proportionate selection is done and the selected members are
used for procreation. The process is repeated until convergence
is achieved.

4.3. Multi-Objective Genetic Algorithm (MOGA)

MOGA is the first population-based evolutionary algorithm
that uses the nondominated classification of the population.
In MOGA, each solution is checked for its domination in the
population and a rank i, equal to ni the number of solutions
that dominates solution i, is assigned to it. To ensure that
diversity is achieved, the algorithm uses a sharing function
model, [36].

4.4. Nondominated Sorting Genetic Algorithm (NSGA)

NSGA is one of the multi-objective evolutionary algorithms
(MOEA) which has the capacity to find nondominated points
in a single run. It was introduced by Srinivas and Deb [78].
In NSGA the population is sorted according to nondomination
and classified into a number of fronts (F1, F2, ..., Fn). Using
niching and nondominated sorting of solutions in every
generation, the good solutions are selected for procreation.
The algorithm also uses a sharing function model to ensure
diversity. Its main issues are: It requires the potential user to



Mathematics and Computer Science 2023; 8(1): 19-38 25

specify the sharing parameter, which is difficult for the user to
determine the ideal value; the nondominated sorting technique
is time consuming and computationally expensive; it lacks
elitism, which may be important in preventing the loss of good
solutions once they are found, [88].

4.5. Nondominated Sorting Genetic Algorithm II
(NSGA-II)

NSGA-II [19, 20] is an improved version of NSGA [78].
Though NSGA enjoyed patronage in the multi-objective
evolutionary community, it was also widely criticized for the
above three issues (lack of elitism, high computational cost of
nondominated sorting and the requirement for specifying the
sharing parameter). The NSGA-II succeeded in solving all the
three issues at once by introducing a fast nondominated sorting
and tournament selection using the concept of crowding

distance, [62]. In NSGA-II, in addition to the genetic
operators of crossover and mutation, two new specialized
multi-objective operators or mechanisms have been proposed
to solve the above three issues:

1. Nondominated Sorting: NSGA-II employs a fast
nondominated sorting that is aimed at reducing the
complexity of sorting as compared to that used in
NSGA.

2. The Crowding Distance: It is a technique to replace the
sharing parameter that was needed in the old version.
This approach involves ranking among members of a
front those that are dominating or being dominated by
each other.

These two procedures are used together with the genetic
selection operators to create the population of the next
generation. The pseudo-code of NSGA-II adapted from [88]
is given as Algorithm 1.

Algorithm 1 Nondominated Sorting Genetic Algorithm II [88]
1: Initialization:
2: � Generate random population
3: � Evaluate objective values
4: � Assign rank (level) based on nondomination
5: � Generate child population

- Tournament selection
- Crossover and mutation

For i = 1 to number of generations
6: � Parent and child population are assigned rank based on nondomination
7: � Generate sets of nondominated fronts
8: � Determine the crowding distance between points on each front
9: � Select points based on crowding distance calculation and fill into the parent population until full

10: � Create next generation
11: � Tournament Selection
12: � Crossover and Mutation
13: � Evaluate Objective Values
14: � Increment generation index

End

Among all the above mentioned MOEAs, NSGA-II is the
most popular and known for its capacity to promote the
quality of solutions, [43]. There are new nature-inspired
population based stochastic algorithms which have shown
a lot of promise on nonlinear single and multi-objective
optimisation problems. One such algorithm is the so called
plant propagation algorithm or PPA. It emulates the way plants
and in particular the strawberry plant propagate, [71]. The
details of PPA will be provided in Section 6 where it is
investigated and used to solve MOLP.

Based on our extensive review of the topic, it was observed
that no application of MOPPA and NSGA-II to MOLP has
been carried out before, and no comparison of a MPNP chosen
from exact methods with the BNP returned by MOPPA and
NSGA-II has been carried out. We intend to fill this gaps here.

5. The Strawberry Plant

The strawberry plant (Fragaria Xananassa) belongs to the
Rose family. The strawberry-growing industry started in Paris
in the seventeenth century with the European variety. In 1714,
Amedee-Francois Frezier, a mathematician and engineer, hired
by Louise XIV [30] to draw maps of South America returned
from Chile with some Chilean strawberry plants which give a
larger fruit. Subsequent crossings with the European variety
and selections led to the modern plant, [71].

Looking at mature strawberry plants, one will observe after
a period of time, a concentration of younger plants around
strong and well-established ones; that is the plants send many
short runners as they are in good spots. Plants that are not
well-established and are not looking very strong, send few
but longer runners to explore the environment in search of
better spots with enough water, nutrients and sunlight. These



26 Paschal Bisong Nyiam and Abdellah Salhi: Application of the Plant Propagation Algorithm and NSGA-II to
Multiple Objective Linear Programming

basic principles are behind the design of PPA and subsequently
MOPPA.

Figure 1. The strawberry plant (Fragaria Xananassa).

6. The Basic Plant Propagation
Algorithm

The Plant Propagation Algorithm (PPA) introduced by Salhi
and Fraga [71] emulates the way plants and in particular
the strawberry plant propagate. That is, it emulates the
strategy that plants deploy to survive by colonising new places
which have good conditions for growth. Plants, like animals,
survive by overcoming adverse conditions using often basic
but effective strategies. The strawberry plant, for instance,
has a survival and expansion strategy which is to send short
runners to exploit the local area if the latter has good conditions
(with enough water, nutrients and light), and to send long
runners to explore new and more remote areas, that is to run
away from a not so favourable current area (with poor water
supply, nutrients and light). PPA in its multi-objective version
has not been applied to MOLP, yet. We intend to do that here.
MOPPA [33] is the implemented version. The mechanism of
the basic PPA is described below, [74, 81].

Algorithm 2 The Plant Propagation Algorithm (PPA) [71]
1: Generate a population P = Xi, i = 1, . . . , NP of plants;
2: g ← 1
3: for g = 1 : gmax

4: Compute Ni = f(Xi),∀ Xi ∈ P
5: Sort P in ascending order of fitness values N (for minimization);
6: Create new population φ
7: for each Xi, i = 1, . . . , NP
8: ri ← set of runners where both the size of the set and the distance for each runner (individually) are proportional

to the fitness values φ← Φ ∪ ri (append to population);
10: endfor
11: P ← φ (new population);
12: endfor
13: Return P , (the population of solutions).

The algorithm starts with a population of plants each of
which represents a solution in the search space. Xi denotes
the solution represented by plant i in an n-dimensional space.
Xi ∈ Rn, i.e. Xi = [xij ], for j = 1, . . . , n and xij ∈
R. NP is the population size. This iterative process stops
when g the counter of generations reaches its given maximum
value gmax. Individuals/plants/solutions are evaluated and then
ranked (sorted in ascending or descending order) according to
their objective (fitness) values and whether the problem is a
min or a max problem. The number of runners of a plant is
proportional to its objective value and conversely, the length
of each runner is inversely proportional to the objective value,
[71]. For each Xi, Ni ∈ (0, 1) denotes the normalized
objective function value space. The number of runners for each
plant to generate is

nir = d(nmax Ni βi)e (3)

where nir shows the number of runners and βi ∈ (0, 1)
is a randomly picked number. For each plant, the minimum

number of runners is set to 1. The distance value found for
each runner is denoted by dxij . It is:

dxij = 2(1−Ni)(r − 0.5), for j = 1, . . . , n. (4)

where r ∈ [0, 1] is a randomly chosen value. Calculated
distance values are used to position the new plants as follows:

yij = xij + (bj − aj) dxij , for j = 1, . . . , n. (5)

where yij shows the position of the new plant and [aj , bj ]
are the bounds of the search space. If the bounds of the
search domain are violated, the point is adjusted to be within
the domain [aj , bj ]. The new population that is created
by appending the new solutions to the current population
is sorted. In order to keep the number of population
constant, the solutions that have lower objective value are
dropped, [74]. The algorithm was originally designed for
single-objective nonlinear optimisation problems. It has
been successfully tested on single-objective and bicriteria



Mathematics and Computer Science 2023; 8(1): 19-38 27

continuous optimisation problems in [71]. It has also
been applied successfully to a single-objective dynamic
optimisation problem in the built environment [34]. Recently,
the algorithm was equipped with a new fitness function that
emphasizes the end-points and extended to multi-objective
nonlinear programming problems in [33]. This version was
successfully applied to the integrated energy systems design
for off-grid mining operations which is a bicriteria dynamic

optimisation problem. Most recently, the algorithm was also
applied to the industrial beer fermentation process in [67] for
which the nondominated front was successfully approximated.
Given the successes of the algorithm recorded so far for
single and multi-objective nonlinear programming problems,
we intend to apply MOPPA to MOLP problems. The pseudo-
code of MOPPA adapted from [33] is given as Algorithm 3.

Algorithm 3 The Multi-Objective Plant Propagation Algorithm, [33]
0: Given: f(x), a vector function; ng, number of generations to perform; np, the

propagation size; nr, maximumnumber of runners to propagate.
1: Output: z, vector approximation to Nondominated frontier.
2 p ← initial random population of size np

3 for ng generations do
4 prune population p, removing similar solutions
5 N ← fitness(p) � Use rank based fitness
6 p̄ ← ∅ � Empty set
7: for i← 0 ... np do
8: x← select(p,N) � Tournament fitness based selection
9: for each runnerto generate do � Number proportional to fitness rounded up
10: x̄← new solution(x, 1−N) � Distance inversely proportional to fitness
11: p̄← x̄ ∪ p̄ � Add to new population
12: endfor
13: p← p\x �Remove from old population
14: endfor
15: p← p̄ ∪Nondominated(p) �New population with elitism
16: endfor
17: z ← Nondominated(p)

7. Solution Procedure
In order to apply MOPPA to MOLP, we use the penalty

function method [56] to handle the constraints. The
penalty function method is the most popular constraint
handling technique in evolutionary algorithms and many other
optimisation frameworks [56, 84]. It penalizes each objective

or fitness function by reducing its fitness values in proportion
to the degree of constraint violation [77]. In other words,
a penalty term is added to each of the objective function
penalizing the function values that are not in the feasible
region. To use this method, MOLP problem (1) is reformulated
as follows:

min f1(x) +Kp1(x)

...
fq(x) +Kpq(x)

subject to x ∈ X = {[a, b]n ⊂ Rn : gj(x) ≤ 0, j = 1, ...,m} ,

(6)

where X is the search space or feasible region which is
described by box constraints, a and b are the lower and
upper bounds on all variables, the scalar quantity K is a
constant which is called the penalty parameter and the function
pk(x), k = 1, ..., q is the penalty function. Equation (6) is now
our new MOLP penalty program.

The penalty function pk(x) satisfies the following
1. pk(x) = 0, if gj(x) ≤ 0
2. pk(x) > 0, if gj(x) � 0,

that is to say, the penalty function is zero if no violation of
the constraint occurs and is positive if a constraint is violated;
the penalty parameter term would be added to the objective
function such that the solution is pushed back towards the
feasible region. A large penalty value prevents searching the

infeasible region and enables the method to converge to a
feasible solution quickly, [84].

8. Illustration of MOPPA

We consider the following MOLP adapted from [42].
We implemented the MOLP penalty program 6 in Matlab

and applied a Matlab implementation of MOPPA which can be
found in [32] to solve Problem 7. With x1 ∈ [0, 7] , x2 ∈ [0, 5]
as variable bounds, a population size of 50, maximum number
of runners 5 and the number of generations to perform at 200
are chosen. The nondominated front approximated by the
algorithm is shown in Figure 1.



28 Paschal Bisong Nyiam and Abdellah Salhi: Application of the Plant Propagation Algorithm and NSGA-II to
Multiple Objective Linear Programming

minf1 = −x1
minf2 = −x2
Subject to

6x1 + 10x2 ≤ 60

x1 ≤ 7

x2 ≤ 5

x1, x2 ≥ 0

(7)

Table 1. Nondominated Points and their corresponding fitness values.

f1 f2 fitness

-6.98 -1.8. 0.96

-1.64 -5.00 0.95

-1.79 -4.89 0.93

-7.00 -1.79 0.91

-6.76 -1.94 0.90

-2.50 -4.46 0.88

-6.87 -1.83 0.86

-6.32 -2.13 0.84

-3.17 -3.92 0.82

-6.61 -2.01 0.81

-2.73 -4.24 0.79

-3.26 -3.81 0.77

-1.93 -4.79 0.75

-1.97 -4.77 0.73

-3.42 -3.80 0.71

-1.68 -4.96 0.69

-6.86 -1.85 0.67

-1.93 -4.82 0.65

-3.11 -4.07 0.63

-6.08 -2.19 0.61

-6.77 -1.90 0.59

-3.78 -3.59 0.57

-2.42 -4.51 0.55

-4.10 -3.29 0.53

-1.74 -4.90 0.51

-2.00 -4.77 0.49

-6.87 -1.84 0.47

-6.36 -2.12 0.45

The nondominated points and their corresponding fitness
values are shown in Table 1. These are sorted in decreasing
order from top to bottom of the table according to the rank
based fitness function incorporated in the algorithm.

We are interested in the nondominated point with the best
fitness value which will serve as the Best Nondominated Point
(BNP). From Table 1, the BNP is f1 = (−6.98,−1.80)T with
a fitness value of 0.96, where f1 = (f11 , f

1
2 )T ∈ YN . Note that

when solving Problem 7 with exact methods, the MPNP was
found to be f1 = (−7.0, −1.80)T as would be seen in Section
8.

In Figure 2, it can be seen that MOPPA is able to
approximate the nondominated frontier using the penalty
function method. The nondominated points are not evenly
distributed on the frontier but tend to concentrate more towards

the end-points of the front.
We have also solved Problem 7 using NSGA-II [19, 20]

which is another approximate multi-objective evolutionary
algorithm with the same settings as in Equation (6). We use
the same variable bounds with a population size of 50, 200
generations, mutation rate of 0.02 and crossover rate of 0.8.
The nondominated frontier as approximated by NSGA-II is
shown in Figure 3.

Figure 2. Nondominated frontier approximated by MOPPA.

Figure 3. Nondominated frontier approximated by NSGA-II.

The nondominated points approximated by NSGA-II are in
Table 2. Each of these points is assigned a rank or fitness value
according to its domination level and sorted in descending and
sorted in descending order from top to bottom of the table
according to their crowding distances. The end-points which
are fitter than other points are assigned an infinite distance
value. From Table 2, the end-point f1 = (−6.82,−1.90)T

which is the first to be listed and therefore highest in ranking
of the two end-points, is selected as the BNP.



Mathematics and Computer Science 2023; 8(1): 19-38 29

Table 2. Nondominated Points and their corresponding Crowding distances.

f1 f2 Crowding Distance

-6.82 -1.9 Inf

-1.96 -4.82 Inf

-4.28 -3.36 0.1582

-4.12 -3.53 0.1232

-6.60 -20.0 0.1171

-4.49 -3.29 0.1066

-3.78 -3.72 0.1032

-3.91 -3.62 0.1014

-5.77 -2.54 0.0974

-5.64 -2.61 0.0953

-5.26 -2.84 0.0943

-5.39 -2.76 0.0933

-3.55 -3.82 0.0925

-4.88 -3.03 0.0917

-5.88 -2.47 0.0916

-3.10 -4.14 0.0912

-3.45 -3.92 0.0905

-5.97 -2.39 0.0894

-2.13 -4.72 0.0863

-4.55 -3.21 0.0842

In Figure 3, it can be seen that NSGA-II did not only
approximate the nondominated frontier, but also distribute the
points evenly on the nondominated front for the problem.

In terms of the quality of nondominated points
approximated by these two algorithms, it can be seen in
Tables 1 and 2 that the points returned by MOPPA are of
higher quality than those returned by NSGA-II. This can
easily be seen that the BNP f1 = (−6.98,−1.80)T selected
from Table 1 is of higher quality and closer to the MPNP
f1 = (−7.0, −1.80)T determined from the exact methods in
Section 8 than the BNP f1 = (−6.82,−1.90)T selected from
Table 2.

For comparison purposes, we will compare the BNPs
returned by these two approximate methods with the MPNPs
returned by the exact methods EMSA[59], BOA [10], PSA
[68] and ASIMOLP [5].

We also solved Problem 7 of Section 7.1 using Matlab
implementations of exact methods EMSA, BOA, PSA and
ASIMOLP. The nondominated points found for EMSA, BOA,
PSA are f1 = (−7.0, −1.80)T and f2 = (−1.6, −5.0)T

where f1 and f2 ∈ YN , while ASIMOLP returns f1 =
(−3.6418, −3.7913)T as the MPNP.

9. Determination of Most Preferred
Nondominated Points in
Exact Methods

As we noted in [58] that to determine the MPNP, we
employed the technique of Compromise Programming (CP)
introduced by [89] and compute the ideal objective point
which would serve as a reference point in each case. CP

is a mathematical programming method that is based on the
notion of distance of a most preferred solution from the ideal
point y∗ [91]. CP can be used to find the best nondominated
point by determining the minimum distance to the ideal point
[92]. Ehrgott and Tenfelde-Podehl [28] note that the ideal
point is an essential component of CP, and the idea is to find a
nondominated point which is as close as possible to it. This is a
point in the objective space whose components are the optimal
values of the objective functions when they are individually
optimized, [3]. It was also noted in [91] that the ideal point
serves as a rationale directing and facilitating human choice
and decision making. To find the ideal point, we simply solve
q single objective problems

min cTk x, k = 1, 2, ..., q

subject to x ∈ X.
(8)

We note here that, the ideal point itself is not an element of
the nondominated set (y∗ /∈ YN ). Otherwise, this would mean
that the objective functions are not conflicting, but it always
exists in the objective space. Its corresponding point in the
decision space may not exist, [3].

For our numerical illustration above (problem 7 of Section
7.1), solving each of the objective function individually
over the feasible region X yields the ideal objective point
y∗ = (−7.0,−5.0)T . Clearly y∗ /∈ YN where YN =
{(−7.0, −1.80)T , (−1.6, −5.0)T }, [58].

Having computed the ideal objective point y∗, we now
determine the minimum distance of each nondominated point
ŷ from it by finding

min {‖ŷ1 − y∗‖, ‖ŷ2 − y∗‖, . . . , ‖ŷn − y∗‖}

where ŷi ∈ YN has already been found either by EMSA, BOA
and PSA, ‖ .‖ is the Euclidean norm on Rq and y∗ is the ideal
objective point.

Using the nondominated points f1 and f2 returned by
EMSA, BOA and PSA for problem 7 yields

‖f1 − y∗‖ = 3.2 and ‖f2 − y∗‖ = 5.4.

Since, the relative distance of f1 from the ideal point y∗ is
3.2 which is the smallest of the two, it therefore means that
f1 = (−7.0, −1.80)T is the closest of the two nondominated
points to the ideal point y∗ = (−7.0,−5.0)T . Hence, f1 is
selected as the DM’s most preferred nondominated point.

Next, we measure the distance of the nondominated point
f1 = (−3.6418 − 3.7913)T returned by ASIMOLP for the
same problem from the ideal point y∗ = (−7.0,−5.0)T , as
was done with those returned by EMSA, BOA and PSA. It
turned out that, the distance

‖f1 − y∗‖ = 3.5691

is bigger than 3.2 which was the closest when measuring the
points returned by EMSA, BOA and PSA, thereby making the
nondominated points returned by EMSA, BOA and PSA closer
to the ideal point and of higher quality.



30 Paschal Bisong Nyiam and Abdellah Salhi: Application of the Plant Propagation Algorithm and NSGA-II to
Multiple Objective Linear Programming

We have used this method to choose the MPNP from the
nondominated sets returned by EMSA, BOA and PSA for
comparison with those returned by MOPPA and NSGA-II.
There is no selection of a MPNP in ASIMOLP as the algorithm
computes a most preferred efficient solution and also returns
the corresponding most preferred nondominated point which
is also used for the comparison, [60].

10. Experimental Results
In this section, we provide numerical results to compare

the quality of the BNP returned by MOPPA and NSGA-II
which find approximate points to the MPNP computed by
exact methods. Since heuristic approaches are best tested on
problems for which the solutions are known, [20]. Table 4
shows the numerical results for a collection of 51 existing
problems from the literature ranging from small to medium
and realistic MOLP instances. Problem 1 is taken from Ehrgott
[26]. Problems 2 to 10 are from Zeleny [91]. Problems 11
to 21 are test problems from the interactive MOLP explorer
(iMOLPe) of Alves et al. [3]. Problems 22 to 47 are taken
from Steuer [79]. Problem 48 is a test problem in Bensolve-
2.0 of Löhne and Weißing [53]. Finally, Problems 49 to 51 are
from MOPLIB [52] which stands for Multi-Objective Problem
Library.

Note that problems 1 to 47 are non-degenerate. Problem
48 is such that the constraint matrix is dense with an identity
matrix of order n as its criterion matrix where n is the number
of variables in the problem. The RHS vector is such that all
the components are zeros except for a one (1) at the begining
as the only non-zero element. In Problem 49, the constraint
matrix is sparse, the criterion matrix is dense and all the
elements in the RHS vector are ones. Problem 50 is such
that the constraint and criterion matrices are sparse while the
components of the RHS vector are all zeros except for a one (1)
at the centre as the only non-zero entry. Finally, Problem 51 is
such that the constraint and criterion matrices are sparse while

the components of the RHS vector are all zeros except for a
ninety (90) at the end as the only non-zero entry. These larger
instances are very challenging, numerically ill-posed and have
difficult structures.

All algorithms were implemented in Matlab and executed
on an Intel Core i5-2500 CPU at 3.30GHz with 16.0GB RAM.
In all tests, m is the number of constraints, n the number
of variables and q the number of objectives. We used the
MPNPs computed from the nondominated set returned by
EMSA, BOA, PSA and ASIMOLP as illustrated in Section 8
to compare with the BNP returned by MOPPA and NSGA-II.

As can be seen from Table 4, MOPPA compared favourably
in terms of the quality of the BNP it returns. The algorithm
returns BNPs which are of higher quality and closer to those
returned by exact methods than NSGA-II, which confirms
what was reported in [33] that the objective values obtained
with NSGA-II are of lower quality than those obtained with
MOPPA.

Of particular interest is Problems 3, 9, 11 and 23 where
the points returned are exactly the same with those of the
exact methods. In terms of diversity (spread) between the
two approximated methods, as can be seen from Section 7.1,
NSGA-II returns nondominated points that are more uniformly
or evenly distributed than the nondominated front of MOPPA
whose points tend to concentrate more towards the end-points
of the front.

We also observed in Table 4 that some of the exact methods
could not produce results for some of the numerically ill-posed
and highly challenging test problems considered due to one
reason or the other as stated in the table. The approximate
methods on the other hand, were able to solve all these difficult
instances approximately.

11. Summary of Results
In this section, we present the summary of experimental

results discussed in the previous section in Table 3.

Table 3. Summary of experimental results.

Algorithms Criteria for Evaluation
Diversity (Spread) Quality of BNP returned

MOPPA The nondominated points are not evenly distributed on the front but concentrate
more towards the end-points

Return high quality BNP than NSGA-II which is closer to those
returned by the exact methods

NSGA-II The nondominated points are uniformly distributed on the nondominated front The quality of BNP is not as good as that returned by MOPPA

Table 4. Comparative results for individual problem.

Algorithm EMSA ASIMOLP BOA PSA NSGA-II MOPPA

Prob. Origin n m q MPNP MPNP MPNP MPNP BNP BNP

1 0 3 3 3 f1 = -2.00 f1 = -1.74 f1 = -2.00 f1 = -2.00 f1 = -0.35 f1 = -0.70

Ehrgott f2 = 10.00 f2 = 5.56 f2 = 10.00 f2 = 10.00 f2 = 3.27 f2 = 7.12

2006 f3 = -5.00 f3 = -2.75 f3 = -5.00 f3 = -5.00 f3 = -1.98 f3 = -3.56

2 Zeleny 2 2 2 f1 = -25000 f1 = -30626 f1 = -25000 f1 = -25000 f1 = -22302 f1 = -24880

1982 f2 = -66000 f2 = -64132 f2 = -66000 f2 = -66667 f2 = -34750 f2 = -37320



Mathematics and Computer Science 2023; 8(1): 19-38 31

Table 5. Comparative results for individual problem.

Algorithm EMSA ASIMOLP BOA PSA NSGA-II MOPPA

Prob. Origin n m q MPNP MPNP MPNP MPNP BNP BNP

3 ” 2 4 2 f1 = -9.00 f1 = 4.00 f1 = -9.00 f1 = -9.00 f1 = -9.18 f1 = -9.00

f2 = -15.00 f2 = -18.42 f2 = -15.00 f2 = -15.00 f2 = -11.21 f2 = -15.00

4 ” 2 4 3 f1 = -3.00 f1 = -3.50 f1 = -3.00 f1 = -3.00 f1 = -3.10 f1 = -3.10

f2 = -7.50 f2 = -2.74 f2 = -7.50 f2 = -7.50 f2 = -2.21 f2 = -2.50

f3 = -9.00 f3 = 4.89 f3 = -9.00 f3 = -9.00 f3 = -4.13 f3 = -4.40

5 ” 2 6 2 f1 = -24.00 f1 = -21.29 f1 = -24.00 f1 = -24.00 f1 = -14.61 f1 = -21.00

f2 = -16.00 f2 = -17.29 f2 = -16.00 f2 = -16.00 f2 = -9.32 f2 = -17.00

6 ” 3 3 3 f1 = 3.00 f1 = 1.33 f1 = 3.00 f1 = 3.00 f1 = -0.17 f1 =0.00

f2 = -6.00 f2 = -6.20 f2 = -6.00 f2 = -6.00 f2 = -3.11 f2 = -6.00

f3 = -12.00 f3 = -9.68 f3 = -12.00 f3 = -12.00 f3 = -3.97 f3 = -3.00

7 ” 5 3 3 f1 = 0.00 f1 = -1.38 f1 = 0.00 f1 = 0.00 f1 =-1.40 f1 = -0.10

f2 = -4.00 f2 = -8.77 f2 = -4.00 f2 = -4.00 f2 = -3.00 f2 = -4.00

f3 = -24.00 f3 = -10.04 f3 = -24.00 f3 = -23.62 f3 = -5.08 f3 = -9.00

8 ” 5 2 2 f1 = -52.00 f1 = -4.11 f1 = -52.00 f1 = -52.00 f1 = -17.15 f1 = -51.00

f2 = -52.00 f2 = -29.30 f2 = -52.00 f2 = -52.00 f2 = -29.72 f2 = 54.00

9 ” 6 4 2 f1 = 0.00 f1 = -0.02 f1 = 0.00 f1 = 0.00 f1 = -0.03 f1 = 0.00

f2 = 0.00 f2 = 0.00 f2 = 0.00 f2 = 0.00 f2 = -0.03 f2 = 0.00

10 ” 7 4 3 f1 = -48.00 f1 = -7.65 f1 = -48.00 f1 = -16.00 f1 = -10.85 f1 = -13.90

f2 = -32.00 f2 = -13.80 f2 = -32.00 f2 = 0.00 f2 = -11.66 f2 = -10.76

f3 = 16.00 f3 = -7.75 f3 = 16.00 f3 = -16.00 f3 = -2.52 f3 = 2.65

11 iMOLPe 2 3 2 f1 = -21.00 f1 = -11.87 f1 = -21.00 f1 = -21.00 f1 = -20.02 f1 = -21.00

f2 = -7.00 f2 = -17.22 f2 = -7.00 f2 = -7.00 f2 = -8.44 f2 = -7.00

12 ” 3 3 4 f1 = -10.00 f1 = -5.59 f1 = -10.00 f1 = -10.00 f1 = -8.86 f1 = -12.00

f2 = -20.00 f2 = -18.62 f2 = -20.00 f2 = -20.00 f2 = -17.15 f2 = -19.00

f3 = -100.00 f3 = -34.83 f3 = -100.00 f3 = -100.00 f3 = -20.95 f3 = -35.00

f4 = -10.00 f4 = -42.23 f4 = -10.00 f4 = -10.00 f4 = -12.55 f4 = -12.00

13 ” 3 5 3 f1 = -21.00 f1 = -10.48 f1 = -21.00 f1 = -21.00 f1 = -14.40 f1 = -16.50

f2 = -4.50 f2 = -3.62 f2 = -4.50 f2 = -4.50 f2 = -4.57 f2 = -4.50

f3 = -4.00 f3 = -2.14 f3 = -4.00 f3 = -4.00 f3 = -3.83 f3 = -5.00

14 ” 3 3 3 f1 = -2.66 f1 = -1.10 f1 = -2.66 f1 = -2.66 f1 = -2.22 f1 = -2.00

f2 = -2.00 f2 = -1.22 f2 = -2.00 f2 = -2.00 f2 = -1.07 f2 = -1.50

f3 = -0.33 f3 = -1.57 f3 = -0.33 f3 = -0.33 f3 = -0.40 f3 = -1.50

15 ” 4 3 3 f1 = -48.50 f1 = -35.80 f1 = -48.50 f1 = -48.50 f1 = -30.37 f1 = -35.00

f2 = -19.50 f2 = -43.97 f2 = -19.50 f2 = -19.50 f2 = -21.88 f2 = -30.00

f3 = -37.00 f3 = -29.82 f3 = -37.00 f3 = -37.00 f3 = -35.70 f3 = -35.00

16 ” 4 2 3 f1 = -20.00 f1 = -31.71 f1 = -20.00 f1 = -20.00 f1 = -20.48 f1 = -35.00

f2 = -80.00 f2 = -49.12 f2 = -80.00 f2 = -80.00 f2 = -24.56 f2 = -30.00

f3 = -40.00 f3 = -69.69 f3 = -40.00 f3 = -40.00 f3 = -27.11 f3 = -35.00

17 ” 4 4 3 f1 = -40.00 f1 = -32.22 f1 = -40.00 f1 = -40.00 f1 = -21.90 f1 = -35.00

f2 = -50.00 f2 = -32.50 f2 = -50.00 f2 = -50.00 f2 = -20.58 f2 = -30.00

f3 = -10.00 f3 = -36.27 f3 = -10.00 f3 = -10.00 f3 = -28.34 f3 = -35.00

18 ” 3 3 3 f1 = 0.00 f1 = -1.12 f1 = 0.00 f1 = 0.00 f1 = -1.93 f1 = -2.00

f2 = -2.00 f2 = -2.14 f2 = -2.00 f2 = -2.00 f2 = -1.22 f2 = -1.92

f3 = -4.00 f3 = -2.63 f3 = -4.00 f3 = -4.00 f3 = -1.87 f3 = -2.00

19 ” 15 10 2 f1 = -363.82 f1 = -137.09 f1 = -363.82 f1 = -229.18 f1 = -73.53 f1 = -143.05

f2 =-33.70 f2 =-198.96 f2 =-33.70 f2 = -35.31 f2 = -31.14 f2 = -32.11

20 ” 15 10 3 f1 = -363.82 f1 = -107.15 f1 = -343.50 f1 = -134.17 f1 = -74.85 f1 = -133.77

f2 = -33.70 f2 = -169.94 f2 = -42.43 f2 = -32.88 f2 = -36.96 f2 = -45.05

f3 = -136.71 f3 = -166.26 f3 = -158.75 f3 = -135.82 f3 = -55.35 f3 = -76.54

21 ” 10 5 3 f1 = 226.40 f1 = 59.42 f1 = 226.40 f1 = 223.09 f1 = -111.85 f1 =-164.65

f2 = -501.86 f2 = -357.21 f2 = -501.86 f2 = -496.23 f2 = -47.52 f2 = -47.33

f3 = -351.14 f3 = -356.48 f3 = -351.14 f3 = -246.64 f3 = -58.96 f3 = -58.37

22 Steuer 5 5 2 f1 = -10.00 f1 = -6.30 f1 = -10.00 f1 = -10.00 f1 = -6.36 f1 = -6.50

1986 f2 = -3.00 f2 = -6.90 f2 = -3.00 f2 = -3.00 f2 = -3.33 f2 = -3.50



32 Paschal Bisong Nyiam and Abdellah Salhi: Application of the Plant Propagation Algorithm and NSGA-II to
Multiple Objective Linear Programming

Algorithm EMSA ASIMOLP BOA PSA NSGA-II MOPPA

Prob. Origin n m q MPNP MPNP MPNP MPNP BNP BNP

23 ” 4 4 3 f1 = 3.42 f1 = -3.79 f1 = 3.42 f1 = 3.42 f1 = -3.09 f1 = -3.50

f2 = -10.28 f2 = 11.38 f2 = -10.28 f2 = -10.28 f2 = 9.25 f2 = 10.50

f3 = -3.42 f3 = -2.96 f3 = -3.42 f3 = -3.42 f3 = -2.74 f3 = -3.40

24 ” 5 5 4 f1 = 1.02 f1 = 2.28 f1 = 1.02 f1 = 1.02 f1 = 1.98 f1 = 1.20

f2 = -25.46 f2 = -22.58 f2 = -25.46 f2 = -25.46 f2 = -2.73 f2 = -3.81

f3 = 24.44 f3 = 20.30 f3 = 24.44 f3 = 24.44 f3 = 10.75 f3 = 2.61

f4 = -28.32 f4 = -25.47 f4 = -28.32 f4 = -28.32 f4 = -5.32 f4 = -4.55

25 ” 10 8 4 f1 = 106.29 f1 = 80.00 f1 = 106.29 f1 = 183.36 f1 = 13.22 f1 = -54.50

f2 = -462.13 f2 = -54.36 f2 = -462.13 f2 = -424.26 f2 = -36.00 f2 = -20.64

f3 = 175.57 f3 = -163.73 f3 = 175.57 f3 = 117.29 f3 = 6.07 f3 = 46.59

f4 = -33.41 f4 = -23.82 f4 = -33.41 f4 = -4.03 f4 = -1.80 f4 = 20.97

26 ” 5 4 3 f1 = -52.07 f1 = -4.44 f1 = -52.07 f1 = -52.07 f1 = -21.00 f1 = -21.00

f2 = 31.50 f2 = -13.17 f2 = 31.50 f2 = 31.50 f2 = 4.69 f2 = 8.79

f3 = -17.35 f3 = -14.37 f3 = -17.35 f3 = -17.35 f3 = -13.87 f3 = -14.79

27 ” 6 8 4 f1 = -6.94 f1 = -6.69 f1 = -6.94 f1 = -6.94 f1 = -2.90 f1 = -2.50

f2 = -5.38 f2 = -2.25 f2 = -5.38 f2 = -5.38 f2 = -2.29 f2 = -4.27

f3 = 6.83 f3 = 6.77 f3 = 6.83 f3 = 6.83 f3 = 1.12 f3 = 5.74

f4 = -9.16 f4 = -8.83 f4 = -9.16 f4 = -9.16 f4 = -3.94 f4 = -4.41

28 ” 7 6 4 f1 = -31.53 f1 = -25.90 f1 = -31.53 f1 = -31.29 f1 = -17.42 f1 = -20.02

f2 = -26.48 f2 = -23.94 f2 = -26.48 f2 = -30.08 f2 = -12.29 f2 = -16.41

f3 = -26.57 f3 = -19.06 f3 = -26.57 f3 = -26.33 f3 = -9.58 f3 = -14.00

f4 = -0.34 f4 = -8.62 f4 = -0.34 f4 = -0.82 f4 = -7.61 f4 = -4.41

29 ” 7 6 4 f1 = 26.80 f1 = 4.03 f1 = 26.80 f1 = 26.80 f1 = -4.05 f1 = -4.79

f2 = -37.73 f2 = -29.03 f2 = -37.73 f2 = -37.73 f2 = -6.97 f2 = -7.34

f3 = -24.33 f3 = -18.07 f3 = -24.33 f3 = -24.33 f3 = -4.92 f3 = -6.11

f4 = -59.60 f4 = -28.17 f4 = -59.60 f4 = -59.60 f4 = -6.13 f4 = -10.55

30 ” 8 8 6 f1 = -74.00 f1 = -15.46 f1 = -74.00 f1 = -77.00 f1 = -12.11 f1 = -14.41

f2 = -107.50 f2 = -38.73 f2 = -107.50 f2 = -52.00 f2 = -15.40 f2 = -22.72

f3 = -41.25 f3 = -43.30 f3 = -41.25 f3 = -16.00 f3 = -3.90 f3 = -10.93

f4 = -27.25 f4 = -30.95 f4 = -27.25 f4 = -52.40 f4 = -4.79 f4 = -13.79

f5 = -9.00 f5 = -8.30 f5 = -9.00 f5 = 26.00 f5 = 4.37 f5 = -5.36

f6 = -30.75 f6 = -26.72 f6 = -30.75 f6 = -20.00 f6 = -4.10 f6 = -19.30

31 ” 8 8 3 f1 = -36.57 f1 = -32.03 f1 = -36.57 f1 = -36.00 f1 = -9.53 f1 = -10.43

f2 = -22.28 f2 = -20.03 f2 = -22.28 f2 = -23.00 f2 = -3.97 f2 = -4.02

f3 = -14.00 f3 = -17.73 f3 = -14.00 f3 = -15.00 f3 = -4.32 f3 = -3.05

32 ” 8 8 3 f1 = -14.03 f1 = -8.77 f1 = -14.03 f1 = -6.50 f1 = -3.85 f1 = -6.30

f2 = -18.00 f2 = -10.56 f2 = -18.00 f2 = -11.00 f2 = -3.32 f2 = -3.82

f3 = -4.93 f3 = -5.13 f3 = -4.93 f3 = -7.50 f3 = -2.79 f3 = -3.06

33 ” 5 5 4 f1 = -21.50 f1 = -20.83 f1 = -21.50 f1 = -8.00 f1 = -3.44 f1 = -17.00

f2 = -39.25 f2 = -21.78 f2 = -39.25 f2 = -23.87 f2 = -15.76 f2 = -13.00

f3 = -16.25 f3 = -16.05 f3 = -16.25 f3 = -7.62 f3 = -4.97 f3 = -5.00

f4 = 27.00 f4 = 14.45 f4 = 27.00 f4 = 27.00 f4 = 5.97 f4 = 8.00

34 ” 6 6 3 f1 = -12.65 f1 = 12.69 f1 = -12.65 f1 = 13.62 f1 = -4.81 f1 = -6.00

f2 = 0.00 f2 = -3.21 f2 = 0.00 f2 = -9.75 f2 = 2.06 f2 = 4.00

f3 = -30.15 f3 = -28.39 f3 = -30.15 f3 = -26.25 f3 = 3.25 f3 = 2.00

35 ” 5 5 4 f1 = -14.66 f1 = -6.33 f1 = -14.66 f1 = -14.00 f1 = -6.64 f1 = -9.00

f2 = -21.06 f2 = -14.44 f2 = -21.06 f2 = 0.00 f2 = -11.42 f2 = -11.21

f3 = 35.73 f3 = 20.77 f3 = 35.73 f3 = 27.00 f3 = 18.07 f3 = 20.21

f4 = -16.00 f4 = -15.63 f4 = -16.00 f4 = 0.00 f4 = -8.71 f4 = -9.00

36 ” 10 10 4 f1 = 46.50 f1 = 50.69 f1 = 46.50 f1 = 46.50 f1 = -1.46 f1 = 12.98

f2 = 19.21 f2 = 18.98 f2 = 19.21 f2 = 19.21 f2 = -2.51 f2 = 8.84

f3 = -27.07 f3 = -23.38 f3 = -27.07 f3 = -27.07 f3 = -4.09 f3 = -4.04

f4 = -27.07 f4 = -23.85 f4 = -27.07 f4 = -27.07 f4 = -3.50 f4 = -8.09



Mathematics and Computer Science 2023; 8(1): 19-38 33

Algorithm EMSA ASIMOLP BOA PSA NSGA-II MOPPA

Prob. Origin n m q MPNP MPNP MPNP MPNP BNP BNP

37 ” 8 8 3 f1 = -14.48 f1 = -2.46 f1 = -14.48 f1 = -14.48 f1 = -1.13 f1 = -2.06

f2 = -4.74 f2 = -3.22 f2 = -4.74 f2 = -4.74 f2 = -2.12 f2 = -4.68

f3 = 6.93 f3 = -1.93 f3 = 6.93 f3 = 6.93 f3 = 0.09 f3 = 4.02

38 ” 6 7 4 f1 = -2.61 f1 = -1.80 f1 = -2.61 + f1 = -2.07 f1 = -2.60

f2 = -12.63 f2 = -4.00 f2 = -12.63 f2 = -0.27 f2 = -2.44

f3 = 9.70 f3 = 2.78 f3 = 9.70 f3 = 0.45 f3 = 1.66

f4 = 2.37 f4 = -2.07 f4 = 2.37 f4 = -0.90 f4 = -1.04

39 ” 12 16 4 * f1 = -5.09 f1 = -5.25 f1 = -5.13 f1 = -2.99 f1 = -5.75

f2 = -9.83 f2 = -14.25 f2 = -3.38 f2 = -2.02 f2 = -2.19

f3 = -9.53 f3 = -8.25 f3 = 1.83 f3 = -2.57 f3 = -3.05

f4 = -6.18 f4 = -1.00 f4 = -1.18 f4 = -1.98 f4 = -1.90

40 ” 10 14 5 * f1 = -1.07 f1 = -5.16 f1 = -18.00 f1 = -2.20 f1 = -4.15

f2 = -3.83 f2 = -2.79 f2 = 70.60 f2 = -3.53 f2 = -2.86

f3 = -5.53 f3 = -4.38 f3 = -3.20 f3 = -1.72 f3 = -3.14

f4 = -16.87 f4 = -18.70 f4 = 8.00 f4 = -5.09 f4 = -5.36

f5 = -8.42 f5 = -9.69 f5 = -4.30 f5 = -1.50 f5 = -1.73

41 ” 7 6 3 f1 = -29.40 f1 = -10.74 f1 = -29.40 f1 = -29.40 f1 = -26.09 f1 = -30.00

f2 = -65.30 f2 = -32.20 f2 = -65.30 f2 = -65.30 f2 = -51.35 f2 = -52.00

f3 = -39.30 f3 = -24.39 f3 = -39.30 f3 = -39.30 f3 = -31.97 f3 = -24.00

42 ” 7 7 3 f1 = -62.18 f1 = -47.39 f1 = -62.18 f1 = -62.18 f1 = -36.80 f1 = -34.50

f2 = -93.50 f2 = -86.99 f2 = -93.50 f2 = -93.50 f2 = -40.01 f2 = -50.50

f3 = -52.00 f3 = -54.78 f3 = -52.00 f3 = -52.00 f3 = -14.05 f3 = -22.00

43 ” 6 6 4 f1 = -37.50 f1 = -10.40 f1 = -37.50 f1 = -37.50 f1 = -11.04 f1 = -17.58

f2 = -11.25 f2 = -6.52 f2 = -11.25 f2 = -11.25 f2 = -2.47 f2 = -3.04

f3 = -7.50 f3 = -5.91 f3 = -7.50 f3 = -7.50 f3 = -6.11 f3 = -0.24

f4 = -20.25 f4 = -0.34 f4 = -20.25 f4 = -20.25 f4 = 0.13 f4 = -10.86

44 ” 6 6 4 f1 = 34.50 f1 = 28.39 f1 = 34.50 f1 = 34.50 f1 = 6.02 f1 = 10.00

f2 = -7.50 f2 = -6.38 f2 = -7.50 f2 = -7.50 f2 = -6.95 f2 = -7.00

f3 = -56.00 f3 = -45.43 f3 = -56.00 f3 = -56.00 f3 = -9.14 f3 = -13.00

f4 = -31.50 f4 = -25.83 f4 = -31.50 f4 = -31.50 f4 = -3.30 f4 = -6.50

45 ” 10 14 5 * f1 = 3.35 f1 = 1.03 + f1 = 2.62 f1 = 3.03

f2 = -3.18 f2 = -2.19 f2 = -2.73 f2 = -2.89

f3 = -2.48 f3 = 2.01 f3 = 0.27 f3 = -0.16

f4 = -2.50 f4 = -8.13 f4 = -2.18 f4 = -2.64

f5 = 2.10 f5 = 7.22 f5 = 2.69 f5 = 2.55

46 ” 10 14 5 * f1 = 2.35 f1 = -4.9 f1 = -14.93 f1 = 1.73 f1 = 2.04

f2 = 0.73 f2 = -3.42 f2 = -5.57 f2 = -3.43 f2 = -4.01

f3 = -11.72 f3 = -4.38 f3 = -2.83 f3 = -1.32 f3 = -1.86

f4 = -1.90 f4 = -18.91 f4 = -16.28 f4 = 3.35 f4 = 4.04

f5 = -10.33 f5 = -9.27 f5 = -6.13 f5 = -1.26 f5 = -1.34

47 ” 7 7 3 f1 = -3.83 f1 = -6.82 f1 = -3.83 f1 = -3.83 f1 = -1.83 f1 = -2.00

f2 = -76.46 f2 = -68.93 f2 = -76.46 f2 = -76.46 f2 = -29.69 f2 = -30.00

f3 = -49.57 f3 = -25.83 f3 = -49.57 f3 = -49.57 f3 = -19.70 f3 = -20.00

48 Bensolve 5 31 5 * f1 = 0.00 f1 = 0.00 f1 = 0.00 f1 = -0.17 f1 = -0.20

2.0 f2 = 0.00 f2 = -1.00 f2 = 0.00 f2 = -0.17 f2 = -0.20

f3 = 0.00 f3 = 0.00 f3 = 0.00 f3 = -0.17 f3 = -0.20

f4 = 0.00 f4 = 0.00 f4 = 0.00 f4 = -0.17 f4 = -0.20

f5 = 0.01 f5 = -2.00 f5 = 0.00 f5 = -0.17 f5 = -0.20

49 MOPLIB 100 20 3 f1 = -168.00 f1 = -61.18 f1 = -168.00 f1 = -168.00 f1 = -100.12 f1 = -121.82

f2 = -124.00 f2 = -73.93 f2 = -124.00 f2 = -124.00 f2 = -99.09 f2 = -120.09

f3 = -143.00 f3 = -96.38 f3 = -143.00 f3 = -143.00 f3 = -109.69 f3 = -126.84

50 ” 30 21 12 f1=5.0E-12, - f1=5.0E-12, f1 = 0, f1=8.0E+15, f1=8.0E+15,

f2=5.0E-12 f2=5.0E-12 f2 = 0 f2=8.0E+15 f2=8.0E+15

f3=5.0E-12, f3=5.0E-12, f3 = 0, f3=8.0E+15, f3=8.0E+15,

f4=5.0E-12 f4=5.0E-12 f4 = 0 f4=8.0E+15 f4=8.0E+15



34 Paschal Bisong Nyiam and Abdellah Salhi: Application of the Plant Propagation Algorithm and NSGA-II to
Multiple Objective Linear Programming

Algorithm EMSA ASIMOLP BOA PSA NSGA-II MOPPA

Prob. Origin n m q MPNP MPNP MPNP MPNP BNP BNP

f5=5.0E-12, f5=5.0E-12, f5 = 0, f5=8.0E+15, f5=8.0E+15,

f6=5.0E-12 f6=5.0E-12 f6 = 0 f6=8.0E+15 f6=8.0E+15

f7=5.0E-12, f7=5.0E-12, f7 = 0, f7=8.0E+15, f7=8.0E+15,

f8=5.0E-12 f8=5.0E-12 f8 = 0 f8=8.0E+15 f8=8.0E+15

f9=5.0E-12, f9=5.0E-12, f9 = 0, f9=8.0E+15, f9=8.0E+15,

f10=5.0E-12 f10=5.0E-12 f10 = 0 f10=8.0E+15 f10=8.0E+15

f11=5.0E-12, f11=5.0E-12, f11 = 0, f11=8.0E+15, f11=8.0E+15,

f12=-5.5E-11 f12=-5.5E-11 f12 = 0 f12=8.0E+15 f12=8.0E+15

51 ” 218 28 27 x f1=0.52, x f1=-360.00, f1=2.0E+15, f1=2.0E+15,

f2=0.01, x f2=0.00, f2=2.0E+15, f2=2.0E+15,

f3=6.95, f3=0.00, f3=2.0E+15, f3=2.0E+15,

f4=2.14 f4=90.00 f4=2.0E+15, f4=2.0E+15,

f5=4.94, f5=180.00, f5=2.0E+15, f5=2.0E+15,

f6=-5.53, f6=180.00, f6=2.0E+15 f6=2.0E+15

f7=-9.71, f7=180.00, f7=2.0E+15, f7=2.0E+15,

f8=2.23, f8=180.00, f8=2.0E+15, f8=2.0E+15,

f9=-0.31, f9=270.00, f9=2.0E+15, f9=2.0E+15,

f10=2.67 f10=0.00, f10=2.0E+15, f10=2.0E+15,

f11=-3.19, f11=360.00, f11=2.0E+15, f11=2.0E+15,

f12=-5.55 f12=90.00 f12=2.0E+15 f12=2.0E+15

f13=-5.42, f13=180.00, f13=2.0E+15, f13=2.0E+15,

f14=-4.46, f14 =0.00, f14=2.0E+15, f14=2.0E+15,

f15=-4.35, f15=90.00, f15=2.0E+15, f15=2.0E+15,

f16=6.01 f16=90.00 f16=2.0E+15, f16=2.0E+15,

f17=-3.36, f17=0.00, f17=2.0E+15, f17=2.0E+15,

f18=1.71, f18=-90.00, f18=2.0E+15, f18=2.0E+15,

f19=-8.01, f19=90.00, f19=2.0E+15, f19=2.0E+15,

f20=8.90, f20=-90.00, f20=2.0E+15 f20=2.0E+15

f21=8.01, f21=-90.00, f21=2.0E+15, f21=2.0E+15,

f22=-5.35 f22=90.00 f22=2.0E+15, f22=2.0E+15,

f23=5.35, f23=-90.00, f23=2.0E+15, f23=2.0E+15,

f24=5.35, f24=-90.00, f24=2.0E+15 f24=2.0E+15

f25=5.35, f25=-90.00, f25=2.0E+15, f25=2.0E+15,

f26=-5.37, f26=90.00, f26=2.0E+15, f26=2.0E+15,

f27=-4.35 f27=0.00 f27=2.0E+15 f27=2.0E+15

(x) Out of memory

(-) No initial starting solution

(*) Aborted after 3 days of running time

(+) The image is the whole region, implying that none of the vertices is nondominated

12. Conclusion

We have applied two heuristic approaches for the first
time to MOLP. One, namely NSGA-II is well established
and popular heuristic for continuous and discrete multi-
objective optimisation. The other, MOPPA, is fairly recent
addition to nature-inspired algorithms which has shown a lot
of promise on continuous multi-objective optimisation, and
continuous and discrete single objective optimisation. Our
experimental investigation using Matlab implementations of
both approaches applied to an extensive and representation set

of MOLP instances has shown that the methods found on the
whole good nondominated fronts. That of NSGA-II is more
uniformly spread while the BNP’s returned by MOPPA tend
to be of better quality. The methods compare well with the
exact ones especially on the large instances which the exact
methods failed to solve even when given generous amounts
of computation times. Constraints have been handled using a
penalty function approach.



Mathematics and Computer Science 2023; 8(1): 19-38 35

Acknowledgements
We are grateful to ESRC, Grant ES/L011859/1, for partially

funding this research.

References

[1] SS Abhyankar, TL Morin, and T Trafalis. Efficient
faces of polytopes: Interior point algorithms,
parametrization of algebraic varieties, and multiple
objective optimization. Contemporary Mathematics, 114:
319-341, 1990.

[2] Maria João Alves and João Paulo Costa. An exact
method for computing the nadir values in multiple
objective linear programming. European Journal of
Operational Research, 198 (2): 637-646, 2009.

[3] Maria João Alves, Carlos Henggeler Antunes, and João
Cl1́maco. Interactive MOLP explorer: aĂŤ a graphical-
based computational tool for teaching and decision
support in multi-objective linear programming models.
Computer Applications in Engineering Education, 23 (2):
314-326, 2015.

[4] Ami Arbel. An interior multiobjective linear
programming algorithm. Computers and Operations
Research, 20 (7): 723-735, 1993.

[5] Ami Arbel. A weighted-gradient approach to multi-
objective linear programming problems using the
analytic hierarchy process. Mathematical and computer
modelling, 17 (4): 27-39, 1993.

[6] Ami Arbel. Anchoring points and cones of opportunities
in interior multiobjective linear programming. Journal of
the Operational Research Society, 45 (1): 83-96, 1994.

[7] Paul Armand and Christian Malivert. Determination of
the efficient set in multiobjective linear programming.
Journal of Optimization Theory and Applications, 70 (3):
467-489, 1991.

[8] Tapan P Bagchi. Multiobjective scheduling by genetic
algorithms. Springer Science and Business Media, 1999.

[9] Vu Thien Ban. A finite algorithm for minimizing
a concave function under linear constraints and
its applications. In Proceedings of IFIP Working
Conference on Recent Advances in System Modelling
and Optimization, 1983.

[10] Harold P Benson. An outer approximation algorithm
for generating all efficient extreme points in the outcome
set of a multiple objective linear programming problem.
Journal of Global Optimization, 13 (1): 1-24, 1998.

[11] Herold P Benson. Further analysis of an outcome
set-based algorithm for multiple objective linear

programming. Journal of Optimization Theory and
Applications, 97 (1): 1-10, 1998.

[12] Herold P Benson. Hybrid approach for solving multiple-
objective linear programs in outcome space. Journal of
Optimization Theory and Applications, 98 (1): 17-35,
1998.

[13] Victor Blanco, Justo Puerto, and Safae El Haj Ben
Ali. A semidefinite programming approach for solving
multiobjective linear programming. Journal of Global
Optimization, 58 (3): 465-480, 2014.

[14] M Chakraborty and Ananya Ray. Parametric approach
and genetic algorithm for multi objective linear
programming with imprecise parameters. Opsearch, 47
(1): 73-92, 2010.

[15] László Csirmaz. Using multiobjective optimization to
map the entropy region. Computational Optimization and
Applications, 63 (1): 45-67, 2013.

[16] Jerald P Dauer. Analysis of the objective space in
multiple objective linear programming. Journal of
Mathematical Analysis and Applications, 126 (2): 579-
593, 1987.

[17] Jerald P Dauer and Yi-Hsin Liu. Solving multiple
objective linear programs in objective space. European
Journal of Operational Research, 46 (3): 350-357, 1990.

[18] Jerald P Dauer and OA Saleh. Constructing the set
of efficient objective values in multiple objective linear
programs. European Journal of Operational Research, 46
(3): 358-365, 1990.

[19] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and
Tanaka Meyarivan. A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization:
NSGAII. In International Conference on Parallel Problem
Solving from Nature, pages 849-858. Springer, 2000.

[20] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and
TAMT Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation, 6 (2): 182-197, 2002.

[21] S Dhanalakshmi, S Kannan, K Mahadevan, and S Baskar.
Application of modified NSGA-II algorithm to combined
economic and emission dispatch problem. International
Journal of Electrical Power and Energy Systems, 33 (4):
992-1002, 2011.

[22] Daniel Dörfler, Andreas Löhne, Christopher Schneider,
and Benjamin WeiBing. A benson-type algorithm
for bounded convex vector optimization problems with
vertex selection. Optimization Methods and Software,
pages 1-21, 2021.

[23] JG Ecker, Nancy Shoemaker Hegner, and IA Kouada.
Generating all maximal efficient faces for multiple
objective linear programs. Journal of Optimization
Theory and Applications, 30 (3): 353-381, 1980.



36 Paschal Bisong Nyiam and Abdellah Salhi: Application of the Plant Propagation Algorithm and NSGA-II to
Multiple Objective Linear Programming

[24] JG Ecker and IA Kouada. Finding all efficient
extreme points for multiple objective linear programs.
Mathematical Programming, 14 (1): 249-261, 1978.

[25] M Ehrgott, J Puerto, and AM Rodriguez-Chia.
Primal-dual simplex method for multiobjective linear
programming. Journal of optimization theory and
applications, 134 (3): 483-497, 2007.

[26] Matthias Ehrgott. Multicriteria optimization. Springer
Science and Business Media, 2006.

[27] Matthias Ehrgott, Andreas Löhne, and Lizhen Shao. A
dual variant of BensonâĂÚs âĂIJouter approximation
algorithmâĂİ for multiple objective linear programming.
Journal of Global Optimization, 52 (4): 757-778, 2012.

[28] Matthias Ehrgott and Dagmar Tenfelde-Podehl.
Computation of ideal and nadir values and implications
for their use in mcdm methods. European Journal of
Operational Research, 151 (1): 119-139, 2003.

[29] Horst A Eiselt and C-L Sandblom. Linear programming
and its applications. Springer Science and Business
Media, 2007.

[30] Philippe Erlanger. Louis XIV. Weidenfeld and Nicolson,
1970.

[31] J Po Evans and RE Steuer. A revised simplex method
for linear multiple objective programs. Mathematical
Programming, 5 (1): 54-72, 1973.

[32] Eric S Fraga.
http://www.ucl.ac.uk/ ucecesf/strawberry.html#orgec
5771e.2018.

[33] Eric S Fraga and Oluwamayowa Amusat. Understanding
the impact of constraints: a rank based fitness function
for evolutionary methods. In Advances in Stochastic
and Deterministic Global Optimization, pages 243-254.
Springer, 2016.

[34] Eric S Fraga, Abdellah Salhi, Di Zhang, and Lazaros
G Papageorgiou. Optimisation as a tool for gaining
insight: An application to the built environment. Journal
of Algorithms and Computational Technology, 9 (1): 13-
26, 2015.

[35] Tomas Gal. A general method for determining the set of
all efficient solutions to a linear vectormaximum problem.
European Journal of Operational Research, 1 (5): 307-
322, 1977.

[36] Ashish Ghosh and Mrinal Kanti Das. Non-dominated
rank based sorting genetic algorithms. Fundamenta
Informaticae, 83 (3): 231-252, 2008.

[37] Andreas H Hamel, Andreas Löhne, and Birgit Rudloff.
Benson type algorithms for linear vector optimization and
applications. Journal of Global Optimization, 59 (4):
811-836, 2014.

[38] John H Holland. Adaptation in natural and artificial
systems: An introductory analysis with applications
to biology, control, and artificial intelligence. The
University of Michigan Press, 1975.

[39] Yuan Hu, Zhaohong Bie, Tao Ding, and Yanling Lin. An
NSGA-II based multiobjective optimization for combined
gas and electricity network expansion planning. Applied
energy, 167: 280-293, 2016.

[40] H Isermann and G Naujoks. Operating manual for
the EFFACET multiple objective linear programming
package. Fakultaet fuer Wirtschaftswissenschaften,
University of Bielefeld, Bielefeld, Germany, 1984.

[41] Heinz Isermann. The enumeration of the set of all
efficient solutions for a linear multiple objective program.
Journal of the Operational Research Society, 28 (3): 711-
725, 1977.

[42] HV Junior and Marcos Pereira Estellita Lins. A win-
win approach to multiple objective linear programming
problems. Journal of the Operational Research Society,
60 (5): 728-733, 2009.

[43] Deb Kalyanmoy. Multi objective optimization using
evolutionary algorithms. John Wiley and Sons, 2001.

[44] S Kannan, S Baskar, James D McCalley, and P
Murugan. Application of NSGA-II algorithm to
generation expansion planning. IEEE Transactions on
Power systems, 24 (1): 454-461, 2009.

[45] Narendra Karmarkar. A new polynomial-time algorithm
for linear programming. In Proceedings of the sixteenth
annual ACM symposium on Theory of computing, pages
302-311. ACM, 1984.

[46] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled
Elbassioni, and Vladimir Gurvich. Generating all vertices
of a polyhedron is hard. Discrete and Computational
Geometry, 39 (1-3): 174-190, 2008.

[47] K-H Küfer. On the asymptotic average number
of efficient vertices in multiple objective linear
programming. Journal of Complexity, 14 (3): 333-377,
1998.

[48] C Lin, C Chen, and P Chen. On the modified
interior point algorithm for solving multi-objective
linear programming problems. International Journal of
Information and Management Sciences, 17 (1): 107,
2006.

[49] Andreas Löhne. Vector optimization with infimum and
supremum. Springer Science and Business Media, 2011.

[50] Andreas Löhne. Bensolve: VLP solver, version 1.2,
www.bensolve.org. 2012.



Mathematics and Computer Science 2023; 8(1): 19-38 37

[51] Andreas Löhne, Birgit Rudloff, and Firdevs Ulus. Primal
and dual approximation algorithms for convex vector
optimization problems. Journal of Global Optimization,
60 (4): 713-736, 2014.

[52] Andreas Löhne and Sebastian Schenker. MOPLIB:
Multi-Objective Problem Library, http://moplib.uni-
jena.de. Accessed 13 March 2017, 2015.

[53] Andreas Löhne and Benjamin WeiBing. Bensolve: VLP
solver, version 2.0.x, www.bensolve.org. 2015.

[54] Anabel Martinez-Vargas, Josué Dom1́nguez-Guerrero,
ángel G Andrade, Roberto Sepúlveda, and Oscar
Montiel-Ross. Application of NSGA-II algorithm to
the spectrum assignment problem in spectrum sharing
networks. Applied Soft Computing, 39: 188-198, 2016.

[55] Renzo Massobrio, G Fagúndez, and S Nesmachnow.
Multiobjective taxi sharing optimization using the
NSGA-II evolutionary algorithm. In 11th Metaheuristic
International Conference, 2015.

[56] Zbigniew Michalewicz and Marc Schoenauer.
Evolutionary algorithms for constrained parameter
optimization problems. Evolutionary computation, 4 (1):
1-32, 1996.

[57] Anjana D Nandasana, Ajay Kumar Ray, and Santosh
K Gupta. Applications of the non-dominated sorting
genetic algorithm (NSGA) in chemical reaction
engineering. International Journal of Chemical and
Reactor Engineering, 1: 1018, 2003.

[58] Paschal B Nyiam and Abdellah Salhi. A comparative
study of two key algorithms in multiple objective linear
programming. Journal of Algorithms and Computational
Technology, 13: 1748302619870424, 2019.

[59] Paschal B Nyiam and Abdellah Salhi. A comparison of
benson outer approximation algorithm with an extended
version of multiobjective simplex algorithm. Advances in
Operations Research, 2021.

[60] Paschal B Nyiam and Abdellah Salhi. On the simplex,
interior point and objective space approaches to multiple
objective linear programming. Journal of Algorithms and
Computational Technology, 15: 17483026211008414,
2021.

[61] P Pandian and M Jayalakshmi. Determining efficient
solutions to multiple objective linear programming
problems. Applied Mathematical Sciences, 7 (26): 1275-
1282, 2013.

[62] Yan Pei and Jia Hao. Non-dominated sorting
and crowding distance based multiobjective chaotic
evolution. In International Conference in Swarm
Intelligence, pages 15-22. Springer, 2017.

[63] Johan Philip. Algorithms for the vector maximization
problem. Mathematical Programming, 2 (1): 207-229,
1972.

[64] Johan Philip. Vector maximization at a degenerate vertex.
Mathematical Programming, 13 (1): 357-359, 1977.

[65] L Pourkarimi, MA Yaghoobi, and M Mashinchi.
Determining maximal efficient faces in multiobjective
linear programming problem. Journal of Mathematical
Analysis and Applications, 354 (1): 234-248, 2009.

[66] Noraini Mohd Razali, John Geraghty, et al. Genetic
algorithm performance with different selection strategies
in solving TSP. In Proceedings of the world congress on
engineering, volume 2, pages 1134-1139. International
Association of Engineers Hong Kong, 2011.

[67] Alistair D Rodman, Eric S Fraga, and Dimitrios
Gerogiorgis. On the application of a nature-inspired
stochastic evolutionary algorithm to constrained multi-
objective beer fermentation optimisation. Computers and
Chemical Engineering, 108: 448-459, 2018.

[68] Birgit Rudloff, Firdevs Ulus, and Robert Vanderbei.
A parametric simplex algorithm for linear vector
optimization problems. Mathematical Programming,
pages 1-30, 2015.

[69] Andrzej Ruszczyński and Robert J Vanderbei. Frontiers
of stochastically nondominated portfolios. Econometrica,
pages 1287-1297, 2003.

[70] Thomas L Saaty. The analytic hierarchy process:
planning, priority setting, resources allocation. New
York: McGraw, 1980.

[71] Abdellah Salhi and Eric S Fraga. Nature-inspired
optimisation approaches and the new plant propagation
algorithm. In Proceedings of the International
Conference on Numerical Analysis and Optimisation
(ICeMATH’11), Yogyakarta, Indonesia, 2011.

[72] J David Schaffer. Multiple objective optimization with
vector evaluated genetic algorithms. In Proceedings of
the 1st International Conference on Genetic Algorithms,
Pittsburgh, PA, USA, July 1985, pages 93-100, 1985.

[73] Murray Schechter and Ralph E Steuer. A correction
to the connectedness of the Evans-Steuer algorithm of
multiple objective linear programming. Foundations of
Computing and Decision Sciences, 30 (4): 351-360,
2005.

[74] Birsen İ Selamoğlu and Abdellah Salhi. The plant
propagation algorithm for discrete optimisation: The case
of the travelling salesman problem. In Nature-inspired
computation in engineering, pages 43-61. Springer, 2016.



38 Paschal Bisong Nyiam and Abdellah Salhi: Application of the Plant Propagation Algorithm and NSGA-II to
Multiple Objective Linear Programming

[75] Lizhen Shao and Matthias Ehrgott. Approximately
solving multiobjective linear programmes in objective
space and an application in radiotherapy treatment
planning. Mathematical Methods of Operations
Research, 68 (2): 257-276, 2008.

[76] Lizhen Shao and Matthias Ehrgott. Approximating the
nondominated set of an molp by approximately solving
its dual problem. Mathematical Methods of Operations
Research, 68 (3): 469-492, 2008.

[77] Alice E Smith and David W Coit. Constraint handling
techniques: aĂŤ penalty functions. Handbook of
evolutionary computation, pages 5-2, 1997.

[78] N Srinivas and K Deb. Multi-objective function
optimisation using non-dominated sorting genetic
algorithm. Evolutionary Comp, 2 (3): 221-248, 1995.

[79] Ralph E Steuer. Multiple criteria optimization: theory,
computation, and applications. Wiley, 1986.

[80] Ralph E Steuer. Adbase: A multiple objective linear
programming solver for all efficient extreme points and
all unbounded efficient edges. Terry college of Business,
University of Georgia, Athens, 2003.

[81] Muhammad Sulaiman, Abdellah Salhi, Birsen Irem
Selamoglu, and Omar Bahaaldin Kirikchi. A plant
propagation algorithm for constrained engineering
optimisation problems. Mathematical Problems in
Engineering, 2014.

[82] Ue-Pyng Wen and Wei-Tai Weng. An interior algorithm
for solving multiobjective linear programming problem.
Institute for Operations Research and the Management
Sciences International Meeting: Tel Aviv - Israel, 1998.

[83] Wei-Tai Weng and Ue-Pyng Wen. An interior point
algorithm for solving linear optimization over the
efficient set problems. Journal of the Chinese Institute
of Industrial Engineers, 18 (3): 21-30, 2001.

[84] Özgür Yeniay. Penalty function methods for constrained
optimization with genetic algorithms. Mathematical and
computational Applications, 10 (1): 45-56, 2005.

[85] PL Yu and M Zeleny. The techniques of linear
multiobjective programming. Revue française
d’Automatique, d’Informatique et de Recherche
Opérationnelle. Recherche Opérationnelle, 8 (3): 51-71,
1974.

[86] PL Yu and M Zeleny. Linear multiparametric
programming by multicriteria simplex method.
Management Science, 23 (2): 159-170, 1976.

[87] PL Yu and Milan Zeleny. The set of all nondominated
solutions in linear cases and a multicriteria simplex
method. Journal of Mathematical Analysis and
Applications, 49 (2): 430-468, 1975.

[88] Tey Jing Yuen and Rahizar Ramli. Comparision of
compuational efficiency of MOEAnD and NSGA-II for
passive vehicle suspension optimization. ECMS, 2010:
219-225, 2010.

[89] Milan Zeleny. Compromise programming. In Cochrane
JL, Zeleny M (eds), Multiple criteria decision making,
pages 262-301. University of South Carolina Press,
Columbia, SC, 1973.

[90] Milan Zeleny. Linear multiobjective programming,
volume 95. Springer-Verlag, 1974.

[91] Milan Zeleny. Multiple criteria decision making.
McGraw-Hill New York, 1982.

[92] WH Zhang. A compromise programming method
using multibounds formulation and dual approach for
multicriteria structural optimization. International journal
for numerical methods in engineering, 58 (4): 661-678,
2003.


