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a b s t r a c t

We propose new tests for long-horizon predictability based on IVX estimation of a
transformed regression which explicitly accounts for the over-lapping nature of the
dependent variable in the long-horizon regression arising from temporal aggregation.
To improve efficiency, we moreover incorporate the residual augmentation approach
recently used in the context of short-horizon predictability testing by Demetrescu and
Rodrigues (2022). Our proposed tests improve on extant tests in the literature in a
number of ways. First, they allow practitioners to remain ambivalent over the strength of
the persistence of the predictors. Second, they are valid under much weaker conditions
on the innovations than extant long-horizon predictability tests; in particular, we allow
for general forms of conditional and unconditional heteroskedasticity in the innovations,
neither of which are tied to a parametric model. Third, unlike the popular Bonferroni-
based methods in the literature, our proposed tests can handle multiple predictors,
and can be easily implemented as either one or two-sided hypotheses tests. Monte
Carlo analysis suggests that our preferred tests offer improved finite sample properties
compared to the leading tests in the literature. We report results from an empirical
application investigating the use of real exchange rates for predicting nominal exchange
rates and inflation.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Since the seminal work of Fama and French (1988) and Campbell and Shiller (1988) there has been substantial interest
n testing for long-horizon predictability, most notably in stock returns, exchange rates and the term structure of interest
ates; see, inter alia, Campbell and Shiller (1987, 1988), Fama (1998); Campbell and Cochrane (1999); Campbell and Viceira
1999); Menzly et al. (2004); Mishkin (1990); Boudoukh and Matthew (1993) and Chang et al. (2018).

Empirical evidence on the short- or long-horizon predictability of returns largely derives from inference obtained from
redictive regressions and, as such, the size and power properties of tests from these regressions are of fundamental
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importance. Many early studies are based on the assumption that the predictor is weakly persistent and are therefore
based on the use of standard OLS t and F-type regression statistics, constructed using either Newey–West or Hodrick type
standard errors (see, for example, Weigand and Irons, 2007). However, data analysis presented in, among others, Campbell
and Yogo (2006a) and Welch and Goyal (2008) suggests that many of the variables used in predictive regressions are
strongly persistent with autoregressive roots close to unity, and that a large negative correlation often exists between
the series we are attempting to forecast (e.g. returns) and the predictor’s innovations, such that the predictive regressor
is endogenous. In such cases these methods, developed for use with weakly persistent regressors, are theoretically
invalid and this can lead to sizeable finite sample bias in the estimates of the coefficients from the predictive regression
(Stambaugh, 1986 and Mankiw and Shapiro, 1986) and, correspondingly, to significant over-rejections of the null
hypothesis of no predictability (both in short- and long-horizon contexts), thereby significantly increasing the likelihood
that any finding of long-horizon predictability is spurious; see, inter alia, Valkanov (2003), Cochrane (2011), and Phillips
2015).1

As a result, more recently a number of procedures for testing for short- and long-horizon predictability have been
eveloped in the literature which are designed to be robust as to whether the predictors are weakly or strongly
ersistent; see, in particular, Gonzalo and Pitarakis (2012), Phillips and Lee (2013), Phillips (2014), Elliott et al. (2015), Lee
2016), Kostakis et al. (2015), Breitung and Demetrescu (2015), Demetrescu et al. (2022b), Demetrescu and Hillmann
2022) and Demetrescu and Rodrigues (2022). Many of these procedures are based on the extended instrumental variable
stimation [IVX] method of Phillips and Magdalinos (2009) which has gained widespread popularity in this literature
nd which will form the basis of the tests which we propose in this paper. The IVX approach consists of filtering
utative predictors such that, where these are strongly (weakly) persistent, the filtered series are approximately mildly
ntegrated (weakly dependent) variables. These filtered variables are then used to instrument the predictor in the
redictive regression of interest. As a result of the reduced persistence of the instrument when compared to the original
ariable when the latter is strongly persistent, the resulting predictability test will follow a standard limit distribution
e.g. Gaussian or chi-squared) irrespective of whether the predictors are strongly, moderately, or weakly persistent.

An additional complication, relative to the case of short-horizon predictability testing, arises when looking to develop
ests for long-horizon predictability. Specifically, serial correlation is induced into the error term in the long-horizon
redictive regression, arising from the temporal aggregation of the dependent variable (which therefore contains over-
apping observations). To address this issue, Valkanov (2003) and Hjalmarsson (2011) propose using the conventional
LS t-statistic but scaled by a constant to reflect the inflation of the standard errors as the prediction horizon increases.
he methods in Valkanov (2003) and Hjalmarsson (2011) are, however, somewhat restrictive in practice as they are
ased on the assumption that the predictor is strongly persistent. Tests for multiple-horizon predictability designed
o be asymptotically valid regardless of whether the predictors are strongly or weakly persistent and for handling
he issues arising from temporal aggregation are also considered by Phillips and Lee (2013) who develop tests from
reversed predictive regression framework, estimated by IVX. Their approach consists of switching from a predictive

egression from the h-period returns on a predetermined variable to a predictive regression of single period returns on
the same predetermined variable aggregated over h-periods. Xu (2020) proposes an alternative approach, which allows the
predictors to be either weakly or strongly persistent, and builds on an implied estimator obtained from the short-horizon
predictive regression model. Implied estimation dates back to Campbell and Shiller (1988) and Hodrick (1992), and was
used by Cochrane (2008) and Lettau and Van Nieuwerburgh (2008). Xu (2020) derives the asymptotic distribution of the
implied test statistic and proposes the use of a Bonferroni-type approach along the lines of Phillips (2014) together with
a wild bootstrap for computing critical values.

In this paper we add to the corpus of available tests for long-horizon predictability in the literature. The tests we
will develop are designed to be valid under weaker conditions than the leading long horizon predictability tests in the
literature, all of which either assume the strength of the persistence of the predictor is known (some assume it is weakly
persistent, some that it is strongly persistent) and/or assume that the innovations are conditionally homoskedastic. In
particular, our proposed tests can be validly implemented without knowledge of whether the predictors are weakly,
moderately, or strongly persistent, and, unlike Bonferroni-based tests, our tests can be easily implemented to test either
one or two-sided hypotheses, and can handle the case of multiple predictors. Our test statistics have pivotal limiting
null distributions under quite general patterns of unconditional time heteroskedasticity in the innovations, allowing for
time-varying innovation variances but also the possibility of time-varying correlations between the innovations, and very
general forms of conditional heteroskedasticity. Moreover, the practitioner is not required to assume a parametric model
for either the conditional or unconditional time-variation in the innovations. In a detailed Monte Carlo experiment we
also compare the finite size and power properties of our proposed tests with the best-performing robust long-horizon
predictability tests in the literature, namely the implied test of Xu (2020), the Bonferroni-based approach of Hjalmarsson
(2011), and the reversed regression-based test of Phillips and Lee (2013). These results suggest that our proposed tests
overall display superior finite sample properties to the extant tests.

The tests we propose are developed within a transformed regression framework which explicitly accounts for the
serial correlation induced by temporal aggregation in the error in the original long-horizon regression. We estimate the

1 The standard errors proposed by Hodrick (1992), which exploit the moving-average structure of the temporally aggregated error term under
the no predictability null hypothesis, perform slightly better than Newey–West standard errors in finite samples (see Ang and Bekaert, 2007) but
are still invalid under endogeneity and strong persistence.
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parameters of the transformed regression using the IVX approach of Kostakis et al. (2015). In this sense, our approach is
related to the recent work of Kostakis et al. (2018) on IVX long-horizon predictive regression. The use of IVX estimation
in our framework has the advantage that it also allows us to implement a feasible form of residual augmentation which
cannot be employed where the predictive regression is estimated by OLS. This approach, discussed in Demetrescu and
Rodrigues (2022) in the context of the IVX one-step ahead (short-horizon) predictive regression, consists of augmenting
the transformed predictive regression with an additional regressor, constructed as the residuals obtained from fitting an
autoregression to the predictor. Residual augmentation, at least for the case of a known degree of persistence, can be
traced back to at least Phillips (1991), and augmenting regression models with residuals or nonlinear functions thereof
is known to be an effective way of increasing efficiency; see, for example, Im and Schmidt (2008). In the context of the
short-horizon predictive regression, Demetrescu and Rodrigues (2022) show that this approach is particularly effective
for strongly persistent predictors. We will demonstrate that the estimation effect from fitting this autoregression to the
predictor is asymptotically negligible in the set-up we consider and leads to more efficient estimation of the transformed
predictive regression model on which our long-horizon tests are based, and therefore higher local power. In particular,
akin to Amihud and Hurvich (2004), this form of residual augmentation eliminates endogeneity in the limit, such that the
finite-sample bias of the IVX slope coefficient estimator is reduced compared to the corresponding IVX estimation from
the transformed regression without this additional regressor.2

The remainder of the paper is organised as follows. Section 2 introduces the long-horizon predictive regression testing
ramework and outlines the assumptions on the model under which we work. In Section 3 we briefly review the leading
ests in the literature: namely, Bonferroni-based approaches to testing for long-horizon predictability, focusing on the tests
f Hjalmarsson (2011), the reversed regression based approach of Phillips and Lee (2013), and the implied testing approach
f Xu (2020). In Section 4 we detail our proposed transformed regression based tests for long-horizon predictability testing,
nd here we also discuss their large sample properties. For expositional purposes, the material in Sections 2–4 assumes
he case of a single predictor. The case of multiple predictors is discussed in Section 5. Section 6 analyses the finite
ample properties of the procedures in an in-depth Monte Carlo study. In Section 7 we report an empirical application
f the methods developed in the paper to exchange rate predictability. Section 8 concludes. An on-line Supplementary
ppendix collects all technical proofs of the results stated in the paper together with some additional supporting Monte
arlo results and technical derivations.

. The long-horizon predictive regression framework

.1. The DGP and assumptions

We will base our analysis in what follows on the assumption that the data generating process [DGP] for (yt+1, xt+1) is
iven by the short-run (one period) predictive recursive system,

yt+1 = α1 + β1xt + ut+1, t = 1, . . . , T − 1, (2.1)
xt+1 = µx + ξt+1, and ξt+1 = ρξt + vt+1, (2.2)

where yt+1 is, for example, a continuously compounded excess return of an asset or the variation of a nominal exchange
rate from t to t+1 and xt+1 is some (putative) predictor variable. The errors ut are assumed to form a martingale difference
[MD] sequence; precise details will be given below. In our main exposition and technical analysis we will follow the bulk
of this literature and focus attention on the case of a single predictor; that is, where xt in (2.1) is a scalar. Extensions to
the case where the predictive regression contains multiple predictors will be discussed in Section 5.

Remark 1. Our assumption that the data on (yt+1, xt+1) are generated by the one period (h = 1, where h is the horizon
period) predictive system in (2.1)–(2.2) is in common with the extant methods in the long-horizon predictability testing
literature discussed in Section 1. It is, however, important to stress that this is an assumption made for the purposes of
providing a convenient unified benchmark to allow us to make rigorous statements about the properties of statistics
obtained from the implied long-horizon predictive regression models with h > 1, defined in Section 2.2. One could
alternatively make the assumption that the h-period aggregated model in (2.5) with the error term specified to be a
MD sequence constitutes the true DGP. However, this approach seems problematic because the true value of h, such that
a well-specified long-horizon model with uncorrelated errors obtains, is unknown; in practice researchers tend to report
the outcomes of tests computed for a range of values of h, including h = 1. Under this alternative assumption, only at
most one of the values of h considered could possibly correspond to the true DGP with the approach rendered invalid
for the other values considered. In this regard, assuming h = 1 as the true DGP has the advantage that for any h > 1
the error term in the long horizon model in (2.5) will be serially correlated (see the discussion in Section 2.2), with the
testing methods we develop explicitly designed to account for the maximum degree of serial correlation that could be
induced by the data aggregation. ♢

2 This bias reduction improves the MSE of the forecasts generated using the fitted residual augmented long-horizon regression; see the evidence
provided by Demetrescu and Rodrigues (2022) for the one-step ahead case.
3
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Our interest in this paper centres on testing the null hypothesis, H0, that (yt+1 −α1) is a MD sequence and, hence, that
t+1 is not predictable by xt which entails that β1 = 0 in (2.1).3 The alternative hypothesis is that yt+1 is predictable by
t , in which case β1 ̸= 0. As discussed in Section 1, it is important for practical purposes to allow for the possibility
f strong persistence in the predictor variable xt and to allow the shocks driving the predictor, vt in (2.2), to be
ontemporaneously correlated with the unpredictable component of yt ; that is, ut in (2.1). We will allow for both of
hese through Assumptions 1–4 which follow.

First, with respect to the degree of persistence in xt , this is controlled via the parameter ρ. We allow xt to be
either weakly, moderately, or strongly persistent through the following assumptions. Second, in line with the literature
on predictive regression with financial data (see in particular the arguments of Phillips and Lee, 2013), we focus on
parameters β1 that are small in magnitude, reflecting the fact that the signal-to-noise ratio in the typical predictive
regression is low. To capture this in the asymptotics we take β1 to be local to zero, β1 = o(1), at rates specific to
the persistence of the putative predictor. In particular, this will allow us to obtain expressions for the local power of
long-horizon predictability test procedures.

Assumption 1. The data are generated according to (2.1) and (2.2) with initial condition ξ1 which is bounded in
probability.

Assumption 2. Exactly one of the three following conditions holds true:

(i) Strongly persistent predictors: The autoregressive parameter ρ in (2.2) is local-to-unity with ρ := 1− c/T , where
c is a fixed constant. Furthermore, β1 := T−1/2−η/2b, where b is a finite constant and where η ∈ (0, 1) is the IVX
tuning parameter discussed in Section 3.3.

(ii) Weakly persistent predictors: The autoregressive parameter ρ in (2.2) is fixed and bounded away from unity,
|ρ| < 1. Furthermore, β1 := T−1/2b, with b a finite constant.

(iii) Moderately persistent predictors: The autoregressive parameter ρ in (2.2) is moderately close to unity with
ρ := 1 − c/T κ , where c > 0 is a fixed constant and κ ∈ (0, 1). Furthermore, β1 := T−1/2−min{η,κ}/2b, where b
is a finite constant and where η ∈ (0, 1) is the IVX tuning parameter discussed in Section 3.3.

Remark 2. Many commonly used predictors are strongly persistent, exhibiting sums of sample autoregressive coefficients
which are close to or only slightly smaller than unity. Near-integrated asymptotics have been found to provide better
approximations for the behaviour of test statistics in such circumstances; see, inter alia, Elliott and Stock (1994). However,
not all (putative) predictors are strongly persistent and a large part of the literature works with models which take xt
to be generated from a stable autoregression; see, for example, Amihud and Hurvich (2004). While the long-horizon
predictability tests developed in Valkanov (2003) and Hjalmarsson (2011) are only valid for the case where xt is strongly
persistent, we allow for either of these possibilities to hold for xt . Kostakis et al. (2015) extend the range of possible
degrees of persistence by allowing xt to be mildly integrated, and we also allow for this persistence class through
Assumption 2(iii). Because it is very difficult to distinguish between these three types of persistence in practice, covering
all three within Assumption 2 provides an approach that applied researchers can use with some confidence. It is, however,
important to stress that Assumption 2 does not allow for fractionally integrated predictors. In the context of short-horizon
(h = 1) predictability testing, a number of important contributions allow for fractionally integrated predictors; see, inter
alia, Maynard and Phillips (2001), Maynard and Shimotsu (2009), Bauer and Maynard (2012), and Andersen and Varneskov
(2021a, 2021c). Within the framework of Andersen and Varneskov (2021a,b) also allow for ‘‘imperfect’’ predictors whereby
a component of the conditional mean of returns exists that is not linearly spanned by the chosen predictor(s); see
also Georgiev et al. (2018). So far as we are aware, neither fractionally integrated nor imperfect predictors have been
considered in the long-horizon testing literature and, as such, constitute important areas for further research. ♢

Remark 3. The (Pitman) neighbourhoods within which our proposed tests will have non-trivial power can be seen to
depend on the persistence of the regressor and, in the case where the predictor is strongly or moderately persistent,
additionally on the IVX tuning parameter, η. We note that it is only in the strongly persistent case where the localisation
rates on β1 given in Assumption 2 are less favourable than those which apply in connection with OLS estimation and
testing, for which the relevant localisation is given by β1 := T−1b. This is common to all IVX approaches, and this power
loss is offset by the size control offered by IVX estimation. In related work, Kostakis et al. (2018) deal with the case where
the slope coefficient in the long-horizon predictive regression can be of larger magnitude, captured by assuming β1 is fixed
as T → ∞. In such cases, estimators from the long-horizon regression may exhibit bias depending on the persistence
of the predictor; see Kostakis et al. (2018) for details. Examining the proofs in the Supplementary Appendix (see e.g. for
strong persistence the proof of Theorem 4.1), it can be seen that our methods might be expected to handle the case of
fixed β1 provided one places additional restrictions on the horizon period, h, in particular that h is fixed. However, we
will not pursue these issues further here and will work within the relevant localisations on β1 given in Assumption 2. ♢

3 All of the tests we discuss in this paper could equally well be used to test the null hypothesis H0 : β1 = β0 , say by replacing yt+1 by yt+1 −β0xt ,
but as the focus in equity forecasting is on testing the null hypothesis of a zero coefficient on the predictor we will restrict our discussion to β = 0.
0
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To complete the specification of our predictive regression model, we make the following assumptions with regard to
he error terms, ut and vt , which are designed to allow for empirically relevant features frequently found in economic
and financial time series.

Assumption 3. The errors ut and vt in (2.1) and (2.2), respectively, are characterised as

ut = γϖt + εt , t ∈ Z (2.3)
vt = a1vt−1 + · · · + ap−1vt−p+1 +ϖt , (2.4)

where (εt ,ϖt )′ is serially uncorrelated, satisfying the conditions of Assumption 4, and the lag polynomial A(L) :=

1 − a1L − · · · − ap−1Lp−1 is invertible. For further reference we define ω :=

(
1 −

∑p−1
k=1 ak

)−1
and we denote by φk

the coefficients of the lag polynomial (1 − ρL)A(L); in case of weak persistence, let bk denote the coefficients of the
(infinite-order) MA representation of the process ξt ,

∑
k≥0 bkL

k
= ((1 − ρL) A(L))−1.

Assumption 4. Let(
εt
ϖt

)
:=

(
σεtζεt
σϖ tζϖ t

)
where ζ := (ζεt , ζϖ t)

′ is a uniformly L4-bounded stationary and ergodic martingale difference [MD] sequence satisfying

E
(
ζtζ

′
t

)
= I2 and E

(E0

(∑T
t=1(ζtζ

′
t − I2)

)2) = O(T 2ϵ) for some ϵ < 1
2 , with E0(·) denoting expectation conditional on

ζ−i}
∞

i=0 and Ik the k × k identity matrix. Furthermore, let σεt := σε
( t
T

)
and σϖ t := σϖ

( t
T

)
, where σ· (·) are piecewise

Lipschitz-continuous bounded, non-stochastic functions on (−∞, 1], which are bounded away from zero.

Remark 4. Assumption 3 imposes, through (2.4), the condition that the errors vt driving ξt in (2.2) follow a finite-
order autoregression (AR) such that the predictor xt is an AR(p) process with p ≥ 1; Valkanov (2003) makes the
same assumption. The finite-order AR assumption is required for the tests developed in Section 4.2 which make use
of the residual augmented regression approach of Demetrescu and Rodrigues (2022). Here the transformed long-horizon
predictive regression is augmented by the residuals from fitting an AR(p) model to the predictor xt . We conjecture that
these tests would also be asymptotically valid under a linear process type assumption on vt , provided the truncation lag
for the fitted autoregression is allowed to increase at a suitable rate with the sample size, T . It is, however, important
to note that the long-horizon predictability tests developed in both Hjalmarsson (2011) and Xu (2020) are based on the
considerably more restrictive assumption that A(L) = 1, such that vt is serially uncorrelated and, hence, that xt follows
an AR(1). ♢

Remark 5. Assumption 4 is similar to Assumption 3 of Demetrescu et al. (2022b) and we defer to Demetrescu et al.
(2022b) for a detailed discussion of these conditions. Briefly, it allows for unconditional time heteroskedasticity of quite
general form in the innovations (εt ,ϖt )′ through the functions σε(·) and σϖ (·) which allow both εt andϖt to display time-
varying unconditional variances and for both contemporaneous and time-varying (unconditional) correlation between εt
and ϖt . The MD structure placed on ζt allows for conditional heteroskedasticity of a general form obviating the need to
choose a specific parametric model by instead adopting an explicit assumption of martingale approximability whereby
E(∥E0(

∑T
t=1(ζtζ

′
t−I2))∥2) = O(T 2ϵ) for some ϵ < 1

2 , where ϵ controls the degree of persistence permitted in the conditional
ariances. Stationary vector GARCH processes with finite fourth-order moments satisfy this condition with ϵ = 0, although
ssumption 4 is considerably more general as it also allows for asymmetric effects in the conditional variance. Stationary
utoregressive stochastic volatility processes as, for example, are assumed in Johannes et al. (2014) are also permitted. ♢

emark 6. Assumption 4 is considerably weaker than the corresponding conditions imposed by the leading tests for long-
orizon predictability in the literature. Valkanov (2003), Phillips and Lee (2013) and Xu (2020) all impose conditional (and,
ence, unconditional) homoskedasticity on the innovations. In Remark 12, page 4414, Xu (2020) suggests the possibility
hat his approach could be modified (but does not actually develop such a modification) to allow for the case where the
nnovations can be conditionally heteroskedastic satisfying essentially the same conditions as are imposed in Assumption
NNOV of Kostakis et al. (2015, p. 1512) for their short-horizon predictability tests. These conditions are, however, still
onsiderably more restrictive than Assumption 4 as, in additional to imposing unconditional homoskedasticity, they also
mpose the condition that the error term in (2.1) is generated according to a stationary finite-order GARCH(p, q) model
ith finite fourth moments. Hjalmarsson (2011) allows for conditional heteroskedasticity but again assumes unconditional
omoskedasticity; notice, however, that Hjalmarsson (2011) does not allow for the case where xt is weakly persistent,
hich as discussed in Remark 12 of Xu (2020), is the case where allowing for conditional heteroskedasticity is most
roblematic. ♢

emark 7. The error term ut in (2.1) is formulated as a linear combination of the uncorrelated innovations εt and ϖt .

he degree of endogeneity present is measured by the correlation between ut and ϖt , defined as φt := γ σϖ t/σut , which

5
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can be either constant or time-varying under Assumption 4. Where γ = 0, ut = εt and, hence, the error term in (2.1) is
ncorrelated with the innovation driving the predictor, so that φt = φ = 0 for all t . The constant correlation case, where
t = φ for all t , can occur either where σϖ t and σut are both time-invariant, or where any time-variation is common to
oth σϖ t and σut . Notice that Assumption 3 restricts γ to be time-invariant. This assumption is needed to establish the
arge sample validity of the residual augmentation method used in Section 4.2. It might be possible to relax the assumption
f a constant γ by using local (nonparametric) estimation thereof, but we leave such developments for future research.
he restriction that γ is constant is common to all of the existing long-horizon tests discussed above. ♢

.2. The long-horizon predictive regression specification

The most common long-horizon predictive regression specification used in empirical analysis results from the h-period,
h ≥ 1, temporal aggregation of (2.1) and is given by

y(h)t+h = αh + βhxt + errort+h, t = 1, . . . , T − h (2.5)

where y(h)t+h :=
∑h

j=1 yt+j is the h-period cumulative variable to be predicted. Notice that for h = 1, (2.5) is simply the
short-horizon predictive regression in (2.1). To gain further insight into the specific features of (2.5), let us examine the
h-horizon cumulated dependent variable y(h)t+h more closely. From (2.1), the long-horizon predictive model can be written
as,

y(h)t+h = hα1 + β1

h−1∑
j=0

xt+j + u(h)
t+h, (2.6)

where, from (2.3), u(h)
t+h :=

∑h
j=1 ut+j = γ v

(h)
t+h + ε

(h)
t+h, with v(h)t+h and ε(h)t+h defined implicitly.

The properties of the cumulated variable,
∑h−1

j=0 xt+j, and, as a result, the implied relationships between βh in the
long-horizon predictive regression in (2.5) and β1 in the underlying DGP in (2.1) and between the regression error in
(2.5) and the innovation sequences ut and vt in the DGP, turn out to depend on the particular persistence class to which
xt belongs. To see why consider first the case where the predictor is either strongly or moderately persistent. Using the
autoregressive representation of the predictor in (2.2), which can be written as xt+1 = µx(1−ρ)+ρxt +vt+1, by recursive
substitution we then have that,

h−1∑
j=0

xt+j = Ih≥2

h−1∑
j=1

j∑
i=1

ρ i−1µx(1 − ρ) +

h−1∑
j=0

ρ jxt + Ih≥2

h−1∑
j=1

h−j∑
i=1

ρ i−1vt+j (2.7)

where Ih≥2 is an indicator variable which takes the value 1 when h ≥ 2 and 0 otherwise. Consequently, replacing
∑h−1

j=0 xt+j
in (2.6) by the expression on the right-hand side of (2.7), the general representation of the long-horizon predictive
regression model specification is obtained,

y(h)t+h = αh + βhxt + w
(h)
t+h (2.8)

where αh := hα1 + β1Ih≥2
∑h−1

j=1
∑j

i=1 ρ
i−1µx(1 − ρ), βh := β1

∑h−1
j=0 ρ

j and w(h)
t+h := u(h)

t+h + β1Ih≥2
∑h−1

j=1
∑h−j

i=1 ρ
i−1vt+j.

Consequently, in the strongly persistent case where ρ = 1−c/T , it can be seen that βh ≈ hβ1 in (2.8), provided h/T → 0.
This approximate relation also holds in the moderately persistent case, where ρ = 1−c/T κ , κ ∈ (0, 1), provided h/T κ → 0.
Notice that both of these rate conditions are implied by the relevant rate conditions needed to establish the large sample
properties of our proposed estimators and test statistics in Section 4.3.

In the weakly persistent case, although (2.8) still holds, the implied expressions for βh and w(h)
t+h change relative to the

strongly and moderately persistent cases. In particular, we now write
h−1∑
j=0

xt+j = Ih≥2

h−1∑
j=1

(
1 −

θj

θ0

)
µx +

h−1∑
j=0

θj

θ0
xt + Ih≥2

h−1∑
j=1

v⊥

t+j

with v⊥

t+j := ξt+j −
θj
θ0
ξt , or xt+j = µx

(
1 −

θj
θ0

)
+

θj
θ0
xt + v⊥

t+j with θj :=
∑

k≥0 bkbk+j, j = 0, . . . , h − 1, where bk
re the coefficients of the (infinite-order) MA representation of the process ξt .4 Consequently, in the weakly persistent
ase we have that βh = β1

∑h−1
j=0

θj
θ0

in (2.8), together with w(h)
t+h := u(h)

t+h + β1Ih≥2
∑h−1

j=1 v
⊥

t+j.
5 As in the strongly and

moderately persistent cases, βh can be seen to be proportional to β1, albeit with a different factor of proportionality.

4 We note in passing that, under unconditional homoskedasticity, the quantities v⊥

t+j are projection errors from an orthogonal projection of ξt+j
nto ξt , while, under time-varying volatility, they can be interpreted as local counterparts thereof.
5 A different expression is given for

∑h−1
j=0 xt+j compared to the strongly persistent case because v⊥

t+j are, by construction, orthogonal to xt ; indeed,
his orthogonality property is a key ingredient needed for the asymptotic analysis of the weakly persistent case; see the proofs of Theorems 4.3 and
.4 in the Supplementary Appendix.
6
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To distinguish between these expressions for βh in the three persistence classes considered, we introduce the additional
notation β (i)

h = β
(iii)
h := β1

∑h−1
j=0 ρ

j for the strongly and moderately persistent cases, respectively, and, for the weakly
persistent case, β (ii)

h := β1
∑h−1

j=0
θj
θ0
. We will use this notation wherever we need to distinguish explicitly between the

three cases (e.g. when discussing the limiting behaviour of the estimators from the long-horizon predictive regression
(2.8) in Section 4.2). Should a distinction not be essential for the exposition, we will simply refer to βh without specifying
the persistence type.

Irrespective of the persistence type, we note from the foregoing algebra that βh ̸= 0 for h > 1 whenever β1 ̸= 0. The
coefficient βh in (2.8) is therefore empirically useful, as a finding of statistical significance from an estimate of βh can still
be interpreted as evidence of long-horizon predictability, given that if there is no short-run predictability (β1 = 0) then
there is also no predictability at other horizons (h ≥ 1). Consequently, under suitable assumptions, the null hypothesis
of no-predictability, H0, can be tested using statistics computed from (2.5). If xt is weakly persistent, tests can be based
on conventional regression t-statistics, provided h is fixed. However, care is needed because the dynamics of the error
term w

(h)
t+h in (2.8) differ according to whether there is predictability or not. In particular, if β1 = 0 (and, hence, βh = 0),

then this error term is an MA(h − 1) process. Where β1 ̸= 0, any serial correlation in vt will change the dynamics of
w

(h)
t+h; for example, if vt were an MA(1) process, then w(h)

t+h will follow an MA(h) process.6 To account for these dynamics
he t-statistic needs to be based on either HAC (Newey and West, 1987) or Hodrick (1992) standard errors. Although
hese are asymptotically equivalent, simulation evidence presented in Ang and Bekaert (2007) suggests the latter deliver
ests with better finite sample behaviour. Moreover, Nelson and Kim (1993) show that finite sample biases present in
he OLS estimate, β̂OLS

1 say, of β1 from the short-horizon predictive regression in (2.1) (which are larger, other things
qual, the greater the persistence of the predictor and the higher the endogeneity correlation between the innovations)
re exacerbated by the long-horizon aggregation. Consequently, several bias correction approaches have been suggested
or the case where xt is weakly persistent; see for instance, Stambaugh (1999), Lewellen (2004), Amihud and Hurvich
2004), Amihud et al. (2009, 2010) and Kim (2014).

The standard t-tests and bias-correction methods discussed above are, however, not valid when xt is strongly
ersistent. In particular, the limiting null distribution of the t-statistic is not pivotal because the endogeneity present
n the model is not accounted for.

. Extant tests allowing for strongly persistent predictors

In this section we present a brief overview of test procedures for long-horizon predictability which allow for strongly
ersistent predictors.

.1. Bonferroni-based tests

Assuming xt is a strongly persistent (near-integrated) predictor, Hjalmarsson (2011) builds on the approach of Amihud
nd Hurvich (2004) to compute a second-order bias corrected estimate of βh in order to develop a feasible long-horizon
redictability test. In the context of (2.8), this is based on the infeasible augmented regression,

y(h)t+h = αh + βhxt + γϖ
(h)
t+h + ε

(h)
t+h + rt+h, t = 1, . . . , T − h, (3.1)

here rt+h := w
(h)
t+h − u(h)

t+h = β1Ih≥2
∑h−1

j=1
∑h−j

i=1 ρ
i−1vt+j, and, from Assumption 3 and (2.2),

ϖ
(h)
t+h :=

h∑
j=1

ϖt+j =

h∑
j=1

[
(xt+j − µx) −

p−1∑
k=1

φk(xt+j−k − µx)
]
.

The inclusion ofϖ (h)
t+h in (3.1) serves to remove the endogeneity bias present in standard OLS estimation of (2.8). Assuming

(ut+1, vt+1)′ is an unconditionally homoskedastic MD process, Hjalmarsson (2011) shows that, for fixed h, the infeasible
scaled OLS estimator from (3.1), β̂ I

h say, when divided by h has a mixed normal null limiting distribution whose variance
does not depend on h.

In order to obtain a feasible version of (3.1), Hjalmarsson (2011) adopts an approach based on Bonferroni-bounds. This
involves computing a first-stage confidence interval for the local to unity parameter c which is then used to develop a
test for long-horizon predictability based on a bias reduced estimate of βh (see also Campbell and Yogo, 2006a). Denoting
this confidence interval, with confidence level 100(1 − λ1)%, by [cλ1 , cλ1 ], feasible, yet conservative, versions of tests for
H0 : βh = 0 against HA : βh > 0 and H0 : βh = 0 against HA : βh < 0, which we will generically define as tBonfh , are,
espectively,

h−1/2tmin
h,c̃∗ := min

c̃∈[cλ1 ,cλ1 ]

h−1/2tOLSh,c̃ > zλ2 (3.2)

6 Technically, we exclude a finite-order MA structure of the increments vt ; the MA example is still of relevance given that we (quite plausibly)
conjecture in Remark 4 that MA processes could be allowed for under suitable conditions.
7
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h−1/2tmax
h,c̃∗ := max

c̃∈[cλ1 ,cλ1 ]

h−1/2tOLSh,c̃ < zλ2 , (3.3)

with tOLSh,c̃ being the OLS t-ratio for βh = 0 computed from a feasible version of (3.1) where ϖ̂ (h)
t+h is obtained based on

ρ̂ := 1−c̃/T with c̃ ∈ [cλ1 , cλ1 ], and zλ2 is the standard normal critical value associated with the significance level λ2 of the
est, such that λ1 + λ2 = λ, where λ is the desired significance level of the test. In other words, a rejection occurs for the
Bonferroni bounds test only if it occurs for every possible value of c in the first stage confidence interval. The requirement
hat λ1+λ2 = λ can lead to overly conservative tests and, in practice, adjustments to λ1, to shrink the coverage rates of the
onfidence intervals for c , are typically recommended; see Cavanagh et al. (1995) and Campbell and Yogo (2006b). In the
inear predictive regression context, Hjalmarsson (2012) finds that his test has better power properties than the earlier test
f Valkanov (2003). It is important to stress that these Bonferroni-based tests are developed under the assumption that xt
s strongly persistent and are not valid if xt is weakly persistent. As we will see from the simulation results in Section 6,
hese tests do indeed not perform well when xt is weakly persistent. Moreover, it is important to note that Hjalmarsson
(2011)’s approach is based on the assumption that A(L) = 1 in Assumption 3, such that xt follows an AR(1) model.

.2. Xu (2020)’s implied test

Xu (2020) develops an alternative approach to testing for long-horizon predictability which allows for the case where
he predictor, xt , is either strongly or weakly persistent based on the computation of the implied long-horizon coeffi-
ients from short-horizon regression estimates; see, among others, Campbell and Shiller (1987), Kandel and Stambaugh
1996), Hodrick (1992) and Bekaert and Hodrick (1992). This choice of estimator is motivated by the observation that
hort-horizon estimation is often more efficient than long-horizon estimation; see, for example, Boudouk and Richardson
1994). Xu (2020) bases his test on the implied estimator of βh, β̃h := β̂OLS

1
∑h−1

j=0 ρ̂
j where β̂OLS

1 and ρ̂ are the OLS estimates
btained from (2.1) and (2.2), respectively.
The implied long-horizon predictability test of Xu (2020) is based on the statistic

tXuh = υ−1
IM β̃h (3.4)

here υ2
IM := q̂Ω̂ (

∑T−1
t=1 x̄t )q̂

′ with q̂ := (q̂1, q̂2), where q̂1 :=
∑h−1

j=0 ρ̂
j and q̂2 := β̂OLS

1
∑h−1

j=0 jρ̂ j−1, and where the vector
f OLS residuals, êt+1 := (ût+1, v̂t+1)′, computed from (2.1) and (2.2), is used to estimate the covariance matrix of et+1,
ˆ :=

∑T−1
t=1 êt+1ê′

t+1.
Under the assumption of conditionally homoskedastic MD innovations, Xu (2020) shows that under H0 : βh = 0: (i)

if xt is strongly persistent, tXuh
d

→ φ

[
(
∫ 1
0 J̄2c (s))

−1/2
∫ 1
0 J̄c(s)dW (s)

]
+ (1 − φ2)1/2Z , where φ denotes the (time-invariant)

orrelation between the innovations ut+1 and ϖt+1 in (2.1) and (2.2) (see Assumption 3), Jc an OU process driven by the
tandard Wiener process W and Z is a standard normal variate independent of W ; and (ii) if xt is weakly persistent,
Xu
h

d
→ N(0, 1). These results show that the limiting null distribution of the test statistic changes depending on the

ersistence of the predictor and the magnitude of φ. To account for this, Xu (2020) proposes two alternative ways
o compute the necessary critical values. One is based on a Bonferroni procedure and the other, which is the one he
ecommends, uses a bias-corrected wild bootstrap approach (residual-based with recursive design), although Xu (2020)
oes not formally establish the asymptotic validity of the latter. It is important to note that the asymptotic validity of Xu
2020)’s test, like that of Hjalmarsson (2011), relies on the assumption that xt is an AR(1) process, so that A(L) = 1 in
ssumption 3. The assumption of no serial correlation in vt is essential for Xu (2020)’s approach under weak persistence,
s in this case we have that βh = β

(ii)
h = β1

∑h−1
j=0

θj
θ0

(see Section 2.2), implying that β1
∑h−1

j=0 ρ
j is not the correct quantity

to base a test on.

3.3. Reversed regression-based tests

An alternative to the use of HAC or Hodrick (1992) standard errors to account for the serial correlation in the error
term in the long-horizon predictive regression model in (2.8) discussed in Section 2.2 is to use an alternative regression
specification that is designed to explicitly account for the overlapping data issue. One such approach is to use so-called
reverse regressions; see, among others, Jegadeesh (1991) and Cochrane (1991). This approach, instead of being based on
the regression from the h-period returns on a predetermined variable, as in (2.5), is based on a regression of single period
returns on the same predetermined variable but aggregated over h-periods. Specifically, this reverse regression formulation
is given by,

yt+h = αrev
h + βrev

h x(h)t+h−1 + ut+h, t = 1, . . . , T − h (3.5)

where x(h)t+h−1 :=
∑h−1

j=0 xt+j. See also Hodrick (1992), Maynard and Ren (2014), Ang and Bekaert (2007), and Wei and
Wright (2013), inter alia. It is seen from (3.5) that the error term is ut+h which is serially uncorrelated. An implication
of this is that the IVX estimation and hypothesis testing methods like in Kostakis et al. (2015) can be directly applied to
(3.5), which is not the case for (2.8) because of the induced serial correlation in w(h) .
t+h

8
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The OLS estimate of βrev
h from (3.5) is given by β̂rev

h := (
∑T−h

t=1 x̄(h)t+h−1ȳt+h)/(
∑T−h

t=1 (x̄
(h)
t+h−1)

2), where for a generic
equence {wt}

b
t=a, w̄t := wt − (b − a + 1)−1∑b

s=aws. It is not hard to establish that, regardless of whether xt is weakly
r strongly persistent, β̂rev

h = (
∑T−h

t=1 x̄2t )/(
∑T−h

t=1 (x̄
(h)
t+h−1)

2)β̂OLS
h +op(1), where β̂OLS

h is the OLS estimate of βh from (2.5).
otivated by this, Phillips and Lee (2013) develop a long-horizon predictability test based on applying IVX estimation

o the reverse regression in (3.5). Specifically, they use the IVX instrument zt used by Kostakis et al. (2015), which is
onstructed from the predictor as,

zt := (1 − ϱL)−1
+
∆xt =

t∑
j=0

ϱj∆xt−j. (3.6)

he persistence of zt is controlled by setting ϱ := 1 −
a
Tη , with 0 < η < 1. If xt is near integrated, this makes zt

pproximately mildly integrated (and thus of lower persistence), while if xt is weakly persistent then one may decompose
t = xt − µx + rt , where the rest term satisfies rt → 0 as t → ∞ and can be controlled for in the relevant
xpressions; see e.g. Lemma S.3 in the Supplementary Appendix for details. Because the reversed regression in (3.5)
eatures x(h)t+h−1 :=

∑h−1
j=0 xt+j, the long-horizon IVX approach is based on instrumenting x(h)t+h−1 by z(h)t+h−1 :=

∑h−1
j=0 zt+j.

Allowing the forecast horizon, h, to grow at rate T 1/2T−η
+ T ηh−1

+ h/T → 0, such that it increases at a slower rate
than the sample size T , but faster than the (user-controlled) degree of mild integration of the instrument, Phillips and
Lee (2013)’s long-horizon predictability statistic is

t rev,PLh,ivx := (H−1σ̂ 2
u )

−1/2β̂rev
h,ivx (3.7)

here β̂rev
h,ivx :=

(∑T−h
t=1 x̄(h)t+h−1z

(h)
t+h−1

)−1∑T−h
t=1 z(h)t+h−1ȳt+h, H :=

[
Hx̄(h)z(h) (Hz(h)z(h) )−1H′

x(h)z(h)

]−1
,

x(h)z(h) :=
∑T−h

t=1 x(h)t+h−1z
(h)
t+h−1, Hz(h)z(h) :=

∑T−h
t=1 (z

(h)
t+h−1)

2 and σ̂ 2
u :=

1
T−1

∑T−1
t=1 û2

t+1. Assuming that the innovations are
onditionally homoskedastic, Phillips and Lee (2013) show that t rev,PLh,ivx has a standard normal limiting distribution under
0. It should be noted that Phillips and Lee (2013) do not formally allow for the possibility that xt is weakly persistent.

. Transformed regression-based long-horizon predictability tests

In this section we introduce our new approach to long-run predictability testing which builds on the IVX framework
f Kostakis et al. (2015) and the augmented regression approach of Amihud and Hurvich (2004), Hjalmarsson (2011)
nd Demetrescu and Rodrigues (2022). The tests we develop are asymptotically valid regardless of whether the predictor
s weakly, moderately or strongly persistent, without requiring either a Bonferroni or wild bootstrap scheme for
mplementation, and do not require that the predictor follows an AR(1) process.

.1. Transformed regression IVX based tests

In a recent paper Britten-Jones et al. (2011) develop a method for conducting inference in linear regression models
ith overlapping observations and stationary covariates. Before showing how we can apply this approach to the specific
etting considered in this paper, we first briefly review the transformed regression approach. To that end, suppose we
ave a generic linear regression model Ahy = Xβ+u, where y is the (T−1)-vector of single period returns, Ah is the known
T−h)×(T−1) aggregation matrix with entries aij = 1 if i ≤ j ≤ i+h−1 and zero otherwise, i = 1, . . . ., T−h, such that Ahy
s the vector of (overlapping) h-period returns, X the regressor matrix with associated vector of coefficients, β and u is the
rror vector. Britten-Jones et al. (2011) demonstrate that the OLS estimate of β from this regression, β̃ say, is numerically
dentical to the OLS estimate from the transformed regression y = X̃β+ũ, where X̃ := A′

hX(X
′AhA′

hX)
−1X′X. The associated

stimation error from the transformed regression can then be written as β̃ − β = (X′X)−1X′Ahũ, which is seen to depend
on the autocorrelation structure of ũ, the disturbance term in the transformed (non-overlapping) regression, rather than
on u, the disturbance in the untransformed (overlapping) regression. The part of the autocorrelation in u induced by the
temporal aggregation (through Ah) is therefore explicitly accounted for and does not need to be estimated from the data
when conducting inference on β via the transformed regression. In the context of the DGP in (2.1)–(2.2), a key implication
of this result is that while the IVX approach of Kostakis et al. (2015) cannot be used to conduct valid inference on βh in
(2.8) under Assumption 3, because of the autocorrelation present in the error term u(h)

t+h induced by temporal aggregation,
it can when applied to the transformed regression analogue of (2.8).

To that end, consider again (2.8). Using the general result above it can be shown7 that the OLS estimator of the slope
parameter βh, β̂OLS

h := (
∑T−h

t=1 x̄t ȳ
(h)
t+h)/(

∑T−h
t=1 x̄2t ), can be written equivalently as

β̂
trf
h :=

∑T−1
t=1 x̄trf ,(h)t ȳt+1∑T−h

t=1 x̄2t
(4.1)

7 Derivations for the functional forms of the estimators and statistics from the transformed regression given in this section are provided in section
S.2 of the Supplementary Appendix.
9
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where

x̄trf ,(h)t :=

⎧⎪⎨⎪⎩
∑t

i=1 x̄i for t = 1, . . . , h − 1

x̄(h)t :=
∑h

i=1 x̄t−h+i for h ≤ t ≤ T − h∑T−h
i=t−h+1 x̄i for t = T − h + 1, . . . , T − 1.

(4.2)

From (4.1) it can be observed that β̂ trf
h is computed from the original non-overlapping one period returns. Notice that the

transformed estimator in (4.1) can also be obtained from a regression of ȳt+1 on ˜̄xtrf ,(h)t+h−1, where

˜̄xtrf ,(h)t :=

(T−1∑
t=1

(
x̄trf ,(h)t

)2)−1(T−h∑
t=1

x̄2t

)
x̄trf ,(h)t .

Interestingly, it can be shown that the OLS slope estimator from the reverse regression (3.5), β̂rev
h say, and β̂ trf

h are linearly
related; specifically,

β̂rev
h =

∑T−h
t=1 x̄2t∑T−h

t=1 (x̄
(h)
t+h−1)2

β̂
trf
h +

∑h−1
k=1[(

∑T−k
t=T−h+1 x̄i)ȳT−k+1 − (

∑k
i=1 x̄i)ȳk+1]∑T−h

t=1 (x̄
(h)
t+h−1)2

which suggests that when h is small the performance of predictability statistics from the reversed regression and
transformed regression should be very similar, but as h increases their performance will likely differ.

If we knew that the predictor, xt , was weakly persistent then we could base tests on the OLS estimate from the
transformed regression discussed above. However, as with the tests of Phillips and Lee (2013) from Section 3.3, we want
to allow for strongly persistent predictors. We will therefore apply the IVX framework of Kostakis et al. (2015) to the
transformed regression. To that end, recall the IVX instrument zt defined in (3.6). The transformed regression based IVX
estimator is then obtained by regressing ȳt+1 on z̃trf ,(h)t , where

z̃trf ,(h)t :=

(∑T−h
t=1 zt x̄t

)
ztrf ,(h)t∑T−1

t=1

(
ztrf ,(h)t

)2 (4.3)

ith

ztrf ,(h)t :=

⎧⎪⎨⎪⎩
∑t

i=1 zi for t = 1, . . . , h − 1

z(h)t :=
∑h

i=1 zt−h+i for h ≤ t ≤ T − h∑T−h
i=t−h+1 zi for t = T − h + 1, . . . , T − 1.

(4.4)

Hence, we obtain the transformed regression IVX estimator,

β̂
trf
h,ivx =

∑T−1
t=1 ztrf ,(h)t ȳt+1∑T−h

t=1 zt x̄t
≈ βh +

∑T−1
t=1 ztrf ,(h)t ūt+1∑T−h

t=1 zt x̄t
(4.5)

from which it is seen that the IVX estimate can provide the basis for inference on βh. In particular, a test for the null
hypothesis, H0 : βh = 0, against one or two-sided alternatives, can be obtained using a conventional IVX regression-based
t-ratio of the form

t trfh,ivx :=
β̂

trf
h,ivx

s.e.
(
β̂

trf
h,ivx

) . (4.6)

n the context of (4.6), in view of Assumption 4 which allows for both conditional and unconditional heteroskedasticity in
he innovations, we implement our IVX-based tests with conventional White heteroskedasticity-robust standard errors;
hat is,

s.e.
(
β̂

trf
h,ivx

)
:=

[(T−h∑
t=1

zt x̄t

)−1 T−1∑
t=1

(
ztrf ,(h)t üt+1

)2(T−h∑
t=1

zt x̄t

)−1
]1/2

(4.7)

where üt+1 := ȳt+1 − β̂
trf
h,ivxz̃

trf ,(h)
t are the residuals from the IVX estimation of the transformed regression. When testing

the null hypothesis of no predictability, one may alternatively compute the residuals under the null; that is, üt+1 := ȳt+1.

4.2. Residual augmented tests

Recall the augmented regression in (3.1) where the addition of the infeasible regressor ϖ (h)
t+h serves to remove the

endogeneity bias present in standard OLS estimation of (2.8). A feasible version of this augmented regression can be
10
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implemented if we can find a suitable (residual-based) estimate of ϖ (h)
t+h. Such an approach is closely related to the

concept of fully-modified methods developed by Phillips and Hansen (1990) for estimating equations involving I(1)
variables. Indeed, in the context of the short-horizon predictive regression in (2.1), Campbell and Yogo (2006a), use
results from Phillips (1991) showing that (error) augmentation of the predictive regression has the potential to deliver
efficient inference, in cases where the autoregressive roots are known and the errors are Gaussian, to motivate an
infeasible augmented short-horizon predictive regression model (resorting to a Bonferroni-based approach to deal with
the estimation error in the near-integrated case). Hjalmarsson (2007) clarifies the relationship between the approach
adopted in Campbell and Yogo (2006a) and fully modified estimation. Based on these precedents, feasible implementation
of the augmented long-horizon regression seems worth exploring.

At first sight, one might think it is possible to implement a feasible version of (3.1) that can be estimated by OLS simply
by replacing the regressor ϖ (h)

t+h with an estimate of that quantity constructed from the OLS residuals, ϖ̂t say, obtained
from fitting an AR(p) model to xt (see (4.8)). However, this will not work. To illustrate why, consider the feasible estimator

β̂F
h :=

(∑T−h
t=p x̄2t

)−1∑T−h
t=p

ˆ̃y(h)t+hx̄t , where ˆ̃y(h)t+h := ȳ(h)t+h − γ̂ ϖ̂
(h)
t+h and γ̂ is a consistent estimator of γ , for example the fitted

coefficient from an OLS regression of ȳt on ϖ̂t when testing the null hypothesis that βh = 0.8 In the simplest possible
case where no short-run dynamics are present in the predictor process, it then follows that,

β̂F
h = β̂ I

h + γ
(
ρ̂ − ρ

) ∑T−h
t=1 x̄t x̄

(h)
t+h−1∑T−h

t=1 x̄2t
+ op(1)

where β̂ I
h is the infeasible estimate of βh from (3.1). This shows that the feasible estimate features an additional

term relative to the infeasible estimator, β̂ I
h, which depends on the estimation error associated with the predictor’s

autoregressive parameter, (ρ̂ − ρ), weighted by γ
(∑T−h

t=1 x̄2t
)−1∑T−h

t=1 x̄t x̄
(h)
t+h−1. This term can be shown to be of the

same order of magnitude as β̂ I
h (see e.g. Cai and Wang, 2014, for the short-horizon case) which renders the limiting

null distribution of β̂F
h non-pivotal. In fact, if computing the feasible estimator for h = 1 by augmenting the predictive

regression with the OLS autoregression residuals ϖ̂t+1, it can be shown that ϖ̂t+1 are exact orthogonal to the regressor,
xt , and so this version of the feasible estimator will be numerically identical to the standard OLS estimator in the
short-horizon case.

In the context of short-horizon predictability testing, Demetrescu and Rodrigues (2022) demonstrate that the problem
with implementing a feasible version of (3.1), discussed above, does not arise if we estimate the residual augmented
regression by IVX. Following their approach, we can apply residual augmentation to the transformed IVX estimate
discussed in Section 4.1 by regressing ȳt+1 − γ̂ ϖ̂t+1, rather than ȳt+1, on z̃trf ,(h)t , where z̃trf ,(h)t is as defined in (4.3) and
the residuals ϖ̂t+1 are computed from an estimated autoregressive model of order p for the predictor xt , viz.,

ϖ̂t+1 := x̄t+1 −

p∑
k=1

φ̂kx̄t+1−k = ϖt −

p∑
k=1

(
φ̂k − φk

)
x̄t−k (4.8)

for t = p, . . . , T − 1, where φ̂k, k = 1, . . . , p are the OLS autoregressive parameter estimates. The dependent variable,
ȳt+1 − γ̂ ϖ̂t+1, is simply the OLS residual from the regression of ȳt+1 on ϖ̂t+1. In practice the lag augmentation order, p, in
(4.8) can be selected using a standard information criterion, setting the minimum possible lag length allowed to be one.
We denote the resulting residual-augmented transformed regression IVX estimator by β̂ trf ,res

h,ivx .
The viability of this approach in the IVX framework stems from the fact that the additional term attributable to OLS

estimation error in the feasible estimation, discussed above, is asymptotically negligible in the IVX context in the case
where the predictor is strongly or moderately persistent. To see why, consider the computational form for β̂ trf ,res

h,ivx ,

β̂
trf ,res
h,ivx :=

∑T−1
t=p ztrf ,(h)t (ȳt+1 − γ̂ ϖ̂t+1)∑T−h

t=1 zt x̄t
(4.9)

which can be written equivalently as

β̂
trf ,res
h,ivx =

∑T−1
t=p ztrf ,(h)t (β1x̄t + ūt+1 − γ̂ ϖ̂t+1)∑T−h

t=1 zt x̄t
.

Using results from the proofs of Theorems 4.1, 4.3 and 4.5 in the Supplementary Appendix, it can be established
straightforwardly that

β̂
trf ,res
h,ivx = βh +

∑T−1
t=p ztrf ,(h)t ε̄t+1∑T−h

t=1 zt x̄t
+ γ

p∑
k=1

(φ̂k − φk)

∑T−1
t=p ztrf ,(h)t x̄t−k∑T−h

t=1 zt x̄t
+ op(1).

8 If one is testing a null hypothesis other than β = 0, then γ̂ is correspondingly obtained from the OLS regression of û (rather than ȳ ) on ϖ̂ .
h t t t

11
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As demonstrated in the formal derivations in the Supplementary Appendix, the usual OLS autoregressive convergence
rates on φ̂k suffice for the OLS estimation effect to be negligible under strong or moderate persistence. In the short-
horizon case, Demetrescu and Rodrigues (2022) show, however, that the variance of β̂ trf ,res

h,ivx will be affected by residual
augmentation under weak persistence. For this reason they recommend computing the standard errors corresponding to
the weak persistence case, and prove that the correction term this entails has an asymptotically negligible effect on the
standard errors under strong persistence, such that one may conveniently use the standard errors developed for weak
persistence, irrespective of whether the predictor exhibits weak or strong persistence. We will adopt the same approach
here in the long-horizon context.

Based on the foregoing arguments, our proposed long-horizon IVX augmented statistic to test the null hypothesis
H0 : βh = 0 is then given by,

t trf ,resh,ivx :=
β̂

trf ,res
h,ivx

s.e.
(
β̂

trf ,res
h,ivx

) (4.10)

where

s.e.
(
β̂

trf ,res
h,ivx

)
:= (Hzx)−1

[
Hztrf ,(h) ε̂ztrf ,(h) ε̂ + γ̂ 2Q̂ trf ,(h)

T

]1/2
ith Hzx :=

(∑T−h
t=1 zt x̄t

)
; Hztrf ,(h) ε̂ztrf ,(h) ε̂ :=

(∑T−1
t=p

(
ztrf ,(h)t

)2
ˆ̄ε2t+1

)
; and

Q̂ trf ,(h)
T := H′

ztrf ,(h) x̄H
−1
x̄x̄ Hx̄x̄vH−1

x̄x̄ Hztrf ,(h) x̄;

defining x̄t :=
(
x̄t , . . . , x̄t−p+1

)′, we have further Hztrf ,(h) x̄ :=

(∑T−1
t=p ztrf ,(h)t x̄t , . . . ,

∑T−1
t=p ztrf ,(h)t x̄t−p+1

)′

, Hx̄x̄ :=
∑T−1

t=p x̄t x̄′

t;

and Hx̄x̄v :=
∑T−1

t=p x̄t x̄′

tϖ̂
2
t+1, with ˆ̄εt+1 the residuals from regressing yt+1 on ϖ̂t+1 and an intercept (i.e. computed under

the null hypothesis; for null hypotheses other than βh = 0, the regression used to obtain ˆ̄εt+1 should also contain xt ).
These (heteroskedasticity-robust) standard errors are designed to automatically take the estimation variability of φ̂k into
account whenever needed, such that the standard errors are asymptotically correct without having to specify whether
xt is weakly or strongly persistent; cf. Demetrescu and Rodrigues (2022). As we will subsequently demonstrate, this nice
property also extends to the case of moderately persistent predictors, not considered by Demetrescu and Rodrigues (2022).

4.3. Asymptotic theory

In this section we analyse the large sample distributions of the estimators and test statistics proposed in Sections 4.1
and 4.2, when the data generating process is as in (2.1)–(2.2) under Assumptions 1–4. In this setting, it is observed that
the partial sums of the innovations vt and εt display joint weak convergence to time-transformed Brownian motions (see
Lemma S.1 in the Supplementary Appendix); precisely,

1
√
T

⌊sT⌋∑
t=1

(
εt
vt

)
⇒

( ∫ s
0 σε (r) dWε (r)∫ s

0 σϖ (r) dWϖ (r)

)
were ‘‘⇒’’ denotes weak convergence on the space of càdlàg real functions on [0, 1]k equipped with the Skorokhod
topology, and where Wε and Wϖ are independent standard Wiener processes. Moreover, under near integration (As-
sumption 2(i)), it also follows that the stochastic part of the suitably normalised regressor weakly converges to an
Ornstein–Uhlenbeck-type process; that is,

T−1/2ξ⌊sT⌋ ⇒ ω

∫ s

0
e−c(s−r)σϖdWϖ (r) =: ωJc,σ (s) . (4.11)

In Theorems 4.1 and 4.2, respectively, we first establish the limiting distributions of β̂ trf ,res
h,ivx and β̂ trf

h,ivx and their
associated standard errors in the case where xt is strongly persistent.

Theorem 4.1. Under Assumptions 1, 2(i), 3 and 4 with ϵ < min {1 − η; η/2} and as h, T → ∞ such that h/(min{
T 3η/2−1/2

; T 2η−1
}
) → 0, we have that

T η/2+1/2

h

(
β̂

trf ,res
h,ivx − β

(i)
h

)
⇒ MN

⎛⎜⎝0,
a
∫ 1
0 σ

2
ϖ (s) σ

2
ε (s) ds

2ω2
(
J (1)J̄ (1) −

∫ 1 J (s)dJ (s)
)2
⎞⎟⎠
c,σ c,σ 0 c,σ c,σ
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where a and η are the tuning parameters for the IVX instrument in (3.6) and MN denotes a mixed normal distribution, with
ω defined in Assumption 3, Jc,σ (s) defined in (4.11) and J̄c,σ (s) := Jc,σ (s) −

∫ 1
0 Jc,σ (s)ds, and

T η/2+1/2

h
s.e.

(
β̂

trf ,res
h,ivx

)
⇒

√
a
∫ 1
0 σ

2
ϖ (s) σ 2

ε (s) ds
√
2ω2

(
Jc,σ (1)J̄c,σ (1) −

∫ 1
0 Jc,σ (s)dJc,σ (s)

) .
emark 8. The limiting results given in Theorem 4.1 are similar to those given in Theorem 3.2 of Demetrescu
nd Rodrigues (2022) for the short-horizon, h = 1, case, but hold under considerably weaker assumptions on the
nnovations than are allowed for in Demetrescu and Rodrigues (2022); here, we allow for conditional heteroskedasticity
hile Demetrescu and Rodrigues (2022) only consider heterogeneous independent error sequences. Compared to the
hort-horizon case, the results in Theorem 4.1 need to take account of the implied aggregation of various quantities
hich, although individually asymptotically negligible quantities, arise over h periods. Given that we allow for h → ∞,
his entails the need to place additional conditions on the persistence allowed for in the IVX instrument, as controlled
y η. In particular, Theorem 4.1 requires that η > 1/3, in addition to conditions relating the persistence of zt to the
trength of the GARCH effects present in the DGP as controlled by ϵ. The choice of η = 0.95 for the IVX tuning parameter
ecommended by Kostakis et al. (2015) is permitted under our rate restrictions, as long as the serial dependence in the
onditional variances is not too high. It is important to note that the results require that h → ∞, albeit at a minimal
ate which is very mild when η is close to unity. Nevertheless, based on the results in Demetrescu and Rodrigues (2022)
ho consider the case h = 1, it should be possible to also obtain corresponding results for fixed h with some additional
echnical effort. We do not do so here in the interests of brevity. ♢

heorem 4.2. Under the conditions of Theorem 4.1, we have that

T η/2+1/2

h

(
β̂

trf
h,ivx − β

(i)
h

)
⇒ MN

⎛⎜⎝0,
a
∫ 1
0 σ

2
ϖ (s)

(
σ 2
ε (s)+ γ 2σ 2

ϖ (s)
)
ds

2ω2
(
Jc,σ (1)J̄c,σ (1) −

∫ 1
0 Jc,σ (s)dJc,σ (s)

)2
⎞⎟⎠

nd

T η/2+1/2

h
s.e.

(
β̂

trf
h,ivx

)
⇒

√
a
∫ 1
0 σ

2
ϖ (s)

(
σ 2
ε (s)+ γ 2σ 2

ϖ (s)
)
ds

√
2ω2

(
Jc,σ (1)J̄c,σ (1) −

∫ 1
0 Jc,σ (s)dJc,σ (s)

) .
emark 9. A comparison of the results in Theorems 4.1 and 4.2 highlights the asymptotic efficiency gains which arise from
esidual augmentation. This can be seen by noting that the asymptotic variance (conditional on Jc,σ ) of β̂ trf

h,ivx is strictly
arger than that of the residual augmented estimator, β̂ trf ,res

h,ivx , whenever γ ̸= 0. These asymptotic efficiency gains are
eflected by the finite-sample power behaviour of the residual-augmented tests; see Section 6.3. Moreover, the simulation
esults also indicate an improved size behaviour, which, building on the findings of Demetrescu and Rodrigues (2022) for
he case h = 1, can be traced back to reductions in the finite-sample bias of the IVX estimator. ♢

In Theorems 4.3 and 4.4 we next establish the limiting distributions of β̂ trf ,res
h,ivx and β̂ trf

h,ivx and their associated standard
errors in the case where xt is weakly persistent.

Theorem 4.3. Under Assumptions 1, 2(ii), 3 and 4, we have as h, T → ∞ such that h3/T → 0,√
T
h

(
β̂

trf ,res
h,ivx − β

(ii)
h

)
d

→ N

⎛⎜⎝0,
ω2

(1−ρ)2
∫ 1
0 σ

2
ϖ (s) σ

2
ε (s) ds(

θ0
∫ 1
0 σ

2
ϖ (s) ds

)2
⎞⎟⎠

where θ0 :=
∑

k≥0 b
2
k is as defined in Assumption 3, and√

T
h
s.e.

(
β̂

trf ,res
h,ivx

)
p

→

ω

√∫ 1
0 σ

2
ϖ (s) σ 2

ε (s) ds

(1 − ρ) θ0
∫ 1
0 σ

2
ϖ (s) ds

.

Theorem 4.4. Under the conditions of Theorem 4.3, we have that√
T
h

(
β̂

trf
h,ivx − β

(ii)
h

)
d

→ N

⎛⎜⎝0,
ω2

(1−ρ)2
∫ 1
0 σ

2
ϖ (s)

(
σ 2
ε (s)+ γ 2σ 2

ϖ (s)
)
ds(

θ
∫ 1
σ 2 (s) ds

)2
⎞⎟⎠
0 0 ϖ

13
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T

a

R
f
l
β
c
p
s

T

a

and √
T
h
s.e.

(
β̂

trf
h,ivx

)
p

→

ω

√∫ 1
0 σ

2
ϖ (s)

(
σ 2
ε (s)+ γ 2σ 2

ϖ (s)
)
ds

(1 − ρ) θ0
∫ 1
0 σ

2
ϖ (s) ds

.

Finally, we consider the intermediary case of moderate (or mild) persistence.

Theorem 4.5. Under Assumptions 1, 2(iii), 3 and 4, with ϵ < min {1 − η; η/2; 1 − κ; κ/2} and as h, T → ∞ such that
h/(min

{
T 3η/2−1/2

; T 2η−1
; T 3κ/2−1/2

; T 2κ−1
}
) → 0, we have that

Tmin{η,κ}/2+1/2

h

(
β̂

trf ,res
h,ivx − β

(iii)
h

)
d

→ N

⎛⎜⎝0,
2g(a, c)
ω2

∫ 1
0 σ

2
ϖ (s) σ

2
ε (s) ds(∫ 1

0 σ
2
ϖ (s) ds

)2
⎞⎟⎠ ,

here g(a, c) = a if η < κ and g(a, c) = c if κ < η, and

Tmin{η,κ}/2+1/2

h
s.e.

(
β̂

trf ,res
h,ivx

)
p

→

√
2g(a, c)

∫ 1
0 σ

2
ϖ (s) σ 2

ε (s) ds

ω
∫ 1
0 σ

2
ϖ (s) ds

.

heorem 4.6. Under the conditions of Theorem 4.5, we have that

Tmin{η,κ}/2+1/2

h

(
β̂

trf ,res
h,ivx − β

(iii)
h

)
d

→ N

⎛⎜⎝0,
2g(a, c)
ω2

∫ 1
0 σ

2
ϖ (s)

(
σ 2
ε (s)+ γ 2σ 2

ϖ (s)
)
ds(∫ 1

0 σ
2
ϖ (s) ds

)2
⎞⎟⎠ ,

nd

Tmin{η,κ}/2+1/2

h
s.e.

(
β̂

trf ,res
h,ivx

)
p

→

√
2g(a, c)

∫ 1
0 σ

2
ϖ (s)

(
σ 2
ε (s)+ γ 2σ 2

ϖ (s)
)
ds

ω
∫ 1
0 σ

2
ϖ (s) ds

.

emark 10. An implication of Theorems 4.1–4.6 is that the convergence rates of both β̂ trf ,res
h,ivx and β̂ trf

h,ivx decrease with the
orecast horizon, h. In the strongly and moderately persistent cases, however, βh = β

(i)
h = β

(iii)
h increases (approximately)

inearly in h which offsets the decreased convergence rate of the estimators. In contrast, in the weakly persistent case,
h = β

(ii)
h remains bounded leading to power losses as the horizon h increases. We will also see this difference in a

omparison of the asymptotic lower power functions of the associated t-statistics in Theorems 4.7 (strongly persistent
redictor), 4.8 (weakly persistent predictor) and 4.9 (moderately persistent predictor) which follow next. The Monte Carlo
imulation results reported in Section 6.3 clearly bear out this prediction from the asymptotic theory. ♢

heorem 4.7. Under the conditions of Theorem 4.1 and local alternatives of the form β1 = bT−η/2−1/2, we have that

t trf ,resh,ivx
d

→ MN

⎛⎜⎝b
ω

√
2
a

(
Jc,σ (1)J̄c,σ (1) −

∫ 1
0 Jc,σ (s)dJc,σ (s)

)
√∫ 1

0 σ
2
ϖ (s) σ 2

ε (s) ds
, 1

⎞⎟⎠
nd

t trfh,ivx
d

→ MN

⎛⎜⎝b
ω

√
2
a

(
Jc,σ (1)J̄c,σ (1) −

∫ 1
0 Jc,σ (s)dJc,σ (s)

)
√∫ 1

0 σ
2
ϖ (s)

(
σ 2
ε (s)+ γ 2σ 2

ϖ (s)
)
ds

, 1

⎞⎟⎠ .
Theorem 4.8. Under the conditions of Theorem 4.3 and local alternatives of the form β1 = bh1/2T−1/2, we have that

t trf ,resh,ivx
d

→ N

⎛⎝b
(1 − ρ) θ0

∫ 1
0 σ

2
ϖ (s) ds

ω

√∫ 1
0 σ

2
ϖ (s) σ 2

ε ds
; 1

⎞⎠ .
and

t trfh,ivx
d

→ N

⎛⎝b
(1 − ρ) θ0

∫ 1
0 σ

2
ϖ (s) ds

ω

√∫ 1
σ 2 s

(
σ 2 s + γ 2σ 2 s

)
ds

; 1

⎞⎠ .

0 ϖ ( ) ε ( ) ϖ ( )

14



M. Demetrescu, P.M.M. Rodrigues and A.M.R. Taylor Journal of Econometrics xxx (xxxx) xxx

a

Theorem 4.9. Under the conditions of Theorem 4.5 and local alternatives of the form β1 = bT−min{η;κ}/2−1/2, we have that

t trf ,resh,ivx
d

→ N

⎛⎝b
ω
∫ 1
0 σ

2
ϖ (s) ds√

2g(a, c)
∫ 1
0 σ

2
ϖ (s) σ 2

ε (s) ds
; 1

⎞⎠ .
nd

t trfh,ivx
d

→ N

⎛⎝b
ω
∫ 1
0 σ

2
ϖ (s) ds√

2g(a, c)
∫ 1
0 σ

2
ϖ (s)

(
σ 2
ε (s)+ γ 2σ 2

ϖ (s)
)
ds

; 1

⎞⎠ .
Using the results given above in Theorems 4.7–4.9 we are now in a position to establish the limiting null distributions

of our proposed transformed regression long-horizon predictability test statistics, t trfh,ivx from Section 4.1 and t trf ,resh,ivx from
Section 4.2.

Corollary 1. Under the null hypothesis of no predictability H0 : βh = 0, we have that under Assumptions 1–4 with
ϵ < min {1 − η; η/2} and h/min

{
T 3η/2−1/2

; T 2η−1
; T 3κ/2−1/2

; T 2κ−1
; T η/3

}
→ 0 as h, T → ∞,

t trf ,resh,ivx
d

→ N (0, 1) and t trfh,ivx
d

→ N (0, 1) .

Corollary 1 demonstrates the key result for practical implementation of our proposed long-horizon predictability tests,
that both t trfh,ivx and t trf ,resh,ivx admit standard normal limiting null distributions regardless of whether the predictor is weakly,
strongly, or moderately persistent. These results hold under the very general forms of conditional and/or unconditional
heteroskedasticity permitted under Assumption 4.

5. Multiple predictors

In empirical work one might wish to consider predictive regression models with several possible predictors. This can
help avoid the problem of spurious predictive regression effects in the case where relevant strongly persistent predictors
are omitted from the estimated predictive regression; cf. Georgiev et al. (2018) and Andersen and Varneskov (2021b). We
now briefly detail how the long-horizon predictability tests developed in Section 4 can be implemented with multiple
predictors.

To that end consider replacing (2.8) by its multivariate counterpart

y(h)t+h = αh + β′

hx
†
t + w

(h)
t+h (5.1)

where x†
t := (xt1, . . . , xtK )′ follows a K -dimensional vector autoregressive data generating process of order p, VAR(p); that

is,

x†
t = µx + Rx†

t−1 + vt , and vt =

p−1∑
j=1

Γ jvt−j + ϖt (5.2)

which is either stable or (near) integrated as before depending on the properties of the (diagonal) autoregressive
coefficient matrix R. The process vt is assumed to follow a stable VAR(p − 1) process.

As with (2.8), the regression coefficients and error term in (5.1) can be related back to those in the corresponding
short-horizon regression, yt+1 = α1 + β′

1x
†
t + ut+1, e.g. via the relationships, αh := hα1 + β′

1Ih≥2
∑h−1

j=1
∑j

i=1 R
i−1µx(I−R),

β′

h := β′

1
∑h−1

j=0 Rj andw(h)
t+h := u(h)

t+h+β′

1Ih≥2
∑h−1

j=1
∑h−j

i=1 R
i−1vt+j for the strongly and moderately persistent cases. Again we

allow for the possibility of endogeneity in all regressors through the non-zero coefficient vector γ in the decomposition

ut+1 := γ ′ϖt+1 + εt+1, (5.3)

where the innovations ϖt+1 and εt+1 are heterogeneous MDs, obeying a multivariate version of Assumption 4.
To implement the transformed bias reduced IVX approach introduced in this paper in the multiple predictive regression

case, we first compute the vector of residuals ϖ̂t from a vector autoregression model of order p of the demeaned
predictors; that is, with x̄†

t := (x̄t1, . . . , x̄tK )′,

ϖ̂t+1 := x̄†
t+1 −

p∑
j=1

Φ̂ jx̄
†
t+1−j, t = p, . . . , T − 1, (5.4)

with Φ̂ j, j = 1, . . . , p, the OLS coefficient matrix estimates. Again, the lag augmentation order in (5.4) can be selected

in practice by using a standard information criterion, setting the minimum possible lag length allowed to be one. The
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(

multiple predictor residual augmented IVX estimator vector is then defined as

β̂
trf ,res
h,ivx :=

(T−1∑
t=p

z̃ trf ,(h)t z̃ trf ,(h)′t

)−1 T−1∑
t=p

z̃ trf ,(h)t

(
ȳt+1 − γ̂

′
ϖ̂t+1

)
=

(T−h∑
t=1

z t x̄
†′
t

)−1 T−1∑
t=p

z trf ,(h)t

(
ȳt+1 − γ̂

′
ϖ̂t+1

)
. (5.5)

where z t is a K × 1 vector of instruments with elements as defined in (3.6) for each predictor in x†
t and

z̃ trf ,(h)t :=

(T−1∑
t=p

z trf ,(h)t z trf ,(h)′t

)−1(T−h∑
t=1

z t x̄
†′
t

)
z trf ,(h)t (5.6)

in which z trf ,(h)t is a K × 1 vector of instruments, whose elements are obtained by applying the definition in (4.4) to each
element of z t .

For inference purposes we need to estimate the covariance matrix of β̂
trf ,res
h,ivx . This can be done by using the familiar

“sandwich” formula,
ˆ

Cov
(
β̂
trf ,res
h,ivx

)
:= B−1

T MT
(
B−1
T

)′
(5.7)

where BT :=
∑T−h

t=1 z t x̄
†′
t and

MT :=
∑T−1

t=p z trf ,ht z trf ,(h)′t ε̂2t+1 +

[
γ ′

⊗

(
1
T

∑T−1
t=p z trf ,ht X̄ ′

t,K

)(∑T−1
t=p X̄ t,K X̄

′

t,K

)−1
]

×

×

(∑T−1
t=p ϖ̂tϖ̂

′

t ⊗ X̄ t,K X̄
′

t,K

)[
γ̂ ⊗

(∑T−1
t=p X̄ t,K X̄

′

t,K

)−1 (
1
T

∑T−1
t=p X̄ t,K z

trf ,(h)′
t

)]
where X̄ t,K is the vector formed from stacking the p lags of each of the K demeaned regressors; that is, X̄ t,K :=

x̄t,1, . . . , x̄t,K , x̄t−1,1, . . . , x̄t−1,K , . . . , x̄t−p+1,1, . . . , x̄t−p+1,K
)′.

The limiting distribution of β̂
trf ,res
h,ivx is (multivariate) normal in the case where the elements of xt are either all weakly

persistent or all moderately persistent, and mixed normal in the case where they are all strongly persistent; the proofs are
straightforward multivariate extensions of the results from the single-regressor case given in Section 4.3 and are therefore
omitted. An important consequence of these results is that the associated individual and joint significance tests on the
elements of βh have standard normal (if one linear restriction is being tested using a t-type ratio) and χ2 (for multiple
restrictions) limiting null distributions irrespective of whether the elements of xt are weakly, moderately or strongly
persistent, and regardless of any heterogeneity present in the DGP, provided the heteroskedasticity-robust covariance
matrix estimator in (5.7) is used. Moreover, we conjecture, based on some preliminary examinations given in section
S.3 in the Supplementary Appendix, that this result also holds in the case where the predictors have mixed degrees
of persistence. Simulation results pertaining to the case of multiple predictors, including mixed persistence cases, are
reported in section S.5 of the Supplementary Appendix.

6. Numerical results

6.1. Set-up

We report the results from a Monte Carlo study exploring the finite sample performance of the residual augmented
transformed regression based long-horizon predictability test, t trf ,resh,ivx , from Section 4.2. We will compare the finite sample
performance of this test with the Bonferroni-based test, tBonfh , of Hjalmarsson (2011) outlined in Section 3.1, the bias-
corrected wild bootstrap implementation of the implied test, tXuh , of Xu (2020) outlined in Section 3.2, and the reversed
predictive regression based test, t rev,PLh,ivx , of Phillips and Lee (2013) outlined in Section 3.3. We also considered the
nonaugmented transformed regression test, t trfh,ivx defined in (4.6), we found that this did not perform as well as t trf ,resh,ivx

(its performance was in fact very similar to that of t rev,PLh,ivx ), and so we only report results for t trf ,resh,ivx . Empirical size results
are reported in Section 6.2 and empirical power properties in Section 6.3. A number of additional Monte Carlo results are
presented in the Supplementary Appendix.

For all of the reported experiments, data are generated from (2.1)–(2.2). All of the tests considered are for the null
hypothesis of no long-run predictability H0 : βh = 0 in (2.8). We will consider tests directed against both one-sided
(left-tailed tests for H1 : βh < 0, and right-tailed tests for H1 : βh > 0), and two-sided alternatives (H1 : βh ̸= 0). All tests
are run at the 5% nominal (asymptotic) significance level. The simulations were preformed in MATLAB, version R2020a,
using the Mersenne Twister random number generator function using 10000 and 5000 Monte Carlo replications for the

empirical size and empirical power simulations, respectively.
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In implementing tBonfh , we follow the steps outlined in Hjalmarsson (2011), however, we use the GLS detrended ADF
pproach as suggested in Campbell and Yogo (2006a) to compute the confidence interval for c instead of Chen and
eo (2009) as it gave better results. With the exception of the IVX instrument, zt , all variables entering the estimated
redictive regressions are demeaned. As discussed in Kostakis et al. (2015, p. 1514) the IVX instrument zt , does not need

to be demeaned because the slope estimator in the predictive regression is invariant to whether zt is demeaned or not.
For implementation of t trf ,resh,ivx in (4.9) we start by estimating an autoregressive model of order p, where p was chosen
applying AIC over p ∈ (1, . . . , ⌊4(T/100)1/4⌋). The resulting residuals, ϖ̂t+1 are then used to compute ȳt+1 − γ̂ ϖ̂t+1, from
regression of ȳt+1 on ϖ̂t+1.

.2. Empirical size

In this section we investigate the finite sample size properties of our proposed t trf ,resh,ivx test and contrast them with
the results of the tBonfh , tXuh and t rev,PLh,ivx tests.9 To that end, we generate data from (2.1)–(2.2) with β1 = 0. In generating
the simulation data we set the intercepts, α1 and µx, in (2.1)–(2.2), respectively, to zero without loss of generality. The
autoregressive process for xt was generated as in (2.2) with ρ = 1+c/T for c ∈ {0,−5,−10,−20,−50} and was initialised
at ξ0 = 0. Results are reported for samples of length T = {100, 250, 500} and for forecast horizons h = {5, 10, 20, 50};
corresponding results for the short horizon case, h = 1, are reported in the Supplementary Appendix.10

We allow the innovations driving the predictor process in (2.2) to either be serially uncorrelated or to follow an
AR(1) process; in particular we set vt+1 = ψvt + ϖt+1, and consider ψ ∈ {−0.5, 0, 0.5}. The innovation vector
(ut+1,ϖt+1)

′ in (2.1)–(2.2) is drawn from an i.i.d. bivariate Gaussian distribution11 with mean zero and covariance matrix

Σ : =

[
σ 2
u φσuσϖ

φσuσϖ σ 2
ϖ

]
, where φ is as defined in Remark 7 and corresponds to the (time-invariant) correlation

between the innovations ut+1 and vt+1. For all of the simulation DGPs we will consider we set σ 2
u = σ 2

v so that it always
holds that γ = φ, where γ is as defined in Assumption 3; cf. Remark 7. We consider φ = {−0.15,−0.50,−0.95}.12
Tables 1–3 report results for ψ = 0, ψ = 0.5, and ψ = −0.5, respectively, when φ = −0.15 and φ = −0.95, setting
σ 2
u = σ 2

v = 1 throughout. Results for ψ = 0, ψ = 0.5, and ψ = −0.5 when φ = −0.5 are reported in the Supplementary
Appendix in Tables S.1, S.2 and S.3, respectively.

The results in Tables 1–3 highlight the superiority of the IVX-based tests, t trf ,resh,ivx and t rev,PLh,ivx , over the non-IVX based tBonfh ,
tXuh tests in terms of controlling size across both strongly and weakly persistent predictors. Taking the case where ψ = 0 to
illustrate, it is seen from the results in Table 1, which are for the case where vt+1 is serially uncorrelated, that the empirical
rejection frequencies of the two-sided t trf ,resh,ivx and t rev,PLh,ivx tests when φ = −0.15, for T = 100 are in the range [0.020, 0.055]
and [0.022, 0.054], respectively; for T = 250 the range is [0.018, 0.047] and [0.018, 0.053], respectively, and for T = 500
the range is [0.017, 0.047] and [0.018, 0.049], respectively, taken across all of the values of c considered. For h = 50 these
two tests become slightly conservative when contrasting with the results for h < 50. Moreover, when φ = −0.95, for
T = 100 the empirical rejection frequencies of these tests are in the range [0.017, 0.058] and [0.044, 0.099], respectively;
for T = 250 in [0.022, 0.062] and [0.039, 0.065], respectively, and for T = 500 in [0.023, 0.058] and [0.046, 0.061],
respectively, again taken across all of the values of c considered (recall that for T = 100 c = −50 is not considered). For
φ = −0.95 we observe that t rev,PLh,ivx displays some oversizedness for T = 100 but improves as the sample size increases.

A comparison of the results in Table 1 with those in Tables 2–3 shows that the results change very little when the
innovations vt+1 are positively (ψ = 0.5) or negatively (ψ = −0.5) autocorrelated. While the two-sided t trf ,resh,ivx and
t rev,PLh,ivx tests both show good finite sample size control it can be seen from the results in Tables 1–3 that for one-sided
alternatives (H1 : βh < 0 and H1 : βh > 0) t trf ,resh,ivx displays considerably better finite sample size control than t rev,PLh,ivx . This is
particularly evident in the case of the right-sided tests. To illustrate, the right-sided version of t trf ,resh,ivx displays empirical
rejection frequencies, taken across all of the results in Tables 1–3, in the range [0.017, 0.057] for T = 100, [0.020, 0.054]
for T = 250 and [0.022, 0.054] for T = 500 when φ = −0.15 and in the range [0.017, 0.078] for T = 100, [0.021, 0.074]
for T = 250 and [0.038, 0.065] for T = 500 when φ = −0.95. Whereas the right-sided version of t rev,PLh,ivx displays rejection
frequencies in the range [0.028, 0.062] for T=100, [0.026, 0.061] for T = 250, and [0.027, 0.058] for T = 500 when

9 We are grateful to Ke-Li Xu for making code for computing his test available on his website https://sites.google.com/site/xukeli2015/research.
10 To ensure a fair comparison for the Bonferroni tests we exclude the case c = −50 in the smallest sample size (T = 100) where the implied
utoregressive root is 0.5 and, hence, very poorly approximated by local-to-unity asymptotics; see also discussion in Phillips (2014).
11 Additional results are reported in the Supplementary Appendix for the cases where: (i) (ut+1,ϖt+1)

′ is conditionally heteroskedastic with
a GARCH(1, 1) formulation characterising the volatility dynamics, and (ii) the unconditional variances of ut+1 and ϖt+1 are allowed to display a
ne-time break at T/4, T/2, and 3T/4. The results for (i) (see Tables S.4–S.6) are qualitatively similar to those reported here for i.i.d. innovations
or all of the tests reported. For (ii) (see Tables S.7–S.33), for both t trf ,resh,ivx and t rev,PLh,ivx the size results are again very similar to those for the i.i.d. case,
while for tBonfh , tXuh larger size distortions are seen relative to results for these tests for the i.i.d. case.
12 Notice that because we report results for both left-sided and right-sided tests we do not need to report results for the case where
φ = {0.15, 0.50, 0.95} because, as noted in Campbell and Yogo (2006a), flipping the sign of φ also flips the sign of β . Consequently, the empirical
size and power properties for the left-sided and right-sided implementations of any given test in what follows for φ = {−0.15,−0.50,−0.95} will

e identical to those for the right-sided and left-sided implementations of those tests, respectively, for φ = {0.15, 0.50, 0.95}.
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250 and 500. DGP (homoskedastic IID innovations):
; φ 1].

tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx

50 T = 500

< 0) and φ = −0.95

0.018 0.001 0.001 0.000 0.025 0.001 0.001
0.030 0.008 0.005 0.115 0.038 0.009 0.005
0.040 0.015 0.015 0.104 0.047 0.017 0.016
0.064 0.023 0.030 0.074 0.066 0.025 0.030
0.169 0.028 0.044 0.059 0.156 0.033 0.044
0.011 0.001 0.001 0.000 0.018 0.001 0.001
0.024 0.007 0.005 0.110 0.033 0.008 0.005
0.034 0.016 0.014 0.103 0.041 0.016 0.016
0.050 0.023 0.030 0.070 0.058 0.027 0.030
0.119 0.026 0.047 0.055 0.130 0.032 0.047
0.004 0.001 0.000 0.000 0.011 0.001 0.000
0.015 0.007 0.004 0.105 0.028 0.008 0.005
0.023 0.012 0.014 0.097 0.034 0.016 0.016
0.028 0.020 0.031 0.063 0.045 0.025 0.03
0.044 0.021 0.045 0.051 0.082 0.031 0.046
0.001 0.001 0.001 0.000 0.003 0.000 0.000
0.003 0.006 0.007 0.085 0.016 0.007 0.004
0.006 0.008 0.018 0.083 0.019 0.014 0.017
0.004 0.011 0.034 0.050 0.019 0.020 0.029
0.003 0.011 0.032 0.051 0.015 0.025 0.043

(continued on next page)
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Table 1
Empirical rejection frequencies of one-sided (left and right tail) and two-sided long-horizon predictability tests, for sample sizes T = 100,
yt+1 = βxt + ut+1, xt+1 = ρxt + vt+1 and vt+1 = ψvt +ϖt+1, where β = 0, ρ = 1 − c/T , ψ = 0 and (ut+1,ϖt+1)

′
∼ NIID(0,Σ), with Σ = [1 φ

h c tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh
T = 100 T = 250 T = 500 T = 100 T = 2

Left-tail tests (H0 : βh = 0 vs Ha : βh < 0) and φ = −0.15 Left-tail tests (H0 : βh = 0 vs Ha : βh

5 0 0.020 0.035 0.015 0.017 0.027 0.036 0.015 0.016 0.034 0.038 0.014 0.015 0.000 0.005 0.001 0.001 0.000
−5 0.048 0.034 0.034 0.037 0.048 0.036 0.032 0.035 0.049 0.035 0.029 0.032 0.096 0.020 0.007 0.007 0.109

−10 0.051 0.031 0.037 0.042 0.052 0.036 0.038 0.042 0.050 0.034 0.037 0.040 0.093 0.029 0.013 0.019 0.104
−20 0.051 0.023 0.037 0.040 0.051 0.034 0.041 0.046 0.050 0.035 0.041 0.042 0.059 0.047 0.020 0.036 0.067
−50 – – – – 0.050 0.027 0.039 0.042 0.050 0.033 0.041 0.044 – – – – 0.053

10 0 0.015 0.034 0.016 0.016 0.020 0.035 0.015 0.016 0.028 0.038 0.013 0.016 0.000 0.002 0.001 0.000 0.000
−5 0.045 0.031 0.035 0.037 0.046 0.036 0.032 0.034 0.048 0.034 0.030 0.032 0.080 0.013 0.007 0.006 0.104

−10 0.053 0.030 0.038 0.041 0.052 0.033 0.039 0.042 0.049 0.034 0.038 0.038 0.083 0.019 0.013 0.020 0.097
−20 0.056 0.016 0.036 0.039 0.050 0.030 0.041 0.045 0.052 0.032 0.041 0.041 0.048 0.022 0.015 0.036 0.061
−50 – – – – 0.053 0.019 0.039 0.040 0.052 0.026 0.042 0.042 – – – – 0.046

20 0 0.014 0.027 0.016 0.017 0.015 0.035 0.015 0.015 0.020 0.038 0.014 0.015 0.004 0.001 0.001 0.001 0.000
−5 0.043 0.027 0.035 0.038 0.045 0.032 0.033 0.035 0.047 0.033 0.031 0.032 0.055 0.004 0.006 0.009 0.091

−10 0.059 0.018 0.039 0.042 0.053 0.029 0.040 0.040 0.051 0.033 0.037 0.038 0.066 0.006 0.010 0.022 0.087
−20 0.065 0.005 0.035 0.035 0.054 0.022 0.042 0.041 0.052 0.030 0.041 0.043 0.042 0.004 0.012 0.034 0.051
−50 – – – – 0.057 0.007 0.039 0.036 0.053 0.015 0.039 0.040 – – – – 0.047

50 0 0.044 0.001 0.017 0.041 0.014 0.027 0.017 0.018 0.013 0.037 0.015 0.015 0.166 0.000 0.003 0.025 0.005
−5 0.056 0.000 0.034 0.038 0.044 0.025 0.036 0.033 0.045 0.034 0.033 0.035 0.028 0.000 0.009 0.033 0.059

−10 0.079 0.000 0.035 0.031 0.061 0.018 0.039 0.037 0.053 0.027 0.040 0.040 0.050 0.000 0.007 0.028 0.067
−20 0.075 0.000 0.026 0.023 0.064 0.007 0.038 0.035 0.058 0.018 0.041 0.041 0.062 0.000 0.005 0.024 0.041
−50 – – – – 0.060 0.000 0.029 0.026 0.061 0.003 0.040 0.037 – – – – 0.054
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tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx

50 T = 500

h > 0) and φ = −0.95

0.037 0.103 0.063 0.174 0.032 0.103 0.058
0.039 0.105 0.065 0.077 0.032 0.104 0.059
0.033 0.092 0.067 0.062 0.032 0.093 0.058
0.026 0.082 0.071 0.056 0.025 0.08 0.059
0.018 0.061 0.074 0.052 0.016 0.065 0.063
0.036 0.103 0.061 0.152 0.032 0.104 0.057
0.036 0.106 0.065 0.066 0.031 0.104 0.060
0.027 0.095 0.067 0.056 0.030 0.093 0.059
0.018 0.081 0.070 0.051 0.023 0.080 0.060
0.007 0.061 0.069 0.048 0.011 0.065 0.065
0.033 0.105 0.059 0.119 0.030 0.100 0.054
0.026 0.108 0.060 0.053 0.028 0.105 0.058
0.016 0.097 0.060 0.047 0.025 0.096 0.056
0.007 0.086 0.057 0.047 0.019 0.084 0.059
0.001 0.060 0.046 0.050 0.004 0.069 0.060
0.020 0.109 0.042 0.086 0.027 0.101 0.046
0.012 0.112 0.039 0.061 0.018 0.107 0.047
0.007 0.105 0.037 0.057 0.013 0.102 0.046
0.002 0.095 0.035 0.054 0.006 0.096 0.046
0.000 0.067 0.026 0.055 0.001 0.076 0.045

βh ̸= 0) and φ = −0.95

0.040 0.049 0.034 0.098 0.040 0.048 0.031
0.053 0.056 0.037 0.106 0.054 0.056 0.032
0.058 0.056 0.045 0.105 0.061 0.055 0.036
0.070 0.051 0.052 0.073 0.073 0.054 0.047
0.159 0.043 0.062 0.056 0.149 0.048 0.055
0.033 0.052 0.034 0.086 0.035 0.046 0.030
0.041 0.057 0.036 0.095 0.049 0.053 0.032
0.045 0.055 0.043 0.099 0.054 0.056 0.037
0.048 0.052 0.051 0.064 0.063 0.052 0.047
0.099 0.043 0.061 0.051 0.115 0.051 0.058
0.026 0.054 0.030 0.062 0.029 0.048 0.028
0.028 0.057 0.032 0.078 0.041 0.055 0.030
0.024 0.054 0.035 0.087 0.043 0.058 0.034
0.022 0.051 0.044 0.058 0.042 0.053 0.045
0.028 0.039 0.049 0.050 0.060 0.048 0.053
0.010 0.060 0.022 0.061 0.019 0.051 0.023
0.007 0.065 0.022 0.074 0.021 0.061 0.024
0.005 0.063 0.025 0.088 0.019 0.061 0.029
0.002 0.058 0.030 0.058 0.013 0.060 0.036
0.001 0.041 0.027 0.056 0.006 0.052 0.042

mented transformed regression based statistic in (4.9)
eter that characterises the persistence of the predictor.
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Table 1 (continued).

h c tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh
T = 100 T = 250 T = 500 T = 100 T = 2

Right-tail tests (H0 : βh = 0 vs Ha : βh > 0) and φ = −0.15 Right-tail tests (H0 : βh = 0 vs Ha : β

5 0 0.044 0.043 0.032 0.028 0.050 0.039 0.027 0.024 0.056 0.038 0.027 0.025 0.120 0.048 0.117 0.067 0.163
−5 0.059 0.037 0.053 0.049 0.054 0.036 0.047 0.044 0.051 0.035 0.047 0.044 0.056 0.044 0.108 0.073 0.073

−10 0.061 0.031 0.055 0.051 0.055 0.033 0.049 0.048 0.051 0.035 0.049 0.047 0.051 0.036 0.096 0.073 0.059
−20 0.062 0.022 0.050 0.047 0.056 0.031 0.050 0.049 0.050 0.033 0.052 0.050 0.050 0.025 0.074 0.073 0.054
−50 – – – – 0.056 0.022 0.046 0.043 0.051 0.027 0.05 0.049 – – – – 0.049

10 0 0.035 0.039 0.034 0.027 0.041 0.037 0.027 0.024 0.049 0.038 0.028 0.024 0.095 0.045 0.119 0.062 0.128
−5 0.066 0.032 0.053 0.046 0.055 0.033 0.048 0.043 0.05 0.035 0.046 0.042 0.065 0.032 0.114 0.063 0.060

−10 0.071 0.027 0.055 0.047 0.058 0.028 0.051 0.046 0.052 0.032 0.048 0.044 0.061 0.020 0.097 0.061 0.050
−20 0.072 0.015 0.051 0.043 0.059 0.022 0.051 0.045 0.052 0.03 0.049 0.046 0.06 0.010 0.076 0.057 0.048
−50 – – – – 0.062 0.013 0.047 0.043 0.054 0.022 0.049 0.047 – – – – 0.052

20 0 0.037 0.027 0.035 0.026 0.035 0.038 0.031 0.024 0.04 0.037 0.029 0.024 0.169 0.027 0.116 0.05 0.092
−5 0.079 0.017 0.054 0.041 0.062 0.03 0.049 0.042 0.052 0.033 0.048 0.041 0.120 0.016 0.120 0.047 0.058

−10 0.087 0.011 0.055 0.041 0.064 0.023 0.055 0.045 0.054 0.028 0.051 0.045 0.083 0.008 0.111 0.043 0.054
−20 0.085 0.004 0.05 0.037 0.067 0.017 0.051 0.044 0.054 0.025 0.054 0.045 0.064 0.003 0.089 0.036 0.054
−50 – – – – 0.069 0.005 0.041 0.035 0.06 0.013 0.05 0.044 – – – – 0.057

50 0 0.064 0.001 0.029 0.041 0.036 0.024 0.034 0.023 0.031 0.035 0.031 0.022 0.347 0.011 0.078 0.049 0.168
−5 0.108 0.000 0.050 0.038 0.074 0.018 0.056 0.037 0.061 0.027 0.049 0.040 0.175 0.007 0.132 0.031 0.123

−10 0.111 0.000 0.054 0.031 0.082 0.013 0.056 0.037 0.066 0.023 0.053 0.042 0.091 0.003 0.140 0.023 0.082
−20 0.094 0.000 0.047 0.021 0.083 0.005 0.054 0.036 0.067 0.014 0.055 0.040 0.065 0.000 0.121 0.017 0.066
−50 – – – – 0.070 0.000 0.039 0.027 0.064 0.003 0.047 0.036 – – – – 0.058

Two-sided tests (H0 : βh = 0 vs Ha : βh ̸= 0) and φ = −0.15 Two-sided tests (H0 : βh = 0 vs Ha :

5 0 0.030 0.041 0.022 0.022 0.039 0.037 0.018 0.018 0.041 0.038 0.019 0.018 0.068 0.040 0.058 0.037 0.096
−5 0.055 0.035 0.044 0.045 0.054 0.036 0.04 0.039 0.051 0.037 0.037 0.037 0.075 0.048 0.062 0.043 0.098

−10 0.057 0.029 0.046 0.046 0.055 0.034 0.044 0.045 0.054 0.036 0.043 0.044 0.086 0.048 0.058 0.049 0.099
−20 0.059 0.020 0.041 0.043 0.057 0.033 0.046 0.046 0.053 0.033 0.047 0.047 0.057 0.051 0.048 0.058 0.064
−50 – – – – 0.053 0.022 0.042 0.043 0.051 0.027 0.045 0.046 – – – – 0.049

10 0 0.024 0.038 0.022 0.02 0.032 0.037 0.018 0.018 0.032 0.038 0.018 0.017 0.067 0.032 0.058 0.035 0.072
−5 0.059 0.034 0.045 0.044 0.057 0.035 0.038 0.037 0.053 0.034 0.037 0.036 0.077 0.029 0.061 0.036 0.079

−10 0.068 0.026 0.05 0.049 0.057 0.031 0.044 0.043 0.052 0.033 0.042 0.041 0.092 0.023 0.057 0.041 0.087
−20 0.074 0.012 0.046 0.043 0.06 0.024 0.046 0.046 0.053 0.029 0.046 0.043 0.061 0.018 0.044 0.048 0.055
−50 – – – – 0.061 0.011 0.042 0.042 0.055 0.021 0.044 0.044 – – – – 0.047

20 0 0.027 0.027 0.025 0.023 0.026 0.037 0.02 0.018 0.027 0.038 0.018 0.017 0.155 0.015 0.063 0.025 0.058
−5 0.070 0.021 0.047 0.041 0.058 0.032 0.041 0.035 0.051 0.033 0.038 0.037 0.117 0.008 0.067 0.028 0.073

−10 0.090 0.013 0.051 0.043 0.066 0.026 0.046 0.04 0.056 0.029 0.043 0.039 0.094 0.006 0.063 0.031 0.085
−20 0.097 0.003 0.045 0.036 0.073 0.016 0.046 0.043 0.058 0.022 0.045 0.042 0.06 0.002 0.053 0.032 0.055
−50 – – – – 0.072 0.005 0.036 0.034 0.062 0.010 0.044 0.040 – – – – 0.053

50 0 0.061 0.000 0.028 0.055 0.024 0.023 0.026 0.021 0.023 0.036 0.021 0.017 0.397 0.004 0.053 0.051 0.159
−5 0.113 0.000 0.049 0.046 0.071 0.021 0.048 0.035 0.059 0.031 0.041 0.034 0.158 0.002 0.094 0.037 0.120

−10 0.140 0.000 0.054 0.031 0.091 0.013 0.053 0.038 0.069 0.022 0.046 0.040 0.085 0.001 0.099 0.028 0.094
−20 0.119 0.000 0.046 0.020 0.100 0.004 0.047 0.034 0.074 0.012 0.049 0.041 0.083 0.000 0.085 0.017 0.058
−50 – – – – 0.079 0.000 0.034 0.022 0.075 0.001 0.043 0.036 – – – – 0.060

Notes: tXuh denotes the implied statistic of Xu (2020), tBonfh is the Bonferroni based statistic of Hjalmarsson (2011), t trf ,resh,ivx is the residual aug
proposed in Section 4.2; and t trf ,PLh,ivx is the Phillips and Lee (2013) statistic. h is the forecast horizon considered and c is the local to unity param
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100, 250 and 500. DGP (Positive Autocorrelation):
φ; φ 1].

tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx

50 T = 500

< 0) and φ = −0.95

0.035 0.001 0.001 0.000 0.043 0.001 0.001
0.072 0.008 0.005 0.025 0.079 0.009 0.005
0.188 0.016 0.013 0.125 0.200 0.017 0.015
0.355 0.024 0.026 0.170 0.382 0.027 0.028
0.652 0.030 0.038 0.093 0.735 0.035 0.042
0.041 0.001 0.001 0.000 0.059 0.001 0.001
0.132 0.007 0.005 0.017 0.152 0.008 0.005
0.302 0.016 0.013 0.118 0.341 0.016 0.014
0.508 0.023 0.026 0.170 0.586 0.028 0.028
0.717 0.028 0.040 0.089 0.893 0.034 0.042
0.031 0.001 0.000 0.001 0.061 0.001 0.000
0.150 0.007 0.004 0.008 0.197 0.008 0.004
0.316 0.012 0.012 0.102 0.408 0.015 0.014
0.454 0.020 0.026 0.164 0.640 0.025 0.029
0.446 0.024 0.042 0.082 0.851 0.032 0.044
0.003 0.001 0.001 0.006 0.028 0.000 0.001
0.039 0.006 0.007 0.001 0.161 0.007 0.004
0.082 0.008 0.017 0.064 0.331 0.014 0.014
0.066 0.011 0.029 0.149 0.433 0.020 0.028
0.031 0.013 0.034 0.066 0.372 0.027 0.040

h > 0) and φ = −0.95

0.004 0.101 0.060 0.200 0.004 0.104 0.056
0.001 0.104 0.059 0.049 0.001 0.103 0.055
0.000 0.098 0.061 0.041 0.000 0.093 0.056
0.000 0.085 0.061 0.040 0.000 0.084 0.056
0.000 0.072 0.067 0.042 0.000 0.070 0.057
0.001 0.102 0.060 0.159 0.002 0.101 0.057
0.000 0.106 0.059 0.046 0.000 0.104 0.055
0.000 0.097 0.062 0.038 0.000 0.095 0.055
0.000 0.087 0.064 0.037 0.000 0.083 0.057
0.000 0.073 0.069 0.039 0.000 0.070 0.060
0.001 0.103 0.057 0.107 0.001 0.097 0.052
0.000 0.105 0.056 0.041 0.000 0.105 0.054
0.000 0.101 0.056 0.035 0.000 0.098 0.052
0.000 0.093 0.058 0.034 0.000 0.088 0.055
0.000 0.078 0.057 0.038 0.000 0.077 0.058
0.002 0.108 0.043 0.056 0.002 0.101 0.045
0.000 0.114 0.038 0.048 0.000 0.106 0.047
0.000 0.110 0.035 0.050 0.000 0.103 0.045
0.000 0.109 0.038 0.054 0.000 0.100 0.046
0.000 0.095 0.035 0.054 0.000 0.091 0.046

(continued on next page)
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Table 2
Empirical rejection frequencies of one-sided (left and right tail) and two-sided long-horizon predictability tests, for sample sizes T =

yt+1 = βxt + ut+1, xt+1 = ρxt + vt+1 and vt+1 = ψvt +ϖt+1, where β = 0, ρ = 1 − c/T , ψ = 0.50 and (ut+1,ϖt+1)
′
∼ NIID(0,Σ), with Σ = [1

h c tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh
T = 100 T = 250 T = 500 T = 100 T = 2

Left-tail tests (H0 : βh = 0 vs Ha : βh < 0) and φ = −0.15 Left-tail tests (H0 : βh = 0 vs Ha : βh

5 0 0.010 0.043 0.015 0.017 0.016 0.043 0.015 0.017 0.024 0.043 0.013 0.015 0.001 0.016 0.001 0.001 0.000
−5 0.028 0.050 0.035 0.039 0.038 0.049 0.032 0.035 0.042 0.048 0.030 0.032 0.009 0.052 0.008 0.006 0.017

−10 0.046 0.053 0.039 0.044 0.050 0.053 0.039 0.043 0.053 0.053 0.037 0.038 0.094 0.139 0.013 0.013 0.115
−20 0.054 0.051 0.043 0.048 0.056 0.059 0.044 0.046 0.057 0.058 0.041 0.043 0.149 0.254 0.020 0.026 0.163
−50 – – – – 0.052 0.060 0.045 0.047 0.050 0.068 0.046 0.046 – – – – 0.081

10 0 0.008 0.048 0.014 0.016 0.010 0.045 0.015 0.017 0.015 0.047 0.014 0.015 0.005 0.011 0.001 0.000 0.001
−5 0.017 0.053 0.036 0.038 0.031 0.051 0.034 0.034 0.037 0.053 0.030 0.033 0.001 0.076 0.007 0.005 0.010

−10 0.038 0.055 0.041 0.043 0.046 0.058 0.040 0.042 0.051 0.057 0.037 0.039 0.067 0.180 0.013 0.012 0.101
−20 0.054 0.044 0.042 0.045 0.056 0.059 0.044 0.047 0.059 0.064 0.042 0.042 0.137 0.256 0.017 0.026 0.157
−50 – – – – 0.053 0.049 0.045 0.047 0.052 0.067 0.044 0.046 – – – – 0.074

20 0 0.030 0.034 0.015 0.018 0.009 0.048 0.015 0.014 0.010 0.047 0.014 0.015 0.055 0.003 0.001 0.001 0.005
−5 0.012 0.038 0.037 0.040 0.020 0.054 0.034 0.034 0.028 0.054 0.031 0.033 0.002 0.029 0.005 0.007 0.002

−10 0.029 0.030 0.043 0.044 0.041 0.055 0.041 0.040 0.046 0.056 0.038 0.038 0.031 0.071 0.010 0.014 0.074
−20 0.056 0.017 0.043 0.044 0.055 0.050 0.044 0.043 0.057 0.060 0.044 0.044 0.109 0.060 0.013 0.027 0.146
−50 – – – – 0.055 0.024 0.046 0.045 0.051 0.047 0.042 0.043 – – – – 0.064

50 0 0.108 0.002 0.017 0.049 0.032 0.029 0.017 0.019 0.007 0.047 0.015 0.015 0.326 0.000 0.004 0.025 0.064
−5 0.014 0.001 0.035 0.046 0.011 0.028 0.037 0.035 0.016 0.053 0.033 0.034 0.014 0.000 0.009 0.035 0.003

−10 0.030 0.001 0.039 0.038 0.031 0.019 0.041 0.040 0.036 0.048 0.042 0.041 0.010 0.000 0.009 0.029 0.023
−20 0.077 0.000 0.036 0.029 0.057 0.012 0.044 0.039 0.059 0.038 0.044 0.043 0.071 0.000 0.007 0.023 0.114
−50 – – – – 0.066 0.003 0.039 0.033 0.057 0.015 0.047 0.044 – – – – 0.055

Right-tail tests (H0 : βh = 0 vs Ha : βh > 0) and φ = −0.15 Right-tail tests (H0 : βh = 0 vs Ha : β

5 0 0.021 0.045 0.030 0.027 0.039 0.038 0.026 0.023 0.049 0.037 0.027 0.025 0.107 0.007 0.112 0.062 0.167
−5 0.038 0.040 0.054 0.051 0.043 0.034 0.047 0.044 0.044 0.033 0.046 0.042 0.046 0.001 0.111 0.065 0.050

−10 0.046 0.036 0.058 0.056 0.044 0.029 0.051 0.047 0.043 0.029 0.050 0.047 0.038 0.001 0.100 0.068 0.042
−20 0.054 0.025 0.058 0.057 0.049 0.027 0.054 0.052 0.046 0.027 0.051 0.049 0.038 0.000 0.087 0.068 0.041
−50 – – – – 0.050 0.020 0.053 0.053 0.049 0.019 0.054 0.052 – – – – 0.040

10 0 0.015 0.043 0.033 0.029 0.024 0.039 0.027 0.024 0.033 0.036 0.028 0.024 0.063 0.003 0.113 0.058 0.112
−5 0.028 0.035 0.053 0.047 0.036 0.032 0.048 0.044 0.039 0.032 0.045 0.041 0.054 0.000 0.114 0.064 0.044

−10 0.047 0.030 0.059 0.052 0.043 0.026 0.052 0.047 0.043 0.026 0.050 0.045 0.053 0.000 0.105 0.061 0.037
−20 0.060 0.020 0.059 0.051 0.049 0.022 0.054 0.049 0.045 0.023 0.051 0.048 0.054 0.000 0.092 0.063 0.036
−50 – – – – 0.055 0.015 0.054 0.050 0.051 0.015 0.051 0.050 – – – – 0.040

20 0 0.028 0.028 0.034 0.028 0.016 0.039 0.030 0.024 0.019 0.037 0.029 0.024 0.063 0.003 0.106 0.049 0.071
−5 0.024 0.015 0.056 0.044 0.028 0.032 0.050 0.043 0.033 0.031 0.049 0.042 0.096 0.000 0.118 0.050 0.046

−10 0.049 0.009 0.060 0.045 0.040 0.023 0.056 0.046 0.042 0.026 0.053 0.045 0.109 0.000 0.117 0.047 0.043
−20 0.073 0.004 0.060 0.047 0.055 0.017 0.056 0.049 0.047 0.019 0.056 0.046 0.100 0.000 0.108 0.043 0.046
−50 – – – – 0.064 0.008 0.051 0.044 0.056 0.012 0.054 0.048 – – – – 0.050

50 0 0.077 0.002 0.028 0.052 0.026 0.022 0.034 0.023 0.011 0.038 0.031 0.022 0.094 0.011 0.072 0.064 0.063
−5 0.032 0.001 0.052 0.047 0.025 0.014 0.056 0.038 0.025 0.028 0.049 0.041 0.187 0.004 0.131 0.046 0.099

−10 0.065 0.000 0.061 0.040 0.047 0.006 0.059 0.039 0.042 0.020 0.055 0.044 0.222 0.002 0.150 0.036 0.110
−20 0.107 0.000 0.062 0.029 0.073 0.003 0.061 0.039 0.055 0.011 0.058 0.043 0.153 0.000 0.151 0.029 0.106
−50 – – – – 0.085 0.001 0.053 0.035 0.066 0.004 0.056 0.043 – – – – 0.068
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tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx

50 T = 500

βh ̸= 0) and φ = −0.95

0.026 0.049 0.031 0.114 0.030 0.046 0.029
0.051 0.056 0.031 0.035 0.057 0.053 0.031
0.144 0.055 0.035 0.086 0.154 0.055 0.032
0.295 0.057 0.046 0.140 0.318 0.054 0.041
0.587 0.050 0.051 0.077 0.678 0.051 0.048
0.028 0.051 0.032 0.088 0.041 0.047 0.029
0.095 0.057 0.031 0.029 0.112 0.053 0.030
0.247 0.056 0.036 0.074 0.278 0.055 0.033
0.437 0.058 0.046 0.131 0.520 0.055 0.042
0.648 0.052 0.057 0.071 0.852 0.055 0.052
0.020 0.053 0.029 0.058 0.042 0.048 0.027
0.106 0.058 0.031 0.024 0.150 0.056 0.029
0.255 0.056 0.033 0.060 0.343 0.061 0.032
0.376 0.057 0.040 0.125 0.565 0.055 0.040
0.341 0.051 0.046 0.064 0.792 0.056 0.051
0.001 0.059 0.021 0.039 0.016 0.050 0.022
0.019 0.065 0.020 0.034 0.118 0.060 0.024
0.046 0.065 0.023 0.048 0.264 0.062 0.028
0.033 0.066 0.030 0.122 0.343 0.062 0.034
0.012 0.058 0.032 0.067 0.261 0.061 0.042
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Table 2 (continued).

h c tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh
T = 100 T = 250 T = 500 T = 100 T = 2

Two-sided tests (H0 : βh = 0 vs Ha : βh ̸= 0) and φ = −0.15 Two-sided tests (H0 : βh = 0 vs Ha :

5 0 0.013 0.048 0.022 0.022 0.025 0.039 0.018 0.019 0.034 0.039 0.018 0.018 0.061 0.011 0.055 0.034 0.095
−5 0.031 0.047 0.044 0.044 0.039 0.043 0.039 0.039 0.043 0.040 0.037 0.036 0.027 0.035 0.062 0.037 0.032

−10 0.047 0.044 0.053 0.052 0.049 0.044 0.043 0.046 0.048 0.042 0.043 0.044 0.060 0.107 0.062 0.042 0.079
−20 0.056 0.039 0.049 0.050 0.054 0.044 0.049 0.049 0.051 0.043 0.049 0.049 0.115 0.205 0.057 0.050 0.127
−50 – – – – 0.053 0.041 0.050 0.053 0.051 0.045 0.051 0.049 – – – – 0.065

10 0 0.009 0.051 0.023 0.021 0.015 0.043 0.019 0.019 0.022 0.040 0.017 0.016 0.043 0.006 0.055 0.032 0.067
−5 0.021 0.049 0.044 0.044 0.031 0.045 0.039 0.037 0.036 0.042 0.037 0.035 0.038 0.049 0.062 0.032 0.026

−10 0.043 0.046 0.055 0.051 0.044 0.044 0.045 0.043 0.046 0.043 0.042 0.041 0.058 0.137 0.056 0.038 0.062
−20 0.062 0.032 0.055 0.053 0.056 0.043 0.051 0.049 0.053 0.044 0.047 0.044 0.117 0.198 0.054 0.042 0.119
−50 – – – – 0.056 0.031 0.051 0.049 0.051 0.042 0.050 0.050 – – – – 0.060

20 0 0.026 0.031 0.025 0.025 0.010 0.044 0.019 0.018 0.012 0.043 0.018 0.017 0.068 0.002 0.060 0.025 0.049
−5 0.016 0.027 0.049 0.045 0.021 0.045 0.041 0.037 0.028 0.042 0.037 0.036 0.080 0.013 0.068 0.026 0.030

−10 0.037 0.017 0.058 0.048 0.042 0.041 0.047 0.042 0.043 0.042 0.043 0.040 0.098 0.041 0.069 0.029 0.051
−20 0.073 0.008 0.057 0.046 0.061 0.035 0.051 0.046 0.055 0.041 0.047 0.045 0.136 0.033 0.067 0.035 0.118
−50 – – – – 0.065 0.014 0.049 0.044 0.054 0.027 0.050 0.046 – – – – 0.061

50 0 0.105 0.001 0.028 0.074 0.027 0.025 0.026 0.021 0.008 0.044 0.021 0.018 0.283 0.004 0.050 0.066 0.075
−5 0.024 0.000 0.051 0.056 0.017 0.018 0.048 0.036 0.018 0.043 0.042 0.034 0.166 0.001 0.095 0.050 0.084

−10 0.057 0.000 0.062 0.042 0.036 0.012 0.055 0.041 0.037 0.035 0.048 0.040 0.204 0.001 0.107 0.036 0.096
−20 0.126 0.000 0.061 0.029 0.073 0.005 0.054 0.040 0.060 0.022 0.051 0.042 0.156 0.000 0.107 0.024 0.144
−50 – – – – 0.099 0.001 0.047 0.033 0.070 0.006 0.051 0.042 – – – – 0.071

Notes: See Notes to Table 1.
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100, 250 and 500. DGP (Negative Autocorrelation):
[1 φ; φ 1].

tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx

50 T = 500

< 0) and φ = −0.95

0.001 0.001 0.001 0.006 0.001 0.001 0.001
0.001 0.008 0.005 0.031 0.001 0.009 0.005
0.000 0.015 0.015 0.032 0.000 0.018 0.016
0.002 0.021 0.030 0.037 0.000 0.024 0.029
0.038 0.025 0.040 0.043 0.013 0.031 0.043
0.000 0.001 0.001 0.005 0.001 0.001 0.001
0.001 0.007 0.005 0.028 0.000 0.008 0.005
0.000 0.015 0.016 0.031 0.000 0.016 0.016
0.001 0.022 0.031 0.034 0.000 0.026 0.029
0.018 0.023 0.042 0.043 0.007 0.029 0.043
0.000 0.001 0.000 0.004 0.001 0.001 0.000
0.000 0.007 0.005 0.027 0.000 0.008 0.005
0.000 0.012 0.015 0.028 0.000 0.016 0.016
0.000 0.019 0.031 0.033 0.000 0.024 0.028
0.006 0.019 0.039 0.044 0.003 0.028 0.044
0.000 0.001 0.001 0.002 0.001 0.000 0.000
0.000 0.006 0.008 0.020 0.000 0.007 0.005
0.000 0.008 0.018 0.022 0.000 0.014 0.016
0.000 0.010 0.030 0.035 0.000 0.019 0.026
0.000 0.009 0.023 0.046 0.000 0.021 0.038

h > 0) and φ = −0.95

0.225 0.105 0.066 0.240 0.216 0.103 0.060
0.419 0.103 0.067 0.123 0.431 0.101 0.059
0.521 0.090 0.070 0.095 0.575 0.089 0.061
0.610 0.074 0.073 0.075 0.698 0.076 0.060
0.584 0.051 0.070 0.064 0.724 0.058 0.062
0.258 0.104 0.064 0.225 0.251 0.103 0.058
0.464 0.101 0.066 0.117 0.501 0.104 0.061
0.559 0.089 0.071 0.093 0.648 0.089 0.060
0.616 0.072 0.071 0.076 0.765 0.076 0.062
0.478 0.049 0.065 0.066 0.759 0.058 0.064
0.262 0.106 0.061 0.220 0.267 0.102 0.056
0.430 0.105 0.061 0.121 0.516 0.103 0.058
0.470 0.091 0.061 0.098 0.645 0.093 0.057
0.412 0.076 0.061 0.081 0.736 0.079 0.061
0.109 0.047 0.045 0.069 0.646 0.059 0.057
0.200 0.111 0.044 0.265 0.255 0.100 0.047
0.208 0.110 0.041 0.143 0.431 0.106 0.046
0.129 0.098 0.038 0.108 0.472 0.098 0.046
0.036 0.081 0.031 0.083 0.388 0.088 0.047
0.001 0.049 0.021 0.067 0.089 0.063 0.038

(continued on next page)
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Table 3
Empirical rejection frequencies of one-sided (left and right tail) and two-sided long-horizon predictability tests, for sample sizes T =

yt+1 = βxt + ut+1, xt+1 = ρxt + vt+1 and vt+1 = ψvt +ϖt+1, where β = 0, ρ = 1 − c/T , ψ = −0.50 and (ut+1,ϖt+1)
′
∼ NIID(0,Σ), with Σ =

h c tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh
T = 100 T = 250 T = 500 T = 100 T = 2

Left-tail tests (H0 : βh = 0 vs Ha : βh < 0) and φ = −0.15 Left-tail tests (H0 : βh = 0 vs Ha : βh

5 0 0.032 0.023 0.015 0.018 0.034 0.024 0.015 0.016 0.036 0.027 0.013 0.015 0.004 0.000 0.001 0.001 0.005
−5 0.047 0.013 0.032 0.036 0.042 0.015 0.031 0.036 0.043 0.015 0.029 0.031 0.030 0.000 0.007 0.007 0.028

−10 0.049 0.007 0.033 0.037 0.046 0.011 0.037 0.039 0.046 0.012 0.037 0.038 0.031 0.000 0.012 0.020 0.032
−20 0.054 0.003 0.031 0.034 0.047 0.009 0.037 0.040 0.047 0.009 0.038 0.040 0.036 0.003 0.018 0.034 0.034
−50 – – – – 0.050 0.006 0.034 0.035 0.051 0.006 0.037 0.039 – – – – 0.041

10 0 0.031 0.023 0.016 0.016 0.031 0.023 0.015 0.016 0.034 0.024 0.013 0.016 0.003 0.000 0.001 0.001 0.004
−5 0.051 0.014 0.034 0.036 0.044 0.013 0.032 0.033 0.042 0.013 0.029 0.032 0.025 0.000 0.006 0.007 0.025

−10 0.053 0.009 0.034 0.039 0.047 0.010 0.038 0.039 0.047 0.010 0.036 0.037 0.026 0.000 0.011 0.020 0.029
−20 0.058 0.002 0.030 0.032 0.049 0.007 0.038 0.042 0.049 0.007 0.039 0.040 0.039 0.000 0.013 0.033 0.033
−50 – – – – 0.052 0.003 0.032 0.035 0.054 0.006 0.037 0.039 – – – – 0.044

20 0 0.032 0.023 0.016 0.016 0.029 0.021 0.015 0.015 0.033 0.025 0.014 0.015 0.001 0.001 0.001 0.001 0.002
−5 0.058 0.013 0.035 0.036 0.046 0.014 0.033 0.033 0.044 0.013 0.031 0.032 0.019 0.000 0.005 0.010 0.021

−10 0.059 0.006 0.035 0.035 0.053 0.009 0.037 0.037 0.049 0.009 0.036 0.036 0.025 0.000 0.010 0.020 0.024
−20 0.059 0.001 0.028 0.028 0.053 0.005 0.038 0.038 0.051 0.006 0.040 0.041 0.045 0.000 0.010 0.027 0.032
−50 – – – – 0.052 0.001 0.030 0.029 0.054 0.003 0.034 0.035 – – – – 0.046

50 0 0.042 0.001 0.018 0.038 0.029 0.022 0.016 0.018 0.030 0.025 0.015 0.015 0.007 0.000 0.003 0.018 0.001
−5 0.067 0.001 0.031 0.033 0.054 0.015 0.035 0.031 0.048 0.017 0.033 0.035 0.019 0.000 0.007 0.023 0.015

−10 0.063 0.000 0.027 0.026 0.058 0.008 0.037 0.035 0.054 0.010 0.039 0.038 0.039 0.000 0.006 0.017 0.023
−20 0.059 0.000 0.020 0.016 0.055 0.002 0.035 0.031 0.056 0.005 0.039 0.039 0.046 0.000 0.005 0.013 0.039
−50 – – – – 0.051 0.000 0.022 0.020 0.054 0.000 0.035 0.031 – – – – 0.045

Right-tail tests (H0 : βh = 0 vs Ha : βh > 0) and φ = −0.15 Right-tail tests (H0 : βh = 0 vs Ha : β

5 0 0.070 0.046 0.033 0.028 0.066 0.049 0.028 0.024 0.067 0.049 0.027 0.025 0.212 0.271 0.118 0.073 0.221
−5 0.073 0.036 0.052 0.048 0.064 0.051 0.046 0.044 0.057 0.059 0.047 0.044 0.118 0.388 0.104 0.078 0.116

−10 0.074 0.027 0.049 0.047 0.063 0.048 0.048 0.046 0.057 0.063 0.048 0.046 0.094 0.413 0.088 0.077 0.091
−20 0.072 0.012 0.043 0.042 0.065 0.039 0.047 0.046 0.055 0.063 0.050 0.048 0.078 0.423 0.062 0.077 0.073
−50 – – – – 0.060 0.017 0.040 0.039 0.053 0.048 0.045 0.044 – – – – 0.065

10 0 0.073 0.043 0.035 0.027 0.064 0.045 0.028 0.024 0.066 0.048 0.028 0.024 0.242 0.291 0.121 0.066 0.216
−5 0.083 0.031 0.050 0.045 0.067 0.044 0.046 0.043 0.060 0.056 0.045 0.042 0.130 0.347 0.110 0.068 0.118

−10 0.081 0.020 0.051 0.043 0.067 0.038 0.049 0.044 0.059 0.055 0.048 0.045 0.098 0.309 0.087 0.065 0.096
−20 0.074 0.006 0.042 0.037 0.068 0.027 0.047 0.042 0.059 0.047 0.048 0.045 0.079 0.188 0.062 0.055 0.079
−50 – – – – 0.060 0.006 0.040 0.037 0.055 0.027 0.044 0.043 – – – – 0.066

20 0 0.078 0.035 0.036 0.026 0.067 0.039 0.030 0.024 0.065 0.043 0.029 0.024 0.309 0.220 0.118 0.053 0.242
−5 0.093 0.025 0.051 0.037 0.076 0.036 0.048 0.040 0.064 0.047 0.047 0.041 0.133 0.162 0.114 0.048 0.135

−10 0.086 0.012 0.048 0.037 0.074 0.027 0.051 0.042 0.063 0.041 0.049 0.044 0.101 0.073 0.096 0.042 0.102
−20 0.075 0.002 0.040 0.030 0.072 0.013 0.046 0.039 0.062 0.031 0.050 0.043 0.078 0.009 0.071 0.029 0.079
−50 – – – – 0.061 0.001 0.033 0.029 0.055 0.009 0.044 0.040 – – – – 0.066

50 0 0.098 0.002 0.029 0.038 0.078 0.033 0.034 0.022 0.069 0.038 0.031 0.022 0.385 0.044 0.076 0.052 0.329
−5 0.102 0.001 0.049 0.033 0.089 0.029 0.054 0.037 0.076 0.038 0.048 0.040 0.135 0.022 0.126 0.032 0.146

−10 0.088 0.000 0.047 0.026 0.082 0.018 0.052 0.036 0.071 0.029 0.052 0.041 0.098 0.003 0.125 0.024 0.103
−20 0.075 0.000 0.039 0.017 0.072 0.004 0.047 0.032 0.065 0.014 0.051 0.038 0.079 0.000 0.092 0.017 0.080
−50 – – – – 0.061 0.000 0.028 0.020 0.057 0.001 0.040 0.031 – – – – 0.066
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tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx

50 T = 500

βh ̸= 0) and φ = −0.95

0.198 0.049 0.035 0.142 0.190 0.048 0.031
0.378 0.055 0.039 0.085 0.397 0.054 0.033
0.473 0.051 0.046 0.067 0.533 0.053 0.036
0.563 0.047 0.055 0.059 0.668 0.052 0.045
0.576 0.035 0.061 0.057 0.706 0.043 0.055
0.228 0.053 0.034 0.133 0.227 0.046 0.030
0.417 0.056 0.038 0.082 0.462 0.053 0.032
0.501 0.052 0.045 0.067 0.609 0.054 0.037
0.545 0.048 0.056 0.059 0.730 0.050 0.046
0.403 0.037 0.058 0.058 0.729 0.045 0.055
0.228 0.054 0.031 0.136 0.240 0.049 0.029
0.358 0.055 0.034 0.089 0.469 0.054 0.029
0.373 0.052 0.038 0.071 0.596 0.056 0.035
0.287 0.044 0.046 0.060 0.680 0.049 0.044
0.043 0.032 0.040 0.060 0.559 0.042 0.051
0.142 0.059 0.024 0.207 0.221 0.050 0.024
0.119 0.062 0.024 0.105 0.353 0.060 0.025
0.059 0.057 0.024 0.075 0.360 0.060 0.030
0.009 0.049 0.028 0.063 0.257 0.055 0.036
0.000 0.030 0.021 0.061 0.030 0.042 0.037

23
Table 3 (continued).

h c tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh tBonfh t rev,PLh,ivx t trf ,resh,ivx tXuh
T = 100 T = 250 T = 500 T = 100 T = 2

Two-sided tests (H0 : βh = 0 vs Ha : βh ̸= 0) and φ = −0.15 Two-sided tests (H0 : βh = 0 vs Ha :

5 0 0.054 0.033 0.022 0.021 0.052 0.034 0.018 0.018 0.049 0.038 0.018 0.018 0.138 0.230 0.058 0.042 0.141
−5 0.066 0.020 0.043 0.043 0.057 0.032 0.039 0.038 0.051 0.038 0.037 0.037 0.088 0.322 0.060 0.047 0.081

−10 0.068 0.013 0.041 0.040 0.059 0.027 0.042 0.044 0.052 0.038 0.043 0.042 0.070 0.344 0.053 0.051 0.067
−20 0.069 0.004 0.034 0.035 0.058 0.020 0.043 0.042 0.054 0.035 0.044 0.045 0.060 0.342 0.039 0.059 0.058
−50 – – – – 0.056 0.008 0.034 0.035 0.056 0.022 0.040 0.042 – – – – 0.052

10 0 0.056 0.033 0.023 0.022 0.050 0.031 0.018 0.019 0.049 0.036 0.017 0.017 0.184 0.234 0.060 0.037 0.141
−5 0.080 0.020 0.043 0.041 0.063 0.027 0.037 0.037 0.054 0.033 0.036 0.035 0.098 0.257 0.057 0.039 0.087

−10 0.079 0.009 0.044 0.043 0.065 0.021 0.040 0.041 0.054 0.029 0.041 0.041 0.070 0.203 0.050 0.043 0.070
−20 0.078 0.002 0.035 0.035 0.066 0.012 0.041 0.041 0.058 0.024 0.043 0.041 0.062 0.089 0.037 0.042 0.061
−50 – – – – 0.060 0.002 0.036 0.035 0.060 0.010 0.039 0.037 – – – – 0.055

20 0 0.067 0.027 0.025 0.023 0.053 0.030 0.020 0.017 0.049 0.036 0.018 0.017 0.255 0.149 0.065 0.028 0.175
−5 0.098 0.016 0.044 0.038 0.074 0.025 0.039 0.034 0.058 0.028 0.037 0.036 0.096 0.079 0.064 0.029 0.098

−10 0.093 0.006 0.046 0.037 0.076 0.016 0.043 0.038 0.062 0.023 0.041 0.038 0.069 0.024 0.056 0.029 0.072
−20 0.079 0.000 0.036 0.029 0.073 0.006 0.043 0.038 0.065 0.015 0.043 0.039 0.069 0.001 0.042 0.026 0.061
−50 – – – – 0.060 0.000 0.030 0.027 0.063 0.003 0.038 0.035 – – – – 0.056

50 0 0.098 0.001 0.028 0.048 0.065 0.027 0.026 0.021 0.052 0.031 0.021 0.017 0.334 0.020 0.054 0.047 0.276
−5 0.120 0.000 0.047 0.039 0.094 0.020 0.046 0.034 0.074 0.023 0.041 0.033 0.094 0.006 0.089 0.031 0.100

−10 0.102 0.000 0.046 0.024 0.091 0.010 0.050 0.034 0.076 0.014 0.045 0.038 0.084 0.001 0.089 0.019 0.072
−20 0.080 0.000 0.036 0.015 0.077 0.001 0.039 0.028 0.073 0.005 0.045 0.039 0.071 0.000 0.062 0.010 0.070
−50 – – – – 0.059 0.000 0.026 0.018 0.062 0.000 0.035 0.028 – – – – 0.058

Notes: See Notes to Table 1.
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φ = −0.15, however when the correlation increases significant over-sizing is observed. For instance, when φ = −0.95 the
range of rejection frequencies are [0.054, 0.151] for T=100, [0.047, 0.114] for T = 250, and [0.058, 0.107] for T = 500.
In contrast the left-sided versions of these tests display conservative behaviour, which is a common characteristic of
IVX-based predictability tests; see, for example, Demetrescu et al. (2022a). In general, however, the degree of undersizing
observed in the left-tailed IVX-based tests is less pronounced, often very significantly so, for t trf ,resh,ivx than it is for t rev,PLh,ivx .

In contrast to the IVX-based tests, the empirical rejection frequencies of the tXuh test are very sensitive to the strength
of the persistence of the predictor (and magnitude of the correlation φ). For example, in Table 1 it can be seen that
when φ = −0.15 tXuh displays decent size performance, but when the endogeneity correlation increases (increasing
the relevance of the strength of the persistence of the predictor on the performance of the test statistics) the test
displays substantial size distortions (eg for φ = −0.95 these occur regardless of the sample size and for both one-
sided and two-sided implementations of the test). The finite sample behaviour of the one-sided and two-sided tXuh tests
become generally more erratic when the innovations vt+1 are autocorrelated, and are particularly unreliable in the case
of negatively autocorrelated vt+1; see Table 3. We recall from the discussion in Section 3.2 that tXuh is not valid when vt+1
is autocorrelated and these results illustrate this well.

The tBonfh tests display empirical rejection frequencies close to the nominal 5% significance level, for both one-sided and
two-sided implementations, in the case where vt+1 is serially uncorrelated (Table 1), c ≥ −20 and h < 20 and regardless
of the sample size (except for c = −20 and T = 100 where the test is under-sized). As discussed in Section 3.1, this test
is based on the assumption that the predictor is strongly persistent and so the deterioration in the empirical rejection
rates for c = −50 is to be expected. Perhaps most striking, however, is the highly erratic behaviour of tBonfh when the
innovations vt+1 are autocorrelated (Tables 2 and 3). Here the tBonfh tests can be either massively over-sized, with size
sometimes in excess of 50%, or massively under-sized. On the basis of these results this approach would appear to be too
unreliable to use in empirical applications.

We conclude from the results in Tables 1–3 (see also the additional results in Tables S.1–S.3 in the Supplementary
Appendix)13 that only the IVX-based long-horizon predictability tests, t trf ,resh,ivx and t rev,PLh,ivx , display reliable enough finite
sample size control across predictors whose degree of persistence is unknown and which are not driven by uncorrelated
innovations to be empirically useful. The tBonfh and tXuh tests would appear to be too unreliable to be used in practical
applications. Of the t trf ,resh,ivx and t rev,PLh,ivx tests our results suggest that the former delivers significantly better finite sample
size control.

6.3. Empirical power

In this section we compare the finite sample power properties of the t trf ,resh,ivx and t rev,PLh,ivx tests. (Again, t trfh,ivx and t rev,PLh,ivx

perform very similarly and we only report t rev,PLh,ivx .) Because of the unreliable size properties of the tBonfh and tXuh tests
reported in Section 6.2 we will not include these tests in our main discussion, however results for these tests can be
found in the Supplementary Appendix (see Figures S.31 - S.55). To investigate the finite sample power properties of the
t trf ,resh,ivx and t rev,PLh,ivx tests we simulate data from (2.2)–(2.1) under the alternative hypothesis H1 := b/T , across the following
values of the drift parameter, b ∈ {−15,−14.5,−14, . . . , 14, 14.5, 15}. The innovations (ut+1,ϖt+1)

′ were generated as
described in Section 6.2 with results reported in Figs. 1–2 only for ψ = 0; results for ψ ∈ {−0.5, 0.5} are qualitatively
similar and can be found in the Supplementary Appendix (Figures S.1–S.30). Figures S.1–S.30 report left-, right- and two-
sided test results for φ = {−0.95,−0.50,−0.15} (cf. footnote 12), for prediction horizons h = {1, 5, 10, 20, 50} and for
five values of the persistence parameter, c , associated with xt ; specifically, c = {0,−5,−10,−20}. In the interests of
space, Figs. 1–2 only present power curves for one-sided tests (left- and right-sided) for prediction horizons h = 5, 20,
sample sizes T = 100 and T = 250, φ = {−0.15,−0.95} and noncentrality parameters c = −5 and c = −20. Consider
first Fig. 1 which plots the power curves of the left-sided t trf ,resh,ivx and t rev,PLh,ivx tests against H1 : βh < 0. It is clearly seen from
these figures that when φ is small in absolute value (φ = −0.15), that the left-sided t trf ,resh,ivx and t rev,PLh,ivx tests display similar
performance. Moreover this figure also illustrates that when φ is large in absolute value (φ = −0.95) the left-sided t trf ,resh,ivx
test displays significantly superior power performance than the left-sided t rev,PLh,ivx test and that this holds regardless of the
prediction horizon or the strength of persistence of the predictor. It can also be seen from Fig. 1 that for both tests power
decreases as c decreases (i.e. as the persistence of the predictor weakens), other things being equal. This pattern is to be
expected as the signal from the predictor becomes stronger the more persistent is the predictor, xt . Finally, we observe
that the power superiority of t trf ,resh,ivx over t rev,PLh,ivx generally becomes more pronounced as h becomes larger, other things
equal.

Turning to the right-sided tests in Fig. 2 we observe that also in this case, when φ is small (φ = −0.15) both tests
display suitable size performance, but as the impact of endogeneity increases the performance of t rev,PLh,ivx deteriorates.
For instance, for φ = −0.95 results seem to suggest that the t rev,PLh,ivx test displays somewhat higher empirical rejection

13 Tables S.1–S.3 present the empirical rejection frequencies for DGPs with homoskedastic IID innovations (Table S.1), DGPs with positively
autocorrelated innovations (Table S.2) and DGPs with negatively autocorrelated innovations (Table S.3). Each of the three tables in each case present
results for one of the values of φ considered, φ = {−0.15,−0.50,−0.95}. All tables present results for three sample sizes: T = 100, 250 and 500.
24
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Fig. 1. Power curves of the LEFT-sided tests t trf ,resh,ivx and t rev,PLh,ivx for prediction horizon h = {5, 20} and T = {100, 250}. DGP: yt+1 = βxt + ut+1, xt+1 =

xt + vt+1 and vt+1 = ψvt + ϖt+1 , where β = b/T , ρ = 1 + c/T , with c = {−5,−20}, ψ = 0.5 and (ut+1,ϖt+1)
′

∼ NIID(0,Σ), with
= [1 φ; φ 1], and φ = {−0.15,−0.95}.
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ρ

Fig. 2. Power curves of the RIGHT-sided tests t trf ,resh,ivx and t rev,PLh,ivx for prediction horizon h = {5, 20} and T = {100, 250}. DGP: yt+1 = βxt +ut+1, xt+1 =

xt + vt+1 and vt+1 = ψvt + ϖt+1 , where β = b/T , ρ = 1 + c/T , with c = {−5,−20}, ψ = 0.5 and (ut+1,ϖt+1)
′

∼ NIID(0,Σ), with
Σ = [1 φ; φ 1], and φ = {−0.15,−0.95}.
26
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frequencies than t trf ,resh,ivx . However, this is an artifact of the significant over-sizing seen with the t rev,PLh,ivx test in these scenarios;
see Tables 1–3 and which is also visible in these plots. Indeed, when we compare the power properties of the two tests
for c ≤ −10 and h > 10 where their empirical sizes are broadly comparable, we observe that t trf ,resh,ivx tends to display
superior power to t rev,PLh,ivx . Again, as h becomes larger t trf ,resh,ivx tends to perform better than t rev,PLh,ivx ; for example for h = 50 we
see that t trf ,resh,ivx is generally more powerful than t rev,PLh,ivx for c ≤ −5 even though the latter is rather over-sized for c = −5,
c = −10 and c = −20 (see Figures S.14 and S.29, in the Supplementary Appendix).

7. Empirical application

Exchange rate predictability has been a topic of considerable interest in the international finance and macroeconomics
literatures. We revisit the recent study of Eichenbaum et al. (2020) [henceforth EJR] who document: (i) that current real
exchange rates (RER) predict nominal exchange rates (NER) in the long-run14; (ii) that RER is a poor predictor of future
inflation rates, and (iii) that these regularities depend on the monetary policy regime in effect. EJR further observe that
current RER is strongly negatively correlated with future changes in NER, that this correlation increases with the prediction
horizon, and that RER is virtually uncorrelated with future inflation rates at all horizons. These empirical observations
suggest that RER adjusts to shocks in the medium and long run overwhelmingly through changes in NER, and not through
inflation rate differentials.

EJR base their analysis on a benchmark group of six countries (Australia, Canada, Germany, New Zealand, Sweden, and
the UK), which (other than Germany) had adopted inflation targeting before 1997.15 We revisit the predictive power of RER
for predicting changes in NER and future inflation rates across 45 countries. Our contribution to this literature is to provide
further evidence on the stylised features of exchange rate predictability using the new long-horizon predictability tests
developed in this paper to evaluate the usefulness of current RERs as predictors of future changes in NERs and inflation
differentials.

7.1. Data

All data used in the empirical analysis is obtained from the International Financial Statistics of the IMF (https://data.
imf.org) for the period from 1973:Q1 to 2020:Q1. The analysis will be conducted over four different sample periods: (i) the
full sample — 1973:Q1 to 2020:Q1; (ii) from 1973:Q1 to 2008:Q4; (iii) from 1990:Q1 to 2008:Q4; and (iv) from 1999:Q1 to
2020:Q1. The sample includes 45 countries split into developed and emerging markets according to the MCSI classification;
see https://www.msci.com/market-classification. The developed markets group comprises Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland, Israel, Italy, Japan, Luxembourg, Netherlands, New
Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, and United Kingdom. The emerging markets group
consists of Brazil, Bulgaria, Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, Iceland, India, Indonesia,
Korea, Mexico, Peru, Philippines, Poland, Romania, Russian Federation, South Africa, Thailand, and Ukraine. Most of these
countries adopted inflation targeting, but at a later stage than the benchmark group considered in EJR (many adopted this
policy in 1999 and a few between 1999 and 2005); see Ilzetzki et al. (2017) for details.

Although the overall sample period is from 1973:Q1 to 2020:Q1, the samples for some of the countries are slightly
smaller due to lack of available data at the beginning and/or end of the sample. Specifically, for Hungary and Iceland
the sample starts in 1976:Q1, for Brazil and Poland in 1980:Q1, for Hong-Kong in 1980:Q4, for China in 1986:Q1, for
Romania in 1990:Q4, for Bulgaria in 1991:Q1, for the Czech Republic and the Ukraine in 1993:Q1 and finally for the
Russian Federation in 1995:Q2. Moreover, for Egypt and the Ukraine the ending dates are also shorter than for the rest
of the countries in the sample (2019:Q3 and 2019:Q4, respectively).

7.2. Empirical results

7.2.1. The nominal exchange rate long-horizon predictive regression
The NER long-horizon predictive regression considered by EJR is given by

log
(
NERi,t+h

NERit

)
= αNER

ih + βNER
ih log(RERit ) + uNER

i,t+h, (7.1)

here i corresponds to the country under analysis and h to the prediction horizon (in quarters), h = {1, 4, 8, 12, 20}. The
predictor is the real exchange rate of country i relative to the US, i.e., RERit := NERit (Pit/Pt ), where NERit is the average
quarterly nominal exchange rate (domestic currency per US dollar) and Pt and Pit denote the consumer price index (CPI)
for all items in the US and in country i, respectively.

14 Mark (1995) and Engel et al. (2007) have also found evidence of predictability of NER at medium and long horizons; see Rossi (2013) for a
urvey.
15 In EJR the sample periods for Australia, Canada, Germany, New Zealand, Sweden, and the U.K. start in 1993:Q3, 1991:Q2, 1982:Q4, 1990:Q1,
996:Q1, and 1992:Q4, respectively. All samples end in 2008:Q4, because from 2009 to the present short-term U.S. nominal interest rates were at
r near their effective lower bound (however EJR also provide results for the samples ending in 2018 in a supplementary appendix).
27
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To provide an indication of the persistence of RERit , we estimate the augmented Dickey–Fuller regression for each
country,

RERit = αRER
i + ρRER

i RERi,t−1 +

p∑
k=1

δk∆RERi,t−k +ϖ RER
it , i = 1, . . . , 45, (7.2)

where for each series the lag order p is determined based on the AIC information criteria with a maximum lag
order determined by the so-called Schwert’s rule, ⌊4(T/100)1/4⌋. We report the OLS estimates of ρRER

i , ρ̂RER
i , for each

ountry under analysis, as well as estimates of the contemporaneous correlation, φi, between the innovations (under the
ssumption that the correlation is constant), specifically,

φ̂i :=
(T − p̂i)−1∑T−1

t=p̂i
ûNER
i,t+1ϖ̂

RER
i,t+1√

((T − 1)−1
∑T−1

t=1 (û
NER
i,t+1)2)((T − p̂i)−1

∑T−1
t=p̂i

(ϖ̂NER
i,t+1)2)

, (7.3)

where ûNER
i,t+1 are the OLS residuals from the predictive regression in (7.1) with h = 1, and the OLS residuals ϖ̂ RER

i,t+1
rom (7.2). EJR assume that RER is mean reverting (weakly persistent) and highlight a number of features they observe
rom the estimation of (7.1) by OLS. Their analysis is based on testing for long-horizon predictability by comparing the
onventional OLS t-statistic from (7.1) computed with Newey–West standard errors, denoted th,NW , with critical values
from the standard normal distribution. As is well known and discussed in Section 2.2 these tests are not theoretically
valid and likely to spuriously reject the null hypothesis if RER is strongly persistent.

The estimates of ρ̂RER
i reported in Table 4 (and Tables S.39 and S.40 in the Supplementary Appendix) suggest that for

most of the countries considered RER is strongly persistent with an estimated autoregressive root very close to unity.
From Panel A of Table 4 we observe that, in general, for all countries ρ̂RER

≥ 0.953 when considering the sample from
1973:Q1 to 2020:Q1 (except for the Russian Federation, where ρ̂RER

= 0.898); ρ̂RER
≥ 0.932 in the sample from 1973:Q1

to 2008:Q4 (except for the Russian Federation and Ukraine, where ρ̂RER
= 0.868 and ρ̂RER

= 0.853, respectively; see Table
S.39 in the Supplementary Appendix); ρ̂RER

≥ 0.910 from 1990:Q1 to 2008:Q4 (except for Peru, the Russian Federation
and Ukraine, where ρ̂RER

= 0.666, ρ̂RER
= 0.868 and ρ̂RER

= 0.853, respectively; see Table S.40); and finally ρ̂RER
≥ 0.918

from 1999:Q1 to 2020:Q1 (except for Korea where ρ̂RER
= 0.887); see Panel B of Table 4.

In Table 4 (and Tables S.39 and S.40 of the Supplementary Appendix) we also report, for the various sample periods
discussed above and for each horizon h, the results of the th,NW test, of our new IVX-based t trf ,resh,ivx test and of the t rev,PLh,ivx test
of Phillips and Lee (2013). The IVX-based test was implemented exactly as detailed for the simulation study in Section 6.
Although we provide results for th,NW , these should be treated with caution given the strong persistence of the predictor
highlighted above. As suggested in EJR, the Newey–West standard errors used in th,NW were computed using the Bartlett
kernel setting the number of lags to h + 8.16

Consider first the results in Panels A and B of Table 4. Here we observe negative outcomes for the IVX-based statistics
for almost all countries (the exceptions are a small number of emerging markets) and for all of the values of h considered.
This entails that the IVX estimates of the βNER

ih slope coefficients are negative, albeit many of these test outcomes are not
statistically significant. These findings support EJR’s conclusion that current RER and changes in future NERs are negatively
correlated. The results in Tables S.39 - S.40 in the Supplementary Appendix suggest that this finding also appears robust
to the other sample periods considered. In addition to the observation that the outcomes of the IVX-based statistics are
mostly negative, we also observe that the estimated innovation correlations, φ̂i, are positive for all of the countries and
are generally very high. As the Monte Carlo simulation results in Section 6.2 show (see footnote 12), this is precisely the
case where the left-sided t rev,PLh,ivx test will be significantly oversized, while our preferred residual-augmented t trf ,resh,ivx test is
approximately correctly sized. We might therefore expect to see fewer rejections with the t trf ,resh,ivx test than with the t rev,PLh,ivx
test, and that should be borne in mind in what follows.

Overall, the results in Table 4 provide increasing evidence of predictability as h increases. This is particularly, noticeable
in the top part of Panel A which contains the results for the developed markets nations, where an increase in the number
of statistically significant cases is observed for larger h. However, we also note that the number of rejections is largest for
th,NW and smallest for t trf ,resh,ivx . This is unsurprising given that, as discussed above, the former is likely to be invalid for these
data and that the latter is the only one of the tests reported which displays reliable size control in this setting. In the
case of the emerging markets nations, a similar situation as for the developed markets nations can be observed from the
results for the t trf ,resh,ivx and t rev,PLh,ivx tests. th,NW finds that changes in NER in more than 50% of these countries are predictable
by RER when h = 1, but as h increases the number of statistically significant results decreases slightly. From the results
of t trf ,resh,ivx and t rev,PLh,ivx we observe that for forecast horizons h ≥ 8 predictability seems to increase (h = 20 displays the
largest number of significant cases). The results for t trf ,resh,ivx and t rev,PLh,ivx in Panel A of Table 4 suggest that in the full sample
(1973:Q1 to 2020:Q1), of the benchmark countries considered by EJR, only Canada seems to become significant when
h ≥ 12, whereas based on th,NWAustralia, New Zealand and the UK display statistically significant results.

16 For all but one of the countries considered the fitted lag length, p̂i , from (7.2) was greater than zero in all of the sample periods considered.
For that reason, we do not report results for the tBonfh test of Hjalmarsson (2011) or the tXuh test of Xu (2020) given their likely unreliability in such
ases; see Section 6.2.
28
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Table 4
Nominal exchange rate long-horizon predictive regression results.

h = 20
trf ,res
,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx

1.273 −0.801 −2.986*** −1.129 −0.705
0.200 −1.258 −0.989 −0.103 −0.859
1.637 −3.089*** −0.228 −1.268 −2.642***
0.739 −1.808* −0.715 −0.783 −1.790*
1.139 −1.964** −0.128 −1.038 −1.952*
0.415 −1.436 0.297 −0.319 −1.094
0.963 −1.576 0.006 −0.847 −1.516
0.306 −1.089 −1.587 −0.220 −0.720
1.914* 0.544 1.060 −1.789* 0.196
1.108 −0.843 −2.991*** −0.937 −0.723
2.350** −2.621*** −3.755*** −2.937*** −3.563***
0.242 −0.557 1.110 −0.170 −0.596
0.596 −1.297 −2.189** −0.498 −0.645
1.292 −2.962*** −0.230 −1.004 −2.532**
0.572 −1.334 −1.237 −0.426 −0.959
1.033 −0.585 −2.702*** −0.950 −0.632
0.553 −1.649* 0.590 −0.429 −1.604
0.687 −1.064 1.229 −0.636 −0.809
0.266 −0.466 −2.661*** −0.255 −0.469
0.121 −0.822 0.911 −0.071 −0.644
0.371 −1.252 0.916 −0.287 −1.091
0.680 −0.774 −3.519*** −0.386 −0.397
0.236 −0.644 −2.494** −0.109 −0.445

2.138** −2.371** −3.626*** −2.575** −3.198***
2.197** −1.628 −19.090*** −2.743*** −2.340**
.147 0.229 −0.297 7.092*** 0.346
0.007 −0.774 0.379 −0.005 −0.541
0.587 −1.072 1.764* −0.573 −1.402
0.752 −1.511 −0.589 −0.964 −2.404**
0.205 −0.497 −1.010 −0.320 −0.695
0.071 −0.908 1.514 −0.059 −1.212
.368 −0.699 1.451 0.323 −1.125
0.957 −1.442 −0.137 −0.903 −1.216
.115 −0.556 2.637*** 0.049 −1.046
.140 −0.732 2.597*** 0.104 −0.912
.037 −0.422 1.623 0.028 −0.466
1.877* −2.224** −2.586*** −1.983** −2.332**
1.659* −2.070** −2.417** −2.027** −2.893***
0.102 −0.982 1.495 −0.140 −1.264
2.029** −2.189** −3.408*** −2.205** −2.773***
2.489** −0.343 −12.696*** −1.586 −0.409
0.102 −0.167 0.121 −0.797 −0.256
0.103 −0.350 −0.043 −0.045 −0.479
0.109 −0.705 0.844 −0.196 −1.019
.111*** −0.075 −0.732 34.635*** −0.208

(continued on next page)
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φ̂ ρ̂RER h = 1 h = 4 h = 8 h = 12

th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW th
PANEL A: Period from 1973:Q1 to 2020:Q2.
Australia 0.933 0.973 −1.653* −1.301 −0.750 −2.436** −1.390 −1.053 −2.736*** −1.325 −0.912 −2.943*** −

Austria 0.958 0.975 −0.575 −0.256 −0.795 −0.758 −0.326 −1.191 −0.794 −0.280 −1.145 −0.888 −

Belgium 0.970 0.968 −0.081 −1.528 −1.523 −0.199 −1.915* −2.375** −0.217 −1.832* −2.767*** −0.268 −

Canada 0.951 0.973 −0.178 −0.544 −0.920 −0.400 −0.644 −1.434 −0.465 −0.675 −1.456 −0.572 −

Denmark 0.952 0.965 0.044 −0.936 −1.103 −0.086 −1.161 −1.609 −0.111 −1.180 −1.926* −0.147 −

Finland 0.934 0.953 0.288 −0.304 −0.798 0.201 −0.444 −1.274 0.180 −0.462 −1.573 0.186 −

France 0.962 0.970 0.197 −0.718 −0.805 0.036 −0.952 −1.195 0.006 −0.985 −1.552 −0.012 −

Germany 0.974 0.978 −0.714 −0.358 −0.590 −1.031 −0.432 −0.963 −1.148 −0.383 −0.968 −1.340 −

Hong Kong 0.334 0.969 1.222 −0.875 −1.920* 1.145 −1.345 −1.849* 1.120 −1.765* −1.575 1.100 −

Ireland 0.910 0.964 −1.975** −1.032 −0.690 −2.410** −1.145 −0.968 −2.887*** −1.142 −1.084 −2.988*** −

Israel 0.862 0.996 −3.068*** −1.205 −0.882 −2.897*** −1.567 −1.480 −2.773*** −1.990** −2.012** −2.862*** −

Italy 0.862 0.977 1.134 −0.235 −0.667 1.105 −0.267 −0.735 1.095 −0.266 −0.893 1.079 −

Japan 0.961 0.992 −1.195 −0.495 −0.748 −1.377 −0.579 −1.051 −1.654* −0.620 −1.221 −1.932* −

Luxembourg 0.966 0.967 −0.081 −1.206 −1.461 −0.201 −1.505 −2.299** −0.219 −1.442 −2.661*** −0.271 −

Netherlands 0.972 0.979 −0.666 −0.669 −0.819 −0.889 −0.770 −1.213 −0.951 −0.690 −1.189 −1.082 −

New Zealand 0.896 0.974 −1.492 −0.977 −0.683 −2.071** −1.069 −1.013 −2.316** −1.051 −0.918 −2.624*** −

Norway 0.952 0.975 0.623 −0.477 −1.086 0.504 −0.610 −1.551 0.517 −0.574 −1.722* 0.500 −

Portugal 0.650 0.987 1.430 −0.536 −0.832 1.387 −0.629 −0.949 1.335 −0.679 −1.197 1.280 −

Singapore 0.866 0.992 −1.541 −0.302 −0.033 −1.958* −0.293 −0.215 −1.963** −0.278 −0.084 −2.271** −

Spain 0.864 0.980 0.883 −0.099 −0.585 0.864 −0.144 −0.827 0.863 −0.143 −1.027 0.861 −

Sweden 0.941 0.977 0.782 −0.523 −0.880 0.721 −0.488 −1.210 0.751 −0.435 −1.424 0.777 −

Switzerland 0.977 0.985 −1.767* −1.089 −0.766 −2.279** −1.059 −0.986 −2.441** −0.879 −0.791 −2.768*** −

UK 0.928 0.955 −1.522 −0.407 −0.688 −1.724* −0.383 −0.864 −2.098** −0.311 −0.917 −2.419** −

Brazil 0.888 0.997 −3.492*** −1.276 −0.884 −3.300*** −1.566 −1.323 −3.169*** −1.871* −1.863* −3.173*** −

Bulgaria 0.947 0.973 −2.069** −0.902 −0.664 −1.971** −1.459 −1.202 −2.563** −1.925* −1.679* −3.839*** −

Chile 0.277 0.977 −0.798 1.088 −0.520 −0.665 1.559 −0.542 −0.593 1.811* −0.145 −0.487 1
China 0.741 0.966 0.890 −0.165 −0.589 0.790 −0.095 −0.377 0.652 −0.041 −0.584 0.559 −

Colombia 0.468 0.996 2.616*** −0.432 −0.850 2.380** −0.500 −0.972 2.136** −0.567 −0.988 1.978** −

Czech Rep. 0.946 0.973 −0.473 −1.398 −0.751 −0.527 −0.813 −1.032 −0.495 −0.752 −1.239 −0.491 −

Egypt 0.782 1.000 −0.069 −0.017 0.000 −0.168 −0.125 −0.165 −0.311 −0.158 −0.365 −0.436 −

Greece 0.646 0.991 1.902* −0.028 −0.657 1.856* −0.036 −0.827 1.740* −0.059 −1.019 1.638 −

Hungary 0.803 0.998 1.855* 0.485 −0.015 1.742* 0.473 −0.172 1.578 0.418 −0.398 1.481 0
Iceland 0.522 0.988 0.729 −0.575 −1.024 0.472 −0.755 −1.352 0.174 −0.887 −1.474 −0.010 −

India 0.754 1.000 3.394*** 0.225 −0.392 3.218*** 0.184 −0.495 3.040*** 0.177 −0.600 2.833*** 0
Indonesia 0.919 0.997 2.319** 0.037 −0.483 2.507** 0.063 −0.671 2.558** 0.145 −0.694 2.579*** 0
Korea 0.888 0.978 1.322 0.076 −0.428 1.438 0.064 −0.621 1.449 0.037 −0.426 1.473 0
Mexico 0.719 0.997 −2.184** −1.392 −0.962 −2.254** −1.611 −1.362 −2.307** −1.780* −1.821* −2.384** −

Peru 0.933 0.997 −2.704*** −0.724 −0.342 −2.526** −1.025 −0.776 −2.414** −1.347 −1.397 −2.359** −

Philippines 0.726 0.996 1.880* 0.010 −0.546 1.814* −0.062 −0.817 1.749* −0.068 −0.925 1.647* −

Poland 0.900 0.992 −2.463** −1.275 −0.899 −2.327** −1.629 −1.586 −2.340** −1.864* −1.682* −2.453** −

Romania 0.633 0.961 −8.930*** −2.761*** −2.216** −11.361*** −2.895*** −1.211 −14.737*** −2.763*** −0.685 −14.191*** −

Russian Fed. 0.048 0.898 0.113 −0.454 −0.493 0.531 −0.270 −0.117 0.669 −0.060 −0.146 0.605 −

South Africa 0.808 0.997 0.350 −0.014 −0.352 0.175 −0.080 −0.473 0.037 −0.119 −0.553 0.017 −

Thailand 0.921 0.988 0.651 −0.316 −0.318 0.654 −0.241 −0.662 0.707 −0.112 −0.668 0.743 −

Ukraine 0.414 0.980 −1.123 1.651* −0.801 −1.091 1.942* −0.622 −0.983 1.067 −0.209 −0.815 8
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h = 20

t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx

−2.126** −1.437 −8.985*** −1.991** −0.373
−0.447 −1.288 −0.533 −0.403 −0.267
−0.268 −1.292 −0.491 −0.239 −0.257
−2.303** −0.959 −8.884*** −2.227** −0.684
−0.280 −1.371 −0.572 −0.274 −0.282
−0.317 −1.293 −0.618 −0.328 −0.261
−0.326 −1.345 −0.606 −0.299 −0.299
−0.519 −1.291 −1.278 −0.469 −0.274
0.465 0.110 0.256 0.359 0.042
−1.111 −2.178** −0.457 −1.132 −0.608
0.156 −0.622 −1.876* −0.178 −0.964
−0.316 −1.422 −0.448 −0.302 −0.319
−0.179 −1.189 −0.251 −0.090 −0.685
−0.481 −1.359 −0.488 −0.472 −0.279
−0.682 −1.429 −1.011 −0.553 −0.346
−1.240 −1.746* −4.637*** −0.960 −0.259
−0.380 −0.522 −0.046 −0.397 −0.088
−0.771 −1.621 −0.464 −0.755 −0.407
0.387 −0.460 −2.638*** 0.290 −0.443
−0.755 −1.623 −0.459 −0.759 −0.367
−0.329 −1.122 −0.263 −0.295 −0.232
−2.462** −1.168 −7.524*** −1.855* −0.325
−0.427 −0.649 −1.306 −0.226 −0.433

(continued on next page)
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Table 4 (continued).

φ̂ ρ̂RER h = 1 h = 4 h = 8 h = 12

th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW

PANEL B: Period from 1999:Q1 to 2020:Q1.
Australia 0.973 0.958 −0.609 −1.775* −0.692 −1.049 −2.550** −1.086 −1.946* −2.316** −1.388 −3.393***
Austria 0.960 0.959 −0.169 −0.355 −0.532 −0.308 −0.543 −0.986 −0.603 −0.539 −1.155 −0.713
Belgium 0.963 0.956 −0.148 −0.774 −0.554 −0.276 −0.495 −1.026 −0.563 −0.401 −1.175 −0.671
Canada 0.984 0.964 −1.080 −2.216** −0.457 −1.344 −2.551** −0.623 −1.812* −2.331** −0.726 −2.913***
Denmark 0.961 0.956 −0.185 −0.815 −0.636 −0.339 −0.515 −1.108 −0.646 −0.423 −1.263 −0.755
Finland 0.959 0.960 −0.211 −0.322 −0.537 −0.371 −0.474 −0.986 −0.682 −0.422 −1.155 −0.796
France 0.963 0.957 −0.212 −0.723 −0.601 −0.368 −0.481 −1.044 −0.678 −0.427 −1.209 −0.790
Germany 0.967 0.959 −0.421 −1.028 −0.545 −0.699 −0.740 −0.978 −1.199 −0.659 −1.151 −1.417
Hong Kong 0.001 0.943 0.210 0.268 0.423 0.665 0.421 0.176 0.710 0.477 0.130 0.607
Ireland 0.951 0.952 −0.584 −1.217 −1.325 −0.830 −1.313 −1.905* −0.583 −1.235 −2.054** −0.295
Israel 0.947 0.967 −0.691 −0.993 −0.676 −0.928 −0.221 −1.051 −0.811 −0.020 −0.795 −1.019
Italy 0.961 0.954 −0.125 −0.837 −0.694 −0.239 −0.523 −1.162 −0.518 −0.449 −1.304 −0.628
Japan 0.939 0.962 −0.284 −0.559 −0.595 −0.113 −0.337 −0.575 −0.096 −0.250 −0.899 −0.235
Luxembourg 0.959 0.955 −0.149 −0.396 −0.632 −0.276 −0.571 −1.096 −0.560 −0.564 −1.241 −0.668
Netherlands 0.966 0.959 −0.388 −1.341 −0.717 −0.634 −1.002 −1.173 −1.030 −0.876 −1.312 −1.174
New Zealand 0.972 0.953 −0.697 −1.566 −1.020 −1.176 −1.853* −1.583 −2.082** −1.488 −1.738* −3.178***
Norway 0.969 0.977 0.317 −0.288 −0.124 0.148 −0.538 −0.470 −0.094 −0.461 −0.548 −0.192
Portugal 0.941 0.951 −0.142 −0.908 −0.959 −0.260 −1.021 −1.433 −0.539 −0.933 −1.543 −0.645
Singapore 0.880 0.970 −1.132 0.149 0.027 −1.135 0.404 0.013 −1.387 0.365 −0.190 −1.847*
Spain 0.916 0.945 −0.137 −0.821 −0.884 −0.255 −0.884 −1.401 −0.533 −0.889 −1.520 −0.640
Sweden 0.958 0.953 0.172 −1.205 −0.643 0.133 −0.753 −1.068 −0.088 −0.593 −1.216 −0.319
Switzerland 0.938 0.985 −1.118 −3.237*** −0.505 −1.692* −3.033*** −0.856 −3.822*** −2.779*** −1.033 −8.865***
UK 0.975 0.969 −0.722 −2.481** −0.619 −0.935 −1.111 −0.868 −0.933 −0.632 −0.769 −0.922
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h = 20

t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx

0.013 −0.336 0.353 −0.271 −0.128
−0.001 −0.733 −0.469 −0.052 0.010
−0.225 −0.655 0.292 −0.196 −0.119
0.550 −0.099 −1.603 0.436 −0.559
−0.072 −0.506 0.577 −1.630 −0.288
−0.241 −0.792 −0.965 −0.311 −0.458
0.016 0.068 2.878*** −0.009 0.337
−0.897 −1.941* −0.426 −0.958 −0.418
0.185 0.058 0.251 0.097 0.117
−0.374 −1.049 0.891 −0.284 −1.643
0.243 0.725 1.877* 0.081 0.293
0.234 0.319 2.285** 0.092 −0.163
−1.201 −1.440 −0.498 −0.698 −1.010
0.093 −0.290 4.764*** 0.120 0.079
0.454 −0.421 −0.377 0.173 −0.864
−0.203 −0.539 0.084 −0.829 −0.360
−0.062 −0.573 −0.432 −0.144 −0.795
−0.173 −0.243 0.822 −0.759 −0.124
0.206 0.074 1.962** 0.425 0.051
−0.009 0.040 1.620 0.011 0.002
−0.078 −1.602 −1.406 −0.502 −1.362
0.207 −0.216 6.550*** 0.858 −0.181

ual augmented transformed regression and t rev,PLh,ivx is the
omputed as indicated in (7.3), and ρ̂RER is an estimate
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Table 4 (continued).

φ̂ ρ̂RER h = 1 h = 4 h = 8 h = 12

th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW
Brazil 0.962 0.994 1.124 −0.065 −0.340 0.853 0.130 −0.546 0.736 0.080 −0.482 0.504
Bulgaria 0.832 0.918 −0.370 −0.443 −0.891 −0.626 −0.128 −1.277 −0.723 −0.117 −1.025 −0.674
Chile 0.977 0.979 0.934 −0.441 −0.459 0.757 −0.215 −0.698 0.641 −0.232 −0.784 0.462
China 0.530 0.962 −0.958 0.439 0.490 −0.959 0.585 0.286 −1.071 0.610 0.086 −1.179
Colombia 0.965 0.977 1.224 −0.443 −0.622 1.028 −0.431 −0.621 0.847 −0.305 −0.511 0.754
Czech Rep. 0.946 0.960 −0.943 −0.695 −0.431 −1.024 −0.308 −0.641 −1.188 −0.284 −0.773 −1.186
Egypt 0.943 1.014 1.681* 0.397 0.152 2.299** 0.324 −0.065 2.935*** 0.208 −0.063 2.821***
Greece 0.865 0.932 −0.021 −1.219 −1.072 −0.144 −1.158 −1.690* −0.463 −1.090 −1.854* −0.597
Hungary 0.968 0.974 0.516 −0.661 −0.719 0.429 0.082 −0.727 0.169 0.157 −0.322 0.063
Iceland 0.971 0.981 0.733 0.233 −0.750 0.732 −0.192 −1.746* 0.638 −0.394 −1.552 0.478
India 0.850 1.007 2.069** 0.217 0.425 2.121** 0.193 0.319 2.055** 0.288 0.593 1.847*
Indonesia 0.912 0.988 1.410 0.415 −0.486 1.779* 0.373 −0.831 1.989** 0.338 0.033 1.936*
Korea 0.930 0.887 −0.027 −1.324 −2.170** −0.018 −2.807*** −2.519** −0.120 −1.856* −1.910* −0.390
Mexico 0.951 0.997 2.124** 0.038 −0.175 2.484** 0.212 −0.213 3.264*** 0.165 −0.150 4.315***
Peru 0.931 0.984 0.073 0.077 0.418 −0.121 0.491 −0.044 −0.230 0.593 −0.229 −0.312
Philippines 0.852 0.937 0.737 −0.491 −1.004 0.682 −0.546 −1.162 0.576 −0.204 −0.652 0.414
Poland 0.950 0.931 −0.302 −1.846* −0.716 −0.466 −0.394 −0.834 −0.534 −0.176 −0.639 −0.501
Romania 0.496 0.919 0.524 −1.725* −0.917 0.312 −1.276 −0.801 0.246 −0.701 −0.436 0.347
Russian Fed. 0.942 0.990 1.479 0.585 −0.062 1.547 0.508 0.044 1.745* 0.369 −0.035 1.813*
South Africa 0.981 0.997 1.214 −0.018 −0.430 1.212 −0.033 −0.688 1.260 −0.033 −0.512 1.290
Thailand 0.954 0.980 −0.601 −0.425 −0.335 −0.799 −0.054 −0.815 −1.052 −0.059 −1.527 −1.348
Ukraine 0.848 1.002 1.443 0.434 0.000 1.649 0.360 0.130 2.128** 0.299 −0.114 3.090***

Notes: h is the prediction horizon, th,NW is the OLS t-statistic with Newey–West standard errors, t trf ,resh,ivx is the t-statistic computed from a resid
t-statistic computed from a reversed regression as suggested by Phillips and Lee (2013). φ̂ is an estimate of the contemporaneous correlation c
of ρRER

i computed as indicated in (7.2).
*Statistically significant at the 10% nominal level.
**Statistically significant at the 5% nominal level.
***Statistically significant at the 1% nominal level.
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Because the results may be affected by the period where short-term US nominal interest rates were at or near their
ffective lower bound (see Amador et al., 2020, for a discussion) the analysis is also conducted for the period from 1973:Q1
o 2008:Q4 (see Table S.39 in the Supplementary Appendix). Even with the exclusion of the information from 2009:Q1
o 2020:Q1 the conclusions are essentially in line with what we have observed in Panel A of Table 4 for the full sample
1973:Q1 to 2020:Q1). The smaller number of significant results obtained for t trf ,resh,ivx and t rev,PLh,ivx , suggest that there is less
evidence of predictability in this period (particularly for the emerging markets), potentially highlighting the importance
of inflation targeting policies suggested by EJR.

If we consider the period where most countries adopted inflation targeting policies for most of the time (recall that
after 1999 most countries considered had already adopted inflation targeting) we clearly observe the general conclusion
of EJR that the RER’s predictive power seems to increase as h increases particularly for h ≥ 8 (see Table S.40 in the
Supplementary Appendix). This pattern is most clearly seen for the developed markets group. Finally, if we focus on the
period from 1999:Q1 to 2020:Q1 (see Panel B of Table 4), which roughly corresponds to a period where most countries
adopted inflation targeting policies, we observe that the number of significant cases reduces considerably, indicating a
reduction in predictability of changes in NER by the RER.

7.2.2. The relative price predictive regression
Table 5 reports the tests results computed from the relative-price long-horizon predictive regression,

log
(
Pi,t+h/Pt+h

Pit/Pt

)
= απih + βπih log(RERit ) + uπi,t+h (7.4)

along with estimates of the contemporaneous correlation φ̂i in (7.3) where, in this case, for estimation we replace ûNER
i,t+1

y ûπi,t+1. The full period of analysis, from 1973:Q1 to 2020:Q1, corresponds to a period during which inflation dynamics
hanged considerably (see Rogoff, 2003). Inflation in industrial economies started to decline in the early 1980s while
nflation in emerging economies only began declining in the 1990s. Average inflation was the highest in the seventies, it
ecreased at the beginning of the eighties and it has been even lower since the beginning of the 1990s.
From the results in Panel A of Table 5 for the period from 1973:Q1 to 2020:Q1 we observe a large number of rejections

f the null hypothesis of no predictability regardless of the test considered. This is also the case in Table S.41 in the
upplementary Appendix, corresponding to the 1973:Q1–2008:Q4 period, with very similar conclusions to those just
escribed for Panel A of Table 5.
The impact of the changes in exchange rate policy in emerging markets is observable on comparing the results in Panel

of Tables 5 and S.41 with those in Panel B of Table 5. The latter, computed in the sample from 1999:Q1 onward, a period
here most of these countries adopted inflation targeting policies, show that inflation differentials are less predictive. Note
hat for the developed markets group t trf ,resh,ivx and t rev,PLh,ivx suggest rejection of the null hypothesis of no predictability only
or Ireland and Israel. Similarly, and in contrast to the results in Panel A of Tables 5 and S.41, these statistics also suggest
relevant decrease in significant results in emerging markets.

.3. Summary of empirical results

• Our results suggest that for most of the countries considered RER is strongly persistent with an estimated autore-
gressive root very close to unity (for instance, when considering the sample from 1973:Q1 to 2020:Q1, for 44 out of
the 45 countries considered the estimated autoregressive root is greater than or equal to 0.953), which may be at
odds with the weakly persistent assumption of EJR. This persistence may impact the th,NW test used in their analysis,
as discussed in Section 2.2, and lead to spurious rejections of the null hypothesis of no predictability.

• Based on the outcomes of th,NW , EJR strongly support the conclusion that current RER is highly negatively correlated
with changes in future NERs at horizons of three or more years. We also observe negative outcomes for the IVX-
based statistics for almost all countries and for all values of h considered, albeit many of these test outcomes are
not statistically significant. This finding also appears robust to the other sample periods we considered.

• In line with ERJ, our results also provide evidence of predictability as h increases. However, we note that the number
of rejections is largest for th,NW and smallest for t trf ,resh,ivx .

• According to EJR, in countries with inflation-targeting policies, RER reverts towards the mean through changes in
the NER. Hence, current RER should predict future nominal exchange rates, but not changes in relative rates of
inflation. For the period after 1999 where most countries adopted inflation targeting policies, we observe the general
conclusion of EJR that the RER’s predictive power appears to increase as h increases, particularly for h ≥ 8. The results
for the sample from 1999:Q1 onward, a period were most emerging markets’ countries adopted inflation targeting
policies, show that inflation differentials are less predictive.

• The large number of statistically significant results in Panel A of Tables 5 for the period from 1973:Q1 to 2020:Q1
(regardless of the tests considered, th,NW , t trf ,resh,ivx or t rev,PLh,ivx ), would appear to suggest that a large number of countries
adjust RER through predictable inflation differentials rather than through changes in NER. This is consistent with EJR’s
findings for countries with fixed and quasi-fixed exchange rates (e.g. China and Hong Kong, and France, Ireland, Italy,
Portugal, and Spain starting in 1999). Potential justifications for the large number of significant results observed may
32
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Table 5

h = 20
rf ,res
,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx

1.090 −0.314 −1.677* −1.142 −0.140
0.833 −1.327 −2.871*** −1.288 −1.691*
0.705 −1.471 −3.008*** −2.158** −3.074***
0.051 −0.039 −0.809 −0.195 0.060
.698 0.800 0.052 0.142 0.434
1.412 −0.219 −0.084 −1.344 0.267
.287 0.850 −0.276 −0.812 0.084
2.316** −2.211** −5.608*** −2.623*** −2.257**
0.185 −0.160 0.740 −0.357 −0.605
1.106 0.377 −2.158** −1.401 0.206
2.290** −2.687*** −3.502*** −3.004*** −4.400***
1.290 −0.616 1.610 −1.474 −0.494
.149 −1.086 −10.475*** −0.027 −1.799*
1.676* −2.256** −3.006*** −2.617*** −3.288***
1.555 −2.409** −5.320*** −2.327** −3.286***
0.567 −0.005 −1.542 −1.033 −0.129
.111 −0.065 0.765 −0.377 −0.554
0.794 −1.442 1.643 −0.908 −0.485
1.301 −1.928* −8.512*** −1.137 −1.640
1.241 −1.130 1.879* −1.307 −0.130
0.234 −0.328 0.179 −0.422 −0.097
1.070 −1.251 −4.627*** −0.959 −0.996
1.166 −0.191 −2.562** −0.993 0.088

2.062** −2.480** −3.530*** −2.525** −3.694***
2.629*** −1.779* −26.919*** −3.189*** −2.478**
2.529** 0.312 −0.282 −8.628*** 0.641
0.733 −0.470 1.020 −0.839 −1.301
1.065 −2.260** 2.126** −1.016 −2.280**
.170 0.028 1.230 0.089 −0.418
.124 −0.183 −0.658 −0.227 −0.446
0.472 −1.032 1.665* −0.540 −1.548
.480 −1.289 1.952* 0.212 −3.532***
2.469** −3.181*** 0.068 −2.584*** −2.788***
.645* 0.835 5.413*** 1.457 0.382
.229 0.061 4.286*** 0.305 −0.075
1.916* −1.407 2.448** −1.447 −1.189
1.857* −2.669*** −2.554** −2.162** −3.967***
1.553 −2.285** −2.215** −1.895* −3.521***
1.030 −1.909* 2.917*** −0.927 −2.582***
1.869* −2.092** −2.888*** −2.131** −3.886***
2.716*** −0.090 −12.107*** −2.029** −0.426
0.248 0.271 −0.088 −1.652* 0.360
0.840 −1.675* −0.165 −0.743 −2.296*
0.425 −1.188 1.434 0.140 −0.778
0.102*** −0.143 −1.425 51.700*** −0.097

(continued on next page)
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Relative price long-horizon predictive regression results.

φ̂ h = 1 h = 4 h = 8 h = 12

th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t th
PANEL A: Period from 1973:Q1 to 2020:Q2.
Australia 0.124 −0.910 −0.564 −0.336 −1.100 −0.814 −0.583 −1.256 −0.996 −0.448 −1.454 −

Austria 0.088 −2.351** 0.173 0.007 −2.358** −0.093 −0.295 −2.388** −0.470 −0.684 −2.578*** −

Belgium 0.139 −0.912 2.952*** 2.750*** −0.977 2.120** 1.826* −1.250 0.685 0.261 −1.753* −

Canada 0.143 −0.355 0.197 0.381 −0.559 −0.018 −0.103 −0.661 −0.062 −0.194 −0.704 −

Denmark 0.096 0.460 1.938* 1.892* 0.319 1.465 1.412 0.235 1.056 1.086 0.205 0
Finland 0.093 0.415 −0.153 −0.130 0.337 −0.567 −0.431 0.224 −1.087 −0.420 0.092 −

France 0.151 0.144 2.077** 2.154** 0.061 1.617 1.761* −0.031 0.996 1.315 −0.126 0
Germany 0.084 −4.688*** −1.362 −1.253 −4.753*** −1.655* −1.555 −4.868*** −2.019** −1.813* −5.246*** −

Hong Kong 0.403 1.297 0.229 0.100 1.144 0.125 0.002 0.972 −0.052 −0.113 0.855 −

Ireland 0.122 −2.356** 0.265 0.443 −2.428** −0.196 0.216 −2.468** −0.715 0.360 −2.452** −

Israel 0.851 −3.040*** −1.022 −0.769 −2.749*** −1.409 −1.209 −2.612*** −1.881* −1.885* −2.700*** −

Italy 0.119 2.486** −0.457 −0.539 2.236** −0.772 −0.715 2.004** −1.048 −0.689 1.844* −

Japan 0.032 −2.941*** 1.157 2.120** −3.552*** 0.805 0.782 −4.460*** 0.409 −0.167 −5.816*** 0
Luxembourg 0.133 −1.203 2.144** 2.387** −1.244 1.050 1.196 −1.439 −0.454 −0.425 −1.923* −

Netherlands 0.076 −2.245** 0.076 0.345 −2.329** −0.393 −0.297 −2.656*** −1.012 −1.173 −3.467*** −

New Zealand 0.110 −0.548 0.178 0.382 −0.861 −0.081 −0.023 −1.054 −0.301 −0.137 −1.248 −

Norway 0.159 1.025 0.979 0.825 1.011 0.759 0.424 0.986 0.391 0.061 0.904 0
Portugal 0.202 2.558** −0.342 −0.659 2.300** −0.519 −0.592 2.069** −0.677 −1.017 1.898* −

Singapore 0.257 −4.348*** −1.498 −2.109** −9.081*** −1.455 −2.906*** −9.297*** −1.385 −2.483** −9.040*** −

Spain 0.130 2.650** −0.625 −0.876 2.445** −0.838 −1.141 2.248** −1.070 −1.340 2.101** −

Sweden 0.143 0.418 0.340 0.223 0.411 0.282 −0.043 0.376 0.039 −0.321 0.302 −

Switzerland 0.102 −3.416*** −0.538 −0.502 −3.747*** −0.684 −0.779 −3.947*** −0.918 −1.159 −4.270*** −

United Kingdom 0.068 −2.548** −0.886 −0.885 −2.458** −1.108 −0.976 −2.405** −1.220 −0.519 −2.448** −

Brazil 0.889 −3.245*** −1.185 −0.840 −3.025*** −1.481 −1.263 −2.920*** −1.794* −1.862* −2.959*** −

Bulgaria 0.942 −3.094*** −1.078 −0.709 −2.748*** −1.796* −1.366 −3.270*** −2.351** −1.706* −4.784*** −

Chile 0.226 −0.738 137.640*** −0.559 −0.627 −11.940*** −0.625 −0.560 −1.928* −0.266 −0.474 −

China 0.288 1.393 −0.246 −0.573 1.240 −0.453 −0.765 1.141 −0.638 −0.885 1.063 −

Colombia 0.189 3.542*** −1.056 −1.582 3.113*** −1.086 −1.747* 2.731*** −1.086 −1.894* 2.469** −

Czech Rep. 0.209 1.823* 0.762 0.864 1.578 0.427 0.472 1.372 0.248 0.186 1.276 0
Egypt 0.141 0.283 0.461 0.542 0.125 0.377 0.334 −0.116 0.264 −0.028 −0.325 0
Greece 0.231 2.663*** −0.295 −0.842 2.357** −0.368 −0.527 2.085** −0.424 −0.852 1.897* −

Hungary 0.436 2.997*** 1.020 0.762 2.644*** 0.817 0.324 2.343** 0.635 −0.374 2.154** 0
Iceland 0.320 1.014 −1.702* −1.964** 0.712 −2.010** −2.598*** 0.465 −2.268** −2.775*** 0.284 −

India 0.386 5.730*** 1.957* 1.510 5.488*** 1.872* 1.697* 5.020*** 1.728* 1.590 4.936*** 1
Indonesia 0.377 4.289*** 0.386 −0.008 4.517*** 0.156 0.026 4.514*** 0.152 −0.109 4.434*** 0
Korea 0.281 2.810*** −1.850* −2.312** 2.649*** −2.084** −2.139** 2.535** −2.078** −1.811* 2.457** −

Mexico 0.600 −2.586*** −1.048 −0.709 −2.406** −1.352 −1.163 −2.304** −1.646* −1.902* −2.302** −

Peru 0.928 −2.573** −0.666 −0.310 −2.339** −0.955 −0.800 −2.186** −1.271 −1.508 −2.130** −

Philippines 0.390 3.839*** −0.693 −0.924 3.773*** −0.966 −0.950 3.568** −1.063 −1.621 3.299*** −

Poland 0.872 −2.295** −0.954 −0.535 −2.161** −1.337 −1.303 −2.107** −1.651* −1.441 −2.164** −

Romania 0.393 −8.395*** −2.305** −2.162** −11.743*** −2.657*** −1.617 −14.099*** −2.845*** −1.196 −13.423*** −

Russian Federation 0.016 −0.700 −1.839* −1.327 −0.576 −1.329 −0.820 −0.289 −0.465 0.264 −0.081 −

South Africa 0.077 0.972 −0.563 −0.495 0.606 −0.726 −1.009 0.295 −0.818 −1.416 0.098 −

Thailand 0.139 1.152 −0.502 −0.977 0.947 −0.778 −0.546 0.920 −0.645 −1.051 1.062 −

Ukraine 0.382 −1.499 1.809* −0.836 −1.419 1.876* −0.599 −1.381 0.904 −0.422 −1.355 1
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h = 20
,res
vx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx

.673 −1.235 2.335** −0.395 −1.143

.454 −0.627 −1.011 −0.869 −0.748

.324 −0.721 −1.142 −0.598 −0.663

.392 −0.181 −4.238*** −0.742 −0.936

.531 −0.973 −3.541*** −0.633 −1.180

.002 −1.240 −2.926*** −1.229 −1.218
89 −0.151 −16.822*** −0.073 −0.626
.489 −0.654 −12.625*** −0.815 −0.662
.295 0.078 −0.114 −0.329 −0.093
17** 1.127 4.149*** 3.059*** 0.707
.274 −1.330 −1.739* −0.655 −0.409
.004 −0.573 −3.513*** −0.157 −1.168
.244 −0.822 −4.740*** −1.479 −1.013
.344 −0.673 −1.562 −0.418 −0.844
67 −0.495 −3.300*** −0.302 −1.027
.116 −0.390 0.143 −0.170 −0.204
.254 −0.348 −0.478 −0.774 −0.543
62 0.032 −1.890* 0.829 −0.486
.296 −1.062 −1.015 −1.093 −0.734
82 0.017 −0.311 0.762 −0.159
.006 −0.242 −9.531*** −0.339 −0.642
.122 −0.039 −4.089*** −0.134 −0.106
.563 −0.487 −0.303 −1.470 −0.819

.319 −1.214 7.797*** −0.464 −0.990

.673 −1.351 1.349 −0.271 −1.022

.517 −1.947* 3.630*** 0.060 −0.910

.523 −0.438 0.863 −0.407 −0.224

.059 −0.273 8.088*** −0.950 −0.210
29 −0.542 −0.387 0.320 −0.183
07 0.892 34.599*** 1.736* 0.649
40 −0.277 −0.423 0.862 −0.369
.961** −1.995** 2.651*** −0.966 −1.916*
.555 −2.836*** 3.065*** −1.368 −4.410***
43 −0.243 4.889*** 0.070 −0.690
.215 −1.000 6.542*** −0.025 −0.974
.195 −1.150 2.006** −1.775* −2.110**

(continued on next page)
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Table 5 (continued).

φ̂ h = 1 h = 4 h = 8 h = 12

th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trfh,i

PANEL B: Period from 1999:Q1 to 2020:Q2.
Australia 0.202 2.016** −0.166 0.088 1.754* −0.169 −0.184 1.646* −0.432 −0.630 1.756* −0
Austria 0.173 −1.303 −0.094 −0.178 −1.276 −0.149 −0.266 −1.105 −0.212 −0.287 −1.058 −0
Belgium 0.273 −1.226 −0.493 −0.498 −1.302 −0.077 −0.420 −1.130 −0.179 −0.297 −1.133 −0
Canada 0.335 −0.945 0.360 0.604 −1.147 0.164 0.289 −1.300 −0.064 0.244 −1.656* −0
Denmark 0.226 −2.232** −0.359 −0.250 −2.345** −0.259 −0.465 −2.339** −0.346 −0.466 −2.632*** −0
Finland 0.239 −2.635*** −0.294 −0.434 −2.564*** −0.377 −0.532 −2.599*** −0.637 −0.697 −2.766*** −1
France 0.203 −4.645*** −0.154 −0.254 −5.228*** 0.157 −0.153 −5.886*** 0.236 0.176 −7.381*** 0.1
Germany 0.194 −4.906*** −0.491 −0.292 −5.647*** −0.342 −0.391 −6.223*** −0.369 −0.268 −7.568*** −0
Hong Kong 0.891 −0.797 −0.213 −0.028 −0.584 −0.252 0.338 −0.438 −0.278 0.227 −0.332 −0
Ireland 0.219 1.882* 3.091*** 2.241** 2.098** 2.927*** 2.068** 2.403** 2.735*** 1.998** 2.594*** 2.4
Israel 0.343 −1.479 −1.253 −0.834 −1.606 −1.674* −1.581 −1.450 −1.568 −1.413 −1.445 −1
Italy 0.212 −2.108** −0.254 −0.184 −2.106** 0.056 −0.275 −2.011** 0.129 −0.149 −2.211** −0
Japan 0.005 −5.346*** −0.420 −0.161 −5.301*** −0.697 −0.352 −5.190*** −1.034 −0.571 −4.988*** −1
Luxembourg 0.179 −1.300 −0.128 −0.264 −1.259 −0.249 −0.425 −1.193 −0.230 −0.338 −1.264 −0
Netherlands 0.233 −0.853 0.531 0.641 −0.805 0.527 0.354 −0.927 0.449 0.167 −1.422 0.2
New Zealand 0.159 0.167 0.046 0.255 −0.125 0.021 −0.074 0.103 0.072 0.137 0.003 −0
Norway 0.306 −0.312 0.389 0.247 −0.251 0.335 0.146 −0.277 0.034 −0.165 −0.355 −0
Portugal 0.171 −1.163 1.278 0.711 −0.949 1.144 0.724 −0.904 1.026 0.576 −1.053 0.7
Singapore 0.256 −2.618*** −2.019** −1.726* −2.187** −1.567 −1.458 −1.714* −1.403 −1.256 −1.407 −1
Spain 0.120 −0.518 0.735 −0.108 −0.340 0.576 0.073 −0.220 0.719 0.218 −0.219 0.5
Sweden 0.149 −3.382*** 0.689 0.251 −3.540*** 0.782 0.414 −3.944*** 0.501 0.363 −5.158*** −0
Switzerland 0.149 −2.055** −0.056 0.095 −2.269** −0.090 0.045 −2.373** −0.112 0.164 −2.715*** −0
United Kingdom 0.274 0.519 0.150 0.228 0.334 0.186 0.032 0.103 −0.166 −0.216 −0.049 −0

Brazil 0.223 3.304*** 0.018 0.421 3.231*** −0.262 −0.187 3.501*** −0.323 −0.861 4.143*** −0
Bulgaria 0.205 1.713* −1.215 −1.355 1.495 −0.900 −1.180 1.386 −0.630 −0.994 1.284 −0
Chile 0.447 2.311** −1.333 −0.835 2.461** −0.790 −1.479 2.745*** −0.708 −1.899* 3.200*** −0
China 0.401 0.270 −1.040 −1.003 0.165 −0.669 −0.816 0.261 −0.627 −0.669 0.413 −0
Colombia 0.180 5.137*** −0.023 0.307 5.232*** −0.216 −0.021 5.721*** −0.253 −0.243 6.633*** −0
Czech Rep. 0.188 0.485 −0.195 −0.051 0.252 0.007 −0.245 0.120 0.116 −0.276 −0.189 0.2
Egypt 0.334 6.238*** 1.971** 1.853* 8.487*** 1.690* 1.487 11.541*** 1.220 1.115 13.180*** 0.1
Greece 0.188 −0.780 1.128 −0.441 −0.535 0.768 −0.047 −0.434 0.717 0.042 −0.407 0.5
Hungary 0.094 3.151*** −1.909* −1.402 2.868*** −2.268** −2.086** 2.656*** −2.282** −2.167** 2.572** −1
Iceland 0.502 2.758*** −0.251 −0.287 2.678*** −0.905 −1.679* 2.621*** −1.428 −3.072*** 2.603*** −1
India 0.435 4.646*** 0.427 0.521 4.384*** 0.329 0.356 4.077*** 0.072 −0.128 4.026*** 0.0
Indonesia 0.242 5.040*** −0.144 −0.580 5.477*** −0.166 −1.223 5.552*** −0.301 −1.494 5.855*** −0
Korea 0.293 0.742 1.203 0.960 0.822 0.828 −0.023 1.143 −0.272 −0.523 1.420 −1
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h = 20
,res
vx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx

.133 0.133 28.579*** −0.293 0.281

.470** −2.161** 1.310 −2.589*** −2.581***
15 0.095 6.083*** 0.622 0.197
.105 −1.591 −0.021 −0.620 −1.199
.507 0.013 0.969 −3.271 0.082
.722 −1.527 5.711*** −1.705* −1.041
.159 −0.575 6.638*** −0.029 −0.659
.800 −0.362 0.464 0.470 0.955
51 −0.049 10.855*** 0.272 −0.171

ual augmented transformed regression and t rev,PLh,ivx is the
omputed as indicated in (7.3).

35
Table 5 (continued).

φ̂ h = 1 h = 4 h = 8 h = 12

th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trf ,resh,ivx t rev,PLh,ivx th,NW t trfh,i

Mexico 0.356 5.977*** −0.402 −0.491 7.380*** −0.186 −0.109 9.263*** −0.167 0.018 12.564*** −0
Peru 0.470 1.063 −2.185** −1.232 1.047 −1.956* −1.644 1.041 −2.299** −2.051** 1.158 −2
Philippines 0.149 5.120*** −0.099 −0.123 5.606*** 0.013 −0.322 5.816*** 0.074 −0.135 5.495*** 0.1
Poland 0.232 0.826 −0.712 −0.092 0.519 −0.935 −0.852 0.218 −1.108 −1.229 0.009 −1
Romania 0.173 1.092 −2.745*** −1.931* 0.978 −2.568** −1.156 0.932 −1.700* −0.315 0.907 −0
Russian Federation 0.403 3.987*** −1.876* −2.101** 3.843*** −1.668 −2.214** 3.957*** −1.253 −1.958* 4.351*** −0
South Africa 0.223 5.009*** 1.578 1.811* 5.067*** 0.751 0.816 5.477*** 0.112 −0.054 6.204*** −0
Thailand 0.027 −0.650 −1.087 −1.271 −0.464 −1.030 −1.117 −0.246 −0.981 −0.817 −0.061 −0
Ukraine 0.543 3.210*** 0.267 0.299 3.580 0.148 0.185 4.520*** 0.065 0.112 6.458*** 0.0

Notes: h is the prediction horizon, th,NW is the OLS t-statistic with Newey–West standard errors, t trf ,resh,ivx is the t-statistic computed from a resid
t-statistic computed from a reversed regression as suggested by Phillips and Lee (2013). φ̂ is an estimate of the contemporaneous correlation c
*Statistically significant at the 10% nominal level.
**Statistically significant at the 5% nominal level.
***Statistically significant at the 1% nominal level.
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be related to uncontrolled changes in exchange rate policy, as many countries, particular in the emerging markets
group adopted several exchange rate regimes between 1973 and 2020 (Ilzetzki et al., 2017), and to the persistence
changes of inflation dynamics observed over this period.

8. Conclusions

In this paper, we have contributed to the long-horizon predictability literature by proposing new tests developed within
transformed regression framework using the IVX estimation approach of Kostakis et al. (2015). We have demonstrated
hat our proposed tests are (asymptotically) robust to whether the predictors are weakly or strongly persistent and to
he induced serial correlation in the errors arising from the temporal aggregation of the dependent variable used in the
ong-horizon predictive regression. Within a residual augmentation framework we have shown that the estimation effect
rom fitting an autoregression to the predictor to obtain the necessary residuals to augment the predictive regression is
symptotically negligible in the set-up we consider and leads to more efficient estimation of the transformed predictive
egression model on which our long-horizon tests are based. Specifically, the residual augmentation approach eliminates
ndogeneity in the limit, such that the bias of the IVX slope coefficient estimator is reduced compared to the corresponding
VX estimation from the transformed regression without this additional regressor. We have formally established the
onditions required for the asymptotic validity of our proposed tests, such that the statistics on which they are based have
tandard limiting null distributions, free of nuisance parameters arising from the innovations. These conditions allow for
uite general patterns of unconditional and conditional time variation in the innovations with no need for the practitioner
o specify a parametric model for either the conditional or unconditional time-variation.

Our Monte Carlo results contrast the finite size and power properties of our proposed tests with the leading long-
orizon predictability tests in the literature. The results obtained suggest that our proposed tests overall display superior
inite sample properties to the extant tests displaying robustness against features which are frequently found in time
eries, making them a useful addition to the literature. We have also provided an empirical application investigating the
redictive power of real exchange rates for changes in nominal exchange rates and future inflation rates of a large number
f developed and emerging countries, extending the analysis in Eichenbaum et al. (2020) to a wider range of countries
nd providing conclusions based on the robust statistics developed in this paper. Overall we find somewhat less evidence
f predictability than Eichenbaum et al. (2020). This is perhaps expected as their analysis is based on standard regression
-tests which would appear to be inappropriate given that the predictors they consider appear to be strongly persistent.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.06.006.
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