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a b s t r a c t

The aftermath of the recent financial crisis has shown how expensive and unfair the
stabilization of financial ecosystems can be. The main cause is the level of complexity
of financial interactions that poses a problem for regulators. We provide an analytical
framework that decomposes complex ecosystems in both their overall level of instability
and the contribution of institutions to instability. These ingredients are then used to
study the pathways of the ecosystems towards stability by means of immunization
schemes. The latter can be designed to penalize institutions proportionally to their con-
tribution to instability, and therefore enhance fairness. We show that fair immunization
schemes can also be cost-efficient when employed on ecosystems characterized by a
tiered network structure of interactions concentrated among few core nodes that at the
same time form many closed cycles that exacerbate instability. For less tiered network
topologies we observe a trade-off between fairness and dollar-cost of immunization,
allowing regulators to choose the combination that best meets their objectives. The
implementation of immunization schemes on real cross-border financial networks of
the Bank of International Settlement (BIS) reporting country banking systems is also
provided.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The resilience of an ecosystem is its ability to return to its original state following any shocks or external perturba-
ions [1]. If the ecosystem is not able to self-inoculate against these disturbances, it will be exposed to a system-wise
isruption and the potential extinction of its constituent species. Immunization strategies are therefore crucial to guide
nstable ecosystems towards stability. The work of May [2,3] provides insights on how the topology of the network
ontributes to instability in an epidemiology model. Although initially based on random matrices, the May–Wigner
tability theorem has been generalized [4] and tested on several ecosystems, including financial markets [5,6]. The recent
inancial crisis is an example of an unstable financial ecosystem, highly vulnerable to systemic risk. The latter is defined
s a negative externality [5], a ‘‘disruption to the flow of financial services that is caused by the impairment of all or parts
f the financial system and has the potential to have serious negative spillovers to the real economy’’ [7].
The derived financial stability condition from May [2,3] complements a large body of empirical studies based on shock

ropagation algorithms and distribution of financial losses (see, [8–12], for recent reviews). The moral hazard problem
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aused by one of the largest tax payer bailouts of financial intermediaries, costing over $14 trillion [13], promoted the
ebate of ex-ante solutions aimed at stabilizing the financial system and therefore avoid unfair social and economic
onsequences. This paper discusses recent developments of ex-ante solutions to immunize financial ecosystems in the
ursuit of mitigating future disruptions.
Although several studies propose interesting metrics to assess the level on instability of both observed and recon-

tructed financial systems [14–16], there are still limited studies addressing the problem of internalizing instability via
mmunization strategies, i.e. by imposing taxes/restrictions to the level of interaction among participants [17–19]. More
mportantly, immunization strategies should also be designed to target those participants that pose the largest threat
o the resilience of the whole ecosystem [20]. We design different immunization schemes, both homogeneous with a
ommon rate for all players, and heterogeneous with rates tailored to the contribution of each financial institution to
he level of instability of the entire system. The latter scheme aims at maximizing the fairness of the immunization
y targeting systemically important players. We show an interesting trade-off between the dollar-cost of immunization
nd its level of fairness that is highly sensitive to the topological properties of the network. In highly tiered systems
hat well represent real financial networks, such as scale-free and core–periphery structures, core nodes tend to be both
ystemically important and responsible for the creation of many closed cycles that exacerbate instability [21]. Within these
tructures, heterogeneous schemes can be both fair and cost-efficient, the ideal choice for proper financial regulation.
owever, for less tiered/more random structures with low correlation between systemic importance and contribution
o cyclical structures, pursuing a fairer scheme might come at an higher cost compared to the homogeneous case. This
rade-off is also found when immunization schemes are tested on real cross-border financial networks of country banking
ystems using BIS consolidated banking statistics.

. Methods

Metrics that attempt to measure the level of disruption in a systemic event can be classified on the basis of the
nformation used to assess individual contribution to systemic risk, i.e. market based vs. balance-sheet network based
etrics (see [22] for a detailed review of market-based systemic risk metrics). The latter are increasingly being used to
etter understand the stability of complex financial systems. Since the classic Eisenberg&Noe [23] and Furfine [24] stress
est contagion algorithms, along with the recent Debt-Rank [25], a growing body of work using network analysis has
een developed for systemic risk management that uses financial balance sheet interlinkages to analyse contagion and
istribution of losses from the failure of a trigger institution. Examples of applications and extensions of the clearing
ayment vector of [23] can be found in [26] that includes default costs in their greatest clearing vector algorithm, and
ecent extension of [27] that shows issues in the existence of unique results when banks can use CDS to cover their
osses. The inclusion of uncertainty on the value of the external assets is another important extension of the general
isenberg&Noe model that was initially employed by [28] in their assessment of the stability of Austrian banks, and further
eveloped by [29,30]. Analytical generalizations of network valuation for systemic risks assessments are also presented
n [30,31].

Instead of performing numerical simulations of contagion conditional to a distress event [23–25], we exploit the ex-
nte stability conditions of the ecosystem as a function of the topology of the network from which we derive and validate
mmunization strategies. We follow the insight from [2,3] that network stability depends on the size of the maximum
igenvalue of an appropriate dynamical characterization of the network and a common failure threshold [32–34]. This
pectral analysis led to the so-called Eigen-Pair model that has already been employed on the global derivatives market [5],
he US CDS market [6] and for risk assessment of CCPs [11,35] and global banking [32]. Recent work of [21] employs
similar spectral approach on banks leverage matrix to study the pathways of financial network topology towards

nstability. In contrast, this study looks at pathways towards stability by evaluating alternative immunization schemes
or banks. While the seminal work of [5,6] first and recent generalization of stability conditions of [32] contributed to
he estimation of the level of systemic risk of the financial system, our approach builds on this framework by proposing
olutions to reduce the estimated level of systemic risk. Specifically, the [32] eigenpair solution of their systemic risk
ndicator, which provides both a macro index of systemic risk as well as an individual contribution to that level of risk
oth as importance and vulnerability rank, provides an elegant and analytically sound foundation to derive immunization
olutions to the problem of systemic risk.
Our study is closely related to that of [17,19] as both proposed solutions to internalize systemic risk by means of

axation. Of course, tax rates require a proper assessment of systemic risk and the individual contribution to instability.
he first study proposes two measures, Marginal Expected Shortfalls (MES) and Systemic Risk Contribution (SRISK) as
roxy of the firm vulnerability in terms of capital loss. The second is based of Debt-Rank and implements an agent-based
odel to assess the restructuring of the financial network when a systemic risk tax is imposed to participants. Our model

ollows the same principle that network participants should be taxed according to their individual contribution to the
verall level of systemic risk. Our model differs from these studies on the assessment model implemented, in our case
he eigenpair model. The advantage of our approach is that the fixed point solution of the eigenpair model provides
imultaneously both the overall level of instability as well as the individual contribution of participants to the level of
nstability. Therefore, our approach does not require individual aggregations of level of risk to assess the overall stability
f the system as for [17,19].
2
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.1. Contagion model

When modelling network contagion, both the source and magnitude of pairwise connections must be accurately
efined. With regards to the source of contagion within a balance sheet interlinkage network, financial institutions can
ace losses from both sides of their balance sheet, i.e. (i) as a lender when borrowers fail to repay their debt in the event
f defaults, or more generally due to deterioration of their cross-border investments exacerbated by mark-to-market
ccounting (solvency shocks [6,23–25,36,37]), or (ii) as a borrower when credit lines from lenders are withdrawn (liquidity
hortfalls [38–40]). We focus on the first channel (solvency) as a source of contagion in this study.

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x12 · · · x1j · · · x1N
x21 0 · · · x2j · · · x2N
...

... 0 · · · · · · · · ·

xi1
... · · · 0 · · · xiN

...
... · · · · · · 0

...

xN1 xN2 · · · xNj · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

Let i and j be two nodes. When a direct link originates with i and ends with j, viz. a gross (nominal) liability for i, it
s represented by the entry xij, denoting payments for which i is the obligor. The financial system is defined by a N × N
irected weighted network represented by the matrix X in Eq. (1) such that the sum of an ith row

∑N
j=1 xij represents the

otal liabilities of node i to the whole system. Likewise, the sum of the jth column
∑N

i=1 xij represents the total receivable
mount in the form of claims of node j. Note that xii = 0.
With regard to the magnitude of bilateral losses, popular models for risk assessments evaluate net bilateral expo-

ures [24,41], especially when considering large institutions that are allowed to assess their exposure on a net basis via
aster agreements. In order to relate system failure from insolvency contagion arising from creditors having insufficient
uffers set by regulatory capital requirements, we model the dynamics of i’s capital at time t + 1, ci,t+1, as follows:

ci,t+1 = ci,0 −

∑
j

(
xji − xij

)+ pj,t − (1 − ρi)
(
ci,0 − ci,t

)
. (2)

where ci,0 is i’s the initial capital,
(
xij − xji

)+ equals to the net liability exposure of a node j viz-á-viz its debtor i, and the
cumulative rate of capital depletion that is used to assess the propensity of default of node i at t + 1, denoted by pi,t+1,
is given by subtracting the equivalent ci,t+1 from ci,0 and dividing through by ci,0 in (2). Finally, the individual stability
thresholds (or cure rates) ρi, are defined as the percentage of capital each node allocates to loss absorption, ranging from
zero (no capital to mitigate losses) to one (the entire capital of the node is allocated to loss absorption). We also adopt
the notion of stability matrix Θ whose elements θij =

(xij−xji)
+

cj,0
are equal to the net liability exposure of a node j viz-á-viz

its debtor i,
(
xij − xji

)+, as percentage of the initial capital of j, cj,0 [32]. The individual propensity of default pi,t+1 of i at
time t + 1 is described by the dynamical system

pi,t+1 = (1 − ρi) pi,t +

∑
j

θjipj,t . (3)

The propensity of default at t + 1 in (3), pi,t+1, is determined by (i) i’s own ‘cure rate’ ρi given its current propensity
of default pi,t (typically defined by the ratio involving cumulative capital losses at time t given as ci,0−ci,t

ci,0
) and (ii) the

um of ‘infection rates’ defined by the sum of pairwise losses from its exposure to j weighted by the counterparty
ropensities of default. Note that the linear form of the contagion channel in (3) captures the losses of asset values due
o the deterioration of the underline (still not defaulted) institution, as in [21]. This extends the standard view that losses
an only be propagated as the result of a default, requiring step functions as in [23,24] to name few.
Converted into matrix notation, the dynamical system takes the form

Pt =
[
(I − R) + Θ ′

]
Pt−1 = QPt−1 (4)

with Pt =
(
p1,t , p2,t , . . . , pn,t

)
, R = diag[ρ1, . . . , ρn] is a diagonal matrix of individual ρi and I is the identity matrix.

The stability condition is given by λ < 1, where λ is the maximum eigenvalue of the matrix Q. Financial ecosystems
characterized by λ > 1 are therefore unstable to perturbations and would require immunization strategies to avoid
systemic disruptions (see Supplementary Methods for the proof).

The spectral decomposition of the instability matrix does not only provide a stability metric for the system as a whole
(the eigenvalue analysis), but also captures the individual contributions of financial nodes to the level of instability via
the right eigenvector associated with the largest eigenvalue (see Supplementary Methods). The latter is usually ignored in
the field of network stability, and only employed in network analysis as a node centrality index. The eigen-pair method
of [5,32] is a notable exception, and their findings have inspired the creation of the immunization schemes proposed here.
3
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.2. Immunization

With an unstable financial system, λ > 1, our objective is to stabilize the ecosystem by bringing the λ below one.
Remember that the matrix Q is a function of the individual stability thresholds ρi (cure rate), the positive net liabilities(
xij − xji

)+ and the individual level of capital ci. Supplementary Methods provide a formula to derive individual thresholds
ρi that satisfy the capital adequacy ratio of regulatory tier 1 capital over risk weighted assets set by recent banking
regulation. This provides direct implementation of this systemic risk assessment to real bank data as shown later. By
setting individual stability thresholds to satisfy the actual capital requirements imposed by financial regulators, we can
effectively evaluate the contribution and vulnerability of each participant to the overall systemic risk.

The main literature agrees that there are two major ways to internalize systemic risk: by regulation or by taxation [42].
Since systemic risk is a negative externality [5,6], economists prefer the solution of taxing the externality [19] as taxation
can be designed specifically to address the marginal contribution of systemic risk [42] as well as not requiring heavy-
handed government intervention into the decision making of market participants. Specifically, a Pigovian tax, the ‘Systemic
Risk Tax’, of [17] that can dynamically induce participant to reduce their contribution (in an agent-based simulated model),
or a ‘bail-in’ escrow fund (super-spreader taxes) of [5] are among those proposed.

In our model, we follow the preferred taxation approach suggested above that would bring λ down by reducing the
bilateral net liabilities. Alternatively, reducing ρi and/or increasing initial capital buffers ci,0 would also internalize systemic
risk by means of regulation. We discuss this alternative approach in the Supplementary Methods.

Since imposing a systemic risk tax on financial participants based on unrealized potential future losses can be very
hard to implement, we therefore suggest that individual contributions to internalize systemic risk can be escrowed into a
systemic risk fund, similar to what regulators are recommending to CCPs as part of the default fund dedicated to systemic
risk events [11]. Note that regulators and/or market makers can also evaluate alternative assets to be eligible in the fund
in order to facilitate transactions, including high quality liquid assets and/or guarantees or insurance policies to cover the
marginal contribution of systemic risk in a systemic event as recommended by [19]. We leave the analysis on the impact
of these alternative assets to systemic risk management to future studies.

A simple solution to the problem of quantifying individual contributions to the systemic risk fund would be to apply a
common, i.e. homogeneous, rate τ̄ to all net liabilities such that the stability of the system is restored. For a given unstable
financial system, the rate τ̄ that stabilizes the network is confined in the range 1 > τ̄ > max

[
1 −

mini(ρi)
λ(Θ)

, 0
]
. However,

he homogeneous rate applies the same % to all nodes, regardless of their actual contribution to λ. We generalize the above
omogeneous scheme by taking into consideration the right eigenvector that is usually ignored in the field of network
tability, and only employed in network analysis as a node centrality index.
Consider the following generalized immunization rate vector

τ = kτ̄vα (5)

ith v being the right eigenvector vector associated with λ. Note that α is a parameter used to tune τ towards the
ontribution v of each node to λ. The higher the α, the more heterogeneous the immunization will be towards a v-oriented
cheme. Once α is chosen, the scalar k is calibrated such that λ = 1−ϵ, with ϵ a very small positive number. With α = 0,
i = τ̄ ∀i, making the homogeneous immunization scheme a special case of the generalized regime vector τ . The other
pecial case α = 1 represents the scheme in which rates are proportional to v, i.e. their contribution to the whole system
nstability. Note that elements of τ are bounded to 1, i.e. contributions to the systemic risk fund cannot exceed the total net
iabilities of a node (see Supplementary Methods). We focus on these two special cases, the homogeneous with α = 0 and
he heterogeneous with α = 1. Sensitivity analysis of immunization schemes under different levels of α is also reported.

Finally, we introduce performance measures to evaluate both the dollar-cost of immunization and its fairness, i.e. the
bility to target nodes that contribute more to the instability of the system. The dollar-cost of immunization is simply the
um of all contributions, i.e.

∑
i
∑

j

[(
xij − xji

)+
τi

]
, while the fairness of the scheme is evaluated by the level of inequality.

he latter is defined as the deviation of rates imposed on individual nodes to their actual contribution to instability,

inequality =
1
2

∑
i

⏐⏐⏐⏐ m̄+

i τi∑
i m̄

+

i τi
− v2

i

⏐⏐⏐⏐ . (6)

where m̄+

i =
∑

j

(
xij − xji

)+. Inequality takes min value of 0 in the case the immunization is exactly proportional to
the right eigenvector and fairness is maximized. Conversely, the largest deviation from maximum fairness, meaning most
unfair scheme based on each individual contribution to instability, is equal to 1. As

∑
i

⏐⏐⏐ m̄+

i τi∑
i m̄

+

i τi

⏐⏐⏐ =
∑

i v
2
i = 1, this implies

that
∑

i

⏐⏐⏐ m̄+

i τi∑
i m̄

+

i τi
− v2

i

⏐⏐⏐ ≤ 2. Note that the vector v is normalized using Euclidean norm, therefore the sum of the squares
of vi equals one by construction.

Ideally, we would opt for a cheap immunization scheme that maximizes fairness. However, there could be some trade-
off between cost reduction and fairness depending on the topological properties of the financial network. Ultimately, the
right balance between cost and fairness must be chosen by regulators on the basis of their policy priorities.
4
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Fig. 1. Illustration of three network topologies with equal link weight l representing (a) regular, (b) random [43,44] and (c) core–periphery
structures [45]. Panel (d) displays the cost of immunization for each of the three network topologies using both homogeneous (solid line) and
heterogeneous (dashed line) immunization schemes. Note that both schemes are identical for the regular network case.

As discussed in [21], the presence of cycles in the network has a big, and positive, impact to the levels of instability λ.
uilding upon this findings, we can predict that schemes which indirectly penalize cycles can achieve faster (and cheaper)
athways towards stability.

. Results

.1. Numerical example

Consider as an illustration the example of Fig. 1. For simplicity, links are of equal weight l and there can be only one
irectional link between two nodes to be consistent with a net liability network. The regular layout (a) depicts a network
here all nodes have the same in and out degrees, with vi = 0.41 for all is. The second example (b) adds some randomness
o the regular layout. It shows a more heterogeneous network with 1 and 4 being the most systemically important nodes
ith slightly larger eigenvector values and three outdegrees each, whereas 3 and 5 are the least systemically important
ith just one outdegree each. The last topology (c) is a core–periphery structure [45,46], very common in financial
etworks, with core nodes 1 and 2 being fully connected to each other and to the other peripheral nodes. The latter
odes only connect to the core and not to each other. Core nodes have by construction expected right eigenvector values
ay greater than the peripheral nodes. Fig. 1(d) compares the cost of the two main immunization schemes for each of
he three configurations, such as the homogeneous (solid lines) and the heterogeneous case (dashed lines).

Due to the homogeneity of the regular layout, the eigenvector values of the nodes are about the same and therefore
o discrimination can be achieved by heterogeneous schemes. Therefore, both homogeneous and heterogeneous schemes
re identical as no one is posing more risk to the system than others. However, the regular case is more unstable than the
5
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Fig. 2. The effect of heterogeneous schemes over the homogeneous case on dollar-cost. For each of the four topological network classes, i.e random
(blue), regular (red), core–periphery (yellow) and scale-free (purple), we plot the average change of dollar-cost between the homogeneous (α = 0)
nd the heterogeneous (α = 1) regimes. See Supplementary Methods for the construction of the sample. Positive values, mainly for core–periphery
nd scale-free networks, shows the % cost saving of heterogeneous schemes compared to homogeneous ones. The opposite is true for negative
alues.

andom case as a result of a larger number of cycles and therefore would require high immunization costs. For the random
etwork, the homogeneous case provides a more cost-efficient immunization than the heterogeneous, although the latter
inimizes inequality. This is due to the fact that the out-degrees of both nodes 3 and 5 directly contribute to closed
ycles, although with low values of vi, i = 3, 5, and therefore not well penalized by the heterogeneous immunization. The
pposite case is observed for node 1, for which all its three out-degrees do not contribute to any closed cycle although
1 is the highest value. The core–periphery network, on the contrary, is a clear example of central nodes in terms of vi

that are at the same time forming closed cycles (by construction all links are connected directly to the core, which in turn
is itself fully connected). This well tiered network structure provides the optimal configuration for the heterogeneous
scheme to outperform the homogeneous one in both cost-efficiency and inequality.

3.2. Network topologies

We investigate even further the relationship between network topology and the performance of the heterogeneous
immunizations to provide evidence of a trade-off between dollar-cost and inequality. We numerically generate a large
set of financial networks following four of the main topological classes, such as (i) Erdös–Rényi random [43], regular, core–
eriphery [45] and scale-free [47] (for a detailed literature survey, see [48]). Each network sampled from any of the four
ategories has N = 100 nodes, and both liabilities and external net assets are normalized to have same amount of total
ross liabilities L =

∑N
i=1

∑N
j=1 xij and total capital C =

∑N
i=1 ci. We also assume all failure thresholds ρi = 0.25 ∀i for

simplicity. Therefore, the stability condition can be derived in terms of the matrix Θ , i.e. λ (Θ) < ρ = 0.25 (see [32]). We
sample 40,000 networks, 10,000 for each of the four network topologies whose properties are given in the Supplementary
Methods.

Fig. 2 plots the change of the dollar-cost, defined as ∆ Dollar Cost of immunization between homogeneous α = 0 and
heterogeneous regimes α = 1, as average value for each network topology sample. Specifically,

∆ Dollar Cost = Costα=0
− Costα=1 (7)

Positive numbers of ∆ Dollar Cost would indicate % dollar-cost saving of heterogeneous scheme over the homogeneous
one. We notice a small increase in average dollar-cost (<1%) for the random network for highly unstable systems. Opposite
evidence is depicted for core–periphery and scale-free samples where average dollar-cost reduction reaches values up to
4.5% and 3% respectively.

Table 1 confirms that the last two topologies are characterized by a specific network structure driven by higher level
of correlations between v and cycle centrality. The cycle centrality of a node is the number of cycles each node is part of
(weighted by the link weights), normalized using norm 1. A cycle is a path of edges such that the first and the last nodes
are the same node [49]. We find that for network topologies characterized by a tiered structure, like scale-free and in
particular core–periphery networks, the correlation between eigenvector centrality and cycle centrality is extremely high
6
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Table 1
Descriptive statistic table of correlations between nodes right eigenvector and cycle centrality.
Topology Mean Median std min max

Random 0.0063 0.0065 0.1028 −0.3875 0.3901
Regular 0.0081 0.0175 0.2196 −0.7405 0.6108
Core–periphery 0.8310 0.8337 0.0443 0.5781 0.9693
Scale-free 0.2737 0.2670 0.1176 −0.1138 0.7626

Fig. 3. Boxplot representing the effect of α to the reduction of inequality from the homogeneous for the four network topologies. We display the
statistical properties of the difference in inequality values between the reference homogeneous regime (α = 0) and heterogeneous ones varying the
evel of α as plotted in the horizontal axis.

ompared with random and regular networks, supporting our claims. Recent extensive studies have assessed the relation
etween the topological structure of a network and the spectral properties of the associated graph (see e.g. [50,51] and
eferences therein).

For completeness, Fig. 3 evaluates the sensitivity of the inequality with a wider range of α values for the four topologies
considered. By construction, minimum inequality is achieved with α = 1, representing exactly the magnitude of v. For the
7
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ore–periphery topology, inequality shows substantial reduction up to 80% on average, along with a 60%–65% reduction
or the other topologies.

.3. Application to global cross-border bank networks

This Section implements our immunization (taxation) model on real networks of countries banking systems that
re connected via cross border claims as reported by the Bank of International Settlements (BIS) consolidated banking
tatistics. Since data on bilateral exposure of counties banking systems is publicly available, no estimation procedure
s required. However, BIS data aggregation of the financial flows is done at the banking system level. Therefore, the
pplication of our model will be generalized to country banking systems i rather than individual banks. This generalization
ight limit the accuracy of the assessment compared to one at the individual bank level. The Supplementary Methods
ocument all our efforts in ensuring that the aggregation procedure to assess the global banking network is consistent
cross all variables.
Our financial network is characterized by a set of 18 Country Banking System (CBS) nodes connected via cross-border

ontractual flows of liquidity and/or obligations to make and receive payments in the period 2005 quarter 4 (2005Q4 for
hort) and 2014Q4 (see Supplementary Methods for details).
As discussed in [32], high instability prior to the crisis with many European banking systems at high risk of distress is

ignalled. Those propensities suggest high level of instability of the whole ecosystem, captured by λ and plotted in Fig. 4(a),
ince 2005Q4, with peaks up to 200% of expected capital loss, well in anticipation of the 2008 US subprime crisis. Due to
he heavy recapitalization process started in early 2008, the level of instability went down in order to prevent the burst of
he subprime bubble. Unfortunately, that capital injection came too little, too late. Instability peaked up again in 2009 in
nticipation to the EU sovereign debt crisis. The LHS subplot within Fig. 4(a) simulates the asymptotic convergence of the
ropensities of defaults of the system in 2007Q1 towards a quick and complete systemic financial meltdown. The global
ross-border banking network appears to be stable, λ < 1, only in 2013 Q3 and 2014 Q4, showing a slow asymptotic
convergence of all pi towards zero (Fig. 4(a) RHS subplot). For a comparison of this approach with other market-based
systemic risk metrics, see [32].

We finally employ the above taxation on the cross-border networks. Fig. 5(a) plots the overall cost of heterogeneous
taxation against our systemic risk index λ for all the 37 quarter networks from 2005Q4 to 2014Q4. As discussed above,
we observe monotonic decline of instability with increased taxation, although the relation might not be linear. This
is particularly true for very unstable ecosystems where every extra dollar-tax collected above $1tn produces a larger
marginal reduction of λ than the homogeneous case (2007Q1 case in Fig. 5(a)). The trade-off between immunization cost
and inequality is captured in Fig. 5(b). Throughout the 9 years of investigation, we observe cases where narrow trends
in equality between the two immunizations schemes resulted in massive gaps of costs in favour of the homogeneous
rates. These are the areas depicted in blue, mainly representing periods of high instability in which the upper bound
limit on individual tax rates of 1 limits the effectiveness of a pure eigenvector-based tax scheme (see Supplementary
Methods). There are however many other time periods highlighted in yellow where the large gain in fairness by the
heterogeneous scheme is just marginally more expensive than the homogeneous case. As mentioned above, we also
find two cases highlighted in green that show how a fair immunization scheme can also be cheaper that traditional
homogeneous ones. Note that this visual comparison cannot directly support policy recommendations as lacking on a
clear criterion to discriminate between immunization schemes. Regulators need to properly quantify the cost–benefit
level of each scheme based on their policy targets and choose the scheme accordingly.

4. Discussion

We provide an elegant analytical framework to evaluate the level of instability of financial ecosystems and design
immunization schemes tailored to the contribution of institutions to the instability of the system. Our numerical
examples provide evidence of how the topology of the ecosystem network impacts the efficiency of the immunization
scheme. Heterogeneous schemes are fairer than homogeneous ones by construction. They can also be more cost-effective
depending on the topology of the network. Regulators can easily opt for a fairer scheme when dealing with an highly
tiered structure with well defined core and peripheral nodes. In this scenario, tougher penalties on central nodes can
also mitigate closed cycles in the network and therefore bringing the system towards stability more efficiently. However,
on less tiered structures with higher degree of randomness in the allocation of links, heterogeneous schemes tend to
be more expensive although fairer than homogeneous one, raising the issue of dealing with the trade-off between cost-
efficiency and fairness of immunization. The latter is also discussed on real financial networks derived by cross-border
financial exposures of country banking systems provided by BIS consolidated banking statistics. Our findings contribute
to the predictive power of the systemic risk approach proposed by [6,32] and enhance its application beyond the initial
assessment of systemic risk studied in this literature.

Our immunization function paired with the analytical framework of stability provides regulators with a parsimonious
model to monitor complexity and select the right immunization scheme for the ecosystem. The framework can be easily
extended to alternative risk assessments, such as liquidity shortfalls [39] and liquidity hoarding [53]. The recent Basel
III regulatory framework provides individual liquidity thresholds that can be used to calibrate the dynamical system and
assess liquidity contagion. As reported in [54], liquidity shocks can lead to solvency problems and eventually exacerbate
defaults, at the expense of higher costs of immunization.
8
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Fig. 4. (a) Quarterly level of instability of the BIS cross-border banking system captured by λ over the period 2005–2014, along with snapshots of
onvergence of individual propensities of defaults for both unstable (2007Q1) and stable (2013Q4) quarters. (b) Contribution of countries banking
ystems to systemic risk captured by average right eigenvector values of the pre crisis period 2005–2007, and compared with actual output losses
nd increased public debt [52] as percentage of the overall capital of the system, along with a snapshot of the network plot. The latter depicts size
f net liabilities of nodes (total liabilities greater than total assets) and net assets (total assets greater than total liabilities), colour coded in red
nd blue respectively. Links are also weighted and colour coded in green (links from core nodes), yellow (mid nodes) and purple (periphery nodes).
ee [5] for details of the network layout.
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Fig. 5. (a) The impact of heterogeneous taxation α = 1 in terms of aggregated dollar-cost compared to the level of instability λ max for all the
nstable quarters in 2005–2014. Those are complemented by three snapshots of comparison between homogeneous and heterogeneous tax schemes.
b) Comparison between homogeneous and heterogeneous tax schemes in terms of both inequality (top) and dollar-cost (bottom) when systems are
ully stabilized (λ = 1− ϵ). The blue areas depicts scenarios with the homogeneous scheme being way cheaper than heterogeneous although slightly
ore unequal, whereas yellow areas show the heterogeneous scheme being way more equal than homogeneous although slightly more expensive.
he green areas captures scenarios in which both minimization of cost and inequality are achieved by the heterogeneous taxation.

upplementary methods

ynamical system of financial instability

ipping point. The stability of the system is governed by the characterization of the instability matrix Θ and the cure rate
ector ρ. The dynamical system describing the propensities of default can be expressed using unconditional propensities
t = QPt−1 = QtP0, with Q =

[
(I − R) + Θ ′

]
. Using spectral decomposition as in [6], we can express Q in terms of

ts eigenvalues diagonal matrix D and relative right eigenvectors matrix V (spanning the N dimensional vector space of
eal numbers RN ) and a N × 1 vector of weights g, QtP = QtVg = DtVg =

∑ (
λtg v

)
. The stability of the system
0 i i i i
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s achieved when the propensity of default for large t dies away. By arranging all eigenvalues in descending order

max = λ1 ≤ λ2 ≤ · · · ≤ λn and factoring out λmax we have Pt = λt
max

∑
i

((
λi

λmax

)t
vigi

)
. For i > 1, λi

λmax
< 1 so

hat Pt → λt
maxv1g1 as t → 0, g1 ̸= 0. The stability is therefore governed by the largest eigenvalue and its corresponding

igenvector, implying that for the ‘infection’ from other FIs to die off a necessary condition is λmax < 1. This also leads
o the importance of the magnitude of λmax as it directly affects positive or negative growth of losses (as percentage of
capital) in the system. If λmax − 1 > 0, the system will lose capital at this rate at each t . If λmax − 1 < 0, then as buffers
xceed losses, the latter will be reduced at that rate, yielding negative growth of losses as percentage of capital.

ndividual contribution to instability. As shown in [55,56], there is a close relationship between the stability condition
of the dynamical network system and power iteration fixed point algorithm that yields the eigen-value equation with
the maximum eigenvalue λmax defined as the systemic risk index giving the near side (%) loss of capital for the system
as a whole. The right eigenvector centralities (vi) are a measure of systemic importance and given the contribution of
each banking system to systemic risk. The left eigenvector centralities (ṽi) are a measure of vulnerability and give the
fixed point solution for each banking system’s propensities to fail. The product of λmaxṽi gives the expected loss of capital
for i. Only under conditions of system instability when λmax > 1, will all the banking systems’ asymptotic (as t tends to
nfinity) propensities to fail converges to 1, some faster than others.

anks capital requirements and cure rate. In financial contagion, the cure rate ρi represents the proportion of capital
institution i has at its disposal to absorb external shocks. This capital threshold is calibrated to satisfy specific capital
requirements put in place by banking regulation. Basel III criteria for capital adequacy, for example, states that the
minimum ratio of Common Equity Tier 1 (CET1) capital ci over risk weighted assets rwai of bank i is 4.5%, ci

rwai
> 4.5%.

This means that the capital surplus on top on the 4.5% ratio is a buffer that institution i has at its disposal to absorb losses,
i.e. ci−ρici

rwai
= 4.5%. Therefore, the ρi consistent with Basel II capital requirement will be ρi = max

(
1 − 4.5% rwai

ci
, 0

)
.

Immunization of systemic risk by regulation. The calibration of capital requirements and cure rates can also be designed
to internalize systemic risk. This would be consistent with the idea of immunizing an unstable financial system by
regulation [19]. This contrasts with the taxation approach adopted in this study. There are two ways to internalize
systemic risk by regulation. The first approach can be achieved by either a more lenient capital constraint below the
current tier1 ratio defined by Basel III. In our case we can set the minimum value of ci

rwai
to be below 4.5%. This approach

would lower banks capital buffers needed by regulation and of course contradicting with the current trend of higher
capital requirements. The second way to adjust ρi is by increasing the available capital ci in Eq. (2). The increase of
capital will also reduce vulnerability of lenders j’s by lowering θij. This approach has been preferred by regulators due
to the problem of reaching a consensus on evaluating systemic risk. However, it penalizes vulnerable banks more that
systemically important ones since it enforces higher capital requirements on the lenders rather than the borrower who
actually contributes to systemic risk.

Derivation of homogeneous rate. Given a non-symmetric matrix Q =
[
(I − R) + Θ ′

]
, R = diag[ρ1, . . . , ρn] is a diagonal

matrix of individual ρi and I is the identity matrix, λmax (Q) ≤ (1 − mini ρi) + λmax (Θ). This decomposition allows us
to derive a sufficient but not necessary condition of stability of the ecosystem in terms of Θ , i.e. λmax (Θ) < mini ρi.
onsider a immunized system Φ ≡ (1 − τ̄ ) Θ . We can express the maximum eigenvalue of Φ in terms of Θ , λmax(Φ) =

1 − τ̄ ) λmax(Θ). The stability condition λmax(Φ) < 1 holds if and only if (1 − τ̄ ) <
mini ρi
λmax(Θ) . Note that immunization rates

re bound in the range [0, 1] as the most severe immunization would be equal to the total net liability of an institution,
herefore the final condition for the homogeneous rate is 1 > τ̄ > max(1−

mini ρi
λmax(Θ) , 0). This restriction on the upper bound

f rates can affect the performance of heterogeneous schemes in highly unstable systems.

etwork sampling

We sample 40,000 networks, 10,000 for each of the four network topologies whose properties are given below.

• Random - p ∼ U in the range
[ 1
N , 1

]
is the probability of each potential link to be activated, which for the random

network also corresponds to its theoretical connectivity. The minimum connectivity 1
N guarantees the irreducibility

of the network in expectation (network is strongly connected) [43].
• Regular - k ∼ U in the range [1,N − 1] is the number of links for each node that are activated in a regular fashion

(node i is connected with node i + 1, i + 2, . . . , i + k).
• Core–Periphery - k ∼ U in the range [2, 0.3N] is the size of the core (from a minimum of 2 to a maximum of 30% of

the total nodes). The core is fully connected, whereas p ∼ U in the range [0, 1] is the probability of each node in the
core (periphery) to be connected to a node in the periphery (core). We guarantee that each peripheral node has at
least one active link with the core [45,46].

• Scale-free - k ∼ U in the range [1, 0.1N] is the number of links per node that are selected using a preferential
attachment procedure (the higher the connectivity that a node already has, the higher the probability of receiving a
link from other nodes) [47].
11
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C
ross-border BIS data

The BIS Consolidated Banking Statistics foreign claims quarterly dataset is used to build the cross global banking system
network. The information of tier1 Capital of the cross-border banks in each of the 18 reporting countries is retrieved from
Bankscope. The sample selected covers the period of 2005 Q4–2014 Q4 and represents the major 18 BIS reporting countries
banking system, such as Australia, Austria, Belgium, France, Germany, Greece, India, Ireland, Italy, Japan, Netherlands,
Portugal, Spain, Sweden, Switzerland, Turkey, United Kingdom and United States. Of these the so called GIIPS are Greece,
Italy, Ireland, Portugal and Spain. The analysis is limited to foreign claims on ultimate base risk [57] among banking sectors
only, which refers to the so-called sectoral breakdown data. The availability of the latter started in 2005 Q1 for 9 major
BIS reporting banking systems, i.e. Australia, Belgium, France, Ireland, Japan, Portugal, Sweden, UK, US. The remaining
countries started reporting a bit later [58]. In the absence of the sectoral breakdown, the aggregated values, i.e. the foreign
claims of each reporting country to all the sectors of the foreign country, are rescaled by the proportion of banking sector
liability of the foreign country over the total liabilities of all sectors vis-á-vis all the 25 BIS reporting countries, information
still provided by BIS Consolidated Banking Statistics. Details on the data manipulations are given in [32].
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