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Abstract

This paper considers a moral hazard model with agent limited liability. Prior to interacting

with the principal, the agent designs the production technology, which is a specification of his

cost of generating each output distribution. After observing the production technology, the

principal offers a payment scheme and then the agent chooses a distribution over outputs. We

show that there is an optimal design involving only binary distributions (i.e., the cost of any

other distribution is prohibitively high), and we characterize the equilibrium technology defined

on the binary distributions. Notably, the equilibrium payoff of both players is 1/e.
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1 Introduction

A central result in contract theory is that agency rents are a key source of economic welfare.

When analyzing environments with asymmetric information, most microeconomic models take the

determinants of these agency frictions as given. In hidden-information models, for example, the dis-

tribution of types, which determines information rents, is typically treated as exogenous. Similarly,

in principal-agent problems with hidden actions, the production technology available to the agent,

which governs the principal’s cost of implementing various actions, is usually part of the model

description. However, if an agent’s payoff depends on agency frictions, then he is likely to pursue

generating these frictions in a way that enhances his payoff. The goal of this paper is to reconsider

the standard limited-liability moral hazard problem and understand how an agent might maximize

rents by optimally designing the production technology.

For a potential application where such a problem may arise, consider an entrepreneur who is

starting a business, and will eventually need venture capital backing to grow it. Prior to contracting

with venture capitalists, he must make a host of choices pertaining to the product, the business

model, the product market strategy, and so on.1 If the venture capitalist has strong bargaining

power, the entrepreneur benefits from making choices that exacerbate the moral hazard problem to

increase agency rents. Even if there were more profitable alternatives, they may not be considered

in the contractual negotiations if the venture capitalist is unaware of them.

Identifying the agent-optimal technology turns out to be useful even in those environments where

the agent has no meaningful way of influencing the production technology and, from his viewpoint,

it is given exogenously. Indeed, we are able to express predictions regarding surplus sharing in

principal-agent models with limited liability that are robust to the set of available technologies.

Specifically, we characterize the entire set of payoff combinations in such models which can arise for

some production technology.2 The agent-optimal technology corresponds to an extreme point in this

set at which the agent’s payoff is maximal. This exercise is similar in spirit to that of Bergemann et

al. (2015), who characterize the set of consumer and seller payoffs in a model of third-degree price

discrimination for some information of the seller.3

In the baseline setup, we consider a risk-neutral agent who can choose a production technology
1A sizable literature on entrepreneurship examines the decisions of entrepreneurs when developing a business. See

Gans et al. (2019) for a recent review.
2To be precise, we characterize this set as a function of the largest possible output realization.
3See also Garrett (2021) for a related exercise in a setting with moral hazard and adverse selection.
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(or “project”) before interacting with a principal.4 A production technology specifies the agent’s

cost of each output distribution with support contained in [0, 1]. That is, the only restriction on

the available projects is that output is uniformly bounded. Such a bound may represent a physical

constraint and is normalized to one. After observing the agent’s project, the principal offers a wage

contract, which is a mapping from output realizations to monetary compensation. We assume that

the agent has limited liability and hence the payment must be non-negative. Finally, the agent

chooses an output distribution at a cost determined by his first-stage choice.

In order to focus on the incentives to generate agency rents we consider a particularly stylized

model which abstracts from a number of forces that may have first-order importance in applica-

tions. Perhaps most importantly, the agent in our model does not incur any costs in choosing a

production technology. In practice, developing a project is likely to require a substantial amount of

irreversible investment. In fact, the necessity of such investments may prevent the technology from

being renegotiated at the contracting stage. The reason is that, even if both parties are aware of

production technologies that are more profitable than the one put forward by the agent, they would

not be implemented if modifying the agent’s project is too expensive.5 Since the agent chooses the

production technology before the contracting stage, our model is a hold-up problem. The expense of

modifications could also prevent the agent from secretly adjusting the technology after contracting

to make the chosen output distribution less costly, helping to make the agent’s commitment to the

technology credible.6

We also recognize that, in practice, the agent’s ability to shape the production technology

may be severely limited. For example, some output distributions may be impossible to generate.

The constraints on the set of available technologies are likely to be important determinants of the

optimal design. However, even when the space of projects is restricted, our main result holds as

long as this space includes the agent-optimal technology. Moreover, in the Discussion Section,

we demonstrate that our analysis can accommodate certain moment constraints on the domain of

production technologies.

Our first main result is that the optimal project involves only binary distributions on {0, 1}.7

4We extend our analysis to environments where the agent is risk averse in the Online Appendix.
5Gans et al. (2019) argue that many of the decisions an entrepreneur takes during business development cannot

be revisited or renegotiated.
6Another consideration that may rule out secret deviations by the agent is monitoring by the principal. The

principal may not permit the agent to adjust the project initially proposed, especially if she finds it costly to evaluate
all the implications of the adjustments.

7While there is some multiplicity of optimal projects, we show in Appendix B that all optimal projects share the
same essential attributes, so we write informally of “the” optimal project.
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In other words, the cost of all other distributions can be assumed to be so high that the principal

never wants to implement them, and the agent would never choose them irrespective of the payment

scheme. This means that the equilibrium project can be thought of as a task which yields a

positive payoff only if completed. The production technology specifies the cost of each probability

of completion. The principal’s wage contract can be viewed as a bonus paid for project completion,

with payments set to zero otherwise.

Let us explain the optimality of binary projects. Just like in standard moral hazard problems,

output plays a dual role in our model. On the one hand, it is the principal’s revenue, and on the

other hand, it is an informative signal about the output distribution chosen by the agent, which

is used by the principal to incentivize the agent. By the Informativeness Principle, if this signal

is made less informative, incentivizing the agent becomes more expensive. The key observation is

that each binary distribution with support {0, 1} can be viewed as a garbling of a distribution with

the same mean. Consider now a transformation of each project so that, if the agent incurs a cost

of a distribution, output is distributed according to the binary distribution with the same mean.

This means that the agent’s cost of inducing a given level of expected output remains the same in

the transformed project but the principal’s cost of implementing it goes up. In this sense, such a

transformation exacerbates the moral hazard problem. We show how this observation can be used

to replace any project with a binary one for which the agent’s payoff is at least as high.

Our second main result is a full characterization of the optimal binary project. In this project,

the cost of completing the task with probability 1/e is zero. That is, even if the agent incurs no

cost, project completion can be achieved with probability 1/e. In equilibrium, the principal offers

a bonus which induces the agent to complete the project with probability one. Furthermore, the

principal is indifferent between offering this bonus and anything less than that. This indifference

condition pins down the cost to the agent of any probability of success between 1/e and one. Since

the marginal cost of the success probability is less than one and the maximal output is produced

surely, the equilibrium is ex-post efficient. That is, given the equilibrium production technology,

the allocation is efficient. It turns out that the optimal project yields an equal split of surplus: both

the principal and the agent earn payoff 1/e.

The first-best social surplus in our model is one since projects that can generate output one at

no cost are feasible. Of course, the agent does not choose such a project because then the principal

could achieve the maximal output without making any payment. To earn rents, the agent designs

the technology so that generating high expected output is artificially costly. In fact, since the
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equilibrium output is one with probability one, the only source of distortion induced by the optimal

design relates to this cost. This might be considered a form of “cost padding”, different from others

identified in the literature.8

As mentioned above, an identifying feature of the optimal project is that the principal is indif-

ferent between implementing a large range of completion probabilities. Let us explain the economic

reasoning behind this feature. Note that, since the agent receives the bonus offered by the princi-

pal with the probability of completion, her marginal benefit at each completion probability is the

bonus. Hence, at the agent’s optimal completion probability, the marginal cost equals the bonus.

This means that the principal’s expected payment to implement a given completion probability is

increasing in the marginal cost at that probability, so lowering this marginal cost makes it more at-

tractive to the principal to implement the completion probability. However, if the principal strictly

prefers to implement the equilibrium probability of completion to implementing some smaller prob-

abilities, then the marginal costs at these smaller probabilities can be lowered without affecting

the principal’s equilibrium choice. Since the cost of a completion probability is the integral of the

marginal costs of smaller probabilities, such a modification of the project decreases the agent’s total

cost and thus increases his overall payoff (while the principal is still willing to offer the same bonus

that implements the equilibrium completion probability). The agent can improve any project in

this way unless the principal is indifferent between implementing any completion probability which

has a positive marginal cost.

We demonstrate that our main results remain valid even if the agent is risk averse.9 In particular,

the search for an optimal project can still be restricted to the set of binary projects. Moreover,

the optimal binary project is still ex-post efficient; that is, the principal implements completion

probability one. The optimal binary project is still characterized by the requirement that the

principal must be indifferent between offering the equilibrium bonus and anything less than that.

Of course, the equilibrium payoffs of the principal and the agent are no longer 1/e and they depend

on the agent’s concave utility function.

Despite the fact that our model is stylized, we believe that there are a number of lessons emerging

from our analysis which may be useful in applications. First, a general message is that the agent in

a technology design problem will often commit to a project that is not cost-efficient. By padding

costs, he may be able to earn additional rents. Second, there is reason to expect that, where possible,
8For example, Averch and Johnson (1962) observe that a regulated firm has incentives to inflate capital costs.
9See the Online Appendix.
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an agent’s optimal technology will be binary. That is, the project essentially specifies a task and

the agent either completes it or fails to solve it. More generally, the agent is likely to favor designs

where the information content of output regarding his effort is limited. The reason is that this

makes it more expensive for the principal to induce the target level of effort. A third observation

that we expect to generalize is the importance of principal incentive constraints in the design of the

agent’s project. The agent’s design must dissuade the principal from choosing ungenerous incentive

schemes that give the agent little rent. Where such incentive constraints are slack, however, it may

be possible for the agent to redesign the project to lower his equilibrium cost.

Finally, we characterize the payoff combinations that can arise in limited-liability moral hazard

problems for some exogenously given technology where output is restricted to the interval [0, 1].

This follows by first identifying the largest payoff the agent can achieve as a function of a given

profit of the principal. The domain of this function is the interval [0, 1] because the principal can

always guarantee a nonnegative profit by offering zero wage and she cannot get more than the

maximal output. This function is shown to be strictly concave and zero at the boundaries of its

domain. We argue that a payoff profile can be generated by some production technology if and only

if it lies weakly below this curve.

The rest of the paper is as follows. Next we discuss related literature. Section 2 introduces

the model, Section 3 provides our characterization of the agent’s optimal project, and Section

4 provides discussion and extensions, including the characterization of the set of possible player

payoffs. Appendix A provides proofs not given in the main text and Appendix B discusses the

uniqueness of the agent’s optimal project. The Online Appendix solves the agent’s project design

problem when the agent is risk averse.

Literature.— The limited liability model of moral hazard for a risk-neutral agent is a staple

of introductory courses on contract theory, where a restriction to binary output (which emerges

endogenously in our setting) is often made for tractability. A classic reference for limited-liability

moral hazard is Innes (1990), who demonstrates the optimality of simple debt contracts in a model

with a continuum of outputs. More recent treatments of moral hazard with limited liability include

Poblete and Spulber (2012) for a model with a continuum of outputs and Ollier and Thomas (2013)

for a model with binary output, but complicated by the presence of adverse selection.10

While the models discussed above feature a risk-neutral agent with limited liability, the al-
10Also related are Carroll (2015) who studies a principal facing ambiguity with respect to the agent’s technology,

Laux (2001) who considers agents with multiple projects, and Jewitt et al. (2008) who explore general bounds on
payments beyond limited liability.
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ternative friction commonly explored is risk aversion. Seminal work for the moral hazard model

with a risk-averse agent includes Mirrlees (1976), Holmstrom (1979), Grossman and Hart (1983),

Rogerson (1985) and MacLeod (2003); see Bolton and Dewatripont (2005) and Holmstrom (2017)

for comprehensive treatments, and Georgiadis (2022) for a review. More recently, a strand of this

literature has focused on models where the agent can shape the entire distribution of output under

different assumptions about the cost of distributions (Hebert, 2018; Bonham and Riggs-Cragun,

2021, Georgiadis et al. , 2022, and Mattsson and Weibull, 2022). The focus of the moral hazard

literature, then, has been on contract design taking the agent’s technology as given. Our paper

departs from this approach by viewing the production technology as a choice of the agent, raising

the problem of technology design. We are unaware of this kind of problem being posed elsewhere

in the moral hazard literature.

The question of project design is also related to work on how the primitive contractual en-

vironment affects payoffs in moral hazard problems. A relevant example in our context is the

development of the Informativeness Principle by Holmstrom (1979), which was later refined for

instance by Chaigneau et al. (2019). These papers clarify how additional information about the

agent’s action can reduce agency costs for the principal.

Another related paper is Condorelli and Szentes (2020) who study the problem of optimally

generating information rents in the context of a bilateral trade model. Before interacting with the

seller, the buyer can choose the distribution of her valuation for the seller’s good. This choice is

observed by the seller before she makes a take-it-or-leave-it offer. It turns out that the equilibrium

distribution generates a unit-elastic demand, that is, it makes the seller indifferent between setting

any price on its support. This is reminiscent of our optimal binary project which makes the principal

indifferent across a range of bonuses.11 This similarity might explain why, when the buyer is

restricted to choose distributions with support in the interval [0, 1], the equilibrium payoffs of the

buyer and the seller are also 1/e. We further elaborate on the relationship between these two results

in Section 4.12

11Such an indifference argument has appeared in the contexts of incentivizing monitoring (Ortner and Chassang
(2018)), optimal testing (Perez-Richet and Skreta (2018)) and monopoly pricing in the presence of ambiguity (Berge-
mann and Schlag (2011)).

12Also related, Roesler and Szentes (2017) consider a setting where signals inform an otherwise uninformed buyer
of his value, and asks which signal structure yields the highest information rent.
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2 Model

We consider a game between a principal (she) and an agent (he), which proceeds as follows. In

the first stage, the agent chooses a cost function c : F → R+ ∪ {+∞}, where F denotes the set of

CDFs with support on [0, 1]. We refer to such a function c as a project. Then, after observing c,

the principal offers a payment scheme w : [0, 1] → R+, which is restricted to be Borel-measurable.13

Finally, after observing the offered payment scheme, the agent chooses a distribution F ∈ F , and

output is realized according to F .14 If the realized output is x then the agent’s and principal’s

payoffs are w (x) − c (F ) and x − w (x), respectively. Both parties are expected payoff maximizers.

Notation.— For each F ∈ F , let µF denote the expected value of F , that is, µF =
∫ 1

0 xdF (x).

The set of projects and the set of Borel-measurable payment schemes are denoted by C and W,

respectively. We refer to a triple (c, w, F ) ∈ C × W × F as an outcome. Let U and Π denote the

expected payoffs of the agent and the principal defined on the outcomes; that is,

U (c, w, F ) =
∫ 1

0
w (x) dF (x) − c (F ) , and Π (w, F ) =

∫ 1

0
[x − w (x)] dF (x) .

Equilibrium in a Project.—Loosely speaking, we wish to call a pair (w, F ) ∈ (W, F) an equi-

librium in project c ∈ C if it satisfies the following two requirements. First, the distribution F is

incentive compatible (or a best response) for the agent given project c and the payment schedule

w. Second, the payment scheme w is incentive compatible for the principal given project c. Formal

statements of the incentive compatibility constraints and the equilibrium definition are provided

below.

Optimal Projects.— We define the project c to be optimal if there is an equilibrium (w, F ) in c

such that the agent’s payoff in outcome (c, w, F ) is larger than in any outcome (c′, w′, F ′) such that

(w′, F ′) is an equilibrium in c′. Thus, we assess the optimality of a project c that induces multiple

equilibria by considering those which give the highest payoff to the agent. This is in line with the

approach prevalent in mechanism design, where the designer is permitted to pick the most favorable

equilibrium.

Incentive Compatibility.— We say that choosing F is incentive compatible for the agent in the
13Non-negativity of payments encodes the limited-liability constraint.
14That the agent can choose any distribution on [0, 1] departs from much of the moral hazard literature, where

the output distribution is parameterized by a one-dimensional variable called “effort”. We view the agent’s chosen
distribution as synonymous with his action, an approach also taken for instance by Carroll (2015).
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subgame (c, w) if

U (c, w, F ) ≥ U
(
c, w, F ′) for all F ′ ∈ F . (1)

To describe the principal’s incentive constraint is harder because the agent may not have a best

response in a subgame generated by a pair (c, w). In turn, this can make it difficult to assess the

profitability of certain deviations. To circumvent this problem, we define the value of the agent,

u (c, w), in each subgame (c, w), by

u (c, w) ≡ sup
F ∈F

U (c, w, F ) .

We aim to define the value of the principal in a subgame (c, w) by reference to sequences of distri-

butions along which the agent’s payoff converges to his value. In general, there may be many such

sequences, potentially generating different limit payoffs to the principal. Let Fc,w denote the set

of sequences of distributions (Fn) along which the agent’s payoff converges to u (c, w). Formally,

(Fn) ∈ Fc,w if and only if limn→∞ U (c, w, Fn) = u (c, w). Then, the principal’s value in subgame

(c, w) is given as

π (c, w) ≡ sup
{

lim sup
n→∞

Π (w, Fn) : (Fn) ∈ Fc,w
}

.

Evaluating the principal’s value by reference to the supremum is again in the spirit of the approach

prevalent in mechanism design, where the principal is permitted to pick the most favorable best

response of the agent. The principal’s incentive compatibility constraint guaranteeing that she offers

payment schedule w in project c can be stated as follows: for all w′ ∈ W,

π (c, w) ≥ π
(
c, w′) . (2)

That is, the principal cannot gain by deviating to a payment schedule w′, whether or not the agent

has a best response to w′.

Equipped with the incentive compatibility constraints, we are ready to define equilibria formally.

Definition. The pair (w, F ) is said to be an equilibrium in project c if

(i) the distribution F satisfies (1),

(ii) the payment scheme w satisfies (2), and

(iii) Π(w, F ) = π(c, w).

Observe that Part (iii) requires that the distribution F indeed generates the principal’s value in
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subgame (c, w).

Binary Projects and Linear Contracts.— As mentioned in the Introduction, binary projects play

an important role in our analysis. Next, we formally define these projects. We call a distribution

in F binary if its support is contained in {0, 1}. For each µ ∈ [0, 1], let Bµ denote the binary CDF

which specifies an atom of size µ at one. Note that the mean of Bµ is also µ. Let B denote the

set of binary distributions; that is, B = {Bµ : µ ∈ [0, 1]}. We call a project c binary if c (F ) = +∞

whenever F /∈ B.

In each binary project, the principal always finds it optimal to offer a compensation scheme

which pays zero if output is zero. So, the optimal payment scheme can be summarized by a single

bonus, b, which is paid to the agent if output is one. If the project is binary, the wage at output

x /∈ {0, 1} is irrelevant, so without loss of generality, such a wage contract can be assumed to be

linear, denoted by wb, that is, wb (x) = bx for all x.

If the principal offers a linear contract, wb, the output distribution affects the payoffs of the

agent and the principal only through its mean. That is, whether or not the project is binary,

U (c, wb, F ) = µF b − c (F ) , and Π (w, F ) = µF (1 − b) . (3)

This implies that, if the principal offers a linear contract to which the agent has a best response,

this best response must involve a distribution which is the least costly among those with the same

mean.

3 Main Results

This section is devoted to our two main results. In the next section, we show that it suffices to

restrict attention to binary projects and, in Section 3.2, we fully characterize an optimal binary

project.

3.1 Binary Projects

In this section, we fix a project c∗ and an equilibrium (w∗, F ∗) in c∗. Our aim is to construct a

binary project c̃ and an equilibrium (w̃, F̃ ) in c̃ so that the outcome (c̃, w̃, F̃ ) Pareto dominates the

outcome (c∗, w∗, F ∗). Since c∗ can be an optimal project, this result implies that there exists an

optimal project in the class of binary projects.
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As explained in the Introduction, the key observation for this result is that an output realization

not only determines the principal’s payoff, but also serves as an informative signal about the agent’s

action. If this signal is made less informative in the sense of Blackwell, incentivizing the agent

becomes harder for the principal. To see how an output distribution can be made less informative,

consider the following garbling: instead of observing output x, the principal observes output one

with probability x and output zero otherwise. That is, the garbling of each F ∈ F is BµF , so the

expected output is unaffected. In fact, BµF is the least informative garbling of F , as the same

transformation can be applied to any other garbling of F which would again result in BµF . So, if

the principal could contract only on the realization of BµF but not on that of F , her wage cost of

implementing F would increase. We next explain how this observation can be used to transform

the project c∗ to a binary one which is more beneficial for the agent.

The idea behind the construction of the binary project, c̃, is as follows. First, define the agent’s

cost of any binary distribution to be the cost of the cheapest distribution in project c∗ with the same

mean. In this binary project, the principal’s wage cost of attaining any level of expected output is

higher than in project c∗. In fact, the wage cost of generating µF ∗ may be so high that the principal

prefers to implement a distribution with a lower mean, thus saving on payments to the agent. In

this case, the payoffs of both parties can be lower. Therefore, we further modify the binary project

by reducing the agent’s cost of BµF ∗ so that the principal can implement it at exactly the same

wage cost as that of F ∗ in c∗.

Before stating the main result of this section, let us introduce an additional piece of notation.

Note that the expected payment in outcome (c∗, w∗, F ∗) is EF ∗ [w∗]. If µF ∗ > 0 (as must be the

case if the outcome is optimal for the agent), we can define b∗ to equal EF ∗ [w∗] /µF ∗ . We can then

observe that15

EF ∗ [w∗] = µF ∗b∗ = EF ∗ [wb∗ ] = EBµF ∗ [wb∗ ] . (4)

That is, the expected payment induced by the pair (w∗, F ∗) is the same as that induced by(
wb∗ , BµF ∗

)
.

Proposition 1. Suppose that (w∗, F ∗) is an equilibrium in project c∗ with µF ∗ > 0. Then there

exists a binary project, c̃, such that

(i)
(
wb∗ , BµF ∗

)
is an equilibrium in c̃,

(ii) U (c∗, w∗, F ∗) ≤ U
(
c̃, wb∗ , BµF ∗

)
, and

15Recall that wb∗ (x) = b∗x for all x.
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(iii) Π (w∗, F ∗) = Π
(
wb∗ , BµF ∗

)
.

Let us describe the binary project c̃ and the main arguments in the proof of the proposition. It

turns out that, in this binary project, the agent’s rent can be ensured by making it hard for the

principal to dissuade the agent from deviating downwards (i.e., to distributions with lower means).

Upwards deviations need not play a role, so we specify the agent’s cost of each Bµ with µ > µF ∗ to

be infinity throughout the construction. We now explain the two steps of constructing c̃ from c∗ in

more detail. In the first step, we take the agent’s cost of BµF ∗ to also be infinite. For each µ < µF ∗ ,

we specify the cost of Bµ to be the cost of the cheapest distribution in project c∗ with expectation

µ.16 We then prove that, in order to achieve any expected output, the principal must make a higher

expected payment in this binary project than in c∗. In the second step, we redefine the agent’s cost

of BµF ∗ so that the principal’s wage cost of implementing BµF ∗ is exactly EF ∗ [w∗] = EBµF ∗ [wb∗ ],

thus obtaining the project c̃. We show that the agent’s cost of BµF ∗ in c̃ is less than c∗ (F ∗). This

means that, by Equation (4), Parts (ii) and (iii) of the proposition are satisfied.

We now explain how to obtain Part (i). Note that, by our choice of the agent’s cost of the

distribution BµF ∗ in project c̃, the agent best responds to wb∗ by choosing BµF ∗ . Therefore, to

prove that
(
wb∗ , BµF ∗

)
is an equilibrium in this project, we need to demonstrate only that offering

wb∗ is incentive compatible for the principal. By construction, if the principal wants to implement

BµF ∗ , she offers payment schedule wb∗ . She therefore receives a payoff of Π (w∗, F ∗). As explained,

attaining any other expected output µ (µ ̸= µF ∗) is more expensive for the principal in c̃ than in

c∗. Therefore, since the principal found it optimal to implement F ∗ in c∗, she optimally chooses to

implement BµF ∗ in c̃ by offering wb∗ ; that is, wb∗ is incentive compatible in c̃.

Towards the first step described above, let us define the binary project, ĉ, as follows:

ĉ (Bµ) =


inf {c∗ (F ) : µF = µ} if µ < µF ∗ ,

∞ otherwise.

We next formalize the aforementioned implication of the Informativeness Principle; in particular,

we demonstrate that the principal is worse off in ĉ than in c∗. In fact, we show that, from the

principal’s point of view, the transformed project ĉ is worse than being restricted to linear contracts

in c∗ in the sense that each contract wb generates weakly more profit to the principal in project c∗

than in ĉ.

16We take the infimum in case no cheapest distribution exists.
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Lemma 1. For all b ∈ [0, 1], π (ĉ, wb) ≤ π (c∗, wb).

Proof. See the Appendix. QED

Let us illustrate the argument behind the proof of this lemma for the case where the principal’s

value in subgame (c∗, wb), π (c∗, wb), is generated by a best response of the agent. Since the agent’s

expected payment generated by the linear contract wb depends only on the expected output, he

chooses a distribution only if it is the cheapest among those with the same mean. Therefore, the

agent’s value in subgame (c∗, wb) is

sup
µ∈[0,1]

{µb − inf {c∗ (F ) : F ∈ F , µF = µ}} . (5)

This is the same problem as the one which determines the agent’s value in the subgame (ĉ, wb),

except that in the latter, the domain is effectively restricted to be [0, µF ∗). Suppose now that

F is incentive compatible in (c∗, wb) and generates the principal’s value. That is, µF solves the

problem in (5) and π (c∗, wb) = Π (wb, F ). If µF < µF ∗ , then µF also solves the agent’s problem

with the restricted domain, implying that BµF is incentive compatible in (ĉ, wb). In this case,

π (ĉ, wb) = µF (1 − b) = π (c∗, wb). If µF ≥ µF ∗ , then the principal’s value is at least µF ∗ (1 − b)

in the subgame (c∗, wb), so π (c∗, wb) ≥ µF ∗ (1 − b) ≥ π (ĉ, wb), where the second inequality holds

because, in project ĉ, the agent never chooses a distribution which has mean larger than µF ∗ .

We are now ready to define project c̃. Our aim is to modify ĉ at BµF ∗ so that
(
wb∗ , BµF ∗

)
is an

equilibrium in project c̃. On the one hand, this requires the cost of BµF ∗ to be sufficiently small to

guarantee that BµF ∗ is a best response to wb∗ . On the other hand, this cost cannot be too small,

for otherwise BµF ∗ could be implemented with a bonus smaller than b∗. Therefore, we specify the

cost of BµF ∗ to be the largest cost at which the agent still best responds to wb∗ by choosing BµF ∗ .

This cost, denoted by c, satisfies µF ∗b∗ − c = sup {µb∗ − ĉ (Bµ)}. The binary project c̃ is defined as

follows:

c̃ (F ) =

 c if F = BµF ∗ ,

ĉ (F ) if F ̸= BµF ∗ .

Next, we demonstrate that the outcome
(
c̃, wb∗ , BµF ∗

)
Pareto dominates (c∗, w∗, F ∗). To this

end, we first argue that the cost of BµF ∗ in project c̃ is weakly smaller than c∗ (F ∗). Suppose, for

a contradiction, that c > c∗ (F ∗). Then,

µF ∗b∗ − c∗ (F ∗) > µF ∗b∗ − c = sup {µb∗ − ĉ (Bµ)} = sup {µF b∗ − c∗ (F ) : F ∈ F , µF < µF ∗} ,
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where the two equalities follow from the definitions of c and ĉ, respectively. By continuity, this

chain implies the existence of b < b∗ such that

µF ∗b − c∗ (F ∗) > sup {µF b − c∗ (F ) : F ∈ F , µF < µF ∗} .

This means that offering the linear contract wb in project c∗ provides the principal with a value

at least µF ∗ (1 − b), which is strictly more than her equilibrium payoff, Π (w∗, F ∗) = µF ∗ (1 − b∗).

This contradicts the incentive compatibility of w∗ in c∗.

We are now ready to show that the agent is weakly better off in the outcome
(
c̃, wb∗ , BµF ∗

)
than

in (c∗, w∗, F ∗). Indeed,

U (c∗, w∗, F ∗) = µF ∗b∗ − c∗ (F ∗) ≤ µF ∗b∗ − c̃
(
BµF ∗

)
= U

(
c̃, wb∗ , BµF ∗

)
, (6)

where the equalities follow from (4) and the inequality follows from c̃
(
BµF ∗

)
= c ≤ c∗ (F ∗). Also

note that (4) implies that the principal’s payoffs are the same in these two outcomes:

Π (w∗, F ∗) = µF ∗ − EF ∗ [w∗] = µF ∗ (1 − b∗) = Π
(
wb∗ , BµF ∗

)
. (7)

We defined c̃
(
BµF ∗

)
so that the payment schedule wb∗ implements BµF ∗ in project c̃. Next, we

confirm that the principal cannot implement BµF ∗ in project c̃ with any payment schedule wb such

that b < b∗. This means that the principal’s value from offering wb in project c̃ is the same as in

project ĉ.

Lemma 2. For all b ∈ [0, b∗), π (c̃, wb) = π (ĉ, wb).

Proof. See the Appendix. QED

Let us illustrate the argument of the proof for the case where the agent has a best response

to wb∗ in project ĉ, say Bµ′ (with µ′ < µF ∗); that is, µ′b∗ − ĉ
(
Bµ′

)
= sup {µb∗ − ĉ (Bµ)}. By the

definition of c̃, this means that µ′b∗ − c̃
(
Bµ′

)
= µF ∗b∗ − c̃

(
BµF ∗

)
. Since µ′ < µF ∗ , this equality

implies that, for all b ∈ [0, b∗), µ′b − c̃
(
Bµ′

)
> µF ∗b − c̃

(
BµF ∗

)
, implying that BµF ∗ is not incentive

compatible in (c̃, wb). Since the projects c̃ and ĉ are identical on the rest of their domains, the

statement of the lemma follows.

Finally, we are ready to prove Proposition 1.

Proof of Proposition 1. Observe that the outcome
(
c̃, wb∗ , BµF ∗

)
satisfies Parts (ii) and (iii)
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of the proposition by Equations (6) and (7), respectively. Therefore, we only need to establish Part

(i); that is, we need to argue that
(
wb∗ , BµF ∗

)
is an equilibrium in project c̃. By the definition

of c, BµF ∗ is incentive compatible in the subgame (c̃, wb∗). Next, we prove that wb∗ is incentive

compatible in c̃.

If b > b∗, then

π (c̃, wb) ≤ µF ∗ (1 − b) < µF ∗ (1 − b∗) = Π
(
wb∗ , BµF ∗

)
,

where the first inequality follows from c̃ (Bµ) = ∞ for all µ > µF ∗ , and the second inequality is

implied by b > b∗.

If b < b∗, then

π (c̃, wb) ≤ π (c∗, wb) ≤ Π (w∗, F ∗) = Π
(
wb∗ , BµF ∗

)
where the first inequality follows from Lemmas 1 and 2, the second one follows from (w∗, F ∗) being

an equilibrium outcome in project c∗, and the equality is implied by the definition of b∗. QED

3.2 Optimal Project

Each binary project, c, can be described by specifying the cost of each probability of success through

a function C : [0, 1] → R+. In particular, we set C (µ) = c (Bµ) for all µ, and we keep in mind that

the cost of a non-binary distribution is infinity. Recall that, in binary projects, it is without loss of

generality to restrict attention to bonus contracts, wb, where the agent is paid b if output is one.

Finally, the agent’s choice of distribution Bµ can be identified by its mean, µ (equivalently, by its

“completion probability”). In what follows, we describe each binary outcome (c, wb, Bµ) by a triple

(C, b, µ).

We are ready to state the main result of this section.

Proposition 2. There is an optimal binary project, C∗, and an agent-optimal equilibrium in C∗,

(b∗, µ∗), such that

(i) C∗′ (µ) = 1 − 1/ (eµ) if µ ≥ 1/e and zero otherwise,

(ii) b∗ = 1 − 1/e, and

(iii) µ∗ = 1.

Proposition 2 describes an optimal binary project in terms of the marginal costs of the possible

completion probabilities. Of course, adding a fixed cost has no impact on incentives, so C∗ (0) = 0.
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We explain below that the functional form of the marginal cost in Part (i) is pinned down by the

requirement that the principal be indifferent between implementing a large range of completion

probabilities. To this end, we sketch an argument for Proposition 2 that restricts the agent to

choose cost functions C that are non-decreasing, differentiable, and such that equilibrium can be

determined using the first-order approach. The formal proof in the Appendix uses an envelope type

argument to determine the agent’s payoff and does not rely on any such restrictions.

We view the agent’s problem of finding an optimal binary project as a maximization problem

subject to incentive compatibility constraints. Our argument can be understood in terms of back-

ward induction. We first determine a condition relating the principal’s choice of bonus b to the

agent’s optimal choice of completion probability µ. We can then determine a condition on the

project C for the principal to implement a given completion probability µ. Finally, we consider op-

timizing the agent’s payoff over the project C and the completion probability µ to be implemented

by the principal, subject to the constraints determined in the previous steps.

Let us then describe the agent’s incentive constraint in a subgame (C, b). Note that, at this

stage, the agent’s problem is to solve maxµ̂∈[0,1] {µ̂b − C (µ̂)}. Then the requirement on the reward

b ensuring the agent chooses a given completion probability µ can be described by the first-order

condition

b = C ′ (µ) . (8)

We now turn to the incentive constraint of the principal. In project C, the principal’s problem

is

max
µ∈[0,1],b∈R+

µ (1 − b)

subject to the constraint that µ and b satisfy Equation (8). Plugging the constraint into the

maximand, the principal’s problem can be expressed solely in terms of the completion probability

she wants to implement; that is, maxµ∈[0,1] µ (1 − C ′ (µ)). So, in project C, the principal’s choice of

µ must satisfy

µ
(
1 − C ′ (µ)

)
≥ µ̃

(
1 − C ′ (µ̃)

)
, (9)

for all µ̃ ∈ [0, 1].

We are now ready to state the project selection problem. As anticipated above, we include

the completion probability µ as a choice variable alongside the cost function C. This is important

because the principal may be indifferent between implementing various completion probabilities,

generating different payoffs for the agent. The interpretation of including µ as a choice is that,

16



after designing the project, the agent makes a recommendation to the principal regarding which µ

to implement. The agent’s first-stage problem can be written

max
C,µ,b

µb − C (µ)

s.t. (8) and (9).

Alternatively, plugging the constraint (8) into the maximand, it can be written as

max
C,µ

µC ′ (µ) − C (µ) (10)

s.t. (9).

Now let us explain that, if (Ĉ, µ̂) solves this problem, the constraint (9) must bind at each µ̃ < µ̂

such that Ĉ ′ (µ̃) > 0. To understand this observation, notice first that the agent’s cost of µ̂ must

be given by Ĉ (µ̂) =
∫ µ̂

0 Ĉ ′ (µ̃) dµ̃, since Ĉ (0) = 0.17 Hence, reducing the marginal cost Ĉ ′ (µ̃) for

any µ̃ < µ̂ implies a reduction in the cost Ĉ (µ̂). However, the possibility to reduce the marginal

costs Ĉ ′ (µ̃) is restricted by the constraint (9) evaluated at (C, µ) = (Ĉ, µ̂). We can conclude that,

for the optimum (Ĉ, µ̂), the constraint (9) binds for all µ̃ < µ̂ as long as Ĉ ′ (µ̃) > 0, implying that

the principal is indifferent between implementing any completion probability below µ̂ which has a

strictly positive marginal cost.

Our next aim is to use this indifference condition to reduce the agent’s problem in (10) to a two-

dimensional problem by replacing the domain of projects by the principal’s possible equilibrium

payoffs. To this end, note that if (Ĉ, µ̂) solves (10), then Ĉ ′ can be expressed in terms of the

principal’s equilibrium payoff, π̂ ≡ µ̂
(
1 − Ĉ ′ (µ̂)

)
. Indeed, the binding constraint (9) evaluated at

(C, µ) = (Ĉ, µ̂) can be written as

Ĉ ′ (µ̃) =

 0 if µ̃ < π̂

1 − π̂
µ̃

if µ̃ ∈ [π̂, µ̂] .
(11)

Consequently, the agent’s problem in (10) can be rewritten as

max
µ̂,π̂∈[0,1]

µ̂

(
1 − π̂

µ̂

)
−

∫ µ̂

π̂

(
1 − π̂

µ̃

)
dµ̃. (12)

17Note that Ĉ (0) = 0 follows because, if Ĉ (0) > 0, we could reduce all costs by this amount, keeping the players’
incentives unchanged, but increasing the agent’s equilibrium payoff.
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To conclude Proposition 2, observe that

µ̂

(
1 − π̂

µ̂

)
−

∫ µ̂

π̂

(
1 − π̂

µ̃

)
dµ̃ =

∫ µ̂

π̂

π̂

µ̃
dµ̃ = π̂ [log µ̂ − log π̂] , (13)

which is maximized at µ̂ = 1 and π̂ = 1/e. This explains how we obtain Parts (ii) and (iii) of the

proposition. In particular, the principal’s profit in an optimal outcome is π∗ = µ∗ (1 − b∗) = 1/e,

and since µ∗ = 1, we have b∗ = 1 − 1/e. Finally, note that evaluating the right-hand side of (11) at

µ̂ = 1 and π̂ = 1/e yields Part (i) of the proposition.

Finally, we compute the payoffs of the agent and the principal in the outcome (C∗, b∗, µ∗). As

mentioned above, the principal’s equilibrium payoff is µ∗ (1 − b∗) = 1/e. The agent’s payoff is

pinned down by evaluating (13) at (µ∗, π∗) = (1, 1/e) , also yielding 1/e.

4 Discussion

Payoff Possibility Set.—We can use our results to characterize the set of possible payoff combinations

which can arise in principal-agent models for some arbitrary production technology. To be more

specific, we still consider an environment where the agent is risk neutral and has limited liability.

However, the production technology is exogenously given and satisfies the constraint that the largest

output cannot exceed one. Moreover, the agent has an outside option we take to be zero. We wish

to characterize those payoff profiles which can arise in equilibrium for some production technology.

We next show that there exists a production technology where the principal receives π̂ and the

agent receives û if and only if π̂ ∈ [0, 1] and û ∈ [0, −π̂ log π̂]; see Figure 1 for illustration.

First note that the principal’s payoff, π̂, must be between zero and one. The reason is that the

contract w0 guarantees at least zero profit. Since output is less than one, limited liability implies

that the profit cannot exceed one. Next, we identify the frontier of the payoff possibility set. That

is, we compute the largest payoff the agent can get if the principal’s payoff is π̂. By Proposition 1,

we know that this largest payoff is achieved in a binary project. Furthermore, recall that in Section

3.2 we rewrote the problem of designing the optimal binary project as a maximization problem with

respect to the equilibrium probability of success, µ̂, and the principal’s equilibrium profit, π̂; see

(12). So the problem of designing the agent-optimal binary technology which generates π̂ can be

reduced to a similar maximization problem except π̂ is treated as a parameter instead of a choice

variable. By Equation (13), the agent’s maximal payoff is −π̂ log π̂.

Since the agent’s outside option is zero, his equilibrium payoff cannot be negative. It remains to
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Figure 1: The shaded area represents the set of payoffs for the principal and the agent that arise
for some technology of the agent. The players’ payoffs under the optimal project characterized in
Proposition 2 are illustrated by the red dot.

argue that given the principal’s payoff, π̂, for each û ∈ [0, −π̂ log π̂), there is a production technology

so that the equilibrium payoff profile is (π̂, û). To do so, consider the production technology gener-

ating (π̂, −π̂ log π̂) and add a fixed cost of −π̂ log π̂− û. That is, the agent’s cost of each distribution

is increased by this quantity. Adding this fixed cost does not change the agent’s incentives, but it

lowers his payoff to û.

Competition Among Agents.— As is standard in the literature, we maintained the assumption

that the principal has full bargaining power and makes a take-it-or-leave-it offer to the agent. The

principal’s strong bargaining power is often motivated by fierce competition among the agents, which

is usually left unmodeled. At first glance, such a justification might be questioned in our setting

because competition could limit the rent an agent can earn from contracting with any principal. It

is therefore of interest to examine which projects may arise in markets with imperfect competition

among agents.

One way to understand competition among agents is to consider embedding our model into

a standard search and matching framework in which one-to-one matches occur over time. Each
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steady state equilibrium in such a model is associated with a continuation value of an unmatched

principal. So, when an agent designs a project, he must bear in mind that any principal prefers to

remain unmatched whenever her value from contracting with the agent is less than the continuation

value from further search. As before, the agent’s problem of designing his equilibrium project can

be understood in terms of maximizing the expression in Equation (13) by choice of the completion

probability and principal expected profits. The difference, however, is that the principal profit, π̂, is

bounded from below by a constant which makes a principal indifferent between contracting with the

agent and remaining unmatched. The solution to that problem has features similar to those of the

optimal project described by Proposition 2. In particular, the equilibrium completion probability is

one and the principal is indifferent between offering the equilibrium bonus and anything less than

that.

Other Constraints on the Technology.— While we believe there are a range of situations where

the agent can determine the technology in advance of contracting, in reality the agent’s choice

of projects would typically be more limited than in our setting where the only constraint is the

bounds on output. Such constraints on technology design may ultimately be responsible for the

key properties of the selected project. An example is where noise in the environment prevents

distributions that put mass at the extremes of the possible output values, ruling out binary projects.

Note also that imposing additional constraints on the set of available technologies is related to the

possibility that some designs are more costly than others, e.g. binary technologies might be feasible

but too costly to set up. We have treated in this paper the case where the agent is only subject

to output bounds, and where all designs are costless to the agent. This was intended as a natural

first step and helps shed light on the forces at play in the agent’s design problem, while future work

could examine the choice of projects given different constraints or costly technology choice.

In spite of these observations, the analysis in the paper does already allow determination of the

agent’s optimal project in some situations where he is more constrained. For instance, suppose that

the choice of project c is restricted to come from a set that contains c∗, a project determined to

maximize the agent’s payoff in our setting with only bounds on output. Then the same project c∗

remains optimal in the more constrained setting. An example is where there is, in addition to the

output bounds, a lower bound L (µ) on the cost of generating mean output µ. Recall that C∗ is the

optimal binary project defined in Proposition 2. Provided L (µ) ≤ C∗ (µ) for all µ ∈ [0, 1], then C∗

remains an optimal project for the agent.

There are also cases where constraints on project selection bind, but the optimal project follows
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closely from our analysis. Suppose that, in addition to output being bounded between zero and one,

mean output is restricted to be no greater than some m ∈ (0, 1). This constraint does not affect any

of the arguments needed to obtain Proposition 1, so there is an optimal project for the agent which

is binary.18 Also, the agent’s maximal payoff in an equilibrium where the probability of output one

is µ̂ and the principal earns payoff π̂ is still given by the expression in Equation (13), following the

arguments in the proof of Proposition 2. An optimal project is then defined by Equation (11) with

µ̂ = m and π̂ = m/e. There is an equilibrium given this binary project where the principal offers a

bonus payment 1 − 1/e for output one (and pays zero otherwise), and the agent chooses probability

m of output one. We have thus seen that, in the mean-constrained version of the problem, the

agent’s equilibrium probability of a high output is less than one.

Risk Aversion.— Our results can be generalized to the case where the agent is risk averse. To

explain it more formally, let us modify our model so that, if the agent receives payment w and

chooses F at cost c (F ), then his payoff is v (w) − c (F ), where v is an increasing, concave and

continuously differentiable function. It can be shown that, even in this case, binary projects remain

optimal. More precisely, the following version of the statement of Proposition 1 remains valid. For

each project c∗ and any equilibrium (w∗, F ∗) in c∗, there is a binary project c̃ with an equilibrium

(w̃, B1) such that the outcome (c̃, w̃, B1) Pareto dominates (c∗, w∗, F ∗). The characterization of

optimal binary projects follows the same steps as for the risk-neutral case. The marginal cost of any

completion probability µ > π∗ is v (1 − [π∗/µ]), where π∗ is the equilibrium payoff of the principal.

These claims are proved in the Online Appendix.

Relation to Another Hold-up Problem.— As mentioned in the Introduction, Condorelli and

Szentes (2020) study a different hold-up problem in the context of bilateral trade. In their model,

the buyer first chooses the distribution of her valuation for the seller’s good. Then the seller, after

observing the value distribution, makes a take-it-or-leave-it price offer. It turns out that, when the

support of any value distribution must be in [0, 1], the buyer’s equilibrium CDF, F ∗, has the same

functional form as C∗′ described in Proposition 2. More precisely, F ∗ (v) = 1 − 1/ (ev) on (1/e, 1).

In what follows, we attempt to illuminate this similarity and the relationships between the two

models by transforming the buyer’s problem into a strategically equivalent one and show that the

transformed problem is identical to the constrained maximization problem (10).

First note that by choosing a value distribution, F , the buyer determines his demand curve,
18Given a possibly non-binary equilibrium distribution F ∗, we showed that agent upward deviations to distributions

with means above µF ∗ could be ignored in the analysis (recall the construction of the binary project c̃).
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1 − F . That is, the probability of trade at price p is 1 − F (p). The idea behind the transformation

is that we replace the buyer’s choice set by inverse demand curves and assume that the seller sets a

quantity instead of a price, i.e., the probability of trade. Since there is a bijection between demand

curves and inverse demand curves and the price is pinned down by inverse demand curve for each

quantity, the transformed model is strategically equivalent to that of Condorelli and Szentes (2020).

Since both the buyer’s willingness-to-pay and the probability of trade are in [0, 1], the domain as

well as the range of the inverse demand curve must also be in [0, 1]. Let P denote the set of such

inverse demand functions. So, if the buyer chooses P ∈ P and the seller sets Q then the price is

P (Q). Next, we explain that the buyer’s problem can be written as

max
q∈[0,1],P ∈P

∫ Q

0
(P (x) − P (Q)) dx

s.t. QP (Q) ≥ Q̃P
(
Q̃

)
for all Q̃ ∈ [0, 1] .

Note that the objective function is the familiar expression for the buyer’s payoff from Consumer

Theory, for a given inverse demand curve P and quantity Q. In addition, the constraint guarantees

that when the buyer’s inverse demand curve is P , the seller indeed prefers to set Q to any smaller

quantity. Now, observe that replacing P by 1 − C ′ in this problem yields (10), that is, the two

problems are equivalent. This means that the buyer-optimal inverse demand curve, P ∗, is given by

P ∗ (Q) = 1 − C∗′ (Q), where C∗ is characterized Proposition 2, that is, P ∗ (Q) = 1/ [eQ] on [1/e, 1].

Finally, notice that for each inverse demand curve P , the buyer’s value distribution is determined

by the following equation: P (1 − F (v)) = v. Coincidently, applying this formula for P ∗ yields

F ∗ (v) = 1 − 1/ (ev) on (1/e, 1), confirming the main result in Condorelli and Szentes (2020).

Our discussion about the similarity of Proposition 2 to the main result in Condorelli and Szentes

(2020) has followed the heuristic argument presented in Section 3.2. This assumes the applicability

of the first-order approach to derive that the agent’s bonus is equal to his marginal cost, i.e., to

derive Equation (8). Importantly, the validity of this approach must be verified, and hence the

proof of Proposition 2 in the appendix relies on a different argument, one which has no parallel in

Condorelli and Szentes.
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Appendix A: Omitted proofs

Proofs of results in Section 3.1

Proof of Lemma 1. Consider a sequence (µn), with µn ∈ [0, µF ∗) for all n, such that

u (ĉ, wb) = lim
n→∞

U (ĉ, wb, Bµn) and π (ĉ, wb) = lim
n→∞

Π (wb, Bµn) .

For each k ∈ N, there exists nk such that, for all µ ∈ [0, 1],

µnk
b − ĉ

(
Bµnk

)
+ 1

k
≥ µb − ĉ (Bµ) .

Equivalently, for all k, and all µ ∈ [0, µF ∗),

µnk
b − inf {c∗ (F ) : µF = µnk

} + 1
k

≥ µb − inf {c∗ (F ) : µF = µ} .

For each k, we can pick a distribution Fnk
with mean µnk

such that

c∗ (Fnk
) < inf {c∗ (F ) : µF = µnk

} + 1
k

.

Then, for all k and all F ∈ F with mean µF ∈ [0, µF ∗),

µnk
b − c∗ (Fnk

) + 2
k

> µF b − c∗ (F ) . (14)

There are then two cases. In the first, the inequality (14) holds for all k and all F ∈ F (not

only those F with µF < µF ∗). Then

u (c∗, wb) = lim
k→∞

U (c∗, wb, Fnk
)

and hence

π (c∗, wb) ≥ lim
k→∞

Π (wb, Fnk
) = lim

k→∞
Π

(
wb, Bµnk

)
= π (ĉ, wb)

as desired. In the second, the inequality (14) fails to hold for some k and some F ∈ F with

µF ≥ µF ∗ , which implies

u (c∗, wb) = sup {µF b − c∗ (F ) : F ∈ F} > sup {µF b − c∗ (F ) : F ∈ F , µF < µF ∗} .
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This means that there is a sequence of distributions in F along which the agent’s payoff converges

to his value u (c∗, wb) and for which every distribution has mean at least µF ∗ . By the definition of

the principal’s value, we have

π (c∗, wb) ≥ µF ∗ (1 − b) ≥ π (ĉ, wb) ,

where the second inequality follows because any distribution with mean at least µF ∗ is assigned an

infinite cost in the project ĉ. QED

Proof of Lemma 2. Let us fix b ∈ [0, b∗). We first show that wb does not implement BµF ∗ in

(c̃, wb). Suppose for a contradiction that BµF ∗ satisfies the agent’s incentive constraint in (c̃, wb),

that is,

µF ∗b − c ≥ sup
µ<µF ∗

{µb − c̃ (Bµ)} . (15)

Therefore,

c ≤ − sup
µ<µF ∗

{(µ − µF ∗) b − c̃ (Bµ)} ≤ − sup
µ<µF ∗

{(µ − µF ∗) b∗ − c̃ (Bµ)} = c,

where the first inequality is just the previous displayed inequality rearranged, the second inequality

follows from b < b∗, and the equality is the definition of c. Since the farthest left term and the

farthest right term are equal in the previous chain, all inequalities must be equalities. Note that

the second inequality is an equality only if the supremum in Equation (15) is approached along a

sequence of µ’s converging to µF ∗ . Since c̃ (Bµ) = ĉ (Bµ) whenever µ ̸= µF ∗ , and since ĉ (Bµ) = ∞

for µ ≥ µF ∗ , it follows that the supremum of µb − ĉ (Bµ) is approached by the same sequence.

Hence, π (ĉ, wb) = µF ∗ (1 − b). We can conclude that

π (c∗, wb) ≥ π (ĉ, wb) = µF ∗ (1 − b) > µF ∗ (1 − b∗) = Π (w∗, F ∗) ,

where the first inequality follows from Lemma 1, the strict inequality is implied by b < b∗ and the

second equality follows from the definition of b∗. This inequality implies that w∗ is not incentive

compatible in project c∗, a contradiction.

Since wb does not implement BµF ∗ in c̃, U
(
c̃, wb, BµF ∗

)
< u (c̃, wb). We next show that Fc̃,wb =

Fĉ,wb .19 Note that, for each (Fn) ∈ Fc̃,wb ∪ Fĉ,wb , there exists K ∈ N such that Fk ̸= BµF ∗

19Recall that (Fn) ∈ Fc,w if and only if limn→∞ U (c, w, Fn) = u (c, w).
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if k > K. If (Fn) ∈ Fĉ,wb , it follows from ĉ
(
BµF ∗

)
= ∞. If (Fn) ∈ Fc̃,wb , it is implied by

U
(
c̃, wb, BµF ∗

)
< u (c̃, wb). Since c̃ (F ) = ĉ (F ) whenever F ̸= BµF ∗ , this means that, for each

(Fn) ∈ Fc̃,wb ∪ Fĉ,wb ,

lim
n→∞

U (c̃, wb, Fn) = lim
n→∞

U (ĉ, wb, Fn) ,

implying that Fc̃,wb = Fĉ,wb . Consequently,

π (c̃, wb) ≡ sup
{

lim sup
n→∞

Π (wb, Fn) : (Fn) ∈ Fc̃,wb

}
= sup

{
lim sup

n→∞
Π (wb, Fn) : (Fn) ∈ Fĉ,wb

}
= π (ĉ, wb) .

QED

Proof of Proposition 2

This section proves Proposition 2. We begin by considering an arbitrary binary project C. Let us

drop the dependence on C and write the value for the agent when the bonus is b as u (b). The value

is given by

u (b) = sup
µ∈[0,1]

{bµ − C (µ)} .

Note that u is non-decreasing. Moreover, as the upper envelope of linear functions, it is convex and

hence continuous.

Let Γ (b) be the set of values µ such that there is a sequence (µn) with µn → µ and bµn−C (µn) →

u (b). Take µ̄ (b) = max Γ (b), and note that the maximum is attained. Similarly, let µ (b) be the

minimum of Γ (b) (also attained). Note that, if the principal offers a bonus b ∈ [0, 1] in project C,

then she obtains value µ̄ (b) (1 − b).

For any b ≥ 0, let u′
+ (b) be the right derivative of u at b. For any b > 0, let u′

− (b) be the

left derivative of u at b. We next show a result that is analogous to Theorem 1 of Milgrom and

Segal (2002), but adjusted for the possibility that the agent’s payoff u (b) is not attained by values

µ ∈ Γ (b).

Lemma 3. For all b ≥ 0, u′
+ (b) ≥ µ̄ (b). For all b > 0, u′

− (b) ≤ µ (b).

Proof. Consider a sequence (µn) with µn → µ̄ (b) and bµn − C (µn) → u (b). Then, for any b′ > b,

we have

(
b′ − b

)
µ̄ (b) = lim

n→∞

{
b′µn − C (µn)

}
− lim

n→∞
{bµn − C (µn)} ≤ u

(
b′) − u (b) .
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Dividing by b′ − b and taking limits as b′ approaches b from above yields u′
+ (b) ≥ µ̄ (b).

Let b > 0 and consider a sequence (µn) with µn → µ (b) and bµn − C (µn) → u (b). For any

b′ < b, we have

(
b − b′) µ (b) = lim

n→∞
{bµn − C (µn)} − lim

n→∞

{
b′µn − C (µn)

}
≥ u (b) − u

(
b′) .

Dividing by b − b′ and taking limits as b′ approaches b from below yields u′
− (b) ≤ µ (b). QED

We can further use the convexity of u to determine its right derivative in terms of the completion

probability attainable with a given bonus.

Lemma 4. For all b ≥ 0, u′
+ (b) = µ̄ (b).

Proof. Fix b ≥ 0 and suppose for a contradiction that u′
+ (b) > µ̄ (b). By convexity of u and the

previous lemma

µ̄ (b) < u′
+ (b) ≤ u′

−
(
b′) ≤ µ

(
b′)

for all b′ > b. For each n ∈ N, let

bn ∈
(

b, b + 1
n

)

and let µn ∈
[

µ̄(b)+u′
+(b)

2 , 1
]

and such that

bnµn − C (µn) > u (bn) − 1
n

(that such a choice is possible follows because µ̄(b)+u′
+(b)

2 < u′
− (bn) ≤ µ (bn) for all n). Consider a

subsequence (bnk
) such that µnk

→ µ∗ ≥ µ̄(b)+u′
+(b)

2 for some µ∗. We have

lim {bµnk
− C (µnk

)} = lim {bnk
µnk

− C (µnk
)} = lim u (bnk

) = u (b)

where the final equality follows by continuity of u. The fact that µ∗ > µ̄ (b) contradicts the definition

of µ̄ (b). QED

Note now that, because u is convex, it is absolutely continuous and hence differentiable almost

everywhere. This means that

u (b) = u (0) +
∫ b

0
µ̄ (s) ds. (16)
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It is immediate from the agent’s problem that we must have u (0) ≤ 0; i.e., the agent cannot obtain

a strictly positive payoff if the bonus is set to zero.

Consider now a project C with an equilibrium in which the principal offers bonus b̂ for project

completion, the agent chooses completion probability µ̂, and therefore the principal’s payoff is given

by π̂ = µ̂(1 − b̂). Note that, if
(
C, b̂, µ̂

)
is an optimal outcome for the agent, then we must have

µ̂ > 0. Incentive compatibility of the principal offering bonus b̂ requires that, for all b,

π̂ ≥ µ̄ (b) (1 − b)

= u′
+ (b) (1 − b) . (17)

Hence, if the agent is to get positive rent in outcome
(
C, b̂, µ̂

)
, we must have also π̂ > 0. Assume

from now on that µ̂, π̂ > 0.

Now let us determine the highest agent value, across projects C, that can occur for an equilibrium

in which the principal offers bonus b̂ for completion and the agent chooses completion probability

µ̂. Consider then the problem of maximizing the agent’s equilibrium payoff

u(b̂) = u (0) +
∫ b̂

0
u′

+ (b) db

by choice of convex function u : R+ → R satisfying (i) u (0) ≤ 0, and (ii) π̂ ≥ u′
+ (b) (1 − b) for all b.

The first requirement reflects the above observation that the agent cannot obtain a positive payoff

if the bonus is zero. The second condition is a re-statement of Condition (17). Any solution to this

problem involves u (0) = 0 and

u′
+ (b) = π̂

1 − b

for all b ∈ [0, b̂]. In other words, the constraint (ii), or equivalently (17), holds with equality over

b ∈ [0, b̂] (in which case, the principal must obtain payoff π̂ from all such bonuses b). The agent’s

value function is therefore given on [0, b̂] by

u (b) =
∫ b

0

π̂

1 − z
dz. (18)

Now, recall that π̂ = µ̂(1 − b̂), or b̂ = 1 − π̂
µ̂

. The agent’s equilibrium payoff can then be written

as ∫ 1− π̂

µ̂

0

π̂

1 − z
dz = [−π̂ log (1 − z)]

1− π̂

µ̂

0 = π̂ (log (µ̂) − log (π̂)) (19)
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which is the expression given in Equation (13) (hence establishing also the one in Equation (12)).

As explained in the main text, this payoff is maximized across feasible equilibrium values of µ̂ and

π̂ by µ̂ = 1 and π̂ = 1
e . The corresponding equilibrium bonus must be b̂ = 1 − 1/e.

Note then that, if the project is C∗ as given in the proposition (with C∗ (0) = 0, as explained

in the main text), and the principal offers any b ∈ [0, 1 − 1/e], the agent best responds by choosing

µ such that

b = 1 − 1
eµ

,

i.e. µ = 1
e(1−b) . All such bonuses therefore generate profit 1/e for the principal. Hence, it is indeed

an equilibrium of project C∗ for the principal to offer bonus b∗ = 1 − 1/e, and the agent to choose

completion probability equal to µ∗ = 1. This completes the proof of the proposition.

QED

Appendix B: Discussion of uniqueness of optimal projects

The optimal project, C∗, described in Proposition 2 is not unique. To see this, note that C∗ can be

arbitrarily modified at completion probabilities strictly below 1/e. Since C∗ (1/e) = 0, any of these

probabilities are weakly dominated by 1/e, so the modified project is still optimal. The goal of this

appendix is to argue that optimal projects differ only in non-essential ways.

Uniqueness of the Optimal Binary Project.— Recall that the optimal project C∗ in Proposition

2 is determined via the principal’s incentive constraint, (9), evaluated now at (C, µ) = (C∗, µ∗)

and taken to hold with equality for completion probabilities µ̃ above π∗. This means that the

principal can also generate her equilibrium payoff by setting any bonus smaller than b∗. Appendix

A showed that these conclusions are valid for each optimal binary project. We also showed that,

in any optimal binary project, the agent’s optimal payoff is determined by an equilibrium which

satisfies Parts (ii) and (iii) of the proposition. We now state formally these observations. We abuse

notation and write the players’ values, u and π, as functions of a binary outcome.

Remark 1. In any optimal binary project C,

(i) (b∗, µ∗) = (1 − 1/e, 1) is an agent-optimal equilibrium,

(ii) for all b ∈ [0, 1 − 1/e] , u (C, b) =
∫ b

0 1/ [e (1 − z)] dz, and

(iii) for all b ∈ [0, 1 − 1/e] , π (C, b) = 1/e.

Proof of Remark 1. The proof of Remark 1 recalls the proof of Proposition 2 in Appendix A.
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Part (i) of the remark follows because the expression in Equation (19) represents the agent’s highest

possible expected payoff in any project in which the completion probability is µ̂ and the principal’s

expected payoff is π̂. Moreover, it is uniquely maximized by µ̂ = µ∗ = 1 and π̂ = π∗ = 1/e. Part (ii)

of Remark 1 then follows from Equation (18). Part (iii) of Remark 1 follows because the constraint

(17) holds with equality in an optimal binary project over the relevant range of bonus payments.

That is, because

π∗ = µ̄ (b) (1 − b)

for all b ∈ [0, 1 − 1/e], where recall µ̄ (b) (1 − b) coincides with the principal’s value π (C, b) in any

subgame (C, b).

QED

We now argue that Remark 1 implies optimal binary projects are “close” to uniquely determined.

We begin with a remark which compares any optimal binary project to the project C∗ of Proposition

2.

Remark 2. In any optimal binary project C,

(i) for all µ ∈ [0, 1], C (µ) ≥ C∗ (µ), and

(ii) for all µ ∈ [1/e, 1], there is a sequence (µn) with µn → µ and C (µn) → C∗ (µ).

Proof of Remark 2. To show Part (i) of Remark 2, consider the optimal project C∗ in

Proposition 2. Notice that, as we reduce the bonus b from b∗ to zero, the agent’s best response in

the subgame (C∗, b) decreases continuously from one to zero. Suppose now that C is a project with

C (µ′) < C∗ (µ′) for some µ′, and let b′ ∈ (0, b∗] be the bonus that implements µ′ in project C∗.

Then we have

u
(
C, b′) ≥ b′µ′ − C

(
µ′) > b′µ′ − C∗ (

µ′) = u
(
C∗, b′) =

∫ b′

0
1/ [e (1 − z)] dz.

The first equality follows because µ′ is a best response in the subgame (C∗, b′). The second equality

follows because C∗ is an optimal project, and by Part (ii) of Remark 1. Hence, by Part (ii) of

Remark 1, C is not an optimal project.

To show Part (ii) of Remark 2, fix an optimal binary project C and consider a completion

probability µ ∈ [1/e, 1]. By Part (iii) of Remark 1, it can be attained by a bonus b = 1 − 1/ (µe) ∈

[0, 1 − 1/e]. Formally, we mean that there exists a sequence (µn) convergent to µ with µnb−C (µn) →

u (C, b). Note that the bonus b also implements µ in project C∗. By Part (ii) of Remark 1, the
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agent’s value in subgame (C, b) is the same as in subgame (C∗, b); that is, u(C, b) = u(C∗, b). In

particular, considering the aforementioned sequence (µn), we have

µnb − C (µn) → u (C∗, b) = µb − C∗ (µ) ,

implying limn→∞ C (µn) = C∗ (µ), which is what we wanted to show.

QED

We argue that, in spite of possible differences between any optimal binary project C and the

project C∗ of Proposition 2, such projects can be viewed almost equivalently from the agent’s

perspective. First, note that Remark 2 admits that some completion probabilities in [1/e, 1] may

be more costly under C than C∗. In this case, however, there are arbitrarily close probabilities

which are as affordable to the agent as in C∗, or for which the difference in costs is negligible (this

follows by Part (ii) of Remark 2). In addition, it turns out that, for any optimal binary project C,

the specification of costs for probabilities below 1/e is irrelevant. The reason is that, using Part

(ii) of Remark 2, the agent can generate a completion probability at least 1/e at negligible cost.20

Hence, the agent’s value can be approached by completion probabilities at least 1/e irrespective of

the bonus.

We now formalize further the equivalence of optimal binary projects C on [1/e, 1]. Note first that

if C is restricted to be continuous, then C is unique on [1/e, 1] and equal to C∗ on this interval by

Part (ii) of Remark 2. For cost functions C that are not continuous, we now demonstrate formally

that the completion probabilities µ that are relevant for the agent’s problem are only those for

which the cost is close to the one given by C∗.

To achieve our goal we let, for any ε > 0,

P (ε) ≡ {(µ, C (µ)) : µ ∈ [1/e, 1] , C (µ) − C∗ (µ) ≤ ε} .

Suppose the agent can choose only probabilities µ with (µ, C (µ)) ∈ P (ε), and suppose the associated

costs are C (µ). Then P (ε) describes the agent’s technology in project C but after removing his

ability to choose probabilities µ that we anticipate being redundant, either because they are less

than 1/e or because their costs exceed C∗ (µ) by more than ε. By Parts (i) and (ii) of Remark 2,

for a fixed bonus payment b, the agent’s value is the same for the restricted technology P (ε) as if
20Formally, there is a sequence (µn) that approaches 1/e from above, and for which C (µn) → 0. This follows from

Part (ii) of Remark 2 and the continuity of C∗.
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the agent could choose any completion probability with a cost specified by C. In fact, the feature

of P (ε) that is relevant in determining the agent’s value is the lower boundary of its closure. For

any ε > 0, any µ ∈ [1/e, 1], we have

min {y : (µ, y) ∈ cl(P (ε))} = C∗ (µ) ,

which again can be seen directly from Parts (i) and (ii) of Remark 2.21 This demonstrates a further

sense of equivalence between C and C∗.

Uniqueness beyond binary projects.— The above discussion describes a qualified sense in which

optimal binary projects are uniquely determined. Still, the possibility of optimal but non-binary

projects may also be a source of non-uniqueness. Nonetheless, we show that properties analogous

to those described above continue to hold, even among non-binary projects.

We first explain that output is one in any agent-optimal equilibrium of any optimal project. To

this end, let c∗ be an optimal project and (w∗, F ∗) an agent-optimal equilibrium in c∗. Proposi-

tion 1 applied to the optimal outcome (c∗, w∗, F ∗) implies that the corresponding binary outcome(
c̃, wb∗ , BµF ∗

)
is also optimal. Then, Part (i) of Remark 1 implies that we must have µF ∗ = 1, and

hence F ∗ = B1.

Next we argue that output realizations in (0, 1) are redundant in the sense that replacing these

realizations by output zero has no impact on equilibrium behavior. To this end, we first show that

it can be assumed that w∗ (x) = 0 for all x < 1. The intuition is that if the principal wants to

implement output one, she should not reward the agent for any other output realization by offering

a positive payment. To state it formally, let us define the payments scheme, ρb, for each b such that

ρb (1) = b and ρb (x) = 0 for x ̸= 1. Observe that replacing w∗ by ρw∗(1) makes choosing B1 no less

attractive to the agent, so
(
ρw∗(1), B1

)
is also an agent-optimal equilibrium in c∗.

Provided that the compensation scheme is ρw∗(1), when the agent is contemplating choosing

a distribution, all that matters is the probability that output is one. So, moving all the prob-

ability mass from (0, 1) to zero has no impact on the agent’s choice of a distribution. More-

over, these new distributions generate smaller expected outputs, hence the principal still prefers

to implement B1. To make these claims precise, let us define a binary project C̃ such that

C̃ (µ) = inf {c∗ (F ) : ∆ (F ) = µ}, where ∆ (F ) denotes the atom at one specified by F .22 Given

the payment schedule ρw∗(1), the change in cost function from c∗ to C̃ does not affect the agent’s
21Here, “cl(·)” refers to the closure of the set.
22That is, ∆ (F ) = F (1) − limx↗1 F (x) .
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willingness to choose completion probability one. We conclude that the binary project C̃ is optimal

and (w∗ (1) , 1) is an agent-optimal equilibrium in C̃.

To give a further sense in which the results in the previous section are robust to the considerations

of non-binary projects, we state the following.

Remark 3. If c∗ is an optimal project and (w∗, F ∗) is an agent-optimal equilibrium in c∗, then

(i) F ∗ = B1,

(ii) Π (w∗, F ∗) = U (c∗, w∗, F ∗) = 1/e,

(iii) u (c∗, ρb) =
∫ b

0 1/ [e (1 − z)] dz for all b ∈ [0, 1 − 1/e], and

(iv) π (c∗, ρb) = 1/e for all b ∈ [0, 1 − 1/e].

We have already established Part (i) and that the binary outcome (C̃, w∗ (1) , 1) is agent-optimal.

So, by Part (iii) of Remark 1, w∗ (1) = 1 − 1/e, and the principal’s payoff in project c∗ must be 1/e,

establishing Part (ii). By the construction of C̃, u(c∗, ρb) is equal to u(C̃, b) for all b. Optimality

of C̃ and Part (ii) of Remark 1 then imply Part (iii) of Remark 3. Part (iii) of Remark 1 implies

π(C̃, b) = 1/e for any b ∈ [0, 1 − 1/e] and hence π (c∗, ρb) ≥ 1/e. Part (ii) of Remark 3 then implies

π (c∗, ρb) = 1/e for all b ∈ [0, 1 − 1/e] establishing Part (iv).

An interpretation of Remark 3 is that the conclusions reached in Remark 1 remain valid even

when projects are not restricted to be binary. For instance, consider any optimal project c∗ and an

optimal binary project C. The players’ values are the same across both projects for any payment

schedule ρb, b ∈ [0, 1 − 1/e], as follows from Parts (iii) and (iv) of Remark 3. This can be compared

to Parts (ii) and (iii) of Remark 1.
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Abstract

This appendix solves the agent’s project design problem when the agent is risk

averse, and where the agent’s risk preferences are known to the principal. We build on

several results provided in the main document. We show that the agent still finds it

optimal to choose a binary project, and we characterize the optimal binary project.

A Risk-averse agent

We now study the natural possibility that the agent is risk averse, with a concave utility

over payments. In particular, while the principal is still risk neutral and has the same

preferences as in the paper, the agent has a payoff v (w) − c (F ) where w is the payment,

v is a concave utility function, c represents the agent’s technology (i.e., his cost function),

and F is the agent’s choice of output distribution.

Establishing the optimality of a binary project for the agent is more challenging in this

environment for the following reason. The idea of the proof of Proposition 1 for a risk-

neutral agent was that garbling output to determine binary output distributions with the

same mean makes the agent more difficult to incentivize, so the agent receives a (weakly)

higher expected payment to generate the same expected output. Using this idea, we showed

that, starting with an arbitrary project c∗, it is possible to find a binary project in which

the principal implements the same expected output and the agent is better off. With a

risk-averse agent, garbling output still increases the expected payments that must be made
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to incentivize the agent. However, because the associated payments may be more risky, risk

aversion could leave the agent worse off than without the garbling. The argument required

to establish the optimality of binary technologies is therefore more complicated. It involves

first studying optimal binary projects, and then combining the insights from this analysis

with arguments that are similar in spirit to the proof of Proposition 1.

Given the structure of our arguments, we begin our analysis in Section A.2 below by

characterizing optimal binary pojects, and determining the relationship between maximum

agent payoffs and the profits that are attainable by the principal. Section A.3 then makes

use of this analysis in establishing that binary projects are optimal.

We recap at the end of Section A.3 how this online appendix demonstrates the conclu-

sions reported in Section 4 of the main text, under the heading “Risk Aversion”. First, the

arguments in Section A.3 will show that, for each project c∗ and any equilibrium (w∗, F ∗) in

c∗, there is a binary project and equilibrium in that project in which (a) the agent generates

output one with certainty, and (b) the outcome Pareto dominates the outcome in the orig-

inal equilibrium. Moreover, if F ∗ does not put all its mass on output one, we will see that

the Pareto improvement is strict, a conclusion which in turn implies that binary projects are

optimal. In Section A.2, we will see that, in an optimal binary project, where the principal

has some equilibrium payoff π∗, the cost function is defined by a cost of zero for generating

output one with probability π∗ and a marginal cost v (1 − π∗/µ) for probabilities µ of ouput

one with µ > π∗.

A.1 Preliminaries

The setting is the same as in the main document, except we generalize to allow that the

agent’s payoff is given by v (w) − c (F ), where w ≥ 0 is any payment to the agent, F

is any distribution on [0, 1], and v : R+ → R+ is a strictly increasing, weakly concave

and continuously differentiable function. For any w ≥ 0, we refer to v (w) as the agent’s

“felicity of consumption” from consumption w. We adopt the normalization that v (0) = 0.

The inverse of v is given by the function γ : R+ → R+. A central objective will be to

establish the optimality of binary projects for a risk-averse agent, as follows immediately

from Proposition A1 below. We characterize optimal binary projects in the process.
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Due to the agent’s risk aversion, lotteries over payments are no longer payoff equivalent

to deterministic payments with the same mean. In fact, the principal always finds it optimal

to choose payments that are deterministic conditional on output. This is because the agent’s

incentives are determined by the expected utility conditional on output, and a given level of

expected utility is most cheaply provided (for the risk-neutral principal) by a deterministic

payment. It is then easy to see that considering only equilibria in which the principal offers

deterministic payments comes at no loss in the agent’s project design problem.

In spite of the previous observation, the proof below makes use of payment schemes

that are random conditional on output. We find this convenient in order to mimic the logic

of Lemma 1 in the main document. Lemma 1 considered payments offered in a possibly

non-binary original project c∗ that were linear in output, thus rendering the agent’s payoff

linear in output. Given the agent’s risk aversion, such linearity of the expected payoff in

output can be obtained by considering instead payments that are randomized over a binary

support, with the probability of the higher payment linear in output.

Let us then introduce the notation for random payments up front, while the details of

how they are used in the argument appear in Section A.3 below. For any output x ∈ [0, 1],

we let the random payment conditional on x be determined by a cdf Gx : R+ → [0, 1], where

Gx (w) is the probability of a payment no greater than w conditional on output realization

x. A collection of distributions is denoted G = (Gx)x∈[0,1], which is the representation of

the payment schedule when random payments conditional on output are permitted.

The notation introduced in Section 2 of the main document updates straightforwardly

to random payments and a risk-averse agent. The agent’s expected payoff in project c, when

choosing output distribution F , given payments G, is

U (c, G, F ) =
∫ 1

0

∫ ∞

0
v (w̃) dGx (w̃) dF (x) − c (F ) .

The principal’s expected payoff from output distribution F and payments G is

Π (G, F ) =
∫ 1

0

[
x −

∫ ∞

0
w̃dGx (w̃)

]
dF (x) .
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The value of an agent in project c for payments G is

u (c, G) = sup
F ∈F

U (c, G, F ) .

We can then define Fc,G by (Fn) ∈ Fc,G if and only if limn→∞ U (c, G, Fn) = u (c, G). The

principal’s value in project c given payment policy G is then

π (c, G) ≡ sup
{

lim sup
n→∞

Π (G, Fn) : (Fn) ∈ Fc,G
}

.

If w : [0, 1] → R+ is a deterministic payment schedule, we continue to use the notation of

the main document and write w in place of G. So, for instance, the players’ values in project

c, given deterministic payment schedule w, are u (c, w) and π (c, w).

A.2 Analysis of binary projects

Similar to Section 3.2 of the main document, we aim at a characterization of the players’

payoffs in equilibria of binary projects. We begin by determining the highest payoff the

agent can obtain in an outcome in which the principal earns payoff π. That is, we consider

all binary projects in which there is an equilibrium of the subgame following project selection

where the principal earns payoff π, and ask what is the highest payoff that can be obtained

by the agent in such an equilibrium?

Lemma A1. Conditional on any payoff π ∈ [0, 1] for the principal, the agent can obtain a

maximal payoff, in any binary project, of

∫ v(1−π)

0

π

1 − γ (z)dz = v (1 − π) −
∫ 1

π
v

(
1 − π

z

)
dz.

Proof. Consider binary projects in which there is an equilibrium involving the principal

offering bonus b̂ ∈ [0, 1] and the agent choosing probability of output one equal to µ̂ ∈ [0, 1].

Let us now determine an upper bound on the payoff the agent can obtain in such an

equilibrium.

Let C : [0, 1] → R+ be a binary project specifying the cost of obtaining each probability
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of output one. Write the agent’s value when the bonus delivers felicity of consumption ω as

u (ω) = sup
µ∈[0,1]

{ωµ − C (µ)} . (1)

Note that the function u is identical to that for the risk-neutral case (where ω is equal to

the bonus).

Let Γ (ω) denote the values µ such that there is a sequence (µn) with µn → µ and

ωµn − C (µn) → u (ω). Take µ̄ (ω) = max Γ (ω). From the same arguments as in the proof

of Proposition 2 in the main document we have, for any ω ≥ 0,

u (ω) = u (0) +
∫ ω

0
µ̄ (z) dz.

As in the main document, note that u (0) ≤ 0; i.e., the agent cannot obtain a strictly

positive payoff if the bonus is zero. Also, u (·) is non-decreasing and convex.

Denote π̂ = µ̂
(
1 − b̂

)
. Incentive compatibility of the principal offering bonus b̂ requires

that, for all z ≥ 0,

π̂ ≥ µ̄ (z) (1 − γ (z))

= u′
+ (z) (1 − γ (z)) . (2)

(Note that equality of µ̄ and u′
+ is established in Lemma 4 of the main document.)

Now let us determine an upper bound on the agent’s payoff, across binary projects C,

that can occur for an equilibrium in which the principal offers bonus b̂ and the agent achieves

output one with probability µ̂. Letting ω̂ = v(b̂), we can write the agent’s equilibrium payoff

as

u (ω̂) = u (0) +
∫ ω̂

0
u′

+ (z) dz.

Consider maximizing this value by choice of convex function u : R+ → R subject to the

constraints (i) u (0) ≤ 0, and (ii) π̂ ≥ u′
+ (z) (1 − γ (z)) for all z. The first requirement

reflects the above observation that the agent cannot obtain a positive payoff if the bonus is

zero. The second condition is a re-statement of Condition (2). Any solution to this problem
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involves u (0) = 0 and

u′
+ (z) = π̂

1 − γ (z)

for all z ∈ [0, ω̂). In other words, Constraint (ii) above holds with equality over z ∈ [0, ω̂).

The optimal choice of u in the above problem therefore satisfies

u (ω) =
∫ ω

0

π̂

1 − γ (z)dz

on [0, ω̂].1

If µ̂ = 0, then both principal and agent must earn payoff zero. So suppose that µ̂ > 0.

We have b̂ = 1 − π̂/µ̂ and so ω̂ = v (1 − π̂/µ̂). An upper bound on the agent’s payoff can

then be written as ∫ v

(
1− π̂

µ̂

)
0

π̂

1 − γ (z)dz.

This is maximized by taking µ̂ = 1. It evaluates to zero if π̂ ∈ {0, 1} (i.e., the agent must

obtain a payoff zero for these values of the principal’s payoff), so suppose that π̂ ∈ (0, 1).

Let us now demonstrate that the agent can obtain the above payoff. Consider the binary

project

C (µ; π̂) =


∫ µ

π̂
v

(
1 − π̂

µ̃

)
dµ̃ if µ ∈ [π̂, 1]

+∞ otherwise.

The function C (·; π̂) is strictly convex on [π̂, 1]. If the principal offers a bonus b ∈ [0, 1 − π̂],

generating felicity ω = v (b), the agent solves maxµ∈[0,1] {µω − C (µ)}. The solution, µ∗ (ω)

is unique and characterized by the first-order condition

ω = C ′ (µ∗ (ω) ; π̂) = v

(
1 − π̂

µ∗ (ω)

)
.

Hence,

µ∗ (ω) = π̂

1 − γ (ω) .

The principal obtains payoff π̂ from offering every bonus in [0, 1 − π̂]. So there is indeed an
1Note that the integrand in the expression for u (ω) remains bounded, so u (ω) is necessarily well-defined

and finite. To see this, we only need to consider the case where ω̂ takes its highest value, i.e. ω̂ = v (1). In
this case, π̂ = 0 and so we immediately conclude u (ω) = 0 on [0, ω̂].
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equilibrium in C (·; π̂) with the principal offering bonus 1− π̂ and the agent choosing output

one with certainty. The agent’s value in this project, using the definition in (1), satisfies

u (0) = 0 and u′
+ (ω) = µ∗ (ω) for all ω ∈ [0, v (1 − π̂)]. Hence, the agent indeed obtains a

payoff

∫ v(1−π̂)
0

π̂

1 − γ (z)dz.

This is also equal to the felicity of consumption 1 − π̂ less the agent’s cost; i.e., v (1 − π̂) −

C (1; π̂). This yields the expressions in the lemma. QED

Next consider the cost the agent incurs in an equilibrium of a binary project that yields

the highest possible agent payoff, given principal expected payoffs π (this value of the agent’s

payoff is obtained in the previous result). We show that this cost is strictly convex in the

principal’s profits, a fact that will be important below.

Lemma A2. The function h (π) ≡
∫ 1

π v (1 − π/z) dz is strictly convex over π ∈ [0, 1].

Proof. Let π ∈ (0, 1) and consider the change of variables

x = 1 − π

z
.

Note that
dx

dz
= π

z2 = (1 − x)2

π
.

Therefore, we have

h (π) = π

∫ 1−π

0

v (x)
(1 − x)2 dx.

Differentiating with respect to π yields

h′ (π) =
∫ 1−π

0

v (x)
(1 − x)2 dx − v (1 − π)

π

and

h′′ (π) = v′ (1 − π)
π

> 0.

The result follows. QED
7



A.3 Optimality of binary projects

We now state our main result, which implies the optimality of binary projects. For this

purpose, recall that Bx denotes a binary distribution with probability mass x on output 1.

Proposition A1. In any optimal outcome for the agent, (c∗, w∗, F ∗), we have F ∗ = B1.

The rest of this section proves Proposition A1. Consider an agent-optimal outcome

(c∗, w∗, F ∗) and suppose for a contradiction that F ∗ ̸= B1. Note that, because the agent

can secure a strictly positive payoff (as demonstrated in the previous section), we have

µF ∗ > 0 as well as EF ∗ [w∗] > 0.

We reach a contradiction by determining a project (and equilibrium in that project) in

which the agent has a strictly higher payoff than for the outcome (c∗, w∗, F ∗). Our first aim

is to construct a binary project č in which the principal offers bonus

b∗ = EF ∗ [w∗]
µF ∗

to implement B1 and earns a profit 1 − b∗ = (µF ∗ − µF ∗b∗) /µF ∗ = (µF ∗ − EF ∗ [w∗]) /µF ∗

(we complete this task by Lemma A5 below). That is, the principal’s profit is 1/µF ∗

times the profit in the original outcome, and the agent’s payment is also 1/µF ∗ times the

expected payment in the original. Note however that, because possibly č (B1) > c∗ (B1), we

are unable to guarantee that the agent be better off in the binary project č. So the project

č will need to be further modified.

As with the proof of Proposition 1 in the main document, our first step is to define a

binary project

ĉ (Bµ) =

 inf {c∗ (F ) : µF = µ} if µ < µF ∗ .

∞ otherwise.

As explained in the main document, in binary projects, the players view equivalently a

payment schedule that pays a bonus b only for output one and the payment schedule wb (with

wb (x) = bx for x ∈ [0, 1], as defined in the main document). Different to the main document,

we introduce a particular random payment policy, denoted Gb. The policy Gb specifies, for

each output realization x ∈ [0, 1], the payment distribution Gb
x (w) = 1 − x + x1w≥b (w)
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where 1w≥b is the indicator function that takes value 1 when w ≥ b and zero otherwise.

That is, Gb
x is the distribution that puts mass 1−x on payment zero and mass x on payment

b. Note that the expected payment to the agent given policy Gb depends only on the mean

of output: the expected payment when mean output is µ is equal to bµ.

We now provide a result that is analogous to Lemma 1 in the main document.

Lemma A3. For all b ∈ [0, 1], π (ĉ, wb) ≤ π
(
c∗, Gb

)
.

Proof. By the definition of u (ĉ, wb) and π (ĉ, wb), there is a sequence (µn) such that

µnv (b) − ĉ (Bµn) → u (ĉ, wb)

and

Π (wb, Bµn) = µn (1 − b) → π (ĉ, wb) .

For each k ∈ N, there exists nk such that

µnk
v (b) − ĉ

(
Bµnk

)
+ 1

k
≥ µv (b) − ĉ (Bµ)

for all µ ∈ [0, 1]. Therefore, for all k, and all µ ∈ [0, µF ∗),

µnk
v (b) − inf {c∗ (F ) : µF = µnk

} + 1
k

≥ µv (b) − inf {c∗ (F ) : µF = µ} .

Hence, there is a sequence (Fnk
) with means µnk

(for each k) such that, for every F with

mean in [0, µF ∗),

µnk
v (b) − c∗ (Fnk

) + 2
k

≥ µF v (b) − c∗ (F ) . (3)

There are then two cases. The first is where the inequality (3) holds for all k and all F .

In this case,

lim
k→∞

U
(
c∗, Gb, Fnk

)
= u

(
c∗, Gb

)
and hence

π
(
c∗, Gb

)
≥ lim

k→∞
Π

(
Gb, Fnk

)
= lim

k→∞
Π

(
wb, Bµnk

)
= π (ĉ, wb)

as desired. In the second case, the inequality (3) does not hold for some k and F , which
9



implies

u
(
c∗, Gb

)
= sup {µF v (b) − c∗ (F ) : F ∈ F} > sup {µF v (b) − c∗ (F ) : F ∈ F , µF < µF ∗} .

This means that there is a sequence of distributions along which the agent’s payoff converges

to u
(
c∗, Gb

)
and for which every distribution has mean at least µF ∗ . We therefore have

π∗
(
c∗, Gb

)
≥ µF ∗ (1 − b) ≥ π (ĉ, wb) ,

where the second inequality follows because any distribution with mean at least µF ∗ is

assigned an infinite cost in project ĉ. QED

Our next goal is to define a binary project c̃ and an equilibrium in c̃ in which the

principal offers the bonus payment b∗, and the agent chooses distribution BµF ∗ . Note

that the principal’s profit is then the same as in the original equilibrium: Π
(
wb∗ , BµF ∗

)
=

Π (w∗, F ∗) = µF ∗ (1 − b∗).

Let then c̄ be determined by

µF ∗v (b∗) − c̄ = sup
µ∈[0,1]

{µv (b∗) − ĉ (Bµ)} .

Define the binary project c̃ by

c̃ (F ) =


c̄ if F = BµF ∗

ĉ (F ) if F ̸= BµF ∗ .

Note that the agent has a best response in project c̃ to bonus b∗ equal to the distribution

BµF ∗ .

As in the case of a risk-neutral agent, we can show that c̄ ≤ c∗ (F ∗). Suppose for a
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contradiction that c̄ > c∗ (F ∗). Then

µF ∗v (b∗) − c∗ (F ∗) > µF ∗v (b∗) − c̄

= sup {µv (b∗) − ĉ (Bµ) : µ ∈ [0, 1]}

= sup {µF v (b∗) − c∗ (F ) : F ∈ F , µF < µF ∗} .

By continuity of v, there is then b < b∗ such that

µF ∗v (b) − c∗ (F ∗) > sup {µF v (b) − c∗ (F ) : F ∈ F , µF < µF ∗} .

This means that, if the principal offers payment schedule Gb in project c∗, the principal’s

value must be at least µF ∗ (1 − b) > µF ∗ (1 − b∗) = Π (w∗, F ∗). This contradicts the incen-

tive compatibility of the payment schedule w∗ in c∗.

We now want to show that
(
wb∗ , BµF ∗

)
is an equilibrium of project c̃. To do so, we will

rely on the following lemma.

Lemma A4. For all b ∈ [0, b∗), π (c̃, wb) = π (ĉ, wb).

Proof. The argument is identical to Lemma 2 in the main document, after noting that the

agent has a felicity v (b) (rather than b) when receiving bonus payment b. QED

Now let us show that
(
wb∗ , BµF ∗

)
is an equilibrium of project c̃. We already saw that

BµF ∗ is incentive compatible for the agent in subgame (c̃, wb∗) (by choice of its cost c̄). So

we need to show that wb∗ is incentive compatible in c̃. It is immediate that the principal

does not want to deviate to a bonus b > b∗ (because the principal cannot attain expected

output higher than µF ∗ ; see also the argument in the main document). If b < b∗, then

π (c̃, wb) = π (ĉ, wb) ≤ π
(
c∗, Gb

)
≤ Π (w∗, F ∗) = Π

(
wb∗ , BµF ∗

)
.

The first equality follows by Lemma A4. The first inequality follows by Lemma A3. The

second inequality follows because w∗ is incentive compatible for the principal in c∗. The

final equality follows by definition of b∗. Thus, the principal does not gain by deviating to

b < b∗.
11



As we observed, the principal obtains the same payoff in outcome
(
c̃, wb∗ , BµF ∗

)
as in

the outcome (c∗, w∗, F ∗). We have been unable, however, to determine whether the agent is

better off in
(
c̃, wb∗ , BµF ∗

)
. Although the expected payment is the same in both outcomes,

we have not ruled out that the agent could earn a lower payoff in outcome
(
c̃, wb∗ , BµF ∗

)
due

to the uncertainty in payments (i.e., due to worse insurance). Therefore, we make further

modifications to the project.

First, we determine the project č mentioned above, together with an equilibrium in which

the agent chooses distribution B1 and payoffs are those in the equilibrium
(
wb∗ , BµF ∗

)
of

project c̃, multiplied by 1/µF ∗ . This project is defined by č (Bµ) = c̃
(
BµµF ∗

)
/µF ∗ for all

µ ∈ [0, 1]. We show the following.

Lemma A5. For all b ≥ 0, π (č, wb) = π (c̃, wb) /µF ∗.

Proof. We first show π (č, wb) ≥ π (c̃, wb) /µF ∗ for any b ≥ 0. Fix any such b and suppose

that (µn) is a sequence for which U (c̃, wb, Bµn) → u (c̃, wb) and Π (wb, Bµn) → π (c̃, wb).

Then there is a subsequence (µnk
) such that, for all k and all µ ∈ [0, 1],

µnk
v (b) − c̃

(
Bµnk

)
+ 1

k
≥ µv (b) − c̃ (Bµ) .

Then, for all µ ∈ [0, µF ∗ ],

µnk

µF ∗
v (b) − 1

µF ∗
c̃

(
Bµnk

)
+ 1

µF ∗k
≥ µ

µF ∗
v (b) − 1

µF ∗
c̃ (Bµ) .

Hence, for all µ ∈ [0, 1],

µnk

µF ∗
v (b) − č

(
B µnk

µF ∗

)
+ 1

µF ∗k
≥ µv (b) − č (Bµ) .

This implies that U

(
č, wb, B µnk

µF ∗

)
→ u (č, wb) and Π

(
wb, Bµnk

/µF ∗

)
→ π (c̃, wb) /µF ∗ . This

establishes the claim.

We now show that π (č, wb) ≤ π (c̃, wb) /µF ∗ . Suppose that (µn) is a sequence for which

U (č, wb, Bµn) → u (č, wb) and Π (wb, Bµn) → π (č, wb). Then there is a subsequence (µnk
)
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such that, for all k and all µ ∈ [0, 1],

µnk
v (b) −

c̃
(
Bµnk

µF ∗

)
µF ∗

+ 1
k

≥ µv (b) −
c̃

(
BµµF ∗

)
µF ∗

.

Then, for all k and all µ ∈ [0, 1],

µF ∗µnk
v (b) − c̃

(
Bµnk

µF ∗

)
+ µF ∗

k
≥ µF ∗µv (b) − c̃

(
BµµF ∗

)
.

Letting, for each k, µ′
nk

= µF ∗µnk
, we have

µ′
nk

v (b) − c̃
(
Bµ′

nk

)
+ µF ∗

k
≥ µv (b) − c̃ (Bµ)

for all µ ∈ [0, µF ∗ ], and hence all µ ∈ [0, 1]. Therefore, U
(
c̃, wb, BµF ∗ µnk

)
→ u (c̃, wb), while

Π
(
wb, BµF ∗ µnk

)
→ µF ∗π (č, wb), which establishes the claim. QED

Lemma A5 implies that the principal’s incentives to offer different bonuses in project č

are the same as in c̃. The optimal bonus for the agent that is incentive-compatible for the

principal is b∗, with the agent best responding in subgame (č, b∗) with the distribution B1.

To see this, recall that
(
b∗, BµF ∗

)
is an equilibrium in project c̃. Therefore, for all µ ∈ [0, 1],

µF ∗v (b∗) − c̃
(
BµF ∗

)
≥ µv (b∗) − c̃ (Bµ) .

The claim follows because this is equivalent to the statement that, for all µ ∈ [0, 1],

v (b∗) − č (B1) ≥ µv (b∗) − č (Bµ) .

We have established then that č is a binary project in which the agent (in the agent-

optimal equilibrium) receives a payment equal to 1/µF ∗ times the expected payment EF ∗ [w∗]

of the original equilibrium and achieves output one with certainty. The principal’s profits

are 1 − b∗. Consider now an optimal binary project for the agent in which the principal

earns profits 1−b∗. Recalling the analysis in the previous section, there is an optimal binary

project where the principal pays b∗ and the agent achieves output one with probability one.
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Recalling the definition in Lemma A2, the agent’s cost is h (1 − b∗). The agent’s payoff

satisfies

v (b∗) − h (1 − b∗) ≥ v (b∗) − č (B1) ≥ v (b∗) − c∗ (F ∗)
µF ∗

.

The first inequality follows because č is a (not-necessarily optimal) binary project. The

second inequality follows by construction of č (B1).

We can conclude that

h (1 − b∗) ≤ c∗ (F ∗)
µF ∗

.

Because h is strictly convex, and because h (1) = 0, we have

h (1 − µF ∗b∗) < c∗ (F ∗) .

Therefore,

v (µF ∗b∗) − h (1 − µF ∗b∗) > v (µF ∗b∗) − c∗ (F ∗) ≥ U (c∗, w∗, F ∗) ,

where the second inequality follows by Jensen’s inequality and concavity of v (as well as

the observation that the expected payment determined by distribution F ∗ and payment

schedule w∗ is µF ∗b∗). The left-hand side represents the agent’s payoff in an agent-optimal

binary project in which the principal obtains payoff 1−µF ∗b∗ (as determined in the previous

section). The right-hand side is the agent’s expected payoff in the original project. That

the agent does better in the aforementioned binary project contradicts the optimality for

the agent of the original, as desired. This completes the proof of Proposition A1.

Let us conclude by relating the claims in this online appendix to those made at the end of

Section 4 (under the heading “Risk Aversion”). First note that Proposition A1 implies that

binary projects are optimal. While the claim in the proposition only states that it is optimal

for the agent to choose a project where the principal implements distribution B1, recall from

the discussion in Appendix B (under the heading “Uniqueness beyond binary projects”) that

any such project can be converted to a binary one. The proof of Proposition A1 showed in

particular that, for an outcome (c∗, w∗, F ∗) where (w∗, F ∗) is an equilibrium of c∗, and where
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F ∗ ̸= B1, there exists a binary project and equilibrium of that project which represents a

strict Pareto improvement for both players. In particular, we constructed a binary outcome

where the principal obtains a payoff 1 − µF ∗b∗ = 1 − EF ∗ [w∗] > µF ∗ − EF ∗ [w∗]. For non-

binary projects where B1 is implemented in equilibrium, the previous observation that the

project can be converted to a binary project applies. In this case, the equilibrium payoffs

of the players are unaffected by the conversion. Finally, the claim that the marginal costs

of probabilities µ above π∗ are given by v
(
1 − π∗

µ

)
in an optimal project follows from the

specification of C (µ; π∗) in the proof of Lemma A1.
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