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Abstract

Predictive regression methods are widely used to examine the predictability of (excess)
stock returns by lagged financial variables characterised by unknown degrees of persistence
and endogeneity. We develop a new hybrid test for predictability in these circumstances
based on simple regression t-statistics. Where the predictor is endogenous, the optimal,
but infeasible, test for predictability is based on the t-statistic on the lagged predictor in
the basic predictive regression augmented with the current period innovation driving the
predictor. We propose a feasible version of this augmented test, designed for the case
where the predictor is an endogenous near-unit root process, using a GLS-based estimate
of the innovation used in the infeasible test regression. The limiting null distribution of
this statistic depends on both the endogeneity correlation parameter and the local-to-unity
parameter characterising the predictor. A method for obtaining asymptotic critical values is
discussed and response surfaces are provided. We compare the asymptotic power properties
of the feasible augmented test with those of a (non-augmented) t-test recently considered
in Harvey et al. (2021) and show that the augmented test is more powerful in the strongly
persistent predictor case. We then propose using a weighted combination of the augmented
statistic and the t-statistic of Harvey et al. (2021), where the weights are obtained using
the p-values from a unit root test on the predictor. We find this can further improve
asymptotic power in cases where the predictor has persistence at or close to that of a unit
root process. Our final hybrid testing procedure then embeds the weighted statistic within
a switching-based procedure which makes use of a standard predictive regression t-test,
compared with standard normal critical values, when there is evidence for the predictor
being weakly persistent. Monte Carlo simulations suggest that overall our new hybrid test
displays superior finite sample performance to comparable extant tests.
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1 Introduction

Many studies in the applied economics and finance literature have focused on testing for the

predictability of asset returns, employing a range of candidate predictor variables, such as valua-

tion ratios, interest rates and other financial and macroeconomic variables. By way of examples,

Fama (1981) considers various predictors including interest rates, industrial production, GNP

and capital stock and expenditure, while Campbell and Yogo (2006) consider the dividend-price

ratio, the earnings-price ratio, the three-month T-bill rate and the long-short yield spread. Stan-

dard approaches to testing predictability are based on a simple linear regression model with a

constant and lagged putative predictor (xt−1 say), with a corresponding regression coefficient β.

In empirical studies it is commonly found that the candidate predictor variables are highly

persistent (with either unit root or near unit root autoregressive processes) and also endoge-

nous with a non-zero (often strongly negative) correlation between the errors in the predictive

regression and the innovations driving the predictor process; see, inter alia, Campbell and Yogo

(2006), Goyal and Welch (2003) and Welch and Goyal (2008). In the presence of strong persis-

tence and endogeneity, Cavanagh et al. (1995) show that the standard t-test on the estimate of β

suffers from severe size distortions; see also Campbell and Yogo (2006), Nelson and Kim (1993)

and Stambaugh (1999). This finding has motivated the development of tests for predictability

that are designed to allow for both endogeneity and strong persistence in the predictor series xt,

modelled by a first order autoregression with a local-to-unity coefficient φ = 1− cT−1 (where c

is an unknown finite constant and T is the sample size).

As a result, a number of likelihood-based predictability tests have been developed in the

literature which are designed to be asymptotically valid when the predictor is strongly persistent

and endogenous; see, inter alia, Cavanagh et al. (1995), Lewellen (2004), Campbell and Yogo

(2006), Elliott et al. (2015) [EMW, hereafter] and Jansson and Moreira (2006), and most recently

a hybrid test, based around a number of simple regression t-ratios, developed in Harvey et al.

(2021) [HLT hereafter]. Arguably the most widely applied of these tests in the literature is the

Q test of Campbell and Yogo (2006), which falls within the general control variable approach

outlined in Elliott (2011). Here the simple linear predictive model is augmented by an additional

regressor used as a proxy for the current period innovation driving the predictor; an infeasible

version of this test using the actual current period innovation is optimal when the predictor is

endogenous. In particular, in its simplest form, Q is based around the infeasible t-statistic on β

when (xt−φxt−1) is added as a regressor to the predictive regression. Campbell and Yogo (2006)

develop a feasible version of this test, using the approach of Cavanagh et al. (1995), based on

a Bonferroni confidence interval for β obtained using a confidence interval for φ (equivalently

c) formed from the well-known quasi-GLS demeaned augmented Dickey-Fuller [ADF] unit root

statistic of Elliott et al. (1996).

Among the likelihood-based approaches listed above, only the procedures developed in EMW
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and HLT are also asymptotically valid for the case of a weakly persistent predictor.1 Like Lewellen

(2004), the testing procedure outlined in EMW rules out the possibility that the predictor xt is

locally explosive (by imposing that c is non-negative), while HLT and Campbell and Yogo (2006)

allow for some local explosivity (−5 ≤ c < 0) in the predictor. Simulation results presented in

HLT suggest that where the predictor is locally explosive the Q test of Campbell and Yogo (2006),

although valid, displays very poor power and is easily dominated by the hybrid test proposed

in HLT, while the EMW test is highly unreliable. Where the possibility of local explosivity in

the predictor can be ruled out, based on their simulation results HLT find that the EMW test

dominates other tests where the predictor is either a pure unit root process (c = 0) or lies very

close to a unit root process (c is small and positive) arguing that “... it appears that exclusion of

robustness to the case of explosive predictors affords the EMW test the opportunity of greater

power in the unit root setting ...” op. cit. p.207. For larger c, HLT argue on the basis of their

simulations that their proposed hybrid test offers superior power to all of the leading tests in the

literature, including the EMW test.

Our aim in this paper is to investigate an alternative to the hybrid testing procedure of HLT

designed to exploit available power advantages that exist for strongly persistent predictors when

c is either zero or small and positive in cases where locally explosive predictors can be ruled out,

a priori. This then allows us to develop a procedure that can be compared on a level playing field

with the EMW test. The approach we outline will be focused on easy to implement tests based

on regression t-ratios. The hybrid testing procedure we propose can be viewed as an extension of

the hybrid test outlined in HLT with the introduction of information from an additional t-ratio

motivated by the control variable approach of Elliott (2011). This t-ratio is formed on the lagged

predictor in the basic predictive regression augmented with a GLS-based estimate used to proxy

the current period innovation driving the predictor. In the strongly persistent case we show

that the limiting null distribution of this statistic depends on both the endogeneity correlation

parameter and the local-to-unity parameter characterising the predictor. We therefore propose

a feasible method for obtaining asymptotically conservative critical values and provide response

surfaces for practical use. An analysis of the asymptotic local power function of the resulting

conservative test together with a corresponding feasible (conservative) implementation of the

t-ratio proposed in HLT, obtained from a variant of the standard predictive regression where the

OLS demeaned returns are regressed on the GLS demeaned lagged predictor, shows that, in the

empirically most relevant case where a significant negative correlation exists between returns and

the predictor’s innovations, the new proxy-based test is more powerful than the corresponding

1A different strand of the literature which allows for both weakly and strongly persistent predictors is charac-
terised by contributions from Phillips and Magdalinos (2009), Kostakis et al. (2015) and Breitung and Demetrescu
(2015) and focuses on instrumental variable [IV] estimation using an instrument constructed from the predictor
variable and designed to be less persistent than a local-to-unity process. While such IV based tests are valid
regardless of the degree of persistence in the predictor, they are less powerful than the tests of EMW and HLT,
particularly so when the predictor is weakly persistent or where it is strongly persistent with c zero or close to
zero; see Figures 2-6 in HLT pp.208-212.
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test from HLT for positive predictability (β > 0) for c = 0 and small values of c; that is, exactly

the areas where the original hybrid test of HLT is less powerful than the EMW test. We then show

that substantial further power improvements can be obtained in these scenarios by considering

a weighted combination of the new t-ratio and the t-ratio from HLT, the weights depending on

the persistence of the predictor via a function of the p-values from a standard Dickey-Fuller-type

unit root test applied to the predictor, again made operational using asymptotically conservative

critical values with a response surface provided for practical implementation.

Like HLT we find that when testing for positive persistence with a positive or small negative

endogeneity correlation, or when testing for negative predictability (β < 0) with an endogene-

ity correlation that is not significantly positive, asymptotic local power is improved by using

the standard predictive regression t-statistic with an asymptotically conservative critical value.

Consequently, when testing for positive (negative) predictability, our recommended procedure in

the near-unit root environment is to use the conservative standard t-ratio when the estimated

endogeneity correlation is either positive or “small” and negative (either negative or “small” and

positive), but to use the conservative test based on the weighted statistic otherwise. Further, in

common with EMW and HLT, if the data suggest the predictor is weakly persistent, we propose

switching into the standard t-ratio test with reference to standard normal critical values. Like

HLT we base our switching function not on an (inconsistent) estimate of c, but rather on the

familiar augmented Dickey-Fuller normalised bias coefficient unit root test.

In Monte Carlo simulations we find that the hybrid test proposed in this paper performs well

in terms of finite sample size and power across a range of correlation parameters and persistence

levels for the predictor, and compares very favourably with extant tests, offering simple yet highly

effective methods for predictability testing. In particular, our proposed hybrid test almost always

outperforms both the EMW and HLT hybrid test procedures in the case of strongly persistent

predictors, with all three being largely identical for predictors displaying only very weak levels

of persistence (as expected, given all three switch to a conventional t-test in this case). In cases

where one is prepared to rule out the possibility of an explosive predictor, we therefore recommend

the hybrid test developed in this paper. Otherwise the hybrid test in HLT is preferred.

The remainder of the paper is organised as follows. Section 2 introduces the predictive

regression model which we will consider in this paper together with the assumptions which we

place on this data generating process [DGP]. In section 3 we present the new augmented t-

statistic that will subsequently feature in our hybrid testing procedure and detail its asymptotic

properties. Here we also outline our method for obtaining asymptotic critical values and provide

numerical comparisons with existing tests based on asymptotic local power functions. These

simulation results provide motivation for the weighted statistics that we propose and evaluate in

section 4. Our final proposed hybrid testing procedure that allows for both weakly and strongly

persistent predictors is then outlined in section 5. Section 6 discusses extensions to deal with

higher order serial correlation in the predictor. In section 7 we investigate the finite sample size
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and power properties of our proposed hybrid test, comparing with the test procedures of EMW

and HLT. Section 8 concludes. We use the notation x := y (x =: y) to denote that x is defined

by y (y is defined by x), and ⇒ to denote weak convergence.

2 The Predictive Regression Model

Let yt denote the (excess) stock return in period t and let xt−1 denote a variable observed at

time t− 1 which is considered to be a putative predictor for yt. The predictive regression model

we consider is

yt = αy + βxt−1 + εyt, t = 2, ..., T (1)

where xt is an observed process, specified according to the DGP

xt = αx + st, t = 1, ..., T

st = φst−1 + εxt, t = 2, ..., T (2)

with s1 a mean zero Op(1) random variable.

As discussed in section 1, it is important for practical purposes to allow for the possibility of

high persistence in the predictor variable xt and to allow the shocks driving the predictor, εxt in

(2), to be correlated with the unpredictable component of stock returns, εyt in (1). As regards

the latter, we assume that the innovation vector εt := (εxt, εyt)
′ is IID with finite fourth order

moments and satisfying [
εxt

εyt

]
∼ IID

(
0,

[
σ2
x σxy

σxy σ2
y

])
.

Remark 1. The assumption that εt is a vector IID process is made purely to simplify our

presentation. All of the large sample results given in this paper continue to hold in the case

where εt is a (bivariate) martingale difference process satisfying the conditions given on p.200 of

HLT. Indeed, for the case of a strongly persistent predictor (Assumption S) it is also possible to

allow for conditional heteroskedasticity of the form considered in Assumption A.1 of Campbell

and Yogo (2006) without altering the large sample results which are given in what follows. In

the case of a weakly persistent predictor (Assumption W) the same would be true for conditional

heteroskedasticity of the form given in, for example, Assumption INNOV(ii) of Kostakis et al.

(2015, p.1512) providing the regression t-ratios discussed in what follows are implemented using

White standard errors rather than OLS standard errors; notice, however, that for our final hybrid

test outlined in section 5 only the conventional t-test, TN , would actually need to be based on a

t-statistic computed with White standard errors. The assumption that εxt is serially uncorrelated

is also not crucial and we will subsequently discuss in section 6 how the methods we propose

can be modified to allow for weak dependence in εxt. The methods developed in the literature
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on predicting returns are, however, based on the assumption that εyt is serially uncorrelated;

different methods are required in cases where εyt may be serially correlated and, as such, will not

be considered here. �

With respect to the degree of persistence in xt, we assume that the true value of φ in (2) is

unknown to the practitioner and satisfies one of the following two assumptions:

Assumption S. Strongly persistent predictor: The autoregressive parameter φ in (2) is local-

to-unity with φ := 1− cT−1 where c is a fixed non-negative constant.

Assumption W. Weakly persistent predictor: The autoregressive parameter φ in (2) is fixed

and bounded away from unity, |φ| < 1.

Remark 2. Many putative predictors are strongly persistent, with sums of sample autoregressive

coefficients close to or only slightly smaller than unity. In such cases, near-integrated asymp-

totics provide good approximations for the behaviour of test statistics. However, not all possible

predictors are strongly persistent and many models in the literature treat xt as generated from a

stable autoregressive process. We therefore allow for either of these possibilities to hold for xt.

As discussed in section 1, our assumptions exclude the possibility of explosive predictors (φ > 1),

in line with the approach of, for example, EMW and Lewellen (2004). In contrast, HLT and

Campbell and Yogo (2006) both allow for a small degree of local explosivity (−5 ≤ c < 0) in the

predictor in the tests they develop. �

In this paper our focus is on developing tests of the null hypothesis that yt is not predictable

by xt−1, i.e. H0 : β = 0 in (1), which do not require the practitioner to know which of Assumption

S or Assumption W holds for φ in (2). The alternative hypothesis is that yt is predictable by xt−1,

in which case β > 0 or β < 0 (one-sided alternatives are commonly adopted in practice). We will

establish the large sample behaviour of the predictability tests considered in this paper under

local alternatives such that the slope parameter β in (1) is local-to-zero. This approach permits

analysis of the tests’ local asymptotic power, and is consistent with the fact that predictive

regressions for stock returns typically exhibit a small R2 and low signal-to-noise ratios, with

departures from the null being small when predictability is present. The appropriate localisation

rate (Pitman drift) is dictated by which of Assumption S and Assumption W holds. Under

Assumption S, where xt is strongly persistent, the appropriate local alternative is given by H1,S :

β = gT−1, while for weakly dependent xt under Assumption W, it is given by H1,W : β = gT−1/2,

where in each case g is a finite constant.

The familiar Cholesky decomposition allows us to write the two components of εt in the form

εxt = σxe1t (3)

εyt = σy

(
ρxye1t +

√
1− ρ2

xye2t

)
5



where et := (e1t, e2t)
′ ∼ IID (0, I2) and ρxy := σxy/(σxσy) is the contemporaneous correlation

between the innovations driving the predictor, εxt, and the unpredictable component of stock

returns, εyt. Using this representation, we can then re-write the predictive regression in (1) as

yt = αy + βxt−1 +

(
σy
σx
ρxy

)
εxt +

(
σy

√
1− ρ2

xy

)
e2t. (4)

The representation in (4) is instructive, in that it demonstrates how a predictive regression

featuring an endogenous predictor xt−1, such as (1), can be re-written using εxt as an additional

covariate in a form in which the predictor regressor, xt−1, is strictly exogenous.

3 A New Predictability Test

In what follows it is convenient to define a generically notated regression model:

yt = α + βxt−1 + δzxt + vt. (5)

and consider the associated generic t-statistic associated with the OLS estimate of β in (5).

3.1 An Infeasible Test

If εxt was observed, which is equivalent to knowing φ (abstracting from the unknown constant,

αx), we could then perform a standard OLS regression in (5) with zxt = εxt, which is clearly a

correct specification with respect to the DGP in (4). Denoting the corresponding infeasible t-

statistic as T inf , it is straightforward to show that T inf has a standard normal limiting distribution

under the null hypothesis H0, irrespective of whether Assumption S or Assumption W holds.

Moreover, under Gaussianity this would be an efficient test (among αy, αx invariant tests)

whenever ρxy 6= 0. Note that including εxt as a regressor reduces the error variance from σ2
y

in (1) to σ2
y(1 − ρ2

xy) in (4); that is, with knowledge of φ we can essentially subtract off the

part of the innovation to returns that is correlated with the innovation to the predictor variable,

thereby delivering a more powerful test. When ρxy = 0, T inf remains asymptotically efficient as

incorporation of the redundant regressor εxt has no effect in large samples.

3.2 A Feasible Test Using a Proxy Measure for εxt

Given that εxt is unobservable, one might ask if it is possible to obtain a proxy measure for

εxt? In fact, this testing problem falls within the general control variable approach outlined

in Elliott (2011). Here, (1) is augmented by an additional regressor used as a proxy for the

current period innovation driving the predictor, εxt; so we may consider (5) as this augmented

regression with zxt the proxy regressor. There are a number of ways in which this approach
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can be implemented, including the Bonferroni-based method advocated in Campbell and Yogo

(2006) which as discussed in section 1 is based on a sequence of such augmented regressions.

Here we consider an alternative approach based on a single regression including a covariate zxt in

(5) acting as a direct proxy for εxt in (4). We will also primarily focus our discussion on the case

of Assumption S where xt is strongly persistent, as this is the most problematic case where the

standard t-statistic based on OLS estimation of (1), which we denote by T , has a non-pivotal

limiting distribution. An obvious approach to obtaining a proxy for εxt is to assume a particular

value for the local-to-unity parameter c, say c̄; we would then construct zxt = xt− (1− c̄T−1)xt−1

(assuming αx = 0 for simplicity). If it happened to be the case that c̄ = c, then zxt = εxt and

we obtain the asymptotically standard normal and efficient test, T inf . However, when c̄ 6= c the

critical values for this test will depend on both ρxy and c, and it will no longer be an efficient test,

with power being a (decreasing) function of the distance |c− c̄|. This clearly poses a problem in

implementation as c cannot be consistently estimated.

An obvious proxy for εxt is the OLS estimate, ε̂xt say, obtained from an OLS regression of ∆xt

on a constant and xt−1. However, setting zxt = ε̂xt in (5) runs into the problem that zxt is exact

orthogonal to the predictive regressor xt−1. The estimate of β from such a fitted model is then

numerically identical to that which would be obtained if zxt was omitted from (5). Moreover,

the corresponding statistic is approximately 1/
√

1− ρ2
xy times the simple t-statistic, T , and so

the inference drawn from such a test would essentially be identical to that from T , hence using

the proxy regressor ε̂xt delivers no benefit whatsoever.

An alternative method for obtaining a proxy for εxt, which takes account of a strongly per-

sistent autoregressive structure in estimating the intercept term αx, is to employ a quasi-GLS

estimate of αx obtained from the quasi-differenced OLS regression of (x1, x2−φ̄x1, ..., xT−φ̄xT−1)

on (1, 1− φ̄, ..., 1− φ̄) where φ̄ := 1− c̄/T with c̄ = 7; see Elliott et al. (1996) for further details.

We denote this estimator α̃x. We would then estimate the OLS regression

∆xt = φ(xt−1 − α̃x) + ηt (6)

and, denoting the estimate of φ by φ̃, construct the residuals ε̃xt := ∆xt − φ̃(xt−1 − α̃x). Then

we consider setting zxt = ε̃xt in (5). In contradistinction to the OLS-based proxy regressor ε̂xt,

the GLS-based proxy regressor ε̃xt is not orthogonal to xt−1. This lack of orthogonality raises

the potential for ε̃xt to act as a useful proxy for εxt in the strongly persistent case. We therefore

construct the t-statistic associated with the OLS estimate of β in the regression

yt = α + βxt−1 + δε̃xt + vt (7)

and denote this t-statistic as T ∗ in what follows. As we shall establish in section 3.3, the limiting

null distribution of T ∗ depends on both ρxy and c in the case where xt is strongly persistent

(Assumption S), although this issue notwithstanding, we might anticipate that this procedure
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could deliver decent power performance due to the inclusion of a proxy for εxt. Under Assumption

W, the asymptotic distribution of ε̃xt, and therefore that of T ∗, will depend on the distribution

of s1, so this statistic is appropriate only under Assumption S.

3.3 Asymptotic Distribution of T ∗

In Theorem 1 we now report the asymptotic distribution of the T ∗ statistic under both the null

and local alternatives under H1,S. A proof of Theorem 1 is provided in the appendix.

Theorem 1. Let yt and xt be generated according to the model in (1) -(2) under the conditions

stated in Section 2 and let Assumption S hold. Then, as T →∞, under H1,S:

T ∗ ⇒ gσx
σy

√∫ 1

0
W̄1c(r)2dr√
1− ρ2

xy

+

∫ 1

0
W̄1c(r)dW2(r)√∫ 1

0
W̄1c(r)2dr

+
ρxy

√∫ 1

0
W̄1c(r)2dr

∫ 1

0
W1c(r)dW1(r)√

1− ρ2
xy

∫ 1

0
W1c(r)2dr

=: S∗(gσx/σy, ρxy, c)

where W1(r) and W2(r) are independent standard Brownian Motions, W̄1c(r) := W1c(r) −∫ 1

0
W1c(s)ds with W1c(r) :=

∫ r
0
e−(r−s)cdW1(s).

Remark 3. The result in Theorem 1 highlights that the offset seen in the limiting distribution

under the local alternative, H1,S, given by the first term in the expression for S∗(gσx/σy, ρxy, c),

is a function of the deterministic offset term gσx/σy, comprised of the Pitman drift, g, and the

signal-to-noise ratio associated with the predictor, σx/σy, weighted by a stochastic offset term.

Consequently, the test’s asymptotic local power is higher, other things being equal, the larger the

Pitman drift, and the larger the amount of variability in the predictor, relative to the error term

in the predictive regression in (1). Under the null hypothesis, H0, the asymptotic distribution of

the statistic is non-standard and depends on both ρxy and c. �

We do not present the limiting distribution for T ∗ under H1,W because, as noted above, it

depends on the distribution of s1. The test procedure we will subsequently develop is such that

it never selects T ∗ in large samples under Assumption W and, hence, the limit in that case is

not relevant.

3.4 Asymptotic Critical Values for T ∗

Considering the case of strong dependence in Theorem 1 above, under H0, relevant critical

values for the test based on T ∗ will depend on the unknown nuisance parameters ρxy and c.

At a practical level, and as we will show below, ρxy can be consistently estimated and so this

dependence is easily dealt with (at least in large samples). The dependence on c, however, cannot
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be dealt with as easily because c, unlike ρxy, is not consistently estimable. We therefore adopt

a scheme for simulating critical values that will, by design, yield asymptotically conservative

tests. HLT propose such a method for the statistics they consider, and here we outline a similar

approach for the T ∗ statistic and its null limit distribution S∗(0, ρxy, c). For expository purposes

we will focus attention here on upper tail critical values relevant for upper tailed tests, as this is

the case of most practical relevance, but the same approach could be used in an obvious way for

lower-tailed and two-tailed tests. In outlining our final preferred hybrid procedures in section 5

we will detail how to perform both upper-tailed and lower-tailed tests, and two-tailed tests.

The steps to obtaining the conservative critical values are as follows:

1. For a chosen value of ρxy, simulate the null distribution S∗(0, ρxy, c) for different c across

an interval c ∈ [0, cmax].

2. At each value of c, compute the π-level upper-tail critical value, cv∗π(ρxy, c) say.

3. Set the π-level critical value for T ∗ equal to cv∗π(ρxy) := maxc∈[0,cmax] cv
∗
π(ρxy, c).

Using cv∗π(ρxy) will yield a correct π-level sized test when c = arg maxc∈[0,cmax] cv
∗
π(ρxy, c),

and give a conservatively sized test for other values of c. We simulated critical values in this

manner, approximating the Brownian motion processes in the limiting functional from Theorem

1 using IIDN(0, 1) random variates, and with the integrals approximated by normalised sums of

1,000 steps, with 20,000 replications (these values are used throughout our asymptotic analyses).

This was carried out for the conventional significance levels π ∈ [0.1, 0.05, 0.025, 0.01] for ρxy ∈
[−0.95,−0.925,−0.90, ..., 0], with the setting cmax = 25 and the grid of c values being c ∈
[0, 1, 2, ..., 25]. For these values of ρxy, arg maxc∈[0,cmax] cv

∗
π(ρxy, c) is obtained for c much smaller

than cmax; for example, with ρxy = −0.95, it is obtained at c = 0 for each value of π.

To automate selection of an appropriate critical value for a given value of ρxy, we calculated

a response surface by regressing cv∗π(z) on F (z) := [1, z, z2, ..., z9] with z = ρxy for the 38 data

points corresponding to the grid of values for ρxy.
2 The response surface critical value is the

fitted value from this regression, and the coefficient estimates are given in Table 1. In practice,

the response surface critical values can be calculated by substituting the unknown correlation

parameter ρxy with a consistent estimate. To that end, as in HLT, we suggest using the estimator

ρ̂xy :=

∑T
t=2 ε̂xtε̂yt√∑T

t=2 ε̂
2
xt

∑T
t=2 ε̂

2
yt

(8)

where ε̂yt are the OLS residuals from regressing yt on a constant and xt−1, and where it is

recalled from section 3.2 that ε̂xt denote the OLS residuals from regressing ∆xt on a constant

2The response surface functional form F (z) was adopted after considerable experimentation and is similar to
that employed in HLT, but with the addition of a ρ9xy term and a finer grid of ρxy values. The response surface
was found to work very well, with the regression R2 being in excess of 0.999.
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and xt−1. It is straightforward to show that ρ̂xy is a consistent estimator of ρxy under either

Assumption S or Assumption W. In what follows, we denote tests based on comparison of T ∗

with an asymptotically conservative critical value by T ∗con.

3.5 Alternative Feasible Tests

One alternative feasible test is the standard t-statistic T . Under Assumption W, it is straight-

forward to show that T has a standard normal limiting null distribution for any value of ρxy,

and thus has the potential for nuisance parameter free inference in this world. With respect to

the DGP in (4), T is based on a correctly specified regression when ρxy = 0, but when ρxy 6= 0,

the regression omits a relevant regressor; while this does not affect the limiting null distribution,

T will be inefficient relative to the infeasible test if ρxy 6= 0. However, among feasible tests,

T is asymptotically optimal (under Gaussianity) for all ρxy (see Jansson and Moreira, 2006,

p.704), hence we would wish to apply this test under Assumption W, as is done in HLT’s hybrid

procedure. Theorem 2 of HLT shows that under Assumption W, as T →∞, T ⇒ N(g, 1) under

H1,W . Under Assumption S, T has a standard normal limit null distribution provided ρxy = 0,

in which case it is also efficient; whenever ρxy 6= 0, however, its limit null distribution depends

on ρxy and c.

A second feasible statistic proposed by HLT is a variant of the standard t-statistic, appropriate

in the case of strongly persistent xt, taking the form of the t-statistic associated with the OLS

estimate of β in the regression

(yt − α̂y) = β(xt−1 − α̃x) + vt (9)

where α̂y := (T−1)−1
∑T

t=2 yt. We denote this statistic as T ′. Under Assumption W, the limiting

null distribution of T ′ will depend on the (unknown) distribution of s1 (as with T ∗), hence the

statistic is again only designed for use in the strongly persistent world (in contrast to T ). Under

Assumption S, it follows from Theorem 1 of HLT that

T ⇒ gσx
σy

√∫ 1

0
W̄1c(r)2dr +

∫ 1

0
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}√∫ 1

0
W̄1c(r)2dr

=: S(gσx/σy, ρxy, c)

T ′ ⇒ gσx
σy

∫ 1

0
W̄1c(r)

2dr√∫ 1

0
W1c(r)2dr

+

∫ 1

0
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}√∫ 1

0
W1c(r)2dr

=: S ′(gσx/σy, ρxy, c).

In what follows, we denote tests based on comparison of T and T ′ with asymptotically conserva-

tive critical values by T con and T ′con respectively (response surfaces for the conservative critical

values are provided in HLT).
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3.6 Asymptotic Local Power Comparisons Under Strong Persistence

Under Assumption S, we can use the limiting representations given in Theorem 1 to compare

the asymptotic local powers of tests based on the T , T ′ and T ∗ statistics for a range of values

of the relevant nuisance parameters on which these depend, ρxy and c.3 We simulate S(g, ρxy, c),

S ′(gσx/σy, ρxy, c) and S∗(gσx/σy, ρxy, c) and compare these to the relevant conservative critical

values. In what follows we set π = 0.05 and conduct upper tail tests. For a given value of ρxy and

c we compute asymptotic powers across g ≥ 0 (g = 0 representing asymptotic size). We consider

ρxy ∈ [−0.95,−0.7,−0.5,−0.1] and c ∈ [0, 1.25, 2.5, 5, 10, 25, 50, 100]. For positive values of ρxy

we find a result similar to HLT in that T con becomes the best performing test as ρxy increases; in

the hybrid procedure that we later propose we follow HLT and make use of T con for ρ̂xy > −0.1,

hence here our focus is on negative values of ρxy. Note that this is also the reason why our

response surfaces for T ∗con outlined above were based only on non-positive values of ρxy.

The results for ρxy = −0.95 are given in Figure 1. For c = 0 we see that T ∗con is more powerful

than T con and T ′con, substantially so with respect to T ′con. This remains the case for c = 1.25

and c = 2.5; we observe the power advantage over T con increasing for these values of c, although

the power advantage of T ∗con relative to T ′con is diminishing as c increases. Once c = 5 or greater,

T ∗con is only marginally more powerful than T ′con, but both are considerably more powerful than

T con. In Figures 2-4, the analysis is repeated with ρxy = −0.7, ρxy = −0.5 and ρxy = −0.1.

Again T ∗con is more powerful than T ′con for the lower values of c and they appear to be very

similar for the higher values of c. Comparing T ∗con with T con, we observe similar patterns of

relative power behaviour in Figures 2-3 as were seen in Figure 1, with T ∗con outperforming T con,

increasingly so as c increases. However, as ρxy becomes less negative, the differences in power

between T ∗con and T con become less marked. Indeed, in Figure 4 where ρxy = −0.1, the powers

of T ∗con and T con become almost indistinguishable across almost all c.

4 A Weighted Test Under Strong Persistence

Given the asymptotic power simulation results reported above, it is interesting to consider

whether we might be able to combine T ∗ and T ′ (the two best performing tests) in a way

to possibly improve power over and above that displayed by T ∗. For the purposes of illustration,

our arguments will concentrate on the environment of Figure 1(a), where ρxy = −0.95 and c = 0

where, as noted above, T ∗ is clearly the more powerful test. Now, under H0 the correlation

between T ∗ and T ′ is 0.90. A consequence of this high level of correlation is that the rejections

obtained from T ′ under H1,S are close to being a subset of those obtained from T ∗. This implies

that any (linear) combination of T ∗ and T ′ of the form w∗fT ∗ + w′fT ′, where w∗f and w′f are

3Recall from Remark 1 that these limiting distributions do not depend on any nuisance parameters arising
from conditional heteroskedasticity in the innovations of the form given in Assumption A.1 of Campbell and Yogo
(2006), and so the analysis which follows remains valid in the presence of conditional heteroskedasticity.
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some fixed positive weights standardised such that w∗f + w′f = 1, cannot lead to improved levels

of power above that of T ∗ because the correlation between the components w∗fT ∗and w′fT ′ is

identical to that between T ∗ and T ′. We can, however, consider a randomised weighting scheme,

with the random weights w∗r and w′r, say, determined from the available data, and with w∗r and w′r

having support on [0, 1] and w∗r +w′r = 1. The aim is for w∗rT ∗ and w′rT ′ to have lower correlation

than holds between T ∗ and T ′, although it is crucial that the two components remain positively

correlated. In this way, each component can potentially make a greater individual contribution

to overall power. In what follows we will use xt to construct the weights because, unlike yt, its

behaviour does not depend on whether H0 or H1,S is true.

The distribution of any data dependent weights based on xt will, of course, depend on the

value of c. The weight scheme we consider here is based on the p-value, denoted pNB, associated

with the familiar local-GLS demeaned normalised bias unit root test statistic of Elliott et al.

(1996), i.e. NB := T φ̃ in the context of (6). Well known results show that, under Assumption

S, NB ⇒ (
∫ 1

0
W1c(r)dW1c(r))/(

∫ 1

0
W1c(r)

2dr) =: SNB(c), and denoting the density function of

SNB(0) by f(x), we can write pNB ⇒
∫ SNB(c)

−∞ f(x)dx =: pNB(SNB(c)). The attractive feature

of using pNB in the weight scheme is that when c = 0, pNB ⇒ pNB(SNB(0)) = U(0, 1). Hence

in the c = 0 case where most difference is observed between the power profiles of T ∗ and T ′,
the weights can be based on a uniformly distributed variate on (0, 1). As c becomes large, the

power gains of T ∗ over T ′ diminish and consequently the role of the weight function becomes

less critical; use of a weight scheme based on pNB is again appealing here, because as c → ∞,

pNB ⇒ 0.

Following such considerations, the weights we consider are defined as w∗r := (pNB)λ and

w′r := 1− (pNB)λ, where the positive constant λ is introduced to permit an additional degree of

calibration in the weight specification. We therefore consider the weighted statistic

T w := w∗rT ∗ + w′rT ′.

With this weighting scheme, the asymptotic correlation between w∗rT ∗ and w′rT ′ remains positive

across all values of ρxy and c we consider (and for all λ). The weighted statistic T w is thus

comprised of a weighted average of T ∗ and T ′, with the weighted average of the tests having

most effect when c = 0 and reducing towards simply T ′ as c becomes large.

In Theorem 2 we next state the limiting distribution of T w under Assumption S. The stated

result follows straightforwardly from the result given in Theorem 1 and the limiting distribution

for T ′ given in section 3.5.

Theorem 2. Under the conditions of Theorem 1,

T w ⇒ {pNB(SNB(c)}λS∗(gσx/σy, ρxy, c) + [1− {pNB(SNB(c)}λ]S ′(gσx/σy, ρxy, c)

=: SwNB(gσx/σy, ρxy, c, λ).
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In order to implement T w, we obtain a response surface for pNB based on simulated limit

distributions. We simulated the limit of NB under c = 0, i.e. SNB(0), and then calculated the

numerical approximation to pNB(x) for x ∈ [−20,−19.95,−19.9, ..., 4]. To automate selection of

an appropriate asymptotic p-value for a given value of x, we once again calculated a response

surface by regressing pNB(x) on G(z) := [1, z0.25, z0.5, z, z2, z3] with z = 1/(1 + e−x) (481 data

points), the logistic function z being a natural choice given that we are approximating a cumula-

tive density function.4 The response surface p-value is the fitted value from this regression, and

the response surface coefficient estimates are provided in Table 2, denoted pNB(x). In practice,

the response surface p-value can be calculated using x = NB.

4.1 Asymptotic Critical Values and Selection of λ

Calculation of conservative asymptotic critical values for the T w statistic is carried out in exactly

the same manner as for the T ∗ statistic in section 3.4, but based on SwNB(0, ρxy, c, λ). For a given

value of λ, we obtain the conservative critical value cvwπ (ρxy, λ). At the same time, we evaluate

the local alternative distribution SwNB(gσx/σy, ρxy, c, λ) with σx = σy = 1 for g = 7.5 over

c ∈ [0, 1, 2, ..., 25] and compare this with cvwπ (ρxy, λ). We choose λ to maximise the average

power across c, where the candidate values of λ we consider are λ ∈ [0.05, 0.1, 0.15, ..., 2.5]. We

denote the power-maximizing value of λ as λmax(ρxy) and the corresponding conservative critical

value as cvwπ (ρxy). As with cv∗π(ρxy) in the context of T ∗con, we found cvwπ (ρxy) is obtained with

c = 0 when ρxy = −0.95.

To select the appropriate value of λ and conservative critical value for a given value of ρxy,

we calculated responses surfaces by regressing λmax(ρxy) and cvwπ (ρxy), respectively once again

on F (z) = [1, z, z2, ..., z9] with z = ρxy for the 38 data points in our grid of values for ρxy. The

response surface coefficient estimates for the ρxy-dependent values of λ and associated critical

values for π ∈ [0.10, 0.05, 0.025, 0.01] can be found in Table 3 (the remarks made in footnote 2

apply here also). We will refer to this testing procedure in what follows as T wcon.

4.2 Asymptotic Local Power Comparisons of T ∗, T ′ and T w Under

Strong Persistence

Figure 1(a) also presents simulations of the asymptotic powers of the T wcon procedure for c = 0,

again using upper tail tests for π = 0.05, eliciting a direct comparison with T ∗con and T ′con.

We see that T wcon (calculated using λmax(ρxy) and compared to its conservative critical value

cvwπ (ρxy)) is substantially more powerful than T ∗con. So we obtain a situation where combining

4The response surface functional form G(z) was adopted after considerable experimentation and differs from
that used for F (z) in section 3.4 due to the use of the logistic function and p-values, with relatively few terms
required for a good fit. The response surface was found to work very well, with the regression R2 again exceeding
0.999.

13



the tests produces useful gains in the sense that the combined procedure has higher power than

both of the individual constituent tests. This is made possible because the components of T w,

i.e. (pNB)λT ∗ and {1− (pNB)λ}T ′, have asymptotic correlation 0.43 under H0, which is positive

but much lower than that of T ∗ and T ′ (0.90). It is also interesting to note that the critical

value of T wcon here is 1.96, which is close to the critical value of T ′con (1.94) and substantially

smaller than that of T ∗con (5.40).

For the other values of c in Figure 1, we see T wcon still dominating T ∗con (and hence T ′con) until

c = 10. At this point its power essentially coincides with that of T ′con since pNB is now generally

close to zero. For ρxy = −0.7 and ρxy = −0.5 in Figures 2 and 3, respectively, we see that the

power levels of T wcon are near to those of T ∗con, even for small values of c where T ∗con is more

powerful than T ′con. Hence it is not always the case that the weighted combination improves

upon the better of T ∗con and T ′con, but we do find that T wcon is never meaningfully outperformed

by the better of the two individual tests. When ρxy = −0.1 in Figure 4, T wcon has a power profile

that essentially coincides with T ∗con.

We investigated the effects of switching the weights in T w such that w∗r = 1 − (pNB)λ and

w′r = (pNB)λ in the case of ρxy = −0.95 and c = 0 (i.e. the settings of Figure 1(a)). The

components of this variant of T w, {1−(pNB)λ}T ∗ and (pNB)λT ′, now have asymptotic correlation

−0.38 under H0 and the critical value of T wcon is 5.66, somewhat larger than that of T ∗con (5.40).

The powers of T wcon were found to be uniformly below those of T ′con, let alone T ∗con, which serves

to illustrate the importance of the components of T w being positively correlated.

5 A Hybrid Procedure allowing for Strong or Weak Per-

sistence

Although the main focus of our analysis thus far has been on the case of strong persistence, we

now outline our proposed hybrid testing procedure which closely mirrors the hybrid testing

procedure, denoted Thyb in what follows, outlined in section 3.3 of HLT. This procedure is

designed to capitalise on the optimality property of the conventional t-test (where T is compared

to a standard normal critical value) under weak persistence (Assumption W), and exploit the

relative local power advantages of T wcon and Tcon observed from the analysis in section 4.2 for

different values of ρxy under strong persistence (Assumption S) . This will entail the use of two

switching mechanisms. The first involves a switching approach similar to that used in EMW,

whereby the standard test is selected when evidence of a weakly persistent predictor is present. In

the absence of such evidence, a secondary switching mechanism is needed to determine whether

T wcon or Tcon should be applied, this time on the basis of a consistent estimate of ρxy; in particular,

for a strongly persistent predictor we would want to make use of T wcon for more negative values

of ρxy, and Tcon for small negative and positive ρxy.
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The hybrid testing procedure we outline below can therefore be seen to parallel the structure

of the Thyb procedure of HLT, with the statistic T ′ in HLT’s procedure replaced by the weighted

statistic T w, developed in section 4 above, in the light of its superior power performance docu-

mented in section 4.2. Denoting such a procedure by T whyb, our proposed hybrid testing approach

proceeds as follows:

1. If NBOLS < −4T 1/2 perform TN , where TN denotes the test which compares T with a standard

normal critical value, and where NBOLS := T φ̂ is the standard OLS demeaned Dickey-Fuller

normalised bias unit root statistic based on φ̂, the OLS slope estimate obtained from regressing

∆xt on a constant and xt−1.

2. Otherwise:

(a) For upper-tail tests against the alternative β > 0,

if ρ̂xy > −0.1 perform Tcon (T with a conservative critical value)

if ρ̂xy < −0.1 perform T wcon (T w with λmax(ρ̂xy) and conservative critical value cvwπ (ρ̂xy))

(b) For lower-tail tests against the alternative β < 0,

if ρ̂xy < 0.1 perform Tcon (T with a conservative critical value)

if ρ̂xy > 0.1 perform T wcon (T w with λmax(−ρ̂xy) and conservative critical value − cvwπ (−ρ̂xy))

Remark 4. Step 1 coincides with Step 1 of the corresponding hybrid testing procedure, Thyb,
from HLT. As in HLT, the normalised bias statistic is used to distinguish between the strongly

and weakly persistent cases. Under Assumption S, NBOLS = Op(1), while under Assumption

W, NBOLS diverges to minus infinity. For the reasons outlined on p.205 of HLT we implement

NBOLS with a sample size dependent critical value of −4T 1/2. Under Assumption W, NBOLS

diverges to infinity at a rate faster than T 1/2, hence TN is always selected asymptotically under

weak persistence because Pr(NBOLS < −4T 1/2)→ 1 as the sample size diverges. �

Remark 5. Under strong persistence and the values of ρxy we have considered in our asymptotic

power analysis in section 4.2, the asymptotic behaviour of the hybrid test procedure Thyb of HLT

coincides with that of T ′con, while the asymptotic behaviour of the new procedure T whyb coincides

with that of T wcon. As such, T whyb will have considerably higher asymptotic power than Thyb in this

environment when c is small. �

Remark 6. Although we have outlined our hybrid testing procedure in terms of upper- and

lower-tail one-sided tests for predictability, in principle these could also be used to perform two

sided tests for predictability. In particular, supposing the upper- and lower-tail versions of the
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test were both run at the (asymptotic) π/2% significance levels, then combining inference from

the two individual one sided tests for predictability would lead to an overall two sided test for

predictability with asymptotic size of no greater than π%. �

6 Higher-order Predictor Serial Correlation

We next consider how our procedures should be adapted to take account of possible additional

serial correlation in the process for the predictor series xt. To that end, we generalise the AR(1)

formulation placed on st in (2) to the AR(p+ 1) formulation,

st = φst−1 + νt, ψ(L)νt = εxt (10)

where ψ(L) := 1 +
∑p

j=1 ψjL
j is a finite-order stationary AR(p) polynomial such that all of

the roots of ψ(z) = 0 lie outside the unit circle, |z| = 1. The assumption of a finite-order

autoregression for νt, and hence st, appears to be standard in both the control variable and

residual-augmented strands of the predictive regression literature; see, for example, Campbell

and Yogo (2006), Elliott (2011), and Demetrescu and Rodrigues (2020), all of whom assume

finite-order autoregressions. As argued in Demetrescu and Rodrigues (2020,p.431), in practice

we might view this as an approximation to a more general linear process for νt, although formally

this would require establishing a suitable rate at which p→∞ as T →∞. We conjecture that the

conventional rate conditions on p associated with unit root test statistics given in, for example,

Chang and Park (2002), should suffice for this purpose.

To accommodate the additional stationary serial correlation introduced through (10), the

following modifications to the procedures outlined previously need to be made. First, NBOLS

and NB need to be based on the corresponding estimated augmented Dickey-Fuller regressions

∆xt = µ̂+ φ̂xt−1 +

p∑
i=1

γ̂i∆xt−i + ε̂xt (11)

and

∆xt = φ̃(xt−1 − α̃x) +

p∑
i=1

γ̃i∆xt−i + ε̃xt (12)

respectively, with the statistics re-defined as NBOLS := T φ̂/(1−
∑p

i=1 γ̂i) and NB := T φ̃/(1−∑p
i=1 γ̃i). Each of these ADF regressions now includes p lagged difference terms. In practice

p can be chosen by any consistent lag selection method; the numerical simulations reported in

section 7 use the MBIC rule of Ng and Perron (2001). Next, the residual ε̂xt from (11) is used to

calculate ρ̂xy in (8), and finally, the residual ε̃xt from (12) enters the regression equation (7) for

calculating T ∗. With these modifications implemented, the hybrid procedure outlined in section

5 can continue to be implemented using the same set of conservative critical values.
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7 Finite Sample Simulations

In this section we evaluate the finite sample size and power properties of the T whyb procedure

developed in section 5. We generate data using a sample size T = 200 from the model (1)-(3)

with (e1t, e2t)
′ ∼ IIDN (0, I2), σx = σy = 1 and drawing s1 as a standard normal variate.

We set αy = αx = 0 as the tests we calculate are invariant to these constant terms. The

values of ρxy, c and g we consider are the same as in the asymptotic analysis of Figures 1-4

to facilitate a comparison between finite sample and asymptotic performance. Upper tail 0.05-

level tests are again conducted, with the results based on 20,000 replications. Throughout, we

estimate p using the MBIC rule of Ng and Perron (2001) with a maximum permitted lag order of

pmax = b12(T/100)1/4c (b.c denoting the integer part) together with the modification suggested

by Perron and Qu (2007).

We first consider simulations of the finite sample size of T whyb, i.e. setting g = 0, allowing for

additional serial correlation in the process for xt through the specification

st = φst−1 + νt (13)

νt = ϕνt−1 + e1t − θe1,t−1 (14)

for various values of ϕ, θ ∈ {−0.5, 0, 0.5}. The simulation DGP for νt in (14) allows for MA

behaviour whenever θ 6= 0. We recall that this is not formally allowed for in the DGP specified

for νt in (10), but it is still of interest to consider MA errors in the simulations to investigate

how well our proposed tests work in such cases, not least given our conjecture that the tests will

remain valid for MA errors under a suitable rate condition on p.

Table 4 reports the results across the different settings for c and ρxy. We observe size to be

generally well controlled and close to the nominal level, with the serial correlation parameter

settings for φ and θ having relatively little bearing on the rejection frequency under the null.

Some modest over-size is apparent for the more negative values of ρxy when c is zero or small,

but this diminishes as c increases and as the model innovations become less correlated.

That the over-size is most apparent around c = 0 and ρxy = −0.95 is a consequence of (i)

in this region the T whyb procedure will be almost always be performing T wcon and (ii) as noted

above cvwπ (ρxy) is obtained with c = 0 (i.e. T wcon is asymptotically correctly sized for c = 0 and

conservative elsewhere). Consequently, when finite sample over-size of T whyb occurs via T wcon it

would be expected to be most prominent when c = 0. Of course, this does not resolve why finite

sample over-size (as opposed to near correct- or under-size) should be manifest in the first place

and we have no ready explanation for this. What we can say is that the over-size diminishes

reasonably quickly as the sample size increases and the asymptotics start to assert themselves.

For example, the leading entry of Table 4 (c = 0, ρxy = −0.95) shows a size of 0.075 when

T = 200. For T = 400 and T = 800 the corresponding sizes are 0.060 and 0.056, respectively.
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We next evaluate the finite sample power of T whyb, and do so through comparison with the

Thyb procedure of HLT and the test procedure proposed by EMW, which we denote by EMW .

As discussed in section 1, the EMW test procedure is the most natural extant comparator for

the T whyb test, given that both exclude explosive predictors (recall that HLT’s Thyb procedure

allows for a small degree of local explosivity). Here we set ϕ = θ = 0, but do not assume

knowledge of this and continue to determine p using the method of the previous section. To

implement the EMW procedure, we adopt the switching function specified on p.799 of EMW

so that the standard t-test, TN , is applied if an estimate of the local offset c is at least 130,

while their weighted average power criterion-based test is applied otherwise, using the sample

statistics and long run correlation estimator specified on p.697 of Jansson and Moreira (2006).

To estimate c we follow HLT and use −T φ̂ from (11), and when the standard t-test is used in

EMW , we follow EMW’s approach of setting the critical value to the usual value of 1.645 for

non-negative estimates of the long run correlation parameter, but to set it to 1.7 for negative

estimates. Long run variances are calculated using a Bartlett kernel with lag truncation
⌊
T 1/3

⌋
.

The T hyb procedure was implemented as in HLT, i.e. the same procedure as T whyb in section 5

above, but with T ′con replacing T wcon.

We first consider the comparison between T whyb and T hyb. Figure 5 gives the results for

ρxy = −0.95. In Figure 5(a) where c = 0, we see that T whyb and T hyb have approximately

the same size, slightly above the nominal level (cf. Table 4 for T whyb). It is clear however that

T whyb is substantially more powerful than T hyb. The relevant asymptotic counterpart here is a

comparison between T wcon and T ′con in Figure 1(a) and the power differences there appear even

more significant, suggesting that we would see further power gains of T whyb over T hyb for finite

sample sizes larger than T = 200. Elsewhere in Figure 5 we see that T whyb continues to be more

powerful than T hyb for values of c up to c = 5; thereafter T whyb and T hyb have identical power

profiles. Notice again that the slight over-size associated with the tests is less apparent for the

larger values of c. Figures 6-8 show the results for the other values of ρxy. For small c we

continue to see T whyb outperform T hyb, while they behave similarly elsewhere, again in line with

the asymptotic comparisons of T wcon and T ′con in Figures 2-4. Clearly then, there are potential

benefits to be gained in practice by using the procedure T whyb instead of T hyb, since it performs

either as well as or better than T whyb, offering power gains when the predictor variable is highly

persistent, without worry of compromise when less persistent predictors are employed.

Finally, comparing our T whyb procedure to EMW , we find that, across the ρxy values we

consider, the tests have very similar levels of power for the smaller values of c, while for larger c,

T whyb clearly emerges as the more powerful procedure, with increasing gains over EMW seen as the

magnitude of c increases. This feature is most apparent for the most negative values of ρxy, where

the power gains of T whyb relative to EMW are apparent even for c = 2.5. Overall, in addition

to offering a generally superior power profile to T hyb, the T whyb procedure can achieve substantial

power advantages over the procedure of EMW for a wide range of ρxy and c combinations, while
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the reverse is never true.

8 Conclusions

In this paper we have proposed a new hybrid procedure designed to test for predictability in

returns which is valid in cases where the predictor is either weakly or strongly persistent. Our

proposed hybrid test is a complement to the closely related hybrid testing procedure of HLT. In

particular, the simulation results presented in HLT highlight that their hybrid test outperforms

other extant predictability tests in most settings, but is outperformed by the test procedure of

EMW in the case of strongly persistent predictors with the persistence parameter c either zero

or small. The comparison is, however, not on a level playing field because EMW rule out the

possibility of mild explosivity (c < 0) in the predictor, while HLT allow for some mild explosivity.

By restricting the predictor to be non-explosive, we are able to consider using a control variable

based test (in the spirit of Elliott, 2011), whereby the predictive regression is augmented by a

GLS-based proxy for the innovation driving the predictor. We have shown that a feasible conser-

vative implementation of this augmented test improves upon the asymptotic local power of the

feasible test used in HLT, which is based on using a quasi-GLS demeaned version of the predictor

(but no covariate), in precisely the region of the parameter space where the HLT procedure is less

powerful than the EMW test. Moreover, we show that a test based on a weighted average of the

augmented statistic and the quasi-GLS statistic from HLT delivers notable further improvements

in asymptotic local power in this region. Our hybrid test then replaces the quasi-GLS test used

in the hybrid procedure in HLT with this weighted test. Like the hybrid tests in both EMW

and HLT our proposed hybrid test procedure reverts to a conventional regression t-test on the

predictor (comparing to standard normal critical values) if the data suggest that the predictor

is weakly persistent. Monte Carlo simulations presented in this paper demonstrate that our pro-

posed hybrid procedure is overall more powerful than both the EMW and HLT test procedures

across a wide spectrum of values of the persistence level in the predictive regressor (including

where c is zero or small) and the correlation coefficient between the innovations in the model.

Where explosive predictors can be ruled out, we therefore recommend the procedure developed

in this paper. Otherwise we recommend using the corresponding procedure we developed in

HLT.

A Appendix

Proof of Theorem 1: In what follows we may set αy = αx = 0 without loss of generality, by

virtue of the exact invariance of T ∗ to these parameters. We adopt the generic notation of (5)

and (6), and denote OLS estimators of the parameter β and δ by β̂ and δ̂, respectively, with

sample means denoted by ȳ = (T − 1)−1
∑T

t=2 yt and x̄−1 = (T − 1)−1
∑T

t=2 xt−1. Summations
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are taken over t = 2, ..., T , and integrals over [0, 1], unless otherwise stated.

We will make use the following weak convergence results:

T−1/2

bTrc∑
t=1

e1t ⇒ W1(r), T−1/2

bTrc∑
t=1

e2t ⇒ W2(r)

where [W1(r), W2(r)]′ is a bivariate standard Brownian Motion process. Then we can also write

T−1/2

bTrc∑
t=1

εxt ⇒ σxW1(r)

T−1/2

bTrc∑
t=1

εyt ⇒ σy

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

and, under Assumption S, T−1/2xbTrc ⇒ σxW1c(r) = σx
∫ r

0
e−(r−s)cdW1(s).

We will make use of the following easily established results: T−1
∑

(yt − ȳ)2 p→ σ2
y, α̃x =

x1 + op(1), T−1
∑
ε̃2xt

p→ σ2
x. Next,

T φ̃ ⇒
∫
W1c(r)dW1c(r)∫
W1c(r)2dr

= c+

∫
W1c(r)dW1(r)∫
W1c(r)2dr

:= SNB(c)

T−1
∑

(xt−1 − x̄−1)ε̃xt = T−1
∑

(xt−1 − x̄−1){∆xt − φ̃(xt−1 − x1)}+ op(1)

= T−1
∑

(xt−1 − x̄−1)∆xt − T φ̃T−2
∑

(xt−1 − x̄−1)xt−1 + op(1)

⇒ σ2
x

∫
W̄1c(r)dW1c(r)− σ2

xSNB(c)
∫
W̄1c(r)

2dr

T−1
∑

(xt−1 − x̄−1)yt ⇒ gσx
∫
W̄1c(r)

2dr + σxσy
∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

T−1
∑

ε̃xt(yt − ȳ) = T−1
∑

ε̃xt(gT
−1(xt−1 − x̄−1) + εyt − ε̄y)

= gT−2
∑

(xt−1 − x̄−1)ε̃xt + T−1
∑

ε̃xt(εyt − ε̄y)

= T−1
∑
{∆(xt − x1)− φ̃(xt−1 − x1)}(εyt − ε̄y) + op(1)

= T−1
∑

(εyt − ε̄y)∆xt + op(1)⇒ σxy
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T−1
∑

v̂2
t = T−1

∑
{(yt − ȳ)− β̂(xt−1 − x̄−1)− δ̂(ε̃xt − ε̃x)}2

= T−1
∑

(yt − ȳ)2 + β̂
2
T−1

∑
(xt−1 − x̄−1)2 + δ̂

2
T−1

∑
ε̃2xt

−2β̂T−1
∑

(yt − ȳ)(xt−1 − x̄−1)− 2δ̂T−1
∑

(yt − ȳ)ε̃xt + 2β̂δ̂T−1
∑

(xt−1 − x̄−1)ε̃xt

+op(1)

= T−1
∑

(yt − ȳ)2 + δ̂
2
T−1

∑
ε̃2xt − 2δ̂T−1

∑
(yt − ȳ)ε̃xt + op(1)

⇒ σ2
y + (σxy/σ

2
x)

2σ2
x − 2(σxy/σ

2
x)σxy = σ2

y(1− ρ2
xy)

using the fact that ε̃x = T−1
∑
ε̃xt = T−1

∑
∆(xt − x1) − T φ̃T−2

∑
(xt−1 − x1) + op(1) ⇒ 0.

Then,[
β̂

δ̂

]
=

[ ∑
(xt−1 − x̄−1)2

∑
(xt−1 − x̄−1)ε̃xt∑

(xt−1 − x̄−1)ε̃xt
∑
ε̃2xt

]−1 [ ∑
(xt−1 − x̄−1)yt∑
ε̃xt(yt − ȳ)

]
[
T β̂

δ̂

]
=

([
T−1 0

0 T−1

][ ∑
(xt−1 − x̄−1)2

∑
(xt−1 − x̄−1)ε̃xt∑

(xt−1 − x̄−1)ε̃xt
∑
ε̃2xt

][
T−1 0

0 1

])−1

.

[
T−1

∑
(xt−1 − x̄−1)yt

T−1
∑
ε̃xt(yt − ȳ)

]

=

[
T−2

∑
(xt−1 − x̄−1)2 T−1

∑
(xt−1 − x̄−1)ε̃xt

T−2
∑

(xt−1 − x̄−1)ε̃xt T−1
∑
ε̃2xt

]−1 [
T−1

∑
(xt−1 − x̄−1)yt

T−1
∑
ε̃xt(yt − ȳ)

]
(A.1)

⇒

[
σ2
x

∫
W̄1c(r)

2dr σ2
x

∫
W̄1c(r)dW1c(r)− σ2

xSNB(c)
∫
W̄1c(r)

2dr

0 σ2
x

]−1

.

[
gσ2

x

∫
W̄1c(r)

2dr + σxσy
∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

σxy

]

=

 1

σ2
x

∫
W̄1c(r)2dr

−
∫
W̄1c(r)dW1c(r)−SNB(c)

∫
W̄1c(r)2dr

σ2
x

∫
W̄1c(r)2dr

0 1/σ2
x


.

[
gσ2

x

∫
W̄1c(r)

2dr + σxσy
∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

σxy

]

=

 gσ2
x

∫
W̄1c(r)2dr+σxσy

∫
W̄1c(r)d{ρxyW1(r)+

√
1−ρ2xyW2(r)}

σ2
x

∫
W̄1c(r)2dr

− σxy
∫
W̄1c(r)dW1c(r)−SNB(c)

∫
W̄1c(r)2dr

σ2
x

∫
W̄1c(r)2dr

σxy/σ
2
x

 .
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The expression for T β̂ can be simplified as follows:

T β̂ ⇒ g +
σxσy

∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

σ2
x

∫
W̄1c(r)2dr

− σxy
∫
W̄1c(r)dW1c(r)− SNB(c)

∫
W̄1c(r)

2dr

σ2
x

∫
W̄1c(r)2dr

= g +
σxσy

∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

σ2
x

∫
W̄1c(r)2dr

− σxy
(∫

W̄1c(r)dW1c(r)

σ2
x

∫
W̄1c(r)2dr

− S
NB(c)

σ2
x

)
= g +

σxσy
√

1− ρ2
xy

∫
W̄1c(r)dW2(r)

σ2
x

∫
W̄1c(r)2dr

+
σxσyρxy

∫
W̄1c(r)dW1(r)

σ2
x

∫
W̄1c(r)2dr

−σxy
σ2
x

(
c+

∫
W̄1c(r)dW1(r)∫
W̄1c(r)2dr

− SNB(c)

)
= g +

σxσy
√

1− ρ2
xy

∫
W̄1c(r)dW2(r)

σ2
x

∫
W̄1c(r)2dr

− σxy
σ2
x

(
c− c−

∫
W1c(r)dW1(r)∫
W1c(r)2dr

)
= g +

σxσy
√

1− ρ2
xy

∫
W̄1c(r)dW2(r)

σ2
x

∫
W̄1c(r)2dr

+
σxy
∫
W1c(r)dW1(r)

σ2
x

∫
W1c(r)2dr

.

Hence, using m to denote element [1,1] of the inverse matrix in (A.1), we find

T ∗ =
T β̂√

T−1
∑
v̂2
t T

2m

⇒
g +

σxσy

√
1−ρ2xy

∫
W̄1c(r)dW2(r)

σ2
x

∫
W̄1c(r)2dr

+
σxy

∫
W1c(r)dW1(r)

σ2
x

∫
W1c(r)2dr√

σ2
y(1−ρ2xy)

σ2
x

∫
W̄1c(r)2dr

=

[
g +

σxσy
√

1− ρ2
xy

∫
W̄1c(r)dW2(r)

σ2
x

∫
W̄1c(r)2dr

+
σxy
∫
W1c(r)dW1(r)

σ2
x

∫
W1c(r)2dr

]√
σ2
x

∫
W̄1c(r)2dr

σ2
y(1− ρ2

xy)

=
gσx
σy

√∫
W̄1c(r)2dr√
1− ρ2

xy

+

∫
W̄1c(r)dW2(r)√∫

W̄1c(r)2dr
+
ρxy

√∫
W̄1c(r)2dr

∫
W1c(r)dW1(r)√

1− ρ2
xy

∫
W1c(r)2dr

.
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Table 1. Response surface coefficient estimates for T ∗
con

cv∗π(ρxy)
Regressor π = 0.1 π = 0.05 π = 0.025 π = 0.01

1 1.275 1.673 1.957 2.332
ρxy −1.833 0.442 −2.025 −1.980
ρ2xy −41.401 4.969 −57.589 −52.176
ρ3xy −466.409 3.326 −684.237 −624.069
ρ4xy −2655.171 −17.923 −3960.352 −3657.310
ρ5xy −8601.081 −15.799 −12872.743 −12091.819
ρ6xy −16495.430 57.865 −24624.370 −23603.705
ρ7xy −18541.439 53.300 −27527.328 −26985.531
ρ8xy −11286.255 −59.652 −16640.543 −16700.284
ρ9xy −2873.828 −62.108 −4205.605 −4321.007

Table 2. Response surface coefficient estimates for pNB

Regressor pNB(x)

1 0.0004
z0.25 0.2706
z0.5 0.6951
z −0.8366
z2 2.2851
z3 −1.4128
Note: z = 1/(1 + e−x)

Table 3. Response surface coefficient estimates for T wcon

λmax(ρxy) cv∗π(ρxy)
Regressor π = 0.1 π = 0.05 π = 0.025 π = 0.01 π = 0.1 π = 0.05 π = 0.025 π = 0.01

1 0.061 0.050 0.098 0.043 1.264 1.625 1.918 2.308
ρxy −3.724 0.088 0.601 −0.315 1.517 −0.955 −0.314 −0.506
ρ2xy 16.242 −23.567 −9.284 8.438 28.840 −14.187 10.874 −9.799
ρ3xy 479.214 −627.685 −161.781 187.413 223.885 −87.859 147.135 −97.115
ρ4xy 3418.236 −4773.695 −890.161 1811.938 985.886 −234.740 878.957 −501.689
ρ5xy 12052.607 −17736.573 −2701.112 7722.234 2578.918 −221.424 2875.649 −1483.912
ρ6xy 23830.004 −36158.566 −4747.985 16982.123 4081.238 224.125 5448.789 −2547.421
ρ7xy 26653.271 −41265.834 −4830.732 20165.939 3832.415 705.946 5947.498 −2476.120
ρ8xy 15696.413 −24739.360 −2667.365 12281.453 1964.964 596.176 3468.018 −1245.259
ρ9xy 3777.182 −6067.789 −623.772 3006.942 423.771 175.342 836.452 −246.514
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Table 4. Finite sample size of nominal 0.05-level T whyb tests, T = 200.

φ θ c = 0 c = 1.25 c = 2.5 c = 5 c = 10 c = 25 c = 50 c = 100

Panel A. ρxy = −0.95
0.0 0.0 0.075 0.067 0.065 0.061 0.052 0.038 0.056 0.057
0.0 0.5 0.072 0.063 0.058 0.050 0.040 0.035 0.047 0.053
0.0 −0.5 0.078 0.070 0.067 0.065 0.059 0.046 0.035 0.065
0.5 0.0 0.075 0.069 0.069 0.066 0.061 0.052 0.039 0.036
−0.5 0.0 0.076 0.066 0.062 0.055 0.045 0.031 0.049 0.050
0.5 −0.5 0.080 0.071 0.070 0.068 0.061 0.052 0.044 0.038
−0.5 0.5 0.077 0.061 0.051 0.041 0.032 0.030 0.043 0.050

Panel B. ρxy = −0.7
0.0 0.0 0.068 0.064 0.063 0.059 0.054 0.043 0.050 0.054
0.0 0.5 0.064 0.060 0.057 0.051 0.043 0.036 0.046 0.049
0.0 −0.5 0.070 0.066 0.064 0.062 0.058 0.052 0.042 0.060
0.5 0.0 0.068 0.064 0.063 0.062 0.058 0.054 0.046 0.040
−0.5 0.0 0.068 0.064 0.061 0.056 0.048 0.035 0.045 0.048
0.5 −0.5 0.072 0.066 0.065 0.063 0.058 0.053 0.049 0.043
−0.5 0.5 0.062 0.058 0.052 0.044 0.034 0.032 0.042 0.049

Panel C. ρxy = −0.5
0.0 0.0 0.061 0.060 0.059 0.057 0.055 0.047 0.048 0.052
0.0 0.5 0.059 0.058 0.056 0.051 0.046 0.038 0.045 0.049
0.0 −0.5 0.063 0.061 0.060 0.059 0.058 0.053 0.046 0.056
0.5 0.0 0.063 0.060 0.059 0.058 0.057 0.056 0.049 0.042
−0.5 0.0 0.062 0.060 0.059 0.056 0.050 0.039 0.044 0.048
0.5 −0.5 0.065 0.061 0.060 0.060 0.057 0.055 0.052 0.046
−0.5 0.5 0.060 0.057 0.054 0.046 0.039 0.034 0.043 0.049

Panel D. ρxy = −0.1
0.0 0.0 0.053 0.049 0.049 0.050 0.049 0.046 0.045 0.048
0.0 0.5 0.051 0.049 0.050 0.050 0.048 0.044 0.045 0.048
0.0 −0.5 0.053 0.050 0.050 0.049 0.049 0.048 0.045 0.047
0.5 0.0 0.052 0.051 0.050 0.050 0.049 0.048 0.047 0.043
−0.5 0.0 0.051 0.050 0.050 0.050 0.050 0.044 0.044 0.047
0.5 −0.5 0.053 0.052 0.051 0.050 0.050 0.049 0.049 0.046
−0.5 0.5 0.052 0.051 0.049 0.049 0.046 0.042 0.047 0.050
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(a) c = 0 (b) c = 1.25

(c) c = 2.5 (d) c = 5

(e) c = 10 (f) c = 25

(e) c = 50 (f) c = 100

Figure 1. Asymptotic local power of nominal 0.05-level tests, ρxy = −0.95;

T ∗

con: , T ′

con: , Tcon: , T w
con:

F.1



(a) c = 0 (b) c = 1.25

(c) c = 2.5 (d) c = 5

(e) c = 10 (f) c = 25

(e) c = 50 (f) c = 100

Figure 2. Asymptotic local power of nominal 0.05-level tests, ρxy = −0.7;

T ∗

con: , T ′

con: , Tcon: , T w
con:

F.2



(a) c = 0 (b) c = 1.25

(c) c = 2.5 (d) c = 5

(e) c = 10 (f) c = 25

(e) c = 50 (f) c = 100

Figure 3. Asymptotic local power of nominal 0.05-level tests, ρxy = −0.5;

T ∗

con: , T ′

con: , Tcon: , T w
con:

F.3



(a) c = 0 (b) c = 1.25

(c) c = 2.5 (d) c = 5

(e) c = 10 (f) c = 25

(e) c = 50 (f) c = 100

Figure 4. Asymptotic local power of nominal 0.05-level tests, ρxy = −0.1;

T ∗

con: , T ′

con: , Tcon: , T w
con:

F.4



(a) c = 0 (b) c = 1.25

(c) c = 2.5 (d) c = 5

(e) c = 10 (f) c = 25

(e) c = 50 (f) c = 100

Figure 5. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.95;

Thyb: , T w
hyb: , EMW :

F.5



(a) c = 0 (b) c = 1.25

(c) c = 2.5 (d) c = 5

(e) c = 10 (f) c = 25

(e) c = 50 (f) c = 100

Figure 6. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.7;

Thyb: , T w
hyb: , EMW :

F.6



(a) c = 0 (b) c = 1.25

(c) c = 2.5 (d) c = 5

(e) c = 10 (f) c = 25

(e) c = 50 (f) c = 100

Figure 7. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5;

Thyb: , T w
hyb: , EMW :
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(a) c = 0 (b) c = 1.25

(c) c = 2.5 (d) c = 5

(e) c = 10 (f) c = 25

(e) c = 50 (f) c = 100

Figure 8. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.1;

Thyb: , T w
hyb: , EMW :

F.8
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