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Abstract—The vision of the sixth generation mobile com-
munication (6G) calls for extremely reliable data transmission
over complex and diverse wireless channels. By combining the
maximum distance separable (MDS) codes with the classic or-
thogonal frequency division multiplexing (OFDM), we present a
new paradigm with the assistance of the reconfigurable intelligent
surfaces (RIS). In our design, the RIS with limited phase shifts
are adopted and the pairwise error probability (PEP) of the
proposed system is first derived. Then, in order to further
minimize the bit error rate (BER), we provide a novel method
based on phase alignment to obtain the optimal solution for
the discrete phase shifts. Our simulation results show that the
proposed scheme provides considerable BER performance im-
provements compared to conventional OFDM systems. Moreover,
the proposed discrete phase optimization algorithm is capable
of achieving performance similar to that of the system with
continuous phase shifts.

Index Terms—Discrete phase shifts, MDS code, OFDM, RIS.

I. INTRODUCTION

THE ever growing use cases and data services in the
sixth generation (6G) mobile networks have posed a

number of challenges to traditional waveforms, which is one
of the core components of the physical layer (PHY) design
[1]. Aiming for ultra-reliable, spectrum- and energy- efficient
wireless communications, extensive investigations have been
carried out to design new waveforms for 6G [2][3].

Orthogonal frequency division multiplexing (OFDM) is
the dominant waveform in current wireless communication
systems (e.g., LTE, 5G New Radio, and Wifi) and is still
recognized as a competitive waveform of 6G due to its efficient
hardware implementation, robustness to multipath fading as
well as single-tap equalization [4][5]. However, it is sensitive
to frequency dispersion and hence OFDM alone may not be
able to meet the stringent reliability requirements for future
radio systems. This stimulates numerous efforts for improving
the error rate performance of OFDM [6]-[8], including the
combination with some coding and modulation techniques. For
example, [9] combined index modulation (IM) with OFDM for
exploiting the multi-domain benefits, while [10] integrated the
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polar code with OFDM for their joint gains. Very recently,
two maximum distance separable (MDS) code based modula-
tion schemes were developed and combined with OFDM in
[11]. The bit error rate (BER) performance of MDS based
modulation schemes were proved to be attractive, since the
MDS code integration helps increase the minimum Hamming
distance between modulation symbols [12].

In view of the complicated channel conditions in fu-
ture communication systems, reconfigurable intelligent surface
(RIS) is widely regarded as a powerful technique for post-
Shannon communication performances [13]. By integrating
RIS with traditional OFDM systems, such as two-way OFDM
and multi-antenna OFDM, researchers demonstrated that RIS
is effective for improving system error performance [14]-
[16]. Since OFDM can address multipath fading, MDS code
can deal with burst errors, while RIS is able to improve
the propagation environments, the combination and joint op-
timization of these three are worthy a close investigation.
Moreover, the existing studies generally assume that the RIS
phase shifts are continuous. It was pointed out in [17] and
[18] that it is desirable for RIS phase shifts to be discrete
for efficient practical hardware implementation. While this
brings new design challenges, it is interesting to analyze the
impact of discrete phase shifts and optimize the system with
discrete phase shifts. Furthermore, more comprehensive and
complicated RIS-phase shift models were proposed in [19]
and [20], which were useful for hardware implementation of
RIS.

In this letter, we propose a practical design paradigm for
MDS coded OFDM-RIS systems. More specifically, we first
design an MDS code based amplitude and phase modula-
tion (MDS-APM) scheme, which combines MDS coding into
signal modulation. Then, the proposed MDS-APM scheme
is integrated into an OFDM system for a communication
channel assisted with a practical RIS. Aiming for minimizing
the BER, we deduce the pairwise error probability (PEP)
of the proposed MDS-coded OFDM-RIS system. Then the
expression of the optimal discrete RIS phase shifts is derived
and a simple searching algorithm is developed. Numerical
results indicate the effectiveness of the proposed framework
in terms of significantly improved BER performance.

II. SYSTEM MODEL

This section describes the proposed system model as shown
in Fig. 1. At the transmitter, MDS-APM is first conducted for
the input bits. Subsequently, we perform OFDM modulation,
which includes the inverse fast Fourier transform (IFFT) and
cyclic prefix (CP) insertion. The OFDM signals are then
transmitted over the RIS channel. After that, the scattered
signals pass through independent and identically distributed
wireless channels before they reach the receive antenna.
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Fig. 1. System model of the proposed MDS-OFDM architecture with discrete RIS phase shifts.

The receiver conducts the inverse OFDM operations first.
For an N -dimensional transmit signal x = [x1, x2, . . . , xN ]T ,
the receive signal at time slot t, t ∈ {1, 2, . . . , N} is

yt =

F∑
i=1

hitritxt + nt, (1)

where F denotes the number of the programmable reflectors
in RIS. xt ∈ x is the transmit signal at time slot t, hit and
rit denote the i-th channel and i-th phase shift, respectively.
nt denotes the additive white Gaussian noise (AWGN). The
distribution of nt is CN (0, N0), where N0 is the noise
variance. From (1), we can obtain the following expression
for N -dimensional receive signals y = [y1, y2, . . . , yN ]T as
follows.

y =

F∑
i=1

HiRix+ n, (2)

where Hi = diag[hi1, hi2, . . . , hiN ] ∈ CN×N is the i-th
channel matrix and Ri = diag[ri1, ri2, . . . , riN ] ∈ CN×N

is the i-th phase shift matrix. diag[· ] denotes the diagonal
matrix operator. n = [n1, n2, . . . , nN ]T ∈ CN×1 is the N -
dimensional noises. For y, the maximum likelihood (ML)
detection is formulated as

x̂ = argmin
{V∈V}

∥∥∥∥∥y −
F∑
i=1

HiRiV

∥∥∥∥∥
2

, (3)

where V denotes the set of all possible combinations of mod-
ulation signals. Afterwards, the detected signal x̂ is demodu-
lated and decoded based on the MDS concept successively, in
order to obtain the estimated values of the input bits.

A. MDS based APM Scheme

1) MDS Coding Scheme: In MDS encoding scheme, each
element can be between 1 and any positive integer Z. And
the MDS coding mechanism follows the idea of check code
in order to maximize the minimum Hamming distance between
different symbols. Specifically, the MDS codes exploit the last
codeword as the check code. For M -dimensional MDS codes
{I1, I2, . . . , IM}, the check code IM is calculated by

IM = Z − (I1 + I2 + · · ·+ IM−1) mod Z, (4)

where modZ represents module Z operation.

2) Proposed MDS-APM scheme: In the proposed frame-
work, we develop the following simple principle to map the
input bits into their corresponding MDS codes. For a binary
sequence, we start with converting every log2 Z bits into a
decimal number between 0 and Z − 1. As the MDS encoding
mechanism requires elements to be between 1 and Z, we
further add 1 to each codeword. At last, the check code
is calculated by (4). In general, for M -dimensional MDS
codes, the first M − 1 codewords are determined by the
binary sequence and the last codeword is determined by (4).
Therefore, the length of the binary sequence that determines
M -dimensional MDS codes is (M − 1) log2 Z.

After MDS coding, APM is applied to the subcarriers
according to the corresponding MDS codes. In the proposed
APM scheme, N subcarriers are first divided into G groups,
and each group has n = N/G subcarriers. For each group,
the amplitudes and phases of the first n − 1 subcarriers are
determined by the information bits, and the last subcarrier car-
ries the check information. Assuming the orders of amplitude
modulation (AM) and phase modulation (PM) are A and P ,
respectively, and the length of information bits that can be
carried by N subcarriers (denote by L) is

L = G(n− 1)(log2 A+ log2 P ) = G(n− 1) log2 AP. (5)

As can be seen from (5), the MDS-APM scheme requires the
number of bits to be the power of 2.

For the g-th group, g ∈ {1, 2, . . . , G}, the amplitudes
[Ag

1, A
g
2, . . . , A

g
n] and phases [P g

1 ,P g
2 , . . . , P

g
n ] of subcarriers

are calculated according to their MDS codes for AM [ag1, a
g
2,

. . . , agn], a
g
m ∈ {1, 2, . . . , A}, m ∈ {1, 2, . . . , n}, and MDS

codes for PM [pg1, p
g
2, . . . , p

g
n], p

g
m ∈ {1, 2, . . . , P}, which are

Ag
m =

√
Aagm/(1 + 2 + · · ·+A) =

√
2agm/(A+ 1), (6)

P g
m = exp[−j(pgm − 1)2π/P ], (7)

respectively. The modulated signals on subcarriers in g-th
group xg = [xg

1, x
g
2, . . . , x

g
n] are

xg
m = Ag

mP g
m, m = 1, 2, . . . , n. (8)

Performing the above operations for all groups, we obtain N -
dimensional modulated subcarriers x = [x1,x2, . . . ,xG]

T .
Table 1 gives an example of bits-to-signals mapping of the

proposed MDS-based APM mechanism under n = 2, A = 2,
and P = 4 for a group. In this example, the first input
bit “0” is the bit for AM whose MDS codes are (1,1).
According to (6), the amplitudes decided by MDS codes (1,1)
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TABLE I: An example of the proposed MDS-based APM, n=2,A=2,P=4

Input AM bits MDS codes Amplitude Modulation signals
bits 0 (1,1) (

√
2/3,

√
2/3)

100 PM bits MDS codes Phase
(
√

2
3
e−j 3π

2 ,
√

2
3
e−j π

2 )
10 (3,1) (e−j 3π

2 , e−j π
2 )

are (
√

2
3 ,
√

2
3 ). Similarly, the last two bits “10” are the bits

for PM and their corresponding MDS codes are (3,1). Then
the phases of the two subcarriers are calculated by (7) and
the results are (e−j 3π

2 , e−j π
2 ). The modulation signals are

(
√

2
3e

−j 3π
2 ,

√
2
3e

−j π
2 ) according to (8).

B. Discrete RIS Channel Model

The RIS is placed near the RF source so that the fading
between the RF source and the RIS is ignorable. The signals
passing through the RIS channels can be described as

[s1, s2, . . . , sF ]
T = [R1x,R2x, . . . ,RFx]

T . (9)

It is worth noting that the reflectors in the RIS only alter the
signal phases but can not affect signal amplitudes. Denoting
the phase shift of Ri at time slot t as θit, the i-th phase shift
matrix can be described as Ri = diag[ejθi1 , ejθi2 , . . . , ejθiN ].

This paper focuses on the RIS with limited phase shifts,
meaning that the RIS phase shift can only be selected from
a set with limited values. Assuming there are Q discrete
phase shifts, the set of all alternative discrete phase shifts
θ = [θ1, θ2, ..., θQ] are calculated by

θq = 2π(q − 1)/Q, q = 1, 2, ..., Q. (10)

III. DERIVATION FOR OPTIMAL DISCRETE PHASE SHIFTS

This section formulates the PEP of the proposed system
and derives the optimal discrete RIS phase shifts to minimize
the PEP. From the MDS based APM scheme, we can conclude
that there are a total of (AP )

n−1 combinations for each group.
Assuming xa,xb ∈ Cn×1 are two different combinations in
one group, the conditional PEP between them is

P (xa → xb|hr)=Q

√
∥(Xa −Xb)hr∥2

2N0

, a ̸= b, (11)

where hr = [
∑F

i=1 hit1rit1 ,
∑F

i=1 hit2rit2 , ...,
∑F

i=1 hitnritn ]
T

denotes the equivalent channel experienced by one group
at time frame t = [t1, t2, ..., tn]

T . Xa = diag[xa] and
Xb = diag[xb]. Q(·) is the Q-function with an approximate
expression

Q(x) ≈ 1

12
e−x2/2 +

1

4
e−2x2/3. (12)

Substituting (12) into (11) and calculating the expectation
of P (xa → xb|hr), we obtain the following approximate
unconditional PEP expression as in [9]:

P (xa→xb)=
1

12det(IN+CWab

4N0
)
+

1

4det(IN+ 2CWab

3N0
)
, (13)

where In denotes the n-dimensional unit diagonal matrix,
Wab = (Xa−Xb)

H(Xa−Xb) is a positive semi-definite diag-
onal matrix which is not related to the RIS, and C = E[hrh

H
r ]

is also a positive semi-definite diagonal matrix. Since N0

is also independent of the RIS, the PEP is minimized only

when hrh
H
r is maximized. Denoting the frequency response

of the i-th channel and i-th RIS phase shift at time slot t as
βite

−jφit and ejθit , respectively, we further expand hrh
H
r into

the following matrix form:

hrh
H
r=



F∑
i=1

F∑
k=1

βit1βkt1e
−j[(φit1−θit1)−(φkt1

−θkt1
)]

F∑
i=1

F∑
k=1

βit2βkt2e
−j[(φit2

−θit2)−(φkt2
−θkt2

)]

. . .
F∑
i=1

F∑
k=1

βitNβktNe
−j[(φitN

−θitN)−(φktN
−θktN

)]


. (14)

As we can learn from (14), when all diagonal elements of
the obtained matrix reach their maximum values, hrh

H
r is

maximized. Hence, the optimization objective is

max
{Ri}

F∑
i=1

F∑
k=1

βitβkte
−j[(φit−θit)−(φkt−θkt)], t= t1,t2,. . .,tn. (15)

In (15), the maximum value of e−j[(φit−θit)−(φkt−θkt)] is 1
when (φit − θit) − (φkt − θkt) = 0. That is, when the RIS
phase shifts at every time slot satisfy φit − θit = φkt − θkt,
(14) is maximized. The above requirements are not difficult
to be satisfied if the phase shifts are continuous. However,
the practical RIS with discrete phase shifts is incapable of
satisfying φit − θit = φkt − θkt at almost every time slot,
yielding phase shift errors. In such a situation, we need to
search the best combination of F discrete phase shifts to
maximize (14) among all combinations. In other words, the
optimal discrete phase shifts can be obtained by solvingargmax

{θt}

∑F
i=1

∑F
k=1 βitβkte

−j[(φit−θit)−(φkt−θkt)]

s. t. θit, θkt ∈ θ,
(16)

where θt = [θ1t, θ2t, ..., θFt]
T is the combination of F phase

shifts at time slot t

IV. ALGORITHM FOR OPTIMAL DISCRETE PHASE SHIFTS

A. Simplified Searching Algorithm

This section develops a simplified algorithm to search the
optimal combination of discrete phase shifts. Note that based
on (14), we can obtain the following expression of the optimal
successive RIS phase shifts:

(φit−θit) = (φkt−θkt) = µ, (17)

where µ ∈ [0, 2π) is an arbitrary real number. Note that
(17) only requires the phases of F paths to be equal, but
does not limit the value of µ. With the change of µ, the
optimal combination alters. Therefore, there are more than
one optimal combinations that can minimize PEP. Analogously
to the analysis of successive phase shifts, we assert that
the optimal combinations of discrete RIS phase shifts are
also more than one. However, when searching the optimal
combinations, it is unnecessary to find all of them. Instead, one
optimal combination is enough. Based on the above analyses,
we propose a simplified searching algorithm in Algorithm 1.
We first set µ = 0 to calculate one optimal combination of
continuous phase shifts. Then we calculate two discrete phase
shifts that are closest to the optimal continuous phase shift
for each path, which are denoted as θih and θil, respectively.
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Algorithm 1: Optimal discrete RIS phase shifts
Input: N ; Q; F ; time domain paths h1,h2, . . . ,hF

Output: Discrete RIS phase shift matrixs of F paths
R1,R2, . . . ,RF

1 for t = 1 : N do
2 for i = 1 : F do
3 φi(t) = θi(t);
4 θih = 2π

Q ⌈ φi(t)
2π/Q⌉, θil = 2π

Q ⌊ φi(t)
2π/Q⌋;

5 for θit = [θih, θil], θkt = [θkh, θkl] do

6 θi(t)=argmax
{θt}

F∑
i=1

F∑
k=1

βitβkte
−j[(φit−θit)−(φkt−θkt)]

7 for i = 1 : F do
8 return Ri = diag[ejθi(1), ejθi(2), . . . , ejθi(N)]

TABLE II: An example of Algorithm 1, Rayleigh channels, F = 2, Q = 8

Frequency domain
channel

Optimal successive
phase shift

θih θil Optimal discrete
phase shift

R1 −4.5962−2.0222j 1.8674π 7π
4

0 7π
4

R2 0.9819 + 1.1333j 0.7273π 2π
4

3π
4

3π
4

We further calculate the objective in (16) with all the possible
combinations of θih and θil and one optimal combination θi

must be in these combinations.
Furthermore, we give an example of Algorithm 1 in Table

2. In this example, 2 programmable reflectors and 8 discrete
phase shifts are adopted. According to (10), the set of all
discrete phase shifts is {0, π

4 ,
2π
4 , 3π

4 , π, 5π
4 , 6π

4 , 7π
4 }. We first

calculate the phases of the two channels and assign them as
the optimal successive phase shifts, which are 1.8674π and
0.7273π, respectively. Then, the pairs θ1h, θ2h and θ1l, θ2l
are achieved. To be concrete, we have θ1h = 7π

4 , θ2h = 0
and θ1l =

2π
4 , θ2l = 3π

4 . Then, 4 candidate combinations are
obtained, which are ( 7π4 , 2π

4 ), ( 7π4 , 3π
4 ), (0, 2π

4 ) and (0, 3π
4 ).

Finally, we plug each combination into (16) and obtain 4
results. The combination with the maximum result is the
optimal solution. In this example, it is 7π

4 , 3π
4 .

B. Complexity Analysis

The complexity order of conventional searching algorithm
for (16) is

C = QF + 2F 2QF = QF (1 + 2F 2), (18)

which grows exponentially with both Q and F . And the
complexity order of the proposed searching algorithm is

C ′ = 2F + 2F 2 × 2F = 2F (1 + 2F 2). (19)

Although C ′ still grows exponentially with F , it is no longer
impacted by Q. And the proposed algorithm reduces the
calculation complexity without any performance loss.

V. SIMULATION RESULTS

This section provides numerical results to verify the per-
formance of the proposed MDS-OFDM system over the RIS
channels (MDS-OFDM-RIS). In simulations, we first set N =
256, G = 128, n = 2, A = 2, and P = 2 so that the length of
information bits is L = 128× (2−1)× log2(2×2) = 256 and
the transmission rate Tr is 1bps. The simulation results are
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Fig. 2. BER comparisons when n = 2, A = 2, P = 2, F = 4, Tr = 1bps.

shown in Fig. 2, where the number of reflective elements is 4
The wireless channel models are independent and identically
distributed time-varying Rayleigh fading channels. We assume
the RIS knows the channel information and [15] proves
that such an assumption is feasible.In this Section, MDS-
APM-OFDM denotes the proposed MDS-APM based OFDM
system. RIS, SRIS and DRIS represent the non-optimal RIS,
optimal successive RIS and optimal discrete RIS, respectively.

In Fig. 2, the proposed MDS-APM-OFDM system out-
performs BPSK-OFDM when SNR is higher than 0 dB.
Specifically, it provides a gain of 5 dB at the BER of 10−2.
However, when the transmission environment is poor, the
BER performance of MDS-APM-OFDM system is slightly
worse than that of BPSK-OFDM. Such a phenomenon occurs
because high noise may bring a negative impact on the error
detection ability of MDS codes. With the increase of SNR,
the advantages of MDS-APM becomes more prominent. As
can be seen from Fig. 2, when the SNR is 20 dB, the BER of
the MDS-APM-OFDM system is reduced to 10−4, while the
BER of the BPSK-OFDM system is still higher than 10−3.

The RIS is employed to BPSK-OFDM and MDS-APM-
OFDM in order to achieve further performance improvement.
To be specific, it offers a gain of 6 dB at the BER of 10−2

for both BPSK-OFDM and MDS-APM-OFDM. It can be
further found from Fig. 2 that MDS-APM-OFDM obtains
more performance gain at low SNR regions because of the
link enhancement function of RIS.

In Fig. 2, the curve of the MDS-OFDM-SRIS system is
the ideal case, but it is unreachable since continuous phase
shifts are unrealizable. As can be observed, in accordance with
the analysis in Section III, discrete phase shifts cause BER
performance loss. And the performance loss decreases with
the increase of Q. More specifically, the performance loss is
1.1 dB and 0.4 dB at the BER of 10−3 for Q = 2 and Q = 4,
respectively. When Q increases to 8, the BER performance
of the proposed method becomes very close to the optimum
in the whole SNR regime, where the performance loss keeps
lower than 0.1 dB. Even better, the increase of Q has almost
no effect on the calculation complexity.

We further conduct simulations to test the system BER when
more information bits are carried. In Fig. 3, we set n = 2,
A = 4, and P = 4. This increases the transmission rate to 2bps
so that 512 information bits are sent. As can be seen, although
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the modulation orders are changed, the variation trends of the
curves in Fig. 3 keep consistent with those in Fig. 2. The
increase of modulation orders shortens the distance between
modulation symbols, pushing the advantage of MDS code to
higher SNRs. This problem can be easily solved by introducing
and optimizing the RIS, as demonstrated in Fig. 3.

In Figs. 2 and 3, F is set to be a constant value. It is
not certain that whether the number of reflectors affects the
system BER. For this reason, we further simulate the BERs
of the proposed MDS-OFDM-DRIS and MDS-OFDM-SRIS
systems under different value of F and the results are shown
in Fig. 4, where Q = 4. As can be seen in Fig. 4, the BER
performance increases when more reflectors are used. Besides,
the BERs of the MDS-OFDM-DRIS systems keep close to
that of MDS-OFDM-SRIS systems under different value of
F , indicating that optimal discrete phase shifts are adaptable
to the change of F .

VI. CONCLUSION

This paper has proposed a novel MDS-coded OFDM-RIS
system for improving the BER performance. By considering
practical discrete RIS phase shifts, performance loss of system
BER was observed and compared with continuous phase shifts.
The PEP of the proposed system was first formulated and

the optimal discrete RIS phase shifts were then derived. The
proposed system has been demonstrated to provide a consid-
erable improvement on system BER performance compared
with conventional OFDM systems. The proposed framework
can be a new and practical candidate paradigm for 6G.
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