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Abstract

Accurate quantification of cortical engagement during mental imagery tasks remains a

challenging brain-imaging problem with immediate relevance to developing brain–

computer interfaces. We analyzed magnetoencephalography (MEG) data from 18 indi-

viduals completing cued motor imagery, mental arithmetic, and silent word generation

tasks. Participants imagined movements of both hands (HANDS) and both feet (FEET),

subtracted two numbers (SUB), and silently generated words (WORD). The task-

related cortical engagement was inferred from beta band (17–25 Hz) power decre-

ments estimated using a frequency-resolved beamforming method. In the hands and

feet motor imagery tasks, beta power consistently decreased in premotor and motor

areas. In the word and subtraction tasks, beta-power decrements showed engage-

ments in language and arithmetic processing within the temporal, parietal, and inferior

frontal regions. A support vector machine classification of beta power decrements

yielded high accuracy rates of 74 and 68% for classifying motor-imagery (HANDS

vs. FEET) and cognitive (WORD vs. SUB) tasks, respectively. From the motor-versus-

nonmotor contrasts, excellent accuracy rates of 85 and 80% were observed for hands-

versus-word and hands-versus-sub, respectively. A multivariate Gaussian-process clas-

sifier provided an accuracy rate of 60% for the four-way (HANDS-FEET-WORD-SUB)

classification problem. Individual task performance was revealed by within-subject cor-

relations of beta-decrements. Beta-power decrements are helpful metrics for mapping

and decoding cortical engagement during mental processes in the absence of sensory

stimuli or overt behavioral outputs. Markers derived based on beta decrements may be

suitable for rehabilitation purposes, to characterize motor or cognitive impairments, or

to treat patients recovering from a cerebral stroke.
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1 | INTRODUCTION

Tasks designed for the development of brain–computer interfaces

(BCI) often involve mental simulation of actions without their actual

execution (Crammond, 1997; Jeannerod, 1994; Szameitat

et al., 2007). In contrast to mapping brain responses driven by external

sensory stimuli, the mapping of brain areas activated by such tasks

remains a key challenge in BCI research (Wolpaw et al., 2000), both

due to the distributed nature of brain networks that are engaged dur-

ing cognitive tasks and the limitations of different imaging methods.

The high spatial and temporal resolution of magnetoencephalography

(MEG) makes it inherently suitable for mapping the dynamical engage-

ment of brain areas during mental processes, thus the recent interest

in MEG in the context of BCI research (Lai et al., 2005; Mellinger

et al., 2007; Parkkonen, 2015).

Specific aspects of task-induced changes in rhythmic cerebral

electrical activity are increasingly recognized as signatures of local

cortical engagement during information processing in the brain

(Engel & Fries, 2010; Giraud & Poeppel, 2012; Hauk et al., 2017;

Lewis & Bastiaansen, 2015; McFarland et al., 2000; Meyer, 2018;

Pfurtscheller & Neuper, 1997; Salmelin & Hari, 1994; Schnitzler

et al., 1997; Spitzer & Haegens, 2017). Induced oscillatory responses

are loosely time-locked but not strictly phase-locked to stimuli, and

therefore cannot be extracted by averaging the time-domain

responses, but they may be detected as power changes in different

frequency bands (Başar & Bullock, 1992; David et al., 2006;

Pfurtscheller & Andrew, 1999; Tallon-Baudry, 1999). Over the last

few decades, a number of studies using EEG, electrocorticography

(ECoG), and MEG have demonstrated increases in gamma band

(>40 Hz) power concurrent with a decrease in power in the alpha (8–

12 Hz) and beta (13–30 Hz) bands as a characteristic feature of the

cortical response to afferent stimuli (Crone et al., 1998, 2006; Eulitz

et al., 1996; Miller et al., 2007; Pfurtscheller, 1991; Singh et al., 2002;

Wagner et al., 2012). The gamma-band activity appears to be related

to local neuronal populations' firing rates (Edwards et al., 2005;

Manning et al., 2009; Michalareas et al., 2016; Nir et al., 2007; Ray &

Maunsell, 2011) and is more focally expressed than concomitant

decreases in alpha- and beta-band power (Crone et al., 1998, 2006;

Eulitz et al., 1996; Miller et al., 2007; Pfurtscheller, 1991; Singh

et al., 2002; Wagner et al., 2012). The high spatiotemporal resolution

of MEG is ideally suited to capturing such time–frequency dynamics

and localizing their cortical sources (Gross, 2019).

While gamma-band activity arising outside primary sensory or

motor cortices may be less readily detectable in M/EEG

(e.g., compared to ECoG), task-related power decrements in the beta-

band consistent with the expected cortical engagement have been

demonstrated by several studies (Neuper & Pfurtscheller, 2001;

Seeber et al., 2014; Weiss & Mueller, 2012; Youssofzadeh

et al., 2020). Importantly, decreased beta-band power has been

observed in motor imagery (Halme, 2019; Klepp et al., 2015;

Kraeutner et al., 2014; Pfurtscheller et al., 2006) as well as during vari-

ous cognitive tasks (Armeni et al., 2019; Lewis & Bastiaansen, 2015;

Weiss & Mueller, 2012). For example, beta-band power decreases

have been found to be correlated with imaginary foot movements

when walking on a virtual street (Neuper & Pfurtscheller, 2001;

Pfurtscheller et al., 2006). A pioneering EEG-BCI study showed that

feature values based on beta-band activity over the sensorimotor area

provided the largest discrimination, > 90% and 80% for execution and

imagination, respectively (Bai et al., 2008). On the other hand, the

suppression of beta during language processing has been associated

with novel or unexpected stimuli (Bastiaansen et al., 2010; Engel &

Fries, 2010; Weiss & Mueller, 2012), semantically incongruous sen-

tences (Luo et al., 2010; Wang et al., 2012), and unexpected high-ver-

sus-low perplexity (Armeni et al., 2019). Many M/EEG studies support

the utility of monitoring beta-band power in the localization of lan-

guage functions in healthy controls and patients (Findlay et al., 2012;

Fisher et al., 2008; Grabner et al., 2007; Kadis et al., 2008; Passaro

et al., 2011; Weiss & Mueller, 2012; Youssofzadeh et al., 2020).

In this study, we estimated task-induced beta-band (17–25 Hz)

power decrements from MEG recordings performed during

movement-imagery of the hands or feet, mental arithmetic, and silent

word generation in a group of healthy individuals (N = 18). Silent

word generation and mental arithmetic tasks are both examples of

cognitive tasks that do not involve motor activity but require the acti-

vation of language and numerical processing regions in the brain,

respectively. By comparing brain activity during these tasks with brain

activity during motor imagery tasks, we investigated the unique neural

signatures of the task imagery conditions. Such comparisons can help

to clarify the specific brain regions and processes involved in motor

imagery and to distinguish it from other types of mental activity. For

instance, if the same brain regions are active during both a motor

imagery task and a silent word generation task, this suggests that

these regions may be involved in more general processes, such as

attention or working memory. In our work, we demonstrate that

source-space task-related beta-band power decrements can map cor-

tical engagement during task imagery processes. This is supported by

substantially high classification accuracy and consistent regions of

interest (ROIs) suggested by the classification weight maps. For ease

of reporting, we use the term “beta decrements” to refer to decreased

source power in the beta-band frequency relative to the pre-cue base-

line period (also known as, event-related desynchronization, ERD, or

suppression) throughout the paper.

2 | MATERIALS AND METHODS

2.1 | Participants

We analyzed MEG data from 18 participants who performed cued

motor imagery, mental arithmetic, or word generation during MEG

recording. Demographic details of the participants have been reported

previously (Rathee et al., 2021). They were recruited from the com-

munity through advertising or were students and staff of the Univer-

sity of Ulster; all had normal hearing and normal or corrected-to-

normal vision. Individuals with a history of neurological or psychiatric

illness and individuals taking psychoactive medication were excluded.
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The participants were 15 men and 3 women, with a mean age of

28.56 years ± 5.7 (SD), 16 right-handed, and 2 left-handed, based on

the self-reported questionnaire. The participants signed a written con-

sent form before commencing the experiments. The University of

Ulster, Northern Ireland, UK's ethics committee approved the experi-

mental protocol.

2.2 | Data acquisition

MEG data were recorded using a 306-channel (204 planar gradiome-

ters and 102 magnetometers) whole-head neuromagnetometer sys-

tem (Elekta Neuromag TRIUX; MEGIN Oy, Helsinki, Finland) in the

upright position in a magnetically shielded room (ETS-Lindgren, Eura,

Finland) located at the University of Ulster, Magee campus, Northern

Ireland, UK. The raw data were acquired at a sampling rate of 1 kHz

and high-pass filtered with a cutoff frequency of 0.03 Hz. The posi-

tion of the participant's head relative to the sensors was determined

using four head-position indicator coils attached to the scalp surface.

Three anatomical landmarks (nasion and left and right pre-auricular

points) and the head shape were digitized using a Polhemus Fastrak

system (Polhemus; Colchester, VT) for alignment with the template

MRI. The cues for the tasks were displayed on a projector screen

(a Panasonic projector with a screen resolution of 1024 � 768 pixels

and a refresh rate of 60 Hz). Participants were seated in a comfortable

chair approximately 80 cm from the projector screen. Further details

can be found in an earlier paper (Rathee et al., 2021; Roy et al., 2020).

2.3 | MEG task paradigm

Participants completed two sessions of a BCI experiment during MEG

recording. Sessions were recorded on different days for each partici-

pant. The paradigm required the completion of four mental tasks

when the appropriate cue was presented visually: imagining the

movements of both hands (HANDS), the movements of both feet

(FEET), mental subtraction of two digits (SUB), and the generation of a

word starting with the cued letter (WORD), as illustrated in Figure 1.

Each task trial started with a pre-cue period lasting �2 s, then the

appearance of a static visual cue, which remained on the screen for

5 s while the participant performed the cued task, followed by 1.5–2 s

of rest. No feedback was provided while participants completed the

experiment.

During the pre-cue period, a red fixation cross (“+”) was presented

along with an auditory tone (500 Hz). During the cued-task period, a

visual cue was presented corresponding to each of the four tasks

(HANDS, FEET, WORD, or SUB). During the HANDS condition, the

cue was a picture of two hands, and participants imagined grasping

with both hands. During the FEET condition, the cue was a picture of

two feet, and participants imagined dorsiflexing both feet. During the

SUB condition, a subtraction problem (the subtraction of a two-digit

from a two- or three-digit number) was displayed on the screen for the

participant to mentally execute. During the WORD condition, partici-

pants mentally generated a word starting with the letter cue shown on

the screen, for example, BOY for the letter B. The letters were

randomly selected from the alphabet, A-Z (N = 26). For each task con-

dition, 50 trials were acquired for a total of 400 trials (2 � 50 � 4, cor-

responding to the session, trial, and task conditions) per subject. The

order of the tasks was randomized within each session.

To control for the implicit nature of motor imagery tasks, we

employed several strategies to ensure that participants were engaging

in the task as instructed. Strategies include Verbal confirmation: Par-

ticipants were asked to verbally confirm that they were imagining the

movement as instructed and not performing the movement. Visual

supervision: Participants were monitored visually during the task to

ensure that they were not physically moving their limbs or other parts

of their bodies. Instruction repetition: Participants receive repeated

and clear instructions on how to perform the task and what is

expected of them, to reduce any confusion and increase task compli-

ance. Practice trials: Participants were given practice trials to familiar-

ize themselves with the task and reduce any performance anxiety.

With these, we hoped to increase the likelihood that participants were

engaging in the motor imagery task as instructed and not physically

performing the movement.

Following each recording session, participants were asked about

their level of engagement in the task, such as their confidence in their

FEET (n=50)

+

0 2 7

Tone
HAND (n=50)

+

Rest

+

WORD (n=50)

B

SUB (n=50)

+
53-41

Rest Rest Rest

Cue (task)Pre-cue

~9 sec

F IGURE 1 Brain–computer interfaces (BCI) task paradigm. Participants took part in two sessions of a task-imagery (BCI)
magnetoencephalography (MEG) experiment. The task consisted of two motor- (Hands and Feet movements) and two cognitive (Word
generation and mathematical Subtraction) tasks. A red fixation cross (“+”) and a tone were presented during the pre-cue period. During a cue-
task period, a picture was presented corresponding to each of the four imagery task conditions of HANDS, FEET, WORD, and SUB. During the
HANDS condition, participants imagined grasping with hand movement. During the FOOT, participants imagined the movement of the foot
upward. During the WORD, participants generated a word starting with a letter shown on the screen. The letters were randomly selected from A
to Z. During the SUB condition, participants completed a two-digit against two-digit subtraction task.
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ability to perform the task and the degree to which they felt they

were imagining the movement. They were also asked for detailed

information about any distractions or the difficulty of the task.

2.4 | Data analysis

We analyzed the MEG responses following cue onset (i.e., the period

corresponding to task performance) using six nonoverlapping 400-ms

temporal windows (from 400 to 2800 ms). The initial 400 ms after

cue onset was excluded in order to discard transient sensory

responses to the cue onset. We compared responses during these

temporal windows to a 400-ms period immediately preceding the cue

onset, which served as a baseline (see Section 2.5 for details).

2.4.1 | Data preprocessing

Head localization was measured before and after the MEG sessions to

assess the head movements that may have occurred during the mea-

surements. Using MaxFilter software ver. 2.2 (MEGIN Oy, Helsinki,

Finland), a temporal variant of signal space separation was applied to

suppress external magnetic interference (software shielding), compen-

sate for signal distortions caused by head movements, and normalize

head positions (Taulu & Simola, 2006).

Data were epoched from �1 to 4 s relative to the cue onset, then

band-pass-filtered (Butterworth with an order of 4) to 1–40 Hz. Trials

containing artifacts (signal jumps, eye blinks, or muscle contractions)

were removed by a threshold value defined by a variance exceeding

3 � 10�24 T, a kurtosis larger than 15, and a z-score larger than 4. Car-

diac artifacts were inspected and removed via independent compo-

nent analysis using the infomax algorithm (Bell & Sejnowski, 1995). An

average (±SD) of 8 ± 6 trials per session was omitted. Note that we

aimed at a modest (conservative) rejection of trials since our analysis

was focused on the beta-band frequency, which is less affected by

the low- and high-frequency artifacts.

A time–frequency representation (TFR) analysis of sensor-level

data was conducted to inspect the presence of beta-power changes.

The TFR analysis was conducted using multitapers in the range of 1–

50 Hz. Using sensors, a frequency-dependent sliding time window

was analyzed in a time and frequency range of �400 ms to 3 s, and a

three-cycle-long Hanning window (ΔT = 3/f, f is the frequency of

interest) was used. Fourier representation was estimated using a spec-

tral smoothing of ΔF = 0.8x f. The TFRs were baseline-corrected

based on the 400-ms pre-cue data. A sample TFR from an individual

completing the HANDS imagery task is shown in Figure 2.

2.5 | Frequency-domain beamforming source
analysis

The MEG data were coregistered to a T1-weighed anatomical MRI

template (ICBM152). Cortical surface reconstruction was performed

on cortical pial surfaces, downsampled to 15,002 vertices. Overlap-

ping spheres were used as a head model to estimate the lead-field

matrix. Beta-band source power was estimated using Dynamic Imag-

ing of Coherent Sources (DICS), a frequency-resolved spatial filtering

beamforming technique (Gross et al., 2001). DICS uses the data

covariance matrix to calculate the spatial filter based on the sensor-

level cross-spectral densities (CSD), and the filter is then applied to

the sensor-level CSD to reconstruct the source-level CSDs of the pair-

wise voxel activations. This provides coherency measures between

the source pairs (off-diagonal elements of CSD) and the source power

spectrum measures (diagonal elements of CSD). Our analysis only uti-

lized the source power spectrum estimates of cortical activations of

the BCI tasks.

Sensor-level CSD data were estimated in a beta-band frequency

range of 17–25 Hz, using a center frequency of 21 Hz and a spectral

smoothing window of 4 Hz. The Fourier transform and multitapering,

with multiple tapers from Discrete Prolate Spheroidal Sequences,

were used to estimate the CSDs (Slepian & Pollak, 1961). Beta-band

source power during the task-performance period was contrasted

against the 400-ms pre-cue baseline. To avoid biases due to unequal
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F IGURE 2 Time–frequency representation of a hand movement
imagery task. An average of all sensor-level event-related power
changes relative to baseline (�300, 0 ms) was utilized to support the
selection of beta-band frequency, as specified by a rectangle. For
illustrative purposes, the corresponding beta-decrement source
activities of an individual completing a hand movement motor
imagery task are shown. The mean power sensor values of the global
peak in time (500 ms) and frequency (18 Hz) are shown in the top and
right plots, respectively, for inspection. For the source analysis, data
trials in six nonoverlapping 400-ms temporal windows (from 400 to
2800 ms) in a frequency range of 17–25 Hz were analyzed against a
300-ms (�300 to 0 ms) prestimulus baseline.
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data segments, post-cue data were analyzed using 6 nonoverlapping

400-ms time windows, ranging from 400 ms (to control for sensory

responses) to 2800 ms. The average of source intervals was used as

the representative beta-band power effects in each session. This

resulted in a source map per task, per session, and per participant. For

mapping purposes, the average of the two sessions was used to repre-

sent the task conditions for each individual. Individual source findings

were evaluated session-wise using machine learning and correlation

analyses.

2.6 | Group source analysis

A nonparametric permutation test was conducted to achieve a group-

level source analysis (Nichols & Holmes, 2002). An independent sample

t-test was conducted against a null hypothesis to derive the t-statistics

of each task condition. A Monte Carlo permutation test was applied with

5000 randomizations of extreme statistics. The extreme (maximum) sta-

tistics control the expected proportion of false positives (also known as,

multiple comparisons). A critical alpha of .05 was applied to the permuta-

tion distribution to report the significant statistical effects.

The Desikan–Killiany (DK) atlas, consisting of 68 cortical regions

(34 specific areas in L&R hemispheres) was used to summarize the

power source measures (t-values) across regions (Desikan

et al., 2006). The color-coded atlas regions are shown in Figure 3.

ROIs with corrected t-values with p < .05 were reported as being cru-

cial to the task. Following the approach suggested by prior MEG stud-

ies (Papanicolaou et al., 2004; Raghavan et al., 2017; Tanaka

et al., 2013; Youssofzadeh & Babajani-feremi, 2019), a conventional

laterality index, LI = (L � R)/(L + R), was computed for the t-value of

the left (L) and the right hemispheric (R) parcels to characterize the

hemispheric involvement. LIs greater than 0.1 were considered left-

lateralized, those less than �0.1 were considered right-lateralized, and

intermediate ones were considered symmetric or bilateral.

2.7 | Pattern classification analysis

A pattern classification analysis was conducted to assess the discrimi-

nability of beta decrements associated with the different tasks. Linear

kernels per task condition were extracted as feature values from beta-

decrements across the cortex. Linear kernels are pairwise similarity

measures (dot product) between task source activations that are sum-

marized in a kernel matrix (N � N dimensions, N: 18 � 2 subjects and

sessions) (LaConte et al., 2005; Schrouff et al., 2013). To achieve an

unbiased classification, kernels were mean-centered and normalized

(fi ¼ fi� fi
� �

=σi, fi , and σi are the mean and standard deviation of ith

feature, respectively). A linear support vector machine (SVM) with a

default penalty parameter of C = 1.0 was applied to solve binary clas-

sification problems of HANDS-versus-FEET and WORD-versus-

SUBtraction (Cortes & Vapnik, 1995). The SVM classifier relies on the

assumption that two classes are separable by a linear decision bound-

ary (separating hyperplane) in a feature space. In addition, a Gaussian

process classifier (GPC) was used to classify all four BCI task condi-

tions. The GPC is a probabilistic classification method relying on ran-

dom field theory (Rasmussen & Williams, 2006) and has been

successfully tested for the decoding of fMRI data (Marquand

et al., 2010). For classification analysis, class and balanced accuracy

(BA, an average of sensitivity and specificity) were reported (Schrouff

et al., 2013). The accuracy of the SVM and GPC models was evaluated

by a leave-one-participant-out cross-validation procedure, and p-

values were generated based on permutation testing with 1000 itera-

tions. The DK surface atlas was used to summarize ROIs from gener-

ated SVM and GPC weight maps. The weight maps are the spatial

representation of the decision function and define the level of voxel

contributions to the classification process. To summarize ROI contri-

butions, the voxel weights were averaged within the defined anatomi-

cal regions by taking the sum of their absolute values and dividing

them by the size of the region. We report classification results and

weight maps using combined two-session beta decrements. Our initial

F IGURE 3 Desikan–Killiany surface atlas. A Desikan–Killiany atlas consisting of 68 (34 � 2) cortical regions distributed with Freesurfer
(surfer.nmr.mgh.harvard.edu) was used to summarize source and pattern classification analyses. The regions were 1. bankssts; 2. caudal anterior
cingulate, 3. caudal middle frontal; 4. cuneus; 5. entorhinal; 6. frontal pole; 7. fusiform; 8. inferior parietal; 9. inferior temporal; 10. insula; 11.
isthmus cingulate; 12. lateral occipital; 13. lateral orbitofrontal; 14. lingual; 15. medial orbitofrontal; 16. middle temporal; 17. paracentral; 18.
parahippocampal; 19. pars opercularis; 20. pars orbitalis; 21. pars triangularis; 22. pericalcarine; 23. postcentral; 24. posterior cingulate; 25.
precentral; 26. precuneus; 27. rostral anterior cingulate; 28. rostral middle frontal; 29. superior frontal; 30. superior parietal; 31. superior
temporal; 32. supramarginal; 33. temporal pole; 34. transverse temporal. Regions are randomly color-coded.
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examinations based on permutation analysis suggested no significant

classification rates for single-session data, likely due to the low

sample size.

2.8 | Correlation analysis

We performed two types of correlation analyses to assess the repro-

ducibility of task-related cortical engagement in individual subjects.

We first asked how consistently, from session to session, a subject's

task-related activation conforms to the average map for the group for

any particular task. To address this, we examined the correlation

between beta-decrement maps for each task and the class-mean

beta-decrement maps for the two sessions. The correlation was mea-

sured using a nonparametric linear bivariate Spearman test. The class

mean was defined as the average beta-decrement map for all subjects

across both sessions. These class-mean beta-decrements served as

spatial templates for each task condition, against which the individual

subject's map was compared. Second, we ask, how reproducible is a

given subject's activation map from session to session for any given

task? To address this, we computed the direct between-session corre-

lations of beta-decrements across the brain for each subject and task

condition. We examined both absolute correlations (session 2 vs. 1)

and their ratios (maximum/minimum). We hypothesized that a higher

correlation to the class means and a higher correlation of activations

across sessions indicate a higher level of engagement with the tasks.

We also hypothesized that the consistency of the correlation between

a subject's activation map and the group mean across sessions may

also identify the tasks for which activation maps are more stable.

3 | RESULTS

All participants confirmed their high level of engagement in the task,

and none reported the presence of any distractions or the difficulty of

the task.

3.1 | Group-level source analysis of beta-
decrements

Source-level MEG activity during HANDS and the FEET motor imagery

tasks showed significant beta-decrements in several cortical areas,

including the precentral (the supplementary motor area [SMA]), the post-

central, and the anterior cingulate gyri (Figure 4a). Based on the laterality

index, both tasks showed symmetric activation across the cerebral hemi-

spheres, with LIHANDS = 0.02 and LIFEET = 0.04 (j LI j <0:1). Source-
level MEG activity during both the WORD and SUB task conditions

F IGURE 4 Group source analysis of task-imagery brain–computer interfaces (BCI) experiment. Activation maps corresponding to (a) motor,
hands and feet motor imagery, and (b) cognitive, word-generation, and subtraction imagery tasks measured by the Dynamic Imaging of Coherent
Sources (DICS) beamformer source analysis in a frequency range of beta (17–25 Hz) from 18 participants. t-Maps are thresholded at a whole-
cortex corrected p < .05.
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showed significant beta-decrements in the temporal (superior tempo-

ral), parietal (supramarginal), and (inferior) frontal regions (Figure 4b).

The laterality indices indicate a left-hemispheric dominance for both

these tasks, with LIWORD =0.30 and LISUB =0.26 (LI > 0.1).

The parcellation analysis of the HANDS task showed prominent corti-

cal engagements bilaterally in the caudal anterior cingulate, middle frontal

gyri, and paracentral regions. The FEET task showed cortical activations

bilaterally in the paracentral (SMA), lateral orbitofrontal, banks of the supe-

rior temporal sulcus, and left precentral regions (Figure 5a). The WORD

task showed prominent left-hemispheric cortical engagements in the

supramarginal, postcentral, precentral, and inferior frontal gyri (IFG) and

the pars opercularis, while the SUB task revealed left-hemispheric cortical

engagements within the temporal (transverse temporal and insula), parietal

(supramarginal), and prefrontal (IFG, pars opercularis) regions (Figure 5b,

second row). The ROIs are summarized in Table 1.

3.2 | Pattern classification analysis

The leave-one-subject-out cross-validation SVM pattern classification

analysis (of beta-decrement maps) provided BA rates of 74 and 68%

for discriminating between the two motor-imagery tasks (HANDS-vs.-

FEET) and the two cognitive tasks (WORD-vs.-SUB) tasks, respec-

tively. Among all possible binary classification contrasts, the highest

(and most significant) accuracy rates were achieved for the HANDS-

versus-WORD and HANDS-versus-SUB classifications with BAs of

85 and 80%, respectively. The poorest (and nonsignificant) classifica-

tion accuracy was achieved for the FEET-versus-SUB contrast, with a

BA of 55%. A GPC provided a BA of 60.36% for the four-way classifi-

cation problem of HANDS-FEET-WORD-SUB. For ease of compari-

son, BAs are summarized in Table 2.

The SVM weight maps generated for the HANDS-versus-FEET

classification problem showed greater contributions from paracentral

regions bilaterally (SMA) for the FEET condition, and greater bilateral

contributions from the central regions (right postcentral and left pre-

central) and rostral anterior cingulate for the HANDS task. Also, the

whole-cortex SVM weight maps generated for the WORD-versus-

SUB classification problem revealed contributions from the left fron-

totemporal, and cingulate cortices (temporal lobe, anterior cingulate,

supramarginal cortex, and IFG pars opercularis), and right temporal

and parietal cortical regions (transverse temporal, inferior temporal,

middle temporal, and superior parietal) for the SUB task conditions.

Weight maps are shown in Figure 6 and ROI contributions in weight

percentage are summarized in Table 3. Consistent with SVM findings,

the GPC weight maps showed high contributions by bilateral (pre-and

post-) central gyri and the anterior cingulate gyri for the HANDS task,

bilateral paracentral gyri for the FEET task, left temporal, parietal, and

inferior frontal regions for the WORD task, and bilateral temporal and

right parietal supramarginal region for the SUB task. Weight maps are

shown in Figure 7 and ROIs are reported in Table 4.

F IGURE 5 Group source parcellation analysis of task-imagery brain–computer interfaces (BCI) experiment. Parcellation was conducted using
a Desikan–Killiany atlas (Figure 3). Yellow and blue color-coded areas represent higher and lower beta-decrements, respectively, consistent with
t-values in Figure 4.

YOUSSOFZADEH ET AL. 7
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3.3 | Correlation analysis

Correlations of individual beta-decrement maps and templates

defined by the class mean (averaged across tasks and sessions) ranged

between 0.53 and 0.73 (Figure 8b), with subjects 14, 4, 5, and

13 showing the highest correlations of r = .73, .71, .71 and .70,

respectively. Across the two task sessions, participant 13 showed the

most improved correlations (18%) from sessions 1 to 2, but this

improvement was not always the case (not seen in, e.g., participants

15 and 6 with 17 and 13% decline in correlations, respectively). The

TABLE 1 ROI involved in four task imagery BCI activities, as measured by beta-decrements

HANDS, ROI t-Value FEET, ROI t-Value WORD, ROI t-Value SUB, ROI t-Value

Caudal anterior cingulate R 5.25 Lateral orbitofrontal l 5.06 Supramarginal L 5.04 Transverse temporal L 5.54

Caudal anterior cingulate L 4.81 Pars orbitalis l 4.89 Transverse temporal L 4.96 Insula L 4.48

Caudal middle frontal R 4.71 Bankssts l 4.12 Postcentral L 4.58 Supramarginal L 4.38

Rostral anterior cingulate R 4.69 Insula l 4.11 Precentral L 4.18 Postcentral L 4.3

Caudal middle frontal L 4.56 Frontal pole l 4.05 Bankssts L 3.92 Precentral L 3.81

Rostral anterior cingulate L 4.49 Medial orbitofrontal l 4.03 Pars opercularis L 3.82 Pars opercularis L 3.77

Paracentral L 4.39 Posterior cingulate r 3.96 Insula L 3.8 Superior temporal L 3.67

Frontal pole L 4.37 Paracentral r 3.88 Rostral middle frontal L 3.74 Posterior cingulate L 3.67

Abbreviations: BCI, brain–computer interfaces; ROI, region of interest.

TABLE 2 BCI task classification accuracy using SVM and GPC classifiers. Summary classification accuracy of seven different contrasts of BCI
imagery tasks. Classification analyses were conducted using SVM and GPC classifiers and using linear kernels as input features. To ensure
statistical independence, an LOO cross-validation procedure with p-values generated using permutation testing with 1000 iterations was used.
Class accuracy and BA (average sensitivity, and specificity of class accuracy) are reported

Contrast Total BA (%, p-value) Class accuracy (%) Method

HAND-versus-FEET 74 (.04) [72, 76] SVM-LOO, Perm

WORD-versus-SUB 68 (.05) [72, 65] SVM-LOO, Perm

HAND-versus-WORD 85 (.007) [85, 85] SVM-LOO, Perm

HAND-versus-SUB 80 (.02) [76, 78] SVM-LOO, Perm

FEET-versus-SUB 55 (.2) [60, 50] SVM-LOO, Perm

FEET-versus-WORD 75 (.04) [77, 72] SVM-LOO, Perm

HAND, FEET, WORD, SUB 60 (n/a) [61, 64, 60, 54] GPC-LOO

Abbreviations: BCI, brain–computer interfaces; GPC, Gaussian-process classifier; LOO, leave-one-participant-out; SVM, support vector machine.

F IGURE 6 Weights (per region, Dk atlas) modeled by the support vector machine (SVM) classification of brain–computer interfaces (BCI)
tasks. SVM classification weight maps of HANDS-versus-FEET and WORD-versus-SUB tasks are shown. Yellow and blue areas indicate higher
SVM weights (i.e., greater beta-power source values) toward each side of the contrast. Maps are consistent with regions reported in Table. 3.
Rendered weights are displayed on a surface template (MNI-152) with dark representing sulci and gray representing gyri. Suprathresholded
values with values greater than half maximum on each side of contrast are shown. Suprathresholded regions with weights greater than an
absolute value of 4 are presented.
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correlations between a subject's beta-decrement map for a task and

the class-mean template averaged across all four tasks were r = .60,

in both sessions 1 and 2. A high ratio of correlations to the class-mean

template, averaged over tasks, between sessions 1 and 2 (mean= 0.91,

SD = 0.07) suggests consistency of cortical engagement across ses-

sions. The correlation to class-mean showed significant positive

TABLE 3 ROI involved in SVM
classification weight maps of BCI tasks.
Regions contributed (in %) to the SVM
classification of HANDS-versus-FEET
and WORD-versus-SUB imagery tasks
are reported. ROIs with percentage
values greater than half-maximum
(arbitrary 50% threshold) of each side of
contrast are reported

HANDS-versus-FEET, ROI Weight (%) Word-versus-subtraction, ROI Weight (%)

Transverse temporal R 6.38 Temporal pole L 5.7

Rostral anterior cingulate R 5.01 Rostral anterior cingulate L 5.69

Postcentral R 4.91 Pericalcarine L 5.35

Superior parietal L 4.48 Lingual L 5.13

Rostral anterior cingulate L 4.37 Pericalcarine R 4.83

Precentral L 4.26 Rostal anteior cingulate L 4.71

Posterior cingulate L 4.19 Supramarginal L 4.31

Postcentral L 4.15 Pars opercularis L 4.22

Paracentral R �5.93 Transverse temporal R �5.1

Paracentral L �5.4 Inferior temporal L �5.0

Superior temporal L �4.62 Middle temporal L �4.62

Rostral middle frontal L �4.6 Superior parietal R �4.4

Inferior temporal R �4.54 Postcentral R �4.24

Temporal pole R �4.45 Pars opercularis R �4.01

Abbreviations: BCI, brain–computer interfaces; GPC, Gaussian-process classifier; ROIs, region of interest;

SVM, support vector machine.

F IGURE 7 Weight (per region, Dk atlas) maps modeled by the Gaussian-process classifier (GPC) classification of brain–computer interfaces
(BCI) tasks. GPC classification weight maps of HANDS-FEET-WORD-Sub tasks are shown. Maps are consistent with regions reported in Table. 4.
Rendered weights are displayed on a surface template (MNI-152) with dark representing sulci and gray representing gyri. Suprathresholded
values with values greater than half maximum are shown. Regions with weight values greater than an arbitrary 3% classification weights are
presented.
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correlations between sessions for WORD and HAND tasks (r = .48,

p = .04 and .45, p = .04), respectively, whereas the SUB and FEET

tasks showed nonsignificant correlations of r = .43 and .12, respec-

tively. This suggests that the beta-decrement maps for SUB and FEET

tasks may be more unstable. Direct correlations of the beta-

decrement maps across sessions for individual subjects (Figure 8g)

appear to support this inference: they show the highest values for

WORD and HAND task conditions (r = .54 for both), and the lowest

for the SUB and FEET task conditions (r = .53 and .51, respectively).

Figure 8 summarizes these findings.

4 | DISCUSSION

This study set out to characterize and localize the neural correlates of

motor imagery and mentally executed cognitive tasks in a group of

healthy adult participants who completed an experimental paradigm that

was designed for BCI research. We localized task-related cortical engage-

ment from beta power decrements (Youssofzadeh et al., 2020) during

motor imagery of the hands and feet, mental arithmetic (subtraction),

and silent word generation. Our source-space analyses at the group level

revealed bilateral beta-desynchrony effects during motor imagery, nota-

bly in the motor region (pre-, post-, and para-central), the anterior por-

tions of the cingulate gyri, middle-frontal gyri, and parts of the temporal

neocortex. Group-level beta-decrements in the source space during the

two cognitive tasks revealed left-lateralized effects in the parietal, tem-

poral, and (inferior) prefrontal cortical regions.

Specifically, cortical engagement during motor imagery of the

hands revealed bilateral beta power decrements in the SMA and the

precentral/primary motor cortex (BA 4), as well as anterior cingulate

gyri (caudal and rostral) and prefrontal (caudal and medial orbitofrontal

and frontal pole) regions (Figures 4a and 5a and Table 1). The SMA,

precentral, and postcentral gyri have both motor and sensory repre-

sentations related to both upper and lower limbs (Jenkinson &

Brown, 2011; Szameitat et al., 2007). The SMA is believed to support

aspects of movement planning, including action preparation and the

organization of movement sequences, and appears to have a role in

the perception of stimuli that are potential targets of motor acts, and

has been found to engage during cued movements (Bonini

et al., 2014; Hardwick et al., 2013; Lima et al., 2016; Matsuzaka

et al., 1992; Nachev et al., 2008). The prefrontal cortex areas integrate

information from the body and the environment and participate in

higher-order gait control (Maidan et al., 2016; Van der Meulen

et al., 2014). In particular, the medial frontopolar prefrontal cortex

(BA 10) is involved in the integration of spatial and motor components

of working memory during imagery and haptic exploration of spatial

layouts, guiding motor preparatory processes (Kaas et al., 2007). We

also found strong activation in the (caudal and rostral) anterior cingu-

late cortex (ACC) regions. The ACC (BA 32) lies in a unique position in

the brain with connections to both the “emotional” limbic system and

the “cognitive” prefrontal cortex (Bush et al., 2000). The ACC regions

were shown to be engaged in a BCI motor imagery task requiring

focused visual attention (Luu & Posner, 2003; Pfurtscheller

et al., 2006). The ACC is also believed to play an important role in

attentional control through bidirectional interactions with primary

sensory areas (Crottaz-Herbette & Menon, 2006; Kim et al., 2016).

Group-level source analysis during motor imagery of the feet

showed prominent beta power decrements in the paracentral/SMA

TABLE 4 ROI involved in the GPC classification weight maps of BCI imagery tasks. Regions contributed (in %) to the GPC classification of
HANDS-versus-FEET-versus-WORD-versus-Sub imagery tasks are reported. ROIs with percentage values greater than half-maximum (arbitrary)
are reported

HANDS, ROI

Weight

(%) FEET, ROI

Weight

(%) WORD, ROI

Weight

(%) SUB, ROI

Weight

(%)

Rostral anterior

cingulate R

5.42 Paracentral L 5.43 Superior parietal L 5.92 Transverse

temporal L

6.34

Rostral anterior

cingulate L

5.29 Temporal pole L 5.04 Precuneus L 5.62 Precuneus R 5.44

Pars opercularis R 5.13 Paracentral R 4.61 Pericalcarine R 5.26 Transverse

temporal R

4.97

Precentral R 4.69 Lateral

orbitofrontal L

4.41 Supramarginal L 5.01 Superior parietal R 4.86

Postcentral R 4.59 Pars triangularis L 4.01 Pericalcarine L 4.91 Supramarginal R 4.69

Precentral L 4.58 Inferior parietal R 3.84 Lingual L 4.74 Pericalcarine R 4.15

Pars triangularis R 4.43 Inferior temporal R 3.77 Temporal pole L 4.23 Superior temporal L 4.14

Caudal middle frontal L 4.35 Fusiform R 3.76 Rostral middle frontal L 4.21 Postcentral L 4.06

Paracentral R 4.3 Rostral anterior

cingulate R

4.11 Postcentral R 4.0

Parahippocampal L 4.27 Paracentral R 3.99 Isthmus cingulate R 3.97

Abbreviations: BCI, brain–computer interfaces; GPC, Gaussian-process classifier; ROIs, region of interest; SVM, support vector machine.
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and prefrontal (lateral orbitofrontal) regions; it also showed bilateral

engagement of temporal regions (insula and superior temporal sulcus).

The paracentral, precentral, and postcentral gyri also feature motor

and sensory functions related to the lower limbs (Jenkinson &

Brown, 2011). The paracentral lobules have the motor and sensory

representations of the contralateral lower extremities, with sensory

representations in their posterior portion (in the parietal lobe). Activa-

tion in paracentral/SMA has been found in studies of actual walking,

using single-photon emission computed tomography and near-

infrared spectroscopy (Fukuyama et al., 1997; Miyai et al., 2001). The

superior temporal sulcus is a voice-selective area in the human

auditory cortex and a source of sensory encoding associated with

motor output through the superior parietal–temporal area (Belin

et al., 2018). The anterior insula has been shown to be involved in

mental navigation along memorized routes; it also supports the feeling

of agency, awareness of body parts, and self-awareness (Craig, 2009;

Ghaem et al., 1997; Van der Meulen et al., 2014). The group-level cor-

tical engagements that we find during motor imagery of the feet are

generally consistent with the results of the previous fMRI studies on

gait imagery and limb movement imagery, supporting engagements in

the primary and supplementary motor cortices as well as bilateral pari-

etal and frontal areas (Bakker et al., 2007; Bakker et al., 2008; Cojan
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F IGURE 8 Correlation analysis of beta-decrements in brain–computer interfaces (BCI) tasks. A Spearman correlation of beta-decrements of
(a) four different imagery tasks (b) completed by 18 participants during (c) two sessions of a BCI experiment. (d) Class correlation changes
between sessions 1 and 2. The green and orange bars indicate increased and decreased correlation values for session 2 compared with session
1 of the task. (e) Beta-decrement correlation ratio. The correlation ratio was computed by dividing the maximum over the minimum of individual
class correlations between two sessions (f) scatterplots of class correlations of four BCI tasks. A linear Spearman correlation between sessions
1 and 2 is also reported, and a polynomial curve fitting line is overlaid. (g) Session-correlations, the correlation between sessions 1 and 2 of four
BCI task conditions. Average and standard deviation session correlations are also shown and reported.
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et al., 2009; la Fougère et al., 2010; Van der Meulen et al., 2014;

Wang et al., 2008).

Findings for the word generation and subtraction tasks showed

strong left-hemispheric beta-decrement effects in the temporal (supe-

rior temporal gyrus), parietal (supramarginal gyrus), and (inferior) pre-

frontal gyri (Figures 1b and 4b), regions known to be involved in

cognitive (language) and comprehension (arithmetic) processing

(Arsalidou et al., 2018; Arsalidou & Taylor, 2011; Binder &

Desai, 2011; Koyama et al., 2017; Patterson et al., 2007). The supra-

marginal gyrus is an anatomical subdivision of the inferior parietal lob-

ule, a heterogeneous brain region involved in the interpretation of

both sensory and language information (Cabeza et al., 2008;

Corbetta & Shulman, 2002; Dehaene et al., 2004). The left and right

SMG regions are engaged in phonological (word) processing, while the

left SMG is more engaged in the semantic processing of lexical items

(Hartwigsen et al., 2010; Oberhuber et al., 2016). Moreover, both cog-

nitive tasks revealed desynchrony effects in the IFG and postcentral

(premotor) areas. The inferior parietal lobule is anatomically con-

nected to ventral premotor areas, and the caudal inferior parietal

gyrus is connected to the IFG regions (Caspers et al., 2013; Petrides &

Pandya, 2009). Unlike the Word (linguistic) task, the Subtraction task

led to greater beta-power decrease effects in the left superior parietal

lobule (SPL), whereas the Word condition task showed greater beta-

power decrease effects in the left temporal regions, the inferior tem-

poral gyrus (ITG), and the middle temporal gyrus (MTG). In general,

mathematical calculations strongly engage the working memory, and

the SPL is critically important for manipulating and rearranging infor-

mation in the working memory processes (Bemis & Pylkkänen, 2013;

Koenigs et al., 2009; Roitman et al., 2012). The ITG and its neighbor-

ing region, MTG, provide access to lexical-semantic representations

during concept retrieval processes (Binder et al., 2009; Hickok &

Poeppel, 2007; Schuhmann et al., 2012).

Our results from the pattern classification analyses demonstrate that

beta-decrement mapping is a suitable approach for identifying cortical

engagement related to BCI tasks from MEG recordings. Specifically, the

SVM classification analysis of the BCI imagery task completion provided

a substantially high classification accuracy for two-way classification

problems of HANDS-versus-WORD (85%), HANDS-versus-SUB (80%),

HANDS-versus-FEET (74%), and WORD-generation-versus-SUBtraction

(68%). Also, the GPC four-way classification accuracy of 60% without

any further dimension-reduction is reasonable given the complexity of

combined task imagery responses. For our machine-learning pattern clas-

sification analyses, we utilized simple linear kernel values to train and

classify four complex BCI problems. Generally, kernel methods are

extremely useful for fast and efficient analyses and avoid intensive com-

putations. In addition to the computational advantages, kernels enable

the solution of ill-conditioned problems and therefore avoid overfitting

(Shawe-Taylor & Cristianini, 2004). The application of kernel methods to

neuroimaging problems has been growing (Chu et al., 2011; Schrouff

et al., 2015; Youssofzadeh et al., 2017) and may be a potential candidate

for real-time BCI applications.

The correlation analysis of beta-decrement effects reveals the

consistency of responses between the two sessions in individual

subjects, which may be related in part to the level of engagement with

task imagery. For instance, higher class correlations were obtained for

three participants, 14, 4, and 5, which may suggest that these partici-

pants likely had better overall performance than others. This should

ideally have been supported by behavioral data, and the lack of such

measurements in the experimental paradigms that were employed is a

key limitation of our study. This should be addressed in the design of

future BCI paradigms (Klepp et al., 2015). Our correlation analysis

indicated greater consistency of correlation to the group mean for the

WORD and HAND imagery conditions (r = .48 and .45, respectively)

compared to the SUB and FEET tasks (r = .43 and .12, respectively),

as shown in Figure 8f. These findings are consistent with the lower

(55%) binary classification accuracy of FEET-versus-SUB and a high

(85%) classification accuracy of HAND-versus-WORD contrasts, as

reported in Table 2, as well as the lower average session-to-session

correlation of cortical-engagement maps for these two conditions

(Figure 8g) suggesting that mapping of mental subtraction and motor

imagery involving the feet may be significantly less reliable than word

generation and hand movement imagery tasks using beta-decrement

effects.

Recent years have seen the increasing use of neuroimaging

methods in the context of BCI research. Several studies have investi-

gated the feasibility of MEG in real-time neurofeedback experiments

(Boe et al., 2014; Buch et al., 2008; Florin et al., 2014; Foldes

et al., 2015; Fukuma et al., 2015; Fukuma et al., 2016; Gerven

et al., 2009; Mellinger et al., 2007; Okazaki et al., 2015). These studies

have used both sensor and source-level MEG signals to provide feed-

back aimed at modulating specific brain activities. Indeed, the high

temporal and spatial resolution of MEG makes it inherently suitable

for real-time applications. Most BCI studies rely on the early P300 or

N400 ERP components to examine the sources of task-related cortical

engagement. However, brain source activities of late components are

usually not phased-locked to an event and, therefore, cannot be

extracted by linear methods such as averaging; they, however, may be

detected by power changes in the frequency domain (David

et al., 2006; Pfurtscheller & Andrew, 1999). ERP source estimates are

limited to slow responses due to the effects of signal averaging in the

time domain. By contrast, induced power changes in the beta or

gamma bands can serve as signatures of task-related cortical engage-

ment (Crone et al., 2006; Eulitz et al., 1996; Singh et al., 2002). Beta-

band power decrements have been used for classification purposes

and clinical rehabilitation, for example, characterization of motor or

cognitive impairments as a therapeutic marker for patients recovering

from a cerebral stroke (Buch et al., 2008) or helping robot-assisted

gait training of patients with Parkinson's disease or motor disability

(Gwin et al., 2011; Knaepen et al., 2015; Severens et al., 2012).

The beta-decrement approach can be applied to not only MEG

and low-cost EEG systems but also the relatively new technology of

optically pumped magnetometers that offer good signal-to-noise ratio,

spatial resolution, and portability for measuring BCI task activities

(Boto et al., 2018; Knappe et al., 2012). The ultra-high-density EEG

system is another relatively new technology where beta decrements

have shown excellent decoding accuracy for a finger movement BCI
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task (Lee et al., 2022). Comparing the two studies, the focus of our

work was mainly to localize neural activity during mixed (motor and

mental) imagery task responses and decode source activations,

whereas the work by Lee et al. (2022) focused on motor task activa-

tions at the channel level. MEG is less affected by sources of interfer-

ence from outside the head, and due to its better spatial resolution,

sources of brain activity can be localized more accurately in the brain.

This is important in BCI applications, where it is critical to determine

the location of specific brain signals associated with motor or mental

tasks. However, as suggested by the authors in the discussion

section of Lee et al. (2022), source reconstruction provides better

reliability for decoding and analyzing high-density EEG data. Ultra-

high-density EEG technology has great potential for BCI applications,

particularly in individuals with neurological impairments, and future

studies may benefit from combining EEG and MEG data to improve

the accuracy and localization of BCI systems.

The current study aimed to localize the neural activity during

mixed imagery task responses, for which the beta frequency power

decrements may be a suitable marker of cortical engagement. Inter-

estingly, other previous BCI studies have supported the use of upper-

alpha/beta-desynchronization effects for the characterization of the

MI responses, also suggesting such oscillations reflect the search and

retrieval processes in semantic long-term memory processes

(Klimesch, 1999; Pichiorri et al., 2015). The use of other frequencies,

such as theta-band (4–8 Hz) peaks, which reflect the encoding of new

information (episodic memory), in conjunction with beta-band source

modeling, has the potential to improve the understanding of the

underlying neural dynamics of BCI tasks and may lead to improved

subjects' decoding accuracy in real-time BCI tasks. As a cautionary

note, beta-decrements may be affected by carryover effects between

trials when using pre-stimulus data as a baseline contrast. While such

influences can be minimized by including a high number of trial

responses as we did in this study, an additional step to resolve this

could be adding a control condition to the BCI experiment design or

constructing the baseline from pre-stimulus data of all data conditions.

We hope to incorporate and test the suggested changes into our

future research investigations.

Our classification analysis was based on whole-brain beta-

decrement activations. While this allows for investigating widespread

activators, it may be less efficient for decoding purposes. In future

work, exploring beta-decrements at optimal ROIs for a particular task

may effectively improve the accuracy of the decoding analysis.

Another limitation is that our approach does not offer individual clas-

sification. The kernel-based classification analysis incorporates the

group cross-similarity of task beta-decrements as input features. To

address this, we conducted a univariate correlation analysis of beta-

decrements against the average template. However, more suitable

multivariate pattern recognition approaches utilizing optimal features

may be used for individual classification purposes (Roy et al., 2020).

Finally, our analyses were primarily designed to classify single-trial

beta-decrement maps (i.e., a summary of 4-s task trials). Some modifi-

cations are required for real-time implementations. For source model-

ing, a pre-estimated spatial filter from individuals' training sessions

can be used, and for computational efficiency, classification can be

conducted at optimal ROIs (informed by the group analysis). Utilizing

cutting-edge classification methods like deep learning may improve

the decoding accuracy of real-time BCI applications (Lotte

et al., 2018; Lotze & Cohen, 2006).

One limitation of our BCI task was that we did not control for the

possibility of actual movement during movement imagery. A control

task would be ideal to ensure that the responses being studied are

indeed related to movement imagery alone. The persistence of visual

cues during our BCI task may also be an undesirable feature since it

could lead to habituation to the cues and potentially distract from the

task (Lacourse et al., 2004). While such effects are likely to affect the

alpha- and lower beta-band responses more than the higher beta-

band power activities (17–25 Hz), which were the focus of this study,

paradigms that present visual cues only when needed rather than con-

tinuously throughout the task are more suitable to maintain the par-

ticipant's attention and focus on the task. Another limitation of the

current dataset is the lack of behavioral and performance measures.

The ability to imagine the task is a complex cognitive process that

involves creating an internal representation of a motor act in the mind

without actually performing the movement. Several components are

considered essential in assessing this ability, including visual imagery

(the ability to form a vivid and clear mental image of the movement),

kinesthetic imagery (the ability to feel and experience the sensory-

motor aspects of the movement, such as the movement's force,

speed, and direction), temporal imagery (the ability to experience the

movement in time, including the duration and rhythm of the move-

ment), and mental imagination (the ability to simulate the movement

in real-time, as if the movement were actually being performed).

These components are often evaluated through self-reported ques-

tionnaires or rating scales, behavioral performance measures, and neu-

rophysiological measures of M/EEG. Extensive studies have

investigated the neurophysiological markers of motor imagery as well

as the neural mechanisms underlying BCI learning and performance

(Ahn, Ahn, et al., 2013; Ahn, Cho, et al., 2013; Ahn & Jun, 2015;

Bamdadian et al., 2014; Blankertz et al., 2010; Corsi et al., 2020;

Grosse-Wentrup et al., 2011). Specifically, Corsi et al. (2020) com-

pared the motor imagery and rest conditions in four BCI sessions and

reported a progressive decrease in α and β-band functional connectiv-

ity of M/EEG activations in regions of the middle-anterior cingulate

gyrus and orbital IFG known to be associated with decision-making

and memory consolidation processes. We hope to address such mech-

anisms in a future dataset that includes behavioral measurements and

measurements from multiple training sessions.

In summary, our results demonstrate the feasibility of using oscil-

latory dynamics of MEG signals, particularly beta-band power decre-

ments, for localizing cortical engagement during a set of tasks

designed for BCI research that did not involve dynamic sensory stimuli

or overt behavioral responses. These motor imagery and mentally exe-

cuted cognitive tasks (Rathee et al., 2021) engaged task-specific net-

works of brain regions that were largely consistent with prior

neuroimaging studies of similar tasks in healthy adults and known

neuroanatomy. Our results lend further support to the idea that task-
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related beta-band power decrements are closely associated with neural

engagement in the cerebral cortex (Engel & Fries, 2010; Pfurtscheller &

Lopes da Silva, 1999) and may be suitable for MEG BCI applications. BCI

techniques have been successfully used in cognitive and motor training,

leading to improvements in the performance of athletes, musicians, and

highly skilled manual technicians such as surgeons (Meister et al., 2004;

Rogers, 2006; Toth et al., 2020), as well as those with stroke, cerebral

palsy, severe physical disability, or motor impairment (Aflalo et al., 2015;

Baniqued et al., 2021; Cincotti et al., 2012; Machado et al., 2010;

Pfurtscheller et al., 2009). Specifically, Aflalo et al. (2015) used a micro-

electrode BCI system and demonstrated that motor imagery is supported

by a distributed network of brain regions, including the posterior parietal

cortex, and that this network is functional even in individuals with severe

physical disabilities. Their results suggest that it may be possible to

decode motor imagery from the brain and use it to control external

devices, such as prosthetics, in individuals who have lost the ability to

move their limbs. In line with these studies, our results suggest that beta-

band power decrements may have potential clinical applications for com-

munication and rehabilitation by localizing task-related cortical

engagement.
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