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We consider a voting problem where agents and alternatives are on the line of real numbers, the agents 
are partitioned into disjoint districts, and the goal is to choose one alternative using a distributed voting 
mechanism. Such mechanisms select a representative alternative for each district and then choose one 
of them as the winner. We design simple mechanisms with distortion at most 2 + √

5 for the average-
of-max and max-of-average cost objectives, matching the corresponding lower bound shown in previous 
work.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction and model

We consider the following voting problem. An instance I con-
sists of a set N of n agents and a set A of m alternatives, all of 
whom are represented by points on the line of real numbers. For 
any agent i ∈ N and alternative x ∈ A, let δ(i, x) be the distance
between i and x on the line (which is equal to the absolute differ-
ence between their positions). The agents are also partitioned into 
a set D of k districts, such that each district contains at least one 
agent. We denote by Nd the set of agents of district d ∈ D , and by 
nd = |Nd| the size of d. The goal is to choose an alternative with 
good social efficiency guarantees using a distributed mechanism 
that takes as input ordinal information about the instance, such as 
the ordering of agents and alternatives on the line, and the ordinal 
preferences of the agents over the alternatives. To be specific, the 
preference of an agent i over the alternatives is a linear ordering of 
the alternatives such that alternative x is ranked higher than an-
other alternative y if δ(i, x) ≤ δ(i, y), breaking ties arbitrarily but 
consistently.

In general, a distributed mechanism M works as follows:

• Step 1: For each district d ∈ D , given the preferences of the 
agents in Nd over the alternatives and their relative ordering 
on the line, M decides a representative alternative yd ∈ A for 
d.

• Step 2: Given the representatives of all districts and their rela-
tive ordering on the line, M outputs one of them as the overall 
winner M(I) ∈ ⋃

d∈D{yd}.
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Clearly, different distributed mechanisms can be designed by 
changing the method used for deciding the representative alter-
natives of the districts or the method for choosing a representative 
as the overall winner.

Interpreting the distance δ(i, x) as the individual cost of agent i
for alternative x, we measure the social efficiency of x by some 
function of the distances of all agents from x. There are many 
well-known social efficiency objectives that have been studied in 
various social choice problems, such as the social cost (total or av-
erage distance of all agents) and the max cost (maximum distance 
among all agents). In the context of metric distributed voting, An-
shelevich et al. [5] considered social objectives that are composed 
by some function that is applied over the districts and some func-
tion that is applied within the districts. In particular, they focused 
on the following four objectives.

• The average-of-average cost of x is the average over each dis-
trict of the average individual cost of the agents therein:

(AVG ◦ AVG)(x) = 1

k

∑
d∈D

(
1

nd

∑
i∈Nd

δ(i, x)

)
.

• The max cost of x is the max individual cost over all agents:

(MAX ◦ MAX)(x) = max
d∈D

max
i∈Nd

δ(i, x) = max
i∈N

δ(i, x).

• The average-of-max cost of x is the average over each district 
of the max individual cost therein:

(AVG ◦ MAX)(x) = 1

k

∑
max
i∈Nd

δ(i, x).

d∈D
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• The max-of-average cost of x is the max over each district of 
the average individual cost therein:

(MAX ◦ AVG)(x) = max
d∈D

{
1

nd

∑
i∈Nd

δ(i, x)

}
.

We measure the efficiency of a mechanism M with respect to a 
social objective f (such as the ones defined above) by its distortion, 
the worst-case ratio (over all possible instances) of the f -value 
of the alternative chosen by the mechanism over the minimum 
possible f -value among all alternatives:

sup
I=(N,A,D)

f (M(I))

minx∈A f (x)

By definition, the distortion of any mechanism is at least 1. We 
aim to design distributed mechanisms with an as low distortion as 
possible.

1.1. Our contribution

In previous work, Anshelevich et al. [5] considered the prob-
lem of distributed metric voting where agents and alternatives 
are in some arbitrary metric space. By carefully composing cen-
tralized voting mechanisms for making decisions within and over 
the districts, they designed distributed mechanisms with distortion 
guarantees for general metric spaces and with respect to the afore-
mentioned objectives as well as more general ones. For the special 
case of a line metric (which is our focus here), they showed that 
the distortion of distributed mechanisms that use ordinal informa-
tion is exactly 7 with respect to the average-of-average cost, ex-
actly 3 with respect to the max cost, and in the interval [2 +√

5, 5]
with respect to the average-of-max or the max-of-average cost ob-
jectives.

Inspired by the recent work of Filos-Ratsikas et al. [15] who 
designed distributed mechanisms with tight distortion bounds for 
the continuous distributed facility location problem (where each 
point on the line of real numbers can be considered as an alter-
native), we resolve the distortion of distributed mechanisms for 
voting on a line with respect to the average-of-max and the max-
of-average costs. In particular, we design two essentially symmetric 
distributed mechanisms that achieve a tight distortion bound of 
2 + √

5 for the average-of-max cost and the max-of-average cost. 
For the average-of-max cost, our distributed mechanism chooses 
the favorite alternative of the rightmost agent in each district as 
the district representative, and then the (α · k)-the leftmost alter-
native as the overall winner. For the max-of-average cost, our dis-
tributed mechanism chooses the favorite alternative of the (α ·nd)-
th agent in each district d as the district representative, and then 
the rightmost alternative as the overall winner. We show that 
both mechanisms achieve distortion at most max

{
3−α
1−α , 2

α − 1
}

for 

the corresponding objectives; for α = 3−√
5

2 , the two terms in the 
bound balance out to 2 + √

5.

1.2. Other related work

Since its definition by Procaccia and Rosenschein [18], the dis-
tortion of voting mechanisms has been studied extensively for 
several settings under different assumptions about the preferences 
of the agents. The most well-studied setting is that of single-
winner voting that has been considered under the premise of 
normalized agent valuations [1,7,11] as well as metric prefer-
ences [3,16,17]. Several other models have also been considered, 
such as multi-winner voting [8,9], participatory budgeting [6], and 
matching [2,13].
267
The distortion of distributed voting was first considered by 
Filos-Ratsikas et al. [14] who focused on bounding the distor-
tion of max-weight mechanisms with respect to the social wel-
fare when agents have normalized valuations for the alternatives. 
Filos-Ratsikas and Voudouris [12] then studied the distortion of 
mechanisms for a distributed facility location setting where the 
agents are positioned on a line and the goal is to choose a sin-
gle location from a set of alternative ones, which can be discrete 
(finite) or continuous (infinite). The discrete variant was studied 
further and generalized to arbitrary metric spaces by Anshelevich 
et al. [5], who also introduced and studied the average-of-max 
and max-of-average costs for the first time. The distortion of dis-
tributed mechanisms for the continuous variant on a line was re-
cently resolved by Filos-Ratsikas et al. [15]. We refer the reader 
to the recent survey of Anshelevich et al. [4] for more details on 
the distortion of voting mechanisms in different models, and to 
the survey of Chan et al. [10] for details on related facility location 
models.

2. Average-of-max cost

Let α ∈ [0, 1] be a parameter. We consider the α-Leftmost-of-

Rightmost mechanism, which works as follows. For each district 
d ∈ D , the mechanism chooses the favorite alternative of the right-
most agent in d as the representative yd . Afterwards, it chooses 
the (α · k)-th leftmost alternative as the overall winner. See Mech-
anism 1.

Mechanism 1: α-Leftmost-of-Rightmost.
for each district d ∈ D do

yd := favorite alternative of the rightmost agent in Nd;

return w := (α · k)-th leftmost representative;

Theorem 2.1. For average-of-max, the distortion of the α-Leftmost-of-

Rightmost mechanism is at most max
{

3−α
1−α , 2

α − 1
}

.

Proof. Let w be the alternative chosen by the mechanism when 
given as input an arbitrary instance, and o the optimal alterna-
tive. For each district d, let id be the most distant agent from 
w , and i∗d the most distant agent from o. So, (AVG ◦ MAX)(w) =
1
k

∑
d∈D δ(id, w), and (AVG ◦MAX)(o) = 1

k

∑
d∈D δ(i∗d, o). Also, let �d

and rd denote the leftmost and rightmost agents in d, respectively. 
Note that id, id∗ ∈ {�d, rd}. We consider the following two cases de-
pending on the relative positions of w and o.

Case 1: o < w . By the triangle inequality, and since δ(id, o) ≤
δ(i∗d, o), we have

(AVG ◦ MAX)(w) = 1

k

∑
d∈D

δ(id, w)

≤ 1

k

∑
d∈D

(
δ(id,o) + δ(w,o)

)

≤ (AVG ◦ MAX)(o) + δ(w,o). (1)

Now, let S be the set of representatives that are to the right of 
w . Since w is by definition the (α · k)-th leftmost representative, 
we have that |S| ≥ (1 − α) · k. For every d such that yd ∈ S , since 
o < w ≤ yd , agent rd is closer to w than to o, and thus δ(rd, o) ≥
1 δ(w, o). Hence,
2
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(AVG ◦ MAX)(o) ≥ 1

k

∑
d∈S

δ(rd,o)

≥ 1

k
· |S| · δ(w,o)

2

≥ 1 − α

2
· δ(w,o),

or, equivalently,

δ(w,o) ≤ 2

1 − α
· (AVG ◦ MAX)(o). (2)

Hence, by (1) and (2), we obtain

(AVG ◦ MAX)(w) ≤
(

1 + 2

1 − α

)
· (AVG ◦ MAX)(o)

= 3 − α

1 − α
· (AVG ◦ MAX)(o).

Case 2: w < o. Let L be a set of α ·k districts from the one with the 
leftmost representative until the one with the (α ·k)-th representa-
tive (which is w); denote by R the set of the remaining (1 − α) · k
districts. Observe that:

• For every d ∈ L, since yd is the alternative that is closest to rd
and yd ≤ w < o, both rd and �d are closer to w than to o. So, 
δ(id, w) ≤ δ(i∗d, o).

• For every d ∈ R , since δ(id, o) ≤ δ(i∗d, o) by the definition of 
i∗d , using the triangle inequality, we obtain δ(id, w) ≤ δ(id, o) +
δ(w, o) ≤ δ(i∗d, o) + δ(w, o).

Hence,

(AVG ◦ MAX)(w) = 1

k

∑
d∈D

δ(id, w)

= 1

k

∑
d∈L

δ(id, w) + 1

k

∑
d∈R

δ(id, w)

≤ 1

k

∑
d∈L

δ(i∗d,o) + 1

k

∑
d∈R

(
δ(i∗d,o) + δ(w,o)

)

= (AVG ◦ MAX)(o) + |R|
k

· δ(w,o). (3)

Since rd is closer to w than to o for every d ∈ L, we also have that

(AVG ◦ MAX)(o) ≥ 1

k

∑
d∈L

δ(rd,o) ≥ |L|
2k

δ(w,o),

or, equivalently,

δ(w,o) ≤ 2k

|L| · (AVG ◦ MAX)(o). (4)

Therefore, by (3) and (4), we obtain

(AVG ◦ MAX)(w) ≤ (AVG ◦ MAX)(o) + 2
|R|
|L| · (AVG ◦ MAX)(o)

=
(

2

α
− 1

)
· (AVG ◦ MAX)(o).

Putting everything together, we obtain an upper bound of 
max

{
3−α
1−α , 2

α − 1
}

. �

Observe that the bound max
{

3−α
1−α , 2

α − 1
}

consists of two func-

tions of α, one non-decreasing and one non-increasing in α. To 
minimize the maximum between the two, we need to find the 
268
value of α for which the two functions intersect. So, we need to 
solve the equation

3 − α

1 − α
= 2

α
− 1 ⇔ α2 − 3α + 1 = 0.

Since α < 1, its solution is α = 3−√
5

2 . For this value of α, both 
functions have value 2

3−√
5

2

− 1 = 2 + √
5, and we obtain the fol-

lowing corollary.

Corollary 2.2. For average-of-max, the distortion of the 3−√
5

2 -

Leftmost-of-Rightmost mechanism is at most 2 + √
5.

3. Max-of-average cost

Let α ∈ [0, 1] be a parameter. We consider the Rightmost-of-α-

Leftmost mechanism, which works as follows. For each district d ∈
D , the mechanism chooses the favorite alternative of the (α · nd)-
th agent in d as the representative yd . Afterwards, it chooses the 
rightmost alternative as the overall winner. See Mechanism 2.

Mechanism 2: Rightmost-of-α-Leftmost.
for each district d ∈ D do

yd := favorite alternative of the (α · nd)-th leftmost agent in Nd;

return w := rightmost representative;

Theorem 3.1. For max-of-average, the distortion of the Rightmost-

of-α-leftmost mechanism is at most max
{

3−α
1−α , 2

α − 1
}

.

Proof. Let w be the alternative chosen be the mechanism when 
given as input an arbitrary instance, and o the optimal alternative. 
For any district d and alternative x, let AVGd(x) = 1

nd

∑
i∈Nd

δ(i, x)
be the total average distance of the agents in d for alternative 
x. So, AVGd(o) ≤ (MAX ◦ AVG)(o) for every district d. Denote by 
d∗ a district that gives the max average cost for w , such that 
(MAX ◦AVG)(w) = AVGd∗ (w). Also, let dw be a district represented 
by w . In addition, let i∗ and iw be the (α · nd)-th leftmost agents 
in districts d∗ and dw , respectively. We now switch between the 
following two cases.

Case 1: o < w . By the definition of d∗ and the triangle inequality, 
we have

(MAX ◦ AVG)(w) = 1

nd

∑
i∈Nd∗

δ(i, w)

≤ 1

nd

∑
i∈Nd∗

(
δ(i,o) + δ(o, w)

)

≤ (MAX ◦ AVG)(o) + δ(o, w). (5)

Denote by S the set of agents that are positioned weakly to the 
right of iw in dw . By the definition of iw , |S| ≥ (1 − α)ndw . Since 
o < w and w is the favorite alternative of iw , all agents in S are 
closer to w than to o, and thus δ(i, o) ≥ 1

2 δ(w, o) for any i ∈ S . 
Using all these, we obtain:

AVGdw (o) = 1

ndw

∑
i∈Ndw

δ(i,o)

≥ 1

ndw

∑
i∈S

δ(i,o)

≥ 1

ndw

· |S|
2

· δ(w,o) ≥ 1 − α

2
· δ(w,o),
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or, equivalently,

δ(w,o) ≤ 2

1 − α
· AVGdw (o) ≤ 2

1 − α
· (MAX ◦ AVG)(o). (6)

Therefore, by (5) and (6), we obtain

(MAX ◦ AVG)(w) ≤ (MAX ◦ AVG)(o) + 2

1 − α
· (MAX ◦ AVG)(o)

= 3 − α

1 − α
· (MAX ◦ AVG)(o).

Case 2: w < o. Let L be the set of the first α ·nd∗ agents of d∗ (from 
the leftmost agent to i∗), and R be the set of the remaining (1 −
α)nd∗ agents. As w is the rightmost representative, yd∗ ≤ w < o. 
Since yd∗ is the favorite alternative of i∗ , every agent i ∈ L prefers 
w over o, and thus δ(i, w) = δ(i, o). Using this in combination with 
the triangle inequality for every agent of R , we have

(MAX ◦ AVG)(w) = 1

nd∗

∑
i∈Nd∗

δ(i, w)

= 1

nd∗

∑
i∈L

δ(i, w) + 1

nd∗

∑
i∈R

δ(i, w)

≤ 1

nd∗

∑
i∈L

δ(i,o) + 1

nd∗

∑
i∈R

(
δ(i,o) + δ(w,o)

)

= 1

nd∗

∑
i∈Nd∗

δ(i,o) + |R|
nd∗

· δ(w,o)

≤ (MAX ◦ AVG)(o) + |R|
nd∗

· δ(w,o). (7)

Since each agent i ∈ L prefers w over o, we also have that δ(i, o) ≥
1
2 δ(w, o), and thus

(MAX ◦ AVG)(o) ≥ AVGd∗(o) = 1

nd∗

∑
i∈Nd∗

δ(i,o)

≥ 1

nd∗

∑
i∈Nd∗

δ(i,o)

≥ |L|
2nd∗

· δ(w,o)

or, equivalently,

δ(w,o) ≤ 2nd∗

|L| · (MAX ◦ AVG)(o). (8)

Therefore, by (7) and (8), we obtain

(MAX ◦ AVG)(w) ≤ (MAX ◦ AVG)(o) + 2
|R|
|L| · (MAX ◦ AVG)(o)

=
(

2

α
− 1

)
· (MAX ◦ AVG)(o).

Putting everything together, we get an upper bound of

max
{

3−α
1−α , 2

α − 1
}

. �
By optimizing over α, similarly to Section 2, we obtain the fol-

lowing result.

Corollary 3.2. For max-of-average, the distortion of the Rightmost-

of-
3−√

5
2 -Leftmost mechanism is at most 2 + √

5.

4. Open questions

In this paper, we showed a tight distortion bound of 2 + √
5

with respect to the average-of-max and max-of-average cost func-
tions for the single-winner distributed single-winner voting prob-
lem, thus completing the distortion picture with respect to the four 
basic objectives considered by Anshelevich et al. [5] for the line 
metric. The most interesting direction for future work is to prove 
tight distortion bounds for general metric spaces, and also consider 
other social objectives or settings beyond single-winner voting.
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