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Abstract: Food waste reduction, as a major application area of the Internet of Things (IoT) and big

data technologies, has become one of the most pressing issues. In recent years, there has been an

unprecedented increase in food waste, which has had a negative impact on economic growth in many

countries. Food waste has also caused serious environmental problems. Agricultural production,

post-harvest handling, and storage, as well as food processing, distribution, and consumption, can

all lead to food wastage. This wastage is primarily caused by inefficiencies in the food supply chain

and a lack of information at each stage of the food cycle. In order to minimize such effects, the

Internet of Things, big data-based systems, and various management models are used to reduce food

waste in food supply chains. This paper provides a comprehensive review of IoT and big data-based

food waste management models, algorithms, and technologies with the aim of improving resource

efficiency and highlights the key challenges and opportunities for future research.

Keywords: IoT sensors; food waste reduction; big data; communication technologies; supply chain

1. Introduction

Food waste has been recognized as a serious issue, and significant efforts have been
made worldwide to address the challenges and to reduce food waste. Simultaneously,
there have been tremendous developments in the IoT sensor and big data technologies.
These technological developments can transform the ordinary supply chains into smart
supply chains, which can be adopted for reducing food waste using big data analysis
approaches, appropriate models, and algorithms. There is broad literature for food waste
control [1–9]. A smart supply chain uses information and communication technologies
(ICT) to improve citizen welfare by providing better services through sharing information
with the stakeholders. One of the most crucial aspects of a smart supply chain is the
IoT infrastructure. Through various types of sensors, data can be sent to be analyzed to
reduce food wastage. IoT applications are employed for a variety of purposes, for example,
monitoring the environment inside homes [10] or in food processing factories [11].

The importance of Food Wastage Reduction (FWR) is related to the loss of all the
natural resources in the supply chain, including expenditures related to the use of land,
water supply, and energy consumption. Additionally, with respect to importance of sus-
tainable agriculture, production, and supply chain, FWR will have major impacts on the
economy, the environment, and society. It is critical to investigate how food wastage
affects each of the three aspects. Yildirim et al. [12] discusses the economic impacts of
FWR. To explain and better understand the determinants of food waste across the sup-
ply chain, Chalak et al. [13] closely examines the sectors of Hospitality, Restaurants, and
Canteens/Cafeterias (HORECA), as well as the food retail and wholesale sectors. Data
from 33 developed countries were analyzed by means of a regression model to identify the
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macroeconomic factors contributing to the generation of food waste. The challenges and op-
portunities for enhancing the emerging bioeconomy are explored in Morone et al. [14]. Ad-
ditionally, Salemdeeb et al. [15] address the environmental aspects of using food waste. On
the other hand, Scherhaufer et al. [16] explore the environmental effects of FWR which is an
increasingly significant issue in smart cities. Sustainability is an extremely crucial issue that
should be taken into consideration. The importance of sustainable food waste management
is discussed by Mak et al. [17]. FWR models are widely discussed by Ananno et al. [18].
This literature supports the motivation for study on FWR based on IoT and big data
technologies to control its negative environmental, social, and economic aspects.

Mak et al. [17] developed an IoT-based real-time FWR system for use in the office.
They proposed a model in which an IoT-mounted weighbridge measures food wastage in
office premises and reports it via a mobile device to the employees. Breakfast, lunch, dinner,
and snacks are all considered as part of the measurement and can provide insight into how
employees can reduce the amount of food lost at work. However, this proposed system
does not discuss how various types of foods might be prevented from being wasted using
this approach. Jayalakshmi et al. [19] implemented a novel approach for FWR through
IoT-based smart garbage and waste collection bins. The embedded systems are used for
measuring and recycling food waste to create social awareness and reduce food waste. In
the present paper, a disposal system is presented that reduces the amount of food waste
by reducing the total number of trips by garbage vehicles. In addition, it increases the
overall cost associated with garbage collection. Gull et al. [20] used an Arduino Uno
microcontroller to detect gas emissions from different food items, i.e., meat, rice, and bread.
As explained in the paper, the MQ4 sensor detects the CH4 gas, while the MQ135 sensor
detects CO2 and NH3 in this system. A strain gauge load cell sensor and a converter as
a weight sensor are used to measure the weight of the food being wasted. To ensure the
accuracy and efficiency of the proposed system, the sensors are calibrated. Data is collected
on cooked, uncooked, and rotten food items. A machine learning algorithm is used to
predict food items based on gas emissions to make this a smart system. The decision tree
algorithm is used for training and testing purposes. In this way, 70 instances of each food
item are contained in the dataset. According to the rule set, this system is implemented to
measure food wastage and to predict food items. When a specific food item is detected,
data is gathered on how much of that food item is wasted in one day. This system had
an accuracy of 92.65 percent. As a result, the system reduces the amount of food that
is wasted at home and restaurants by providing a daily report of food wastage in their
computer system. The application of IoT to FWR systems is also examined by Gayathri
et al. and Luthra et al. [21,22], where [21] use RFID sensors as a key tool to monitor food
waste for each individual in accordance with the proposed model, while [22] describe
the application of IoT-based technologies to agricultural supply chain management in
developing countries.

Thus, IoT and big data-based systems are finding more and more successful appli-
cations in FWR. However, based on an analysis of the literature, there is a paucity of
a review that comprehensively analyzes the published literature, brings out the strong
points of applications of IoT and Big Data technologies, and highlights neglected areas that
might need more efforts from future researchers. This paper fills this void with a focus on
food waste reduction. In this paper, we try to review different layers of IoT and big data
infrastructure that merge together with the aim of reducing food wastage in the supply
chain. This article provides a broad understanding of the patterns of prior studies in terms
of the following aspects:

1. Reducing food waste with IoT and big data-based systems.
2. Machine learning algorithms that are used for FWR.
3. Various types of sensors and technologies that are used to reduce the amount of food

wastage and improve food quality.
4. The challenges and opportunities related to using IoT and big data analysis for

reducing food wastage in the supply chain.
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This paper is structured as follows: Section 1 is an introduction and discusses the
motivation and describes the relevant literature. Section 2 discusses research in IoT and
big data analytics for FWR. The next sections explain the three layers of the FWR system.
In Section 3, FWR based on IoT and Big Data analytics in Smart Supply Chain for the
sensing and measurement layer is discussed. In Section 4, the service layer and big data
analysis approaches for FWR are discussed, and a review of articles for understanding
the models and algorithms is presented. Section 5 provides an investigation into the
application of Machine Learning Techniques in reducing food loss. Section 6 introduces
wireless technologies to reduce food waste. Section 7 provides a review of the challenges
and opportunities related to an IoT-based FWR system. Finally, Section 8 concludes the
paper. A list of acronyms used throughout the paper is presented in Table 1.

Table 1. List of acronyms and corresponding definitions.

Acronyms Definitions

IoT Internet of Things

FWR Food Waste Reduction

MEMS Microelectromechanical Systems

RF Radio Frequency

BLE Bluetooth Low Energy

WLAN Wireless Local Area Network

ANN Artificial Neural Network

SVM Support Vector Machine

RFID Radio Frequency Identification

GMM Gaussian Mixture Model

KNN K-Nearest Neighbourhood

WSN Wireless Sensor Network

ML Machine Learning

AI Artificial Intelligence

2. IoT and Big Data

IoT technology through ICT infrastructure and smart devices combines to gather
huge amounts of data in real-time, which is commonly known as big data. The big
data generated by IoT devices will be stored in the big data storage system and will be
used for analysis. The relationship between big data analytics and IoT is explained by
Marjani et al. [23] by taking into account the architecture, opportunities, and open research
challenges. Furthermore, this paper also covers big IoT data analytic types, methods, and
technologies for big data mining. Additionally, the IoT architecture in relation to big data
analytics is studied. IoT devices are connected to the network and the data is then stored in
the cloud and then analyzed. In our paper, we enhanced the topic to IoT applications in
smart food supply chains. In this section, IoT and big data are briefly discussed, and the
relationship between IoT and big data analytics is explained in more detail.

2.1. IoT

According to Marjani et al. [23] and Al Nuaimiet al. [24], IoT offers a platform for
sensors and devices to communicate seamlessly within a smart environment and enables
information sharing across platforms in a convenient manner. Smart cities have seen
a recent adoption of IoT. This is due to interest in intelligent systems, such as smart
offices, smart retail, smart agriculture, smart water, smart transportation, smart healthcare,
and smart energy. By using different types of sensors based on their application and
communication technology, IoT is used in smart supply chains to reduce food wastage.
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Figure 1, inspired by Jagtap et al. [25], illustrates IoT as a platform for FWR in a smart
supply chain. As is illustrated, the four layers of sensing, application, network, and service
form an IoT system, which is indicated for FWR applications.

Figure 1. IoT platform for FWR [23].

2.2. Big Data

The massive data generation by sensors, devices, social media, healthcare applications,
temperature sensors, and various other software applications and digital devices that
continuously generate large amounts of structured, unstructured, or semi-structured data
results in big data. Mak et al. [17] describe big data technologies as an upcoming generation
of technologies and architectures. These technologies aim to take the value out of a massive
volume of data in a variety of formats. This is done by enabling high-velocity capture,
discovery, and analysis. In the studies conducted by Kambatla et al. [26] and Gantz et al. [27],
trends and approaches for big data analysis are discussed. There are various characteristics
of big data, such as veracity, value, variability, and complexity. These characteristics include
the volume or size of data, variety or different sources of data, and velocity or speed of
data creation, which are studied by Gani et al. [28] and Paul et al. [29]. Big data analytics
is the process of examining large data sets that contain a variety of data types to reveal
unseen patterns.

Data analytics consists of estimating hidden correlations, customer preferences, and
other useful business information [30]. Having a clear understanding of data is the most
significant objective of big data analytics, which helps food production companies to make
efficient decisions. Big data analytics require technologies and tools that can transform
a large amount of data into a more understandable data format for analytical processes.
There are algorithms and tools that are used for the purpose of data analysis. Tools like
these are used to identify patterns in data over time and visualize them as tables and graphs.
Therefore, the performance of current algorithms for data analysis is a challenging issue
that should be taken into consideration [31]. There are various tools and platforms that are
in use for the purpose of data analysis; however, the most critical approach is to process
huge data sets within a reasonable amount of processing time [32,33]. The data can be
collected through various sources including online food quality databases, smartphones
and handheld devices, social media, and satellite imagery. There are different types of data
analytics, which are explained as follows:
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• Real-time analytics (RTA)

Real-time analysis is typically performed on data gathered from sensors. Clearly, data
changes constantly in this scenario, so rapid data analytics techniques are required to get an
analytical result. It consists of two architectures: parallel processing clusters and memory-
based computing platforms, which are detailed by Pfaffl et al. [34] The applications and
challenges of big data analysis are discussed in [35]. A description of RTA architecture
in the sustainable industry 4, the fourth stage of an industrial revolution, is provided by
Novak et al. [36].

• Off-line analytics (OLA)

Off-line analysis is used when a quick response is not required [37]. For example, many
Internet enterprises use Hadoop-driven offline analytics as explained in Zahid et al. [38].
There are other approaches for big data analytics such as memory-level analytics, business
intelligence analysis, and massive analysis, which are defined based on the size of data in
comparison with the allocated memory based on the application, which is explained in
Refs. [39,40], respectively. The relationship between IoT and big data analytics is explained
in Figure 2.

•

•

Figure 2. Relationship between IoT and big data analysis [23].

Nguyen et al. [41] present a state-of-the-art literature review on big data analysis for
supply chain management. Arora et al. [42] provide an overview of big data analysis
methods and procedures. Additionally, a comparison between various big data analysis
techniques is provided as well. This is further explained in the following sections with
more focus on FWR in the supply chain.

3. FWR Based on IOT and Big Data Analytics in Smart Supply-Chains: Sensing and
Measurement Layer

In the work by Anagnostopoulos et al. [43], a visual tree for waste management is
developed. It can be further developed to reduce food waste. Figure 3 illustrates how to
classify the technologies that reduce food wastage. Anagnostopoulos et al. [43] review
the literature related IoT-based technologies for reducing food waste in different layers of
sensing and measurement, processing, and data transmission. As illustrated in Figure 3,
there are various technologies that are used for the purpose of minimizing food waste. In
the following sections, we examine these technologies and discuss the challenges. The
term ‘smart’ refers to the process of checking the quality of food based on sensing and
data analysis approaches, which will be discussed in more detail later. Here, we review
the sensor technologies and introduce various types of sensors and their applications to
better understand the measurement and data collection process in advanced IoT-based
systems that aim to minimize food waste. Sehrawat et al. [44] review various types of IoT
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sensors. Table 2 provides a definition of these sensors and their applications in the food
supply chain.

term ‘smart’ refers to the process of checking the quality of food based on sensing and 

Food wastage Reduction Technologies Towards IoT and big data

Sensors
Communication 

Technologies

Measurement Processing
Data Transmission

AI and Machine learning 

Algorithms

Supervised learning, 

Unsupervised 

learning, Semi 

Supervised learning

Humidity sensors

Temperature Sensors

Gas detectors

Photo detector sensors

Ad hoc networks, GPS, 

RFID , WSN

 
Figure 3. Ingredients of smart food waste reduction technology based on IoT and Big data analysis.

Table 2. Categorisation of the sensors for FWR and the applied technology.

Sensor Type Technology Application Reference Year

Proximity Sensor

The position of any nearby object
is detected without any physical

contact by emitting
electromagnetic radiation such as

infrared and looking for any
variation in the return signal

Multi-application, depending on the
type. There are various types such as

inductive, capacitive, ultrasonic,
photoelectric, and magnetic. Mostly

used in applications demanding
security and efficiency. Main

applications of FWR are cutting
number of items, measuring the

amount of rotation for positioning of
objects, and measuring
movement direction.

[20,44,45] 2019, 2020, 2021

Position and
occupancy sensors

Detection of the presence of
human or objects in a particular

area by sensing the air,
temperature, humidity, light, and

motion of a nearby object

Security and safety purposes, smart
agriculture, smart FWR

[46,47] 2017

Motion and
Velocity sensors

Motion sensors detect all kinds of
physical movements in the

environment and the velocity
sensors calculates the rate of

change in position measurement at
known intervals in linear or

angular manner

Smart city applications for intelligent
vehicle monitoring, for example,

acceleration detection of the boxes of
food in the trucks for food protection

during transmission

[48,49] 2015, 2016

Temperature
sensors

Measurement of heat energy FWR and smart farm [50,51] 2016, 2018

Pressure sensor
Measurement the amount of force

and convert it to signal
Smart FWR, smart refrigerator [52] 2018
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Table 2. Cont.

Sensor Type Technology Application Reference Year

Chemical sensors

Conversion of a chemical or
physical property of a specific

analyte into a measurable signal
that its magnitude is normally

proportional to the concertation of
the analyte.

FWR and smart agriculture [53] 2020

Optical sensors Light intensity measurement

Food industry, FWR
For instance, assessment of wine

grape phenolic maturity based on
berry fluorescence

[54,55] 2021, 2008

• Proximity Sensors: The proximity sensors are intended to detect a nearby object using
electromagnetic radiation such as infrared by detecting variations in the return signal.
There are various types of these sensors, such as inductive, capacitive, ultrasonic,
photoelectric, and magnetic [44]. These sensors are widely used in the food industry
and in FWR systems [20].

• Position Sensors: The position sensor senses the motion of an object in a certain area
to detect its presence. It can be used in smart agriculture and in IoT-based FWR
systems [46]. There are also motion sensors that can be considered in this category
that are designed to sense all kinds of kinetic movements of an object, as described by
Ref. [56]. Ndraha et al. [57] apply various types of sensors including position sensors
for the improvement of cold chain performance and improper handling.

• Occupancy Sensors: These sensors are used for the remote monitoring of variables
such as temperature, humidity, light, and air [47].

• Motion or Kinetic Sensors: The sensor detects all kinetic and physical movement in
the environment [56] and could be used in a truck to detect possible movement of fruit
boxes to provide needed information to estimate the rate of food deterioration in a
certain period for better decision-making.

• Velocity Sensors: The velocity sensors calculate the rate of position variation, which
might be linear along a straight line or angular related to device rotation speed at
known intervals [48]. These sensors can be used in crates to determine the variation of
food position during food transfer. This will enable us to monitor the parameters that
can affect food quality and make the appropriate decisions.

• Temperature sensors: Temperature sensors are widely used for the monitoring of
environmental conditions of the surroundings [50]. This type of sensor is also widely
used in FWR systems and more, especially for smart agriculture to enable farmers
to increase their overall yield and product quality by getting real-time data on their
land [51].

• Pressure Sensors: Pressure sensors sense the amount of force and convert it into signals.
Sensors of this type can be used to measure the amount of pressure in boxes of food
and send the data to the server for decision-making to avoid food waste caused by
excessive pressure in boxes during transport. The sensor triggers a notification to the
user as soon as the applied pressure is below a certain value that affects the quality of
the food [52,58].

• Chemical Sensors: These types of sensors sense any chemical reaction and can be used
for reducing food wastage in smart agriculture [53].

• Optical Sensors: Optical sensors are a broad class of devices for detecting light intensity.
Optical sensors are suitable for IoT applications related to the environment. Therefore,
they can be used for food quality control applications, in the food industry [55], and in
smart agriculture [54].
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4. Processing the Aggregated Data: Service Layer

There is a broad range of literature on the application of Machine Learning (ML) for
IoT big data analytics [59,60]. Data from the sensors need to be processed; this section
reviews the algorithms that are mostly used in IoT-based food quality monitoring systems.

4.1. ML and Predictive Models

ML methodologies consist of a learning process with the objective of learning or
experiencing trained data with the aim of performing a task. The data in ML might be
nominal, binary, or numeric. The performance of the ML models is measured by a metric
using various statistical and mathematical models. The trained model can be used to
predict or cluster new examples. Figure 4 illustrates the ML approach.

•

•

•

•

Figure 4. Illustration of ML approach.

In ML algorithms, the learning process might be divided into supervised or unsu-
pervised based on various types of learning models such as classification, regression,
clustering, and dimensionality reduction. In the supervised setting, the trained model is
applied to predict the missing outputs and labels for the test data. On the other hand, in
unsupervised learning, there is no distinction between training and test sets, and the data
is unlabeled. The input data is trained with the goal of discovering hidden patterns. Our
objective in this section is to review ML-based predictive models that are mostly used for
data analysis approaches in agriculture 4, which focuses on precision agriculture based on
IoT technologies and big data analysis. Liakos et al. [61] explore various machine learning
algorithms for agricultural production.

In predictive models, solving the problem of finding a function that maps a vector
of specific length to an output variable to estimate some unknown model parameters
is called a regression problem. There are various types of regression models that are
used for solving regression problems, such as linear regression models, tree-based models
including regression trees, bootstrap aggregated trees, random forests, gradient boosting,
and regularization techniques [62]. Data dimensionality reduction (DR) is applied in
both supervised and unsupervised learning types, with the aim of providing a lower-
dimensional representation of data to simplify computation. Principal component analysis,
partial least squares regression, and linear discriminant analysis are some of the most
common DR algorithms, as discussed in Refs. [63–65]. All these techniques are widely used
for analyzing data in agriculture 4 for decision-making applications.

4.2. Learning Models

The presentation of the learning models in ML is limited to the works presented in
this review.
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(1) Regression: The regression approach is based on supervised learning with the objec-
tive of providing the prediction of an output variable according to the input known
variables. There are various types of regression problems that are studied in the litera-
ture, such as linear and logistic regression [66,67], stepwise regression [68], ordinary
least squares regression [69], multivariate adaptive regression spline [70], multiple
linear regression [71], cubist [72], and locally estimated scatter plot smoothing [73].

(2) Clustering: Clustering is widely used as an unsupervised learning approach for
group clustering of data. Some examples of this approach include K-means [74], a
hierarchical technique [75], and an expectation maximization technique [76].

(3) Bayesian Models: The type of Bayesian model belongs to the supervised learning
category, and it can be used for solving regression or classification problems. The
Bayesian model is a kind of probabilistic graphical model. There are various types of
this algorithm, including Naive Bayes [77], Gaussian Naive Bayes [78], multinomial
Naive Bayes [79], Bayesian network [80], and Bayesian belief network [81].

(4) Instance-Based Models: Instance-driven models (IBM) are memory-based models
that learn by comparing new examples with instances in the training database. This
algorithm generates predictions based on specific instances. This type of algorithm
faces a disadvantage because the complexity grows with the data. Examples of these
learning algorithms are k-nearest neighbor [82], locally weighted learning [83], and
learning vector quantization [84].

(5) Decision Trees: According to the definition provided in [85], decision trees are clas-
sification or regression models formulated in a tree-like architecture. With these
tree-based algorithms, the dataset is progressively organized into smaller homoge-
neous subsets or sub-populations. In tree-based algorithms, the leaf nodes represent
the final decision or prediction taken after following the path from the root to the leaf
which is expressed as a classification rule. The most common learning algorithms in
this category consist of the classification and regression trees [86] and the chi-square
automatic interaction detector [87].

(6) Artificial Neural Networks: ANNs are inspired by human brain functionality. It is
mostly used for solving problems in pattern recognition, cognition, and decision-
making. In ANN several nodes are arranged in multilayers consisting of an input
layer that feeds the data into the system, some hidden layers for doing the process
of learning, and an output layer where the decision is given. ANNs have basically
supervised models that are used for solving regression and classification problems.
Deep ANN is a new area of ML research that applies multiple levels of abstraction
to solve computational models that are composed of multiple processing layers.
DNNs are simply ANN with multiple hidden layers between the input and output
layers and can be either supervised, partially supervised or even unsupervised. A
convolutional neural network (CNN) is a common DL model where the feature maps’
extraction is performed by convolutions in the image domain. There is a wide range
of algorithms that are commonly used for ANN and DNN. Table 3 provides a review
of these algorithms.

(7) Support Vector Machines: SVM is basically a binary classifier that is used for data
classification. A kernel trick can be implemented to upgrade traditional SVMs through
the transformation of the original feature space into a feature space of a higher
dimension. This algorithm is widely used in IoT-based food reduction algorithms.
Table 4 reviews the functionality of this algorithm alongside other ML algorithms for
reducing food wastage using advanced IoT technologies.

Table 3. Categorization of artificial neural network algorithms.

ANN Algorithm Deep ANN Algorithm Paper Year

Radial basis function networks ——- [88] 1996

Convolutional Neural Network X [89] 2017
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Table 3. Cont.

ANN Algorithm Deep ANN Algorithm Paper Year

Perception Algorithms ——- [90] 2002

Back Propagation Algorithms ——- [91,92] 1998, 2021

Resilient Back Propagation Algorithm ——- [93,94] 1996, 2021

Deep Boltzmann Machine X [95] 2019

Counter Propagation Algorithms ——- [96] 2008

Adaptive Neuro Fuzzy
Inference Systems

——- [97] 2020

Generalized Regression Neural
Network Algorithms

——- [98] 2010

Deep Belief Network X [99] 2015

Hopfield Networks ——- [100] 2020

Multilayer perception Algorithms ——- [101] 2005

Auto-encoders X [102] 2020

Extreme Learning Machines ——- [103] 2011

5. Application of Machine Learning Algorithms for FWR: Application Layer

IoT-based food waste reduction has benefited from technological advancements, par-
ticularly by incorporating industrial advances into a sustainable agriculture production
system. Each year millions of tons of food are wasted around the globe. This negatively af-
fects the economy of the country. Machine learning’s adaptability, promotion, and reduced
costs help in assessing the complicated link between the input and output of agricultural
systems by utilizing analytical approaches [104]. Applications of machine learning and
artificial intelligence in reducing food wastage have been studied in the literature, which is
represented in Table 4.

Table 4. Application of ML and AI algorithms for FWR based on IoT technologies.

ML Algorithm Functionality Paper Year

SVM Automatic count of coffee fruits on a coffee branch [105] 2017

ANN
Method for the accurate analysis for agricultural
yield predictions

[106] 2016

Regression, SVM
Estimation of monthly mean reference
evapotranspiration arid and semi-arid- regions

[107] 2017

Bayesian Models Detection of Cherry branches with full foliage [108] 2016

Deep Learning
Identification and classification of three legume
species: soybean, and white and red bean

[109] 2016

ANN
Estimation of daily evapotranspiration for
two scenarios

[110] 2017

As is explained in Table 4, Machine Learning algorithms such as SVM, ANN, Regres-
sion, and Bayesian models are used for FWR in different stages of production to enhance
the quality of food products. In Ramos et al. [105] SVM is used to classify the ripe, overripe,
and unripe coffee fruits. In Kung et al. [106] ANN is used for agricultural yield prediction.
Mehdizadeh et al. [107] and Amatya et al. [108] use multivariate adaptive regression and
Bayesian models for the estimation of the monthly mean and detection of cherry branches
respectively. In order to provide high-quality food for consumers after prediction, appro-
priate communication is needed for the transportation of the information after sensing
the temperature or other vital parameters such as environmental humidity that can signif-
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icantly have an impact on the quality of the produced food for proper decision-making
purposes to transfer the food to the closet customer.

With respect to the importance of communication technologies for FWR, communica-
tion technologies in the food supply chain are explained in the next section.

6. Wireless Communication Technologies for FWR in Smart Supply Chains: Network Layer

In this section, an overview of the various wireless communication technologies
is presented. Different technologies are compared in terms of data transmission range
and power consumption. By following this section an understanding of various wireless
communication technologies will be provided to be considered based on the application
requirements and the trade-off between transmission range and battery consumption.
There are a variety of wireless communication technologies, such as RFID, GPS, narrow-
band (NB-IoT), long-range (LoRa), and ZigBee, which can be used for IoT applications to
transfer measurements to reduce food waste. A comparison between different wireless
communication technologies with energy harvesting capabilities for FWR is provided by
Sadowski et al. [111]. Table 5 provides a comparison between wireless communication
technologies based on data rate, cost, and transmission range. A categorization of wireless
communication technologies and their application in FWR is explained as follows:

Table 5. A comparison between different Wireless communication technologies [111].

Wireless Communication Technology Data Rate Range Cost

Wi-Fi 100 MBps 10–40 m Moderate

Bluetooth 1 MBps 10–30 m Low

Bluetooth Low energy, and Zigbee 100 KBps 100 m Low

RFID 1 KBps 1–9 m Very Low

Cellular 5G/LTE/3G 1 MBps–100 MBps 1–10 km High

LPWAN 150 KBps 1–20 km Moderate-Low

(1) Low Power Wide Area Networks: LPWANs are widely used in IoT applications. For
large-scale IoT networks, small, inexpensive batteries that last for years are used for
long-range communication. The main application of these technologies is in the in-
dustry and commercial sectors. As LPWANs can connect all types of IoT sensors, they
can be used for IoT applications in the food industry. With this technology, countless
applications can be achieved, such as asset tracking, environmental monitoring, and
facility management. Regarding the characteristics of LPWANs, only small blocks of
data can be transferred at a low rate. Therefore, this technology is better suited for
low bandwidth and not time-sensitive applications. It should be noted that select-
ing the most appropriate wireless technology for IoT use cases specified in the food
supply chain requires an accurate assessment of bandwidth, QoS, security, power
consumption, and network management. Here, in the rest of this section, other types
of wireless technologies that can be applied in the food supply chain are explained.

(2) Cellular (3G/4G/5G): Different generations of mobile communication technologies
and cellular networks offer reliable broadband communication that supports various
voice calls and video streaming applications that are good for monitoring food quality,
however, these technologies impose very high operational costs and power require-
ments that should be considered for their applications. Although cellular networks
are not viable for the majority of IoT applications powered by battery-operated sensor
networks, they fit well in specific use cases such as connected cars or for management
applications in transportation and logistics. In the case of tracking trucks carrying
food, the technology can be applied by relying on cellular connectivity, which is
ubiquitous and high-speed. IoT applications in the food supply chain can be used
with the next-generation 5G network with its high-speed mobility and low latency.
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It can support real-time video surveillance for food quality control, real-time mobile
delivery of measured parameters such as humidity and temperature, as well as rel-
evant datasets for connecting several time-sensitive automation applications in the
food supply chain that focus on food quality.

(3) Zigbee and Other Mesh Protocols: Zigbee is a short-range, low-power, wireless stan-
dard that is also referred to as IEEE 802.15.4. This wireless communication technology
is commonly deployed in a mesh topology to extend coverage by relaying sensor data
over multiple sensor nodes and therefore it is very useful for IoT-based technologies
in the food supply chain. Compared to LPWAN, Zigbee provides higher data rates
and much less power efficiency due to mesh configuration. As this technology is most
suited for medium-range IoT applications with an even distribution of nodes in close
proximity, it is suitable for monitoring the humidity and temperature in fridges and
freezers to send an alarm in critical situations. Zigbee is a perfect complement to Wi-Fi
for various IoT applications to monitor food quality and transfer measured data for
further processing. This technology provides several remote monitoring solutions for
applications for reducing food wastage.

(4) Bluetooth and Bluetooth Low Energy (BLE): Bluetooth technologies are defined in the
category of Wireless Personal Area Networks (WPANS) a short-range communication
technology that is originally intended for point-to-point or point-to-multipoint (up
to seven slave nodes) data exchange devices. BLE devices are typically used in
smartphones that serve as a hub for transferring data to the cloud. In today’s world,
BLE is widely used to transfer data from humidity, temperature, and acceleration
sensors directly to the smartphone app to be analyzed and visualized. The BLE
devices are widely used in retail contexts to provide versatile indoor localization
features for in-store navigation and content delivery.

(5) Wi-Fi: Wi-Fi has a critical role in providing high throughput data transfer, however, in
the IoT space, its major limitations in coverage, scalability, and high-power consump-
tion make this technology less prevalent. Therefore, it is often not a feasible solution
for large networks of battery-operated IoT sensors, especially in industrial IoT applica-
tions. As the coverage is almost good in comparison with other wireless technologies,
Wi-Fi can be applied in IoT applications for food quality control purposes.

(6) RFID: It uses radio waves to transmit small amounts of data from an RFID tag to a
reader within a very short distance. This technology is widely used for indoor data
transfer in food quality monitoring applications. Additionally, RFID has facilitated a
revolution in retail applications and logistics. To optimize supply chain management,
RFID tags can be attached to food bags to track parameters such as acceleration,
humidity, and temperature. Some of the applications of RFID in the retail sector
consist of smart shelves, smart fridges, smart bags, and so on.

7. IoT-Based Food Wastage Reduction Challenges and Opportunities

7.1. Challenges

Although data analysis tools are used to monitor food quality features, there are
several challenges that should be taken into consideration. In Ali et al.’s work [3], various
risks in the food industry are analyzed. Additionally, Jin et al. [112] provide a review of
big data in food quality monitoring. Some of the challenges in food safety are studied by
Wang et al. [113]. Based on the literature review conducted in this study, a number of key
challenges are identified and listed below:

• Data Quality: Research on Big Data Analytics in food quality control using cloud com-
puting technology has its own relevant challenges related to data quality, scalability,
availability, and integrity.

• Lack of Standardization: These can be related to using different management systems
by users and can be considered the biggest challenges related to the generated data.

• Lack of Communication Protocols: Bouzembrak et al. [114] explain that this can be
considered one of the main issues that affect the data transmission quality, as it may



Sustainability 2023, 15, 3482 13 of 19

cause delays, or some parts of the measured data might be missed due to a lack of
reliable communication protocols.

• Security and Data Protection: Several issues are associated with IoT security in food
quality control, such as inadequate hardware and software security. Additionally, IoT
nodes that are not supported with enough security protocols can be a vulnerable point
for the security of the entire IoT system along the food supply chain.

• Battery: The energy consumption issues related to the use of batteries also pose
significant challenges to the success of IoT-based technologies for FWR.

According to Amer et al. [115], the challenges of using IoT in the food supply chain
can be divided into technical, financial, social, operational, educational, and governmental.

The technical challenges contain hardware-related technical skills. It can also refer
to network structure, and big data management and analytics capabilities. The financial
challenges mostly refer to operation and management costs. There are also social challenges
related to cooperation among supply chain players as well as integration and coordination
of information among supply chain partners. The operational challenges are mostly in
line with administrating supply chain IoT networks, data security, and industry operating
IoT standards.

In addition, mobile-based applications can, in some cases, negatively contribute to the
food waste phenomena [116–118].

7.2. Opportunities

IoT technologies will give companies many opportunities to reduce food waste. In
this context, we cite the ongoing REAMIT project (https://www.reamit.eu/, accessed on
1 December 2022), which was founded by Interreg Northwest Europe. REAMIT provides
several IoT-based food monitoring and control opportunities with the aim of FWR in food
companies that are summarized as follows:

• Networking and Collaborations: These provided access to a network in North-West
Europe with wide expertise and provided an opportunity for participation in future
collaboration initiatives.

• Quality Assurance: Continuously monitor food quality and signal any potential loss
in quality.

• Decision support and decision-making: Using big data analytics and artificial intelli-
gence to provide rapid decision support for food logistics.

• Sensor Technology: Providing at the forefront of sensor (traditional and advanced)
technologies for monitoring food quality and big data technology developments

• Data-Driven Decision-Making: Making the right decision for food quality based on
carefully analyzing real-time data.

With the development of IoT monitoring systems, two main advantages will be
achieved. In the first place, notifications can provide fresh information for the companies
and suppliers to prevent food wastage, and in the second place, there are environmental
benefits such as reducing carbon footprints that arise from IoT and big data analysis being
combined with the overall aim of reducing food wastage in smart supply chains with IoT
based infrastructure that can run FWR programs. In line with motivations and challenges
for food companies in using IoT sensors for the purpose of FWR, Ramanathan et al. [119]
provide insight and a roadmap for the future.

Figure 5 visualizes REAMIT approaches:

https://www.reamit.eu/
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Figure 5. REAMIT approaches visualization.

8. Conclusions

The main objective of this review paper is to combine the most pertinent aspects of
IoT with the main goal of reducing food wastage in food supply chains. This paper has
provided a comprehensive review of the use of various IoT and Big Data technologies. It
discusses how to reduce food waste from farm to fork along the food supply chains by
integrating different technologies to create an IoT system. This paper reviews sensors, ML
algorithms, and wireless data transmission technologies, which are the key components
of IoT systems. It focuses on their applications for monitoring food quality and reducing
wastage. The findings contribute to understanding how the IoT sensors and big data
technologies can be used to reduce food waste. The paper also raises awareness of the
challenges and opportunities faced by researchers and practitioners when implementing
IoT-based systems for food waste reduction. Based on the review, this paper has identified
a list of the most researched and least researched areas in terms of the application of IoT
and big data technologies for reducing food waste. It finds that FWR is widely reviewed
in terms of big data analysis; however, further investigation on the methods, approaches,
and sensor types that can be applied to specific kinds of food is needed. For instance, for
vegetables, what kind of sensor is optimal to use to reduce their wastage? What types of
sensor data (e.g., odor, color, temperature) are most effective to indicate the freshness of
vegetables? This research can be further expanded to other food categories such as meat,
cooked foods, frozen foods, fish, fruits, etc. This study is intended for future research in
this area.
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