
Drawing Exact Samples: Rejection Sampling,
Density Fusion and Constrained Disaggregation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

by

Shenggang Hu

Department of Mathematical Sciences
University of Essex

October, 2022

DECLARATION

I here by declare that the thesis entitled “Drawing Exact Samples: Rejection Sam-

pling, Density Fusion and Constrained Disaggregation” submitted by me, for the award

of the degree of Doctor of Philosophy in Statistics to University of Essex is a record

of bonafide work carried out by me under the supervision of Prof. Hongsheng Dai,

Department of Mathematical Sciences, University of Essex.

I further declare that the work reported in this thesis has not been submitted and will

not be submitted, either in part or in full, for the award of any other degree or diploma

in this institute or any other institute or university.

Date: 05/10/2022 Signature of the Candidate

i

ABSTRACT

Sampling is an important topic in the area of computational statistics. Being able to

draw samples from a designated distribution allows one to numerically compute various

statistics without the need to solve for solutions analytically. A popular branch of the

sampling method generates samples by evolving a stationary Markov chain that admits

the target distribution as its stationary distribution. The problem, however, is that one

does not have a universal criterion to assess whether the chain is stationary.

On the other hand, exact simulation methods, being the focus of this thesis, always

produce samples that precisely follow the target distribution. We first begin with the

path-space rejection sampling for the exact simulation of diffusion bridges and show

how this rejection scheme can be further set up into an exact simulation method for

sampling product densities. We provide guidance on how to tune the algorithm pa-

rameters in order to attain a near-optimal performance and introduce the construction

of an importance sampler/particle filter based on the same theoretical result for better

efficiency. Finally, we show a variant of the sampler that deals with linear constraints

which render most of the target distributions intractable. Two application studies are

conducted in the end to demonstrate the effectiveness of the algorithm.

Keywords: constrained imputation, diffusion process, particle filter, perfect sampling,

time series oversampling.

ii

ACKNOWLEDGEMENT

With immense pleasure and deep sense of gratitude, I wish to express my sincere

thanks to my supervisor Prof. Hongsheng Dai. Without his motivation and continuous

encouragement, this research would not have been successfully completed.

The lecture notes from ”Advanced Simulation Methods” course written by Arnaud

Doucet provided good inspiration on how to lay down the essential results from measure

theory without getting too technical. My thanks to all the people who contributed to the

polishing of the lecture notes (Pierre E. Jacob, Rémi Bardenet, George Deligiannidis,

Lawrence M. Murray, Tigran Nagapetyan), and also to Patrick Rebeschini who lectured

me the course in 2018.

I am more than lucky to be involved in the BIAS project and many thanks to all

the members of the team, especially Lei Ding, Jabir A. Al-Ani and Yang Hu for your

support and many productive discussions on the project.

Finally, I wish to express my gratitude to my family for all the sacrifices they made

during my research and also providing me with moral support and guidance whenever

I need.

CONTENTS

ABSTRACT . i

ACKNOWLEDGEMENT . ii

1 Introduction 1

1.1 Sampling and Monte Carlo Integration 1

1.2 Applications of Monte Carlo Methods 2

1.2.1 Bayesian Inference . 2

1.2.2 Ising Model . 3

1.3 Families of Sampling Methods . 4

1.4 Contributions . 5

2 Perfect Sampling 6

2.1 Random Variables from Random Numbers 6

2.1.1 Inversion Method . 7

2.1.2 Rejection Sampling . 8

2.2 Asymptotically Exact — Markov Chain Monte Carlo Methods 9

2.2.1 Basic Notions of Markov Chain 10

2.2.2 Some Properties and Results . 10

2.2.3 Metropolis-Hastings Algorithm 12

2.2.4 Coupling from the Past . 13

2.3 Perfect Sampling for Diffusion Processes 14

2.3.1 Diffusion Processes, Itô’s Lemma and Girsanov Theorem 14

2.3.2 Rejection Sampling for Diffusion Process 17

2.3.3 Layered Construction for Brownian Bridges 26

3 Monte Carlo Fusion 39

3.1 Langevin Diffusion and Density Fusion 39

iii

iv CONTENTS

3.1.1 Basic Notions . 40

3.1.2 Construction of Proposal Diffusion 41

3.1.3 Fusion with Variable Time . 43

3.2 Acceptance Guided Parameter Tuning 46

3.2.1 Acceptance Probability as Density 47

3.2.2 Same t across all components . 49

3.2.3 Search grid from drawn samples 49

3.2.4 Simulation Studies . 49

4 Monte Carlo Fusion under Linear Constraints 53

4.1 Some Background in Constrained Simulation 54

4.2 From Unconstrained to Constrained . 55

4.2.1 Unconstrained Case Revisited 56

4.2.2 Restricted Radon-Nikodym Derivative 57

4.2.3 Simulation from the Constrained Proposal 60

4.3 Poisson Estimator and Particle Filter . 64

4.4 Mean Squared Error Analysis . 66

4.4.1 Effect of relative variance on MSE 69

4.4.2 Simulation of Gaussian Case . 70

4.4.3 Simulation of Non-Gaussian case 70

5 Applications of Constrained Density Fusion 73

5.1 Time Series Disaggregation . 73

5.1.1 Background . 73

5.1.2 Imputation Framework . 74

5.1.3 Basic Time Series Model . 75

5.1.4 Study 1: Day-readings Disaggregation 78

5.1.5 Study 2: Max-Min Prediction . 80

5.2 Bias Mitigation in Job Advertisements 82

5.2.1 Background . 82

5.2.2 Modeling Gender Bias . 84

5.2.3 Application Result . 88

6 Discussion 93

CONTENTS v

REFERENCES . 95

List of Figures

1.1 Graphical representation of a typical Hidden Markov Model, Figure

from Murray (2013). 2

1.2 A sample from the Ising model distribution. Figure generated at this

website. 3

2.1 Plots of the four different processes mentioned in this chapter. The

Bessel bridge (in red) and the Brownian bridge (in cyan) are set to move

from zero to one, while the Bessel process (in green) and the Brownian

motion (in purple) only have the starting point set to zero. It is clear that

the Bessel process and the Bessel bridge always stay above zero. 23

2.2 The event where u < L by identifying the fact that U < S2j+1. 27

2.3 A sample path from X0 = x to XT = y with x < y. The trajectory

lands in the fourth layer, i.e., the event D4 happened. (Beskos et al., 2008) 29

3.1 Fusing four individual densities and the resulting product density. 44

4.1 CDF and PDF of simulated data against ground truth 63

5.1 Residual distribution plot based on AR model for the Irish Smart Meter

Trial dataset. 75

5.2 Energy consumption imputation and error with and without constraints . 79

5.3 Percentage difference prediction of peak and trough values, comparing

the constrained model with the baseline. 81

5.4 Histogram of bias score distribution (A) before and (B) after debiasing

algorithm is applied. Both scores are measured using the fitted metric

in Section 4.1. 90

vi

https://mattbierbaum.github.io/ising.js/

List of Figures vii

5.5 (A) Raw improvement and (B) percentage improvement plotted against

the unsigned bias score before debiasing. In the percentage plot, only

positive improvements are plotted since the points with negative im-

provement were already close to no bias and thus not relevant to the

context. 91

List of Tables

1.1 List of some most common sampling methods and their properties com-

pared with MCF . 4

3.1 Case 1, fusing transformed Gamma and transformed inverse Gaussian. . 50

3.2 Case 2, fusing three Student’s t-distribution. 51

4.1 Improvements in accuracy when adding sum constraint for different

cases. Improvement in MSE, deviation and variance for all three com-

ponents of the model are listed with positive values marked by an un-

derscore and negative values marked in bold. 72

5.1 Estimated weight for each word group. 90

5.2 Mean unsigned bias before and after debiasing with mean improvement

and percentage improvement for different groups of data. 91

viii

CHAPTER 1

Introduction

1.1 Sampling and Monte Carlo Integration

Stochastic models allow some of the variables in the model to be non-deterministic,
which makes the model capable of capturing, to some extent, the randomness that is
often exhibited in real-world problems. We see stochastic models in various active
areas including finance (Glasserman, 2004), operational research (Fishman, 2013), sta-
tistical mechanics (Binder, 1997), engineering (Bird, 1981, Mazhdrakov et al., 2018)
and statistics (Robert et al., 1999). Stochastic models can be hard to solve analytically,
especially when the dimension of the problem gets large.

Analyzing a stochastic model often results to computing the value of some function
f that depends on a (perhaps d-dimensional) random variable x that follows a distribu-
tion π(x). Since x is random, we often seek the expected value of f(x) which is an
integral of form

Eπ[f(x)] :=
∫
X
f(x)π(x)dx. (1.1)

For simple choices of f and π, the integral will have an analytical answer. However,
the problem can become intractable easily as the model complexity increases. In the
occasions that f and π are analytically known, it is possible to numerically approximate
the integral using quadrature methods (Davis and Rabinowitz, 2007) which work well
in low-dimensions. However, traditional quadrature methods scale badly as the number
of dimensions d climbs, with an approximation error in O(n−1/d).

In contrast, Monte Carlo methods for approximating (1.1) is based on drawing sam-
ples x1, . . . , xn from the distribution π and computing the average

I =
1

n

n∑
i=1

f(xi)

as the approximated value for the integral (1.1). Due to the Law of Large numbers, the
approximation error is always in O(n−1/2) regardless of the dimension d. Due to this
advantage, Monte Carlo methods may be favored even if traditional numerical methods
are applicable to the problem.

1

2 CHAPTER 1. Introduction

Fig. 1.1 Graphical representation of a typical Hidden Markov Model, Figure from Mur-
ray (2013).

In order for Monte Carlo methods to be implemented, one must be able to draw
samples from the target distribution π which relies on the use of sampling algorithms.
Sampling algorithms in computational statistics is the family of algorithms that gener-
ates random values such that the collection of generated values follows a certain distri-
bution that one is interested in. In Monte Carlo methods, samples from distribution are
used as a proxy for the true distribution with the advantage of working with concrete
and deterministic values. Using these samples, one can visualize the distribution and
approximate various statistics determined by that distribution which is often useful in
complex models.

1.2 Applications of Monte Carlo Methods

1.2.1 Bayesian Inference

The hidden Markov model encompasses a sequence of evolving states Xt with prior
π(X0) and transition density p(Xt|Xt−1), and the true values of Xt are unknown. The
known values yt are observations of Yt conditioned on Xt modeled by likelihood func-
tion f(yt|Xt). Thus, the joint distribution of the system takes the form of

p(X0:t, y1:t) = π(X0)
t∏
i=1

p(Xi|Xi−1)f(yi|Xi)

and the posterior distribution of the hidden state is

p(X0:t|y1:t) =
p(X0:t, y1:t)∫

X p(X0:t, y1:t)dX0:t

.

The posterior distribution quickly becomes intractable even for simple setups and thus
Monte Carlo methods are required in order to numerically compute the normalizing
constant and the posterior density.

CHAPTER 1. Introduction 3

Fig. 1.2 A sample from the Ising model distribution. Figure generated at this website.

1.2.2 Ising Model

Ising model is a well-studied model in statistical mechanics that models the behavior
of a magnet. The model consists of a lattice hosting particles at each site (crossing)
and every particle has either a +1 or −1 spin. Consider a 2-d lattice with coordinates
(i, j), i, j ∈ {1, . . . ,m}. Then the probability distribution on the state of all particles is
defined on the state space X := {−1, 1}m2 with distribution

πβ(x) =
1

Zβ
exp

[
−β · J

(∑
σ∼σ′

xσxσ′

)]
, x ∈ X

where

U(x) = J

(∑
σ∼σ′

xσxσ′

)
is the potential energy of the system and the summation is taken over all adjacent pairs
of coordinates σ, σ′ (σ ∼ σ′), and Zβ is the normalizing constant. In order to compute
the expected energy of the system Eπβ [U(X)] or the normalizing constantZβ , one needs
to sum over the 2m

2 possible states which is analytically very difficult. In most cases,
simulation-based methods are used to approximate the sums.

https://mattbierbaum.github.io/ising.js/

4 CHAPTER 1. Introduction

Sampling Method Exact Generality Info beyond pdf Implementation

Inversion exact only in 1d need cdf distribution dependent

Transformation exact not generic N/A hard to design

Rejection exact generic bound estimate M hard for complex distributions

MCMC non-exact generic not crucial easy to implement

MCF exact generic 2nd derivative of pdf easy with support of packages

Table 1.1 List of some most common sampling methods and their properties compared
with MCF

1.3 Families of Sampling Methods

Usually, there is an efficient and exact sampling algorithm for every common distribu-
tion we work with on a daily basis, e.g., the uniform distribution, Gaussian distribution,
binomial distribution, Poisson distribution, etc. These algorithms are designed in a way
such that all samples generated by the algorithm are independent draws from the spec-
ified distribution, and usually, these algorithms are achieved through a combination of
inversion, transformation, or rejection sampling. Such algorithms usually impede low
computation costs due to the careful design of the execution. However, these algorithms
are not generic, usually only work for one distribution family, and are usually hard to
design for complicated target distributions.

Markov Chain Monte Carlo (MCMC) methods are perhaps the most used fam-
ily of sampling methods when it comes to complex target distributions. The goal of
an MCMC algorithm is to simulate a stochastic process called Markov Chain. The
marginal distribution of the current state of the Markov chain will incrementally ap-
proach the target distribution. Since the iterative nature, the design/derivation of the
update steps is not as challenging. A good example is the application of the Gibbs
sampler to the Ising model. Gibbs sampler only relies on the conditional distribution
of each Xσ given all other states X−σ which is easy to derive in the Ising model where
every particle is only correlated to the particles adjacent to it.

MCMC methods also have their drawbacks. Firstly, the samples are generated from
a distribution that asymptotically approaches the target distribution but not the target
distribution itself. Moreover, each sample depends on the previous sample generated
from the algorithm. Therefore, making use of the generated samples requires the user
to distinguish whether the Markov chain has approached well enough to its converged
state, unlike using exact algorithms where the samples can be directly used. To make
the problem worse, it is not easy to spot whether the chain has converged or not, and
assessments are usually done empirically without a universal criterion. Thus, it becomes
apparent that there is a need for a generic exact sampling algorithm that is versatile
enough to be applied on a wide family of distributions and is easy enough to implement

CHAPTER 1. Introduction 5

while, hopefully, being efficient enough to be practically implementable.
The Coupling From the Past (CFTP) algorithm (Propp and Wilson, 1996) received

significant attention with various works on extending the algorithm (Huber, 1998, Mur-
doch and Green, 1998, Haggstrom and Nelander, 1999, Wilson, 2000, Mitha and Huber,
2012), see Djuric et al. (2002) for a more detailed review on CFTP or more recently Dai
(2019). However, the algorithm is not very efficient when the state space is large and
is significantly harder to implement on continuous state space. The diffusion simula-
tion algorithm introduced in Beskos et al. (2006, 2008) demonstrates a design different
from the previously existing rejection sampling framework which inspired the Monte
Carlo Fusion (MCF) algorithm which is the main focus of this thesis. In later chapters,
we will discuss various extensions of the MCF algorithm including a constrained vari-
ant. Constrained simulation is a difficult problem by itself and there is hardly any exact
sampling algorithm that is applicable to a general distribution on a general constraint.

In this thesis, we will begin Chapter 2 by introducing, in different levels of detail,
the first four methods listed in Table 1.1 accompanied by two other exact simulation
methods (Propp and Wilson, 1996, Beskos et al., 2006). Then in Chapter 3, we will
present the MCF algorithm from the work of Dai et al. (2019), followed by some dis-
cussion on tuning the parameters of the algorithm. In Chapter 4, we extend the MCF
algorithm to deal with linear constraints, deriving a novel algorithm for sampling from
a linearly constrained distribution. Following the constrained algorithm, we discuss two
potential cases of application in Chapter 5 and put the algorithm to the test. Finally, we
conclude in Chapter 6 with some future works.

1.4 Contributions

• Section 3.1.3 on the MCF algorithm taking different time parameters for different
fusion components;

• Section 3.2 on some theoretical and simulation results on tuning the time param-
eters;

• Section 4.2 on deriving the constrained exact sampling algorithm;

• Section 4.3 on introducing an importance sampling/particle filter variant of the
constrained algorithm based on the Poisson estimator (Beskos et al., 2006).

• Section 4.4 on analysing the effect of applying a linear constraint to prediction
models compared with unconstrained models;

• Chapter 5 on two application studies of using the constrained algorithm to simu-
late samples from models with linear constraints.

CHAPTER 2

Perfect Sampling

Sampling, in this thesis, will be referring to the operation/algorithm inside a computer
that obtains realizations of random variables that follow certain desired distributions. As
the key step of Monte Carlo methods, sampling in a computer provides us the flexibility
to work with distributions numerically rather than analytically. Indeed, Monte Carlo
methods are often used when the target distribution is intractable analytically so that
numerical approximations are inevitable, e.g., in Bayesian inference.

Perfect sampling, as mentioned in the chapter title, refers to sampling algorithms
that produce exact samples from the target distribution. Perfect sampling and exact
simulation are used interchangeably in this thesis. In the literature, the two terms may
have been used to refer to the same goal but in different setups.

In order to talk about “Perfect Sampling”, we need first to introduce in what sense
some sampling methods are “imperfect”. In this chapter, We will begin with some com-
monly used methods for generating random variables while comparing their differences,
leading to the problem of “imperfectness”. Finally, we will talk about a perfect sam-
pling method that works on diffusion processes1 rather than random variables, which
will become the key ingredient for the rest of the works in this thesis.

2.1 Random Variables from Random Numbers

To keep the introduction concise, we shall avoid the discussion on the source of ran-

domness in computers and assume here that we have access to a (pseudo-)random num-

ber generator that is good enough to produce samples that resemble realizations of an
uniformly distributed random variable. In practice, we usually use such generators to
produce draws from the Uniform distribution U [0, 1], which leads to our first method
for generating random variables.

1Since this is not a thesis in Measure theory, use of measure theory terminology and results, although
inevitable, will be limited to minimal.

6

CHAPTER 2. Perfect Sampling 7

2.1.1 Inversion Method

Suppose our target is to generate samples for the random variableX that follows certain
distribution D with cumulative distribution function (cdf) given by F : R → [0, 1]. The
name of the “Inversion Method” comes from the operation of finding the inverse of the
cdf F−1(u) to generate a sample of X ∼ D.

Algorithm 1: Inversion Method
Input : Inverse cumulative function F−1 : [0, 1] → R;

1 Generate u ∼ U [0, 1];
2 Return F−1(u) as the sample.

Lemma 2.1.1. Let X be a 1-d random variable follows certain distribution D with

probability density function (pdf) f and cdf F (x) :=
∫ x
−∞ f(t)dt. Let F−1 : [0, 1] → R

denote the inverse of F , then given u ∼ U [0, 1],

F−1(u) ∼ D.

Proof. To prove that F−1(u) ∼ D, we just need to verify that P(F−1(u) ≤ x) = F (x).

P
(
F−1(u) ≤ x

)
= P (u ≤ F (x))

= F (x),

since F (x) ∈ [0, 1] by definition and u ∼ U [0, 1].

Example 2.1.1 (Inversion method for Exponential distribution). Let X ∼ Exp(λ), then

F (x) =

1− e−λx, x ≥ 0;

0, otherwise

and

F−1(u) = − log(1− u)

λ
.

Since 1− u also follows U [0, 1], we might as well treat 1− u as u giving

x = − log(u)

λ

as the output.

The Inversion method is a special case of the Transformation method where the pro-
cess transforms independent samples of one distribution into independent samples of
another distribution, in this case from Uniform to any target distribution with known

8 CHAPTER 2. Perfect Sampling

F−1. Another example for the transformation method is we can transform a set of K
Gamma distributions into a sample from the Dirichlet distribution.

The benefit of this type of method is that as long as our batches of input random
variables are independent, we are guaranteed to obtain independent samples from the
desired distribution. However, the problem is these algorithms are problem specific and
for many complicated distributions, it is not easy to construct such algorithms through
transformation.

2.1.2 Rejection Sampling

The Inversion method requires the knowledge of the cdf, namely the integral of pdf.
In many cases, such an integral is not analytically known, not to say the method only
works on 1-dimensional distributions. In contrast, rejection sampling only requires the
knowledge of pdf and works on multidimensional distributions.

Let D be the target distribution with density function f(x). Suppose that we cannot
sample directly from D, but we can sample from a proposal distribution with density
function q(x) such that there exists a constant M that Mq(x) ≥ f(x),∀x ∈ supp(f).
Then we can formulate the rejection sampling algorithm as follows:

Algorithm 2: Rejection Sampling
1 Sample from the proposal distribution x ∼ q(·);
2 Sample u ∼ U [0, 1];
3 if u ≤ f(x)

Mq(x)
then

4 Accept and return x.
5 else
6 Reject x and go back to Step 1.

Proposition 2.1.2. Let f : Rd → R≥0 be the density function for the target d-dimensional

distribution and let g : Rd → R≥0 be another density function to be used as proposal.

Suppose there exists M > 0 such that Mq(x) ≥ f(x), ∀x ∈ supp(f), then the ran-

dom resultX produced from the above rejection sampling algorithm follows the target

density function f .

Proof. It is enough to check the distribution ofX given it is accepted. For any arbitrary
A ⊂ Rd,

P (X ∈ A|X accepted) =
P (X ∈ A,X accepted)

P (X accepted)

P (X ∈ A,X accepted) =

∫
A

∫ f(x)
Mg(x)

0

g(x)dudx

=

∫
A

f(x)

M
dx

CHAPTER 2. Perfect Sampling 9

and the acceptance probability

P (X accepted) =
∫
Rd

∫ f(x)
Mg(x)

0

g(x)dudx =
1

M
.

Thus
P (X ∈ A|X accepted) =

∫
A

f(x)dx

which ends the proof.

Drawing on the elegant proof of Flury (1990), we may conclude the rejection sampling
process as uniformly generating dots from the carved product space

{
(X, y) ∈ Rd × [0,∞)

∣∣ y ≤Mg(X)}

and the dots are accepted if and only if they land inside the acceptance region

{
(X, y) ∈ Rd × [0,∞)

∣∣ y ≤ f(X)}

and return theX component of the dot. Similar to the outcomes of transformation meth-
ods, the samples obtained from rejection sampling are also independent and identically
distributed (i.i.d.). Although more flexible than the transformation method, rejection
sampling relies on the existence of the bounding constant M . More importantly, the
acceptance rate is 1/M on average. In other words, the efficiency is highly dependent
on the choice of proposal distribution, and finding a suitable proposal can be hard in
some situations.

2.2 Asymptotically Exact — Markov Chain Monte Carlo Methods

The previous section lists two sampling methods that produce i.i.d. samples from the
target distribution. However, this section is introduced only to make contrast with the
previous “exact” algorithms to give the reader some idea of the “imperfectness” of
MCMC algorithms. Therefore, we will only briefly introduce the concept of Markov
chains and list some properties and results that make it suitable to be used in sampling
algorithms. Meyn and Tweedie (2012) would be recommended for a more detailed
introduction to Markov Chain. We will see later that MCMC methods are designed and
executed differently from algorithms we have seen before, with the advantage of being
even more flexible.

10 CHAPTER 2. Perfect Sampling

2.2.1 Basic Notions of Markov Chain

Definition 2.2.1 (Markov Chain). A discrete-time Markov chain is a collection of ran-

dom variables {Xt ∈ X|t ∈ N}, where the measurable space (X,X) is the state space,

that follows the Markov property

∀x ∈ X , A ∈ X , and time indices s1 < · · · < sn < t0 < t

P(Xt ∈ A|Xs1 , . . . , Xsn , Xt0 = x) = P(Xt ∈ A|Xt0 = x) (2.1)

For the purpose of this thesis, it suffices to consider only the time-homogeneous Markov
chains, i.e.,

P(Xt+n ∈ A|Xt = x) = P(Xn ∈ A|X0 = x), ∀x ∈ X, A ∈ X , t, n ∈ N. (2.2)

For time-homogeneous Markov chains, the evolution of the states Xt follows the distri-
bution of Xt+1 conditioned on Xt = x, which is completely governed by its transition
kernel K(·, ·).

Definition 2.2.2 (Transition Kernel). A transition kernel K : X×X → R is a function

such that

1. ∀x ∈ X, K(x, ·) is a measure on the state space (X,X)

2. ∀A ∈ X , K(·, A) is a measurable function.

In the case where X is a continuous space, we use K(x, x′) to denote the transition

density such that

P(Xt+1 ∈ A|Xt = x) = K(x,A) =

∫
A

K(x, x′)dx′.

2.2.2 Some Properties and Results

Definition 2.2.3 (Stationary Distribution). A probability measure π is said to be the

stationary distribution of (the Markov chain equipped with) transition kernel K if

π(A) =

∫
X
π(x)K(x,A)dx, ∀A ∈ X (2.3)

When a Markov chain admits π as its stationary distribution, we also call this Markov

chain π-invariant.

A Markov chain is π-invariant implies when we start with X0 ∼ π, we will get X1 ∼ π,
X2 ∼ π and so forth. Such a chain can continuously produce samples from the fixed

CHAPTER 2. Perfect Sampling 11

distribution π. Under certain conditions, the π-invariant Markov chain can reach sta-
tionary state, i.e., the marginal distribution ofXn converges to π, as we evolve the chain.
MCMC algorithms work based on the design that the target distribution π is attained
as the invariant distribution of the Markov chain while the conditions for converges are
also met (ergodic).

Definition 2.2.4 (Irreducibility). Let π be a measure on (X,X), a Markov chain with

kernel K is π-irreducible if,

∀A ∈ X such that π(A) > 0,∃n > 0 such thatKn(x,A) > 0, ∀x ∈ X.

HereKn denotes the n-step transition function. A Markov chain is strongly π-irreducible

if n = 1 for any A ∈ X .

For a chain on a discrete state space to be irreducible, every state in the space must be
accessible from every other state. In fact, how often a state (or a measurable set) is
visited in the long run is a statistic for characterizing the Markov chain. Here we define
the notion of ηA to denote the number of visits to set A by the chain Xt

ηA =
∞∑
t=1

IA(Xt).

Definition 2.2.5 (Harris Recurrence). A set A ∈ X is Harris recurrent if Px(ηA =

∞) = 1 for all x ∈ X. A Markov chain is Harris recurrent if it is π-irreducible and

every set A ∈ X such that π(A) > 0 is Harris recurrent.

Harris recurrence and π-invariant is enough to give a simple Ergodic Theorem, i.e., an
MCMC equivalent of “Law of Large Numbers”, for the convergence of Monte Carlo
approximation to the true integral

lim
t→∞

1

t

t∑
k=1

h(Xt)
a.s.
=

∫
X
h(x)π(dx).

However, for the convergence towards stationary distribution, we also need the chain
to be aperiodic. Since the definition of periodicity in continuous space Markov chain
is more involved than in discrete space, we will only give an abridged version of the
definition similar to Roberts and Rosenthal (2004).

Definition 2.2.6 (Periodicity). A π-irreducible Markov chain with transition kernel K

is periodic with period d > 1, if the state space X can be partitioned into d disjoint sets

12 CHAPTER 2. Perfect Sampling

X1, . . . ,Xd, such that

∀i, j, t, s : P(Xt+s ∈ Xj|Xt ∈ Xi) =

1, j ≡ i+ s mod d

0, otherwise

Otherwise, the Markov chain is said to be aperiodic.

Note that it can be shown that if the Markov chain is periodic on a setA ∈ X with period
d, then the state space can be partitioned into d disjoint sets leading to the definition
above (Meyn and Tweedie, 2012, Robert et al., 1999). A Markov chain is periodic with
period d means the state of the chain cycles through the d disjoint sets in a specific
order.

Theorem 2.2.1 (Convergence to Stationary). If a Markov chain Xt with transition ker-

nel K is π-invariant, Harris recurrent and aperiodic, then for every initiaion distribu-

tion λ ∣∣∣∣∣∣∣∣∫ λ(dx)Kt(x, ·)− π

∣∣∣∣∣∣∣∣
TV

→ 0, t→ ∞.

This theorem was presented in Meyn and Tweedie (2012), Theorem 13.3.3. The
result ensures that the produced samples, although they might be correlated, can be
treated as samples from the target distribution π as t→ ∞.

2.2.3 Metropolis-Hastings Algorithm

Let f denote the target distribution, a generic Metropolis-Hastings algorithm operates
on a proposal distribution q(·|·) where ∀x′ ∈ X, q(·|x′) is a density function on X. Like
the rejection sampling algorithm, at step t + 1 we generate a new proposal X from the
proposal density and compute an acceptance probability

α(X,Xt) = min

{
1,
f(X)q(Xt|X)

f(Xt)q(X|Xt)

}
. (2.4)

The difference is when we reject the proposal, we will record again the previous value
Xt, i.e., a new sample Xt+1 is generated and equal to Xt.

We can prove the Markov chain in the Metropolis-Hastings algorithm admits the target
distribution f as its invariant distribution, provided that the support of proposal q is
good enough, by checking a condition called detailed balance, though this part of the
detail is omitted. Two primary concerns often arise when using MCMC algorithms like
the Metropolis-Hastings:

• When will the Markov chain reach (close enough to) its stationary distribution,
i.e., generating samples from the target distribution?

CHAPTER 2. Perfect Sampling 13

Algorithm 3: Generic Metropolis-Hastings Algorithm
1 Given starting point X0;
2 for t = 1, 2, . . . do
3 Sample X from q(·|Xt−1);
4 Compute acceptance probability α(X,Xt−1) in (2.4);
5 Generate u ∼ U [0, 1];
6 if u < α(X,Xt−1) then
7 Accept and set Xt = X;
8 else
9 Reject and set Xt = Xt−1.

• How many steps does it take for the correlation between samples to diminish, i.e.,
the value k such that Xt and Xt+k are almost independent?

The latter might be easier to answer and less problematic when the goal is to approxi-
mate some integral since correlation can be examined by checking the autocorrelation
plot and the Ergodic theorems provide a convergence guarantee without requiring the
samples to be independent. The former, however, has no generic answer to it. The need
to alleviate such “imperfectness” leads to the search for perfect simulation methods
based on MCMC techniques, e.g., the Coupling from the Past method.

2.2.4 Coupling from the Past

Algorithm 4: Coupling from the Past
1 Set t = 0;
2 Set F 0

t = identity map;
3 while F 0

t (·) is not constant do
4 Simulate one-step transition mapping F t

t−1;
5 Compute F 0

t−1 = F t
t−1 ◦ F 0

t ;
6 t = t− 1;

7 Return the singleton range of F 0
t .

The Coupling from the Past (CFTP) method (Propp and Wilson, 1996) keeps track of
the Markov chain’s evolution differently so that it is possible to realize when the chain
has converged. The intuition is, if one could simulate the Markov chain for an infinite
number of steps, then the chain must have converged (provided the ergodic conditions
are met). In that case, the resulting state can be seen as an i.i.d. draw from the target
distribution.

Here, for simplicity, we restrict ourselves to Markov chains defined on finite dis-
crete space X of cardinality |X| := n. Instead of evolving a single state Xt, the CFTP
algorithm keeps track of the full transition mapping F 0

−t : X → X from time −t to 0.

14 CHAPTER 2. Perfect Sampling

Moving from time −t to −t− 1, we simulate a new transition mapping F−t
−t−1 : X → X

by simulating the one-step Markov chain evolution for every state x ∈ X and record
the images. As a matter of convenience, we sample and apply each new transition step
from the left, so the time is counted backward.

F 0
−t−1 := F−t

−t−1 ◦ F 0
−t, F 0

0 := identity map.

When the Markov chain is f -irreducible and aperiodic, there exists T large enough
such that F 0

−T is a constant mapping, i.e., F 0
−T (x1) = F 0

−T (x2),∀x1, x2 ∈ X. Then
continuing the evolution backward no longer make any difference since any M > T ,
F 0
−M will also be a constant mapping. In this case, we call the chain has coalesced or

coalescence has occurred and the singleton range of the coalesced mapping is an i.i.d.
sample from the target distribution.

Remark 2.2.1. The example algorithm only works on finite state space. For uncount-

able state spaces, coalescence would never happen under the current strategy. Ex-

tension to CFTP on uncountable state space requires implementing more sophisticated

couplers, please see for instance, Murdoch and Green (1998), Mitha and Huber (2012).

2.3 Perfect Sampling for Diffusion Processes

In the previous section we talked about Markov-chain-based sampling methods where
the goal is to construct a Markov chain that admits the target distribution as its stationary
distribution and aims to draw samples from the stationary chain. We ended that section
with a perfect sampling method called CFTP.

In this section, we will move away from Markov chains and talk about perfect sam-
pling for diffusion processes based on the rejection sampling algorithm introduced in
Section 2.1.2. This section is based on the works of Beskos et al. (2005, 2006, 2008), we
will go through the problem setup, theoretical proofs and give the algorithm framework
before addressing the implementation difficulties.

Due to the length limit, it is impractical to include a rigorous introduction to diffu-
sion process building from the basics of measure theory. We will select a few definitions
and results that are necessary to lay down the theoretical basis for the rejection algo-
rithm and keep the terminologies to a minimum, much like the introduction to Markov
chains in the previous section.

2.3.1 Diffusion Processes, Itô’s Lemma and Girsanov Theorem

A diffusion process is a Markov process, think of it as a continuous-time Markov chain,
that satisfies some stochastic differential equations. Unlike what we have seen before,

CHAPTER 2. Perfect Sampling 15

the time indexing is now from an uncountable set. To start with, we shall give the
definition of a broader family called stochastic processes

Definition 2.3.1 (Stochastic process). Let (X,X) be a measurable space where the

process will be defined on. A stochastic process is a collection of random variables

X = {Xt : 0 ≤ t <∞} on (X,X),

where for each t, Xt : (X,X) → (Rd,B(Rd)).

Definition 2.3.2 (Brownian Motion). A d-dimensional Brownian motion B = (Bt)t≥0

is a stochastic process that has the following properties:

1. For 0 ≤ t0 < t1 < · · · < tn <∞, the incrementsBt0 , Bt1−Bt0 , · · · , Btn−Btn−1

are independent;

2. For any 0 ≤ s < t, the increment Bt − Bs follows a d-dimensional standard

normal distribution, i.e., Bt −Bs ∼ Nd(0, Id);

3. The sample path t→ Bt is continuous with probability one (almost surely).

Here we quickly introduce the idea of induced measure. Let X = (Xt) be a stochastic
process defined on the measure space (X,X ,P). We may see X itself as a mapping
X → F where F is the set of mappings on [0,∞) → Rd with a Borel algebra B(F). IfX
is a measurable mapping, then we may define the measure Q induced by the stochastic
process X by Q(A) := P({ω : X(ω) ∈ A}), ∀A ∈ B(F).

Definition 2.3.3 (Diffusion Process). A diffusion process X = (Xt)t≥0 is a Markov

process with a continuous sample path and satisfies some stochastic differential equa-

tions of the form

dXt = b(Xt, t)dt+ σ(Xt, t)dBt

where Bt is a Brownian motion. When Bt is d-dimensional, b(Xt, t) is a d-dimensional

vector and σ(Xt, t) is a d× d matrix.

Although stochastic integrals
∫
dBt can be less trivial than the Riemann integrals

∫
dx

we usually encounter, the notation dBt also comes from the intuition of taking the limit
of infinite sums to approximate an integral using summation. For the purpose of this
thesis, it is enough to think the symbol dBt to be analogous to the symbol dx, except
for seeing (dBt)

2 which becomes dt.
Our target is to sample (the skeleton of) the diffusion process X from time 0 to T ,

driven by the equation
dXt = α(Xt)dt+ dBt. (2.5)

In order to set up a rejection sampling framework for this process, we need some tools
from measure theory and stochastic integral.

16 CHAPTER 2. Perfect Sampling

Theorem 2.3.1 (Itô (1951)). Let Bt be a 1-dimensional Brownian motion and f(Bt, t)

to be a twice-differentiable deterministic function. Then Xt = f(Bt, t) satisfies

dXt =

(
∂f

∂t
+

1

2

∂2f

∂B2
t

)
dt+

∂f

∂Bt

dBt.

For simplicity, the formula is given in 1-d, but the extension to the multidimensional
case comes naturally by considering the same Taylor expansion.

Another result we will use is the “change of measure” formula for diffusion pro-
cesses (Girsanov, 1960). Like in the case of density functions, change of variable
involves the knowledge of the derivative between the original variable and its repa-
rameterization.

Theorem 2.3.2 (Radon-Nikodym Derivative). Let µ, ν be two σ-finite measures on

the measurable space (X,X) such that ν is abusolutely continuous with respect to µ,

i.e., µ(A) = 0 =⇒ ν(A) = 0,∀A ∈ X . Then there exists a measurable function

f : X → [0,∞) such that

ν(A) =

∫
A

fdµ.

We call dν
dµ

= f the Randon-Nikodym derivative between measures ν and µ.

See Durrett (2019) (p179, 406).

Theorem 2.3.3 (Girsanov’s Formula). Consider two stochastic systems with equations

dXt = σ(Xt, t)dBt + b(Xt, t)dt

and

dX̃t = σ(Xt, t)dBt + b̃(Xt, t)dt

where b, b̃, σ are Lipschitz with respect to Xt. Let Xt and X̃t, t ∈ [0, T] be the corre-

sponding solution to the SDEs and Q, Q̃ denote the measure induced by X and X̃ re-

spectively. Then, Q̃ is absolutely continuous with respect to Q with the Radon-Nikodym

derivative between the measures given by

dQ̃
dQ

= exp

[∫ T

0

ϕ(t)dBt −
1

2

∫ T

0

|ϕ(t)|2dt
]

(2.6)

where ϕ(t) = σ−1(Xt, t)
[
b̃(Xt, t)− b(Xt, t)

]
.

For a rigorous description of the result, see Theorem 3.4 in Chapter 7 of Friedman
(1975) and the corresponding section.

CHAPTER 2. Perfect Sampling 17

Corollary 2.3.4. Let X = (Xt)t∈[0,T] be a diffusion process driven by the Brownian

motion Bt satisfying

dXt = f(Xt, t)dt+ dBt,

Let Q denote the measure induced by the diffusion processX and W denote the measure

induced by the Brownian motion B, then

dQ
dW

(ω) = exp

[∫ T

0

f(ω(t), t)dBt −
1

2

∫ T

0

|f(ω(t), t)|2dt
]

(2.7)

where ω is a typical element of C([0, T],R), the set of continuous mapping from [0, T]

to R.

Proof. Apply Theorem 2.3.3 to the case where b̃ = f , b = 0 and σ = 1.

2.3.2 Rejection Sampling for Diffusion Process

The rejection sampling algorithm (Algorithm 2) we introduced earlier operates on den-
sity functions. Naturally, we see the generalization from finite-dimensional distribu-
tions to stochastic processes where we now identify the distribution based on the mea-
sure induced by the stochastic process. Firstly, we shall check that when we operate
on measures instead of density functions, the acceptance probability will depend on the
Radon-Nikodym derivative between the measures, analogous to the quotient between
the density functions.

Lemma 2.3.5 (Rejection with Radon-Nikodym derivative). Let target measure Q and

proposal measure Z be two probability measures defined on the same measurable space

(X,X) with Q absolutely continuous with respect to Z. Suppose that, for some finite

constant M > 0
dQ
dZ

(ω) =
f(ω)

M
Z− almost surely.

with f(ω) ≤, ∀ω ∈ X. Then the following rejection sampling algorithm produces

samples from Q.

Algorithm 5: Base Rejection Sampling
1 Draw sample ω ∼ Z;
2 Draw sample u ∼ U [0, 1];
3 Compute f(ω);
4 if u < f(ω) then
5 accept ω.
6 else
7 Reject ω.

18 CHAPTER 2. Perfect Sampling

Proof. It is enough to check that

P(ω ∈ A|accepted) = Q(A).

P(ω ∈ A|accepted) =
P(ω ∈ A, u ≤ f(ω))

P(accepted)

=

∫
A
f(ω)dZ∫

X f(ω)dZ

=

∫
A
MdQ∫

XMdQ
= Q(A).

2.3.2.1 Radon-Nikodym Derivative

Recall our target is to simulate a sample path for the time-homogeneous diffusion pro-
cess Xt, t ∈ [0, T] driven by the equation (2.5)

dXt = α(Xt)dt+ dBt.

For simplicity, we consider the target diffusion to be 1-dimensional with unit diffusion.

Remark 2.3.1. For a diffusion process with non-unit diffusion coefficient

dVt = b(Vt, t)dt+ σ(Vt, t)dBt,

the transformed process Xt =
∫ t
0

ds
σ(Vs,s)

will have unit diffusion.

In order for the Radon-Nikodym derivative (2.7) to exist, we assume the following
conditions hold

Condition 1. 1. α(·) is continuously differentiable;

2. α2 + α′ is bounded below;

3. Expression (2.7) is a martingale with respect to Bt.

Remark 2.3.2. The third point in the above condition is just a technical requirement

for applying Girsanov’s formula (Theorem 2.3.3). Let

MT (ω) := exp

[∫ T

0

f(ω(t), t)dBt −
1

2

∫ T

0

|f(ω(t), t)|2dt
]
.

The condition is essentially requiring: E[|Mt|] ≤ ∞, ∀t, and E[Mt|{Bτ , τ ≤ s}] =Ms.

CHAPTER 2. Perfect Sampling 19

Fixing the starting point x and ending point y, we let QT,x,y denote the measure induced
by the diffusion process X conditioned on X0 = x and XT = y and WT,x,y be the
measure induced by the corresponding Brownian bridge. Let pT (x, y) denote the
transition density of X from X0 = x to XT = y and let At = A(Bt) =

∫ t
0
α(Bs)dBs.

Theorem 2.3.6. Let ω be a typical element of C([0, T],R). Under condition 1, the

Radon-Nikodym derivative between QT,x,y and WT,x,y is proportional to

dQT,x,y

dWT,x,y

(ω) =
N (y;x, T)

pT (x, y)
· exp

{
A(y)− A(x)−

∫ T

0

1

2

(
α2 + α′) (ω(t))dt} (2.8)

∝ exp

{
−
∫ T

0

[ϕ(ω(t))] dt

}
≤ 1 (2.9)

where N (y;x, T) is the density function of normal variable Y ∼ N (x, T) evaluated at

Y = y and

ϕ(u) =
1

2
(α2(u) + α′(u))− l (2.10)

for some lower bound l of function 1
2
(α2(u) + α′(u)), ∀u.

Proof. Let Q and W be the unconditioned measure of QT,x,y and WT,x,y respectively,
then by Corollary 2.3.4

dQT,x,y

dWT,x,y

(ω) =
dQ
dW

(ω) · N (y;x, T)

pT (x, y)

=
N (y;x, T)

pT (x, y)
· exp

{∫ T

0

α(ω(t))dBt −
1

2

∫ T

0

α2(ω(t))dt

}
By Itô’s Lemma (Thm 2.3.1)

dAt =

(
∂A

∂t
+

1

2

∂2A

∂B2
t

)
dt+

∂A

∂Bt

dBT

=
1

2
α′(Bt)dt+ α(Bt)dBt

=⇒
∫ T

0

dAt =

∫ T

0

1

2
α′(Bt)dt+

∫ T

0

α(Bt)dBt

=⇒
∫ T

0

α(Bt)dBt = AT − A0 −
∫ T

0

1

2
α′(Bt)dt.

Under the conditioned measure, AT = A(BT) = A(y) and A0 = A(B0) = A(x).
Hence, with x, y fixed

dQT,x,y

dWT,x,y

(ω) =
N (y;x, T)

pT (x, y)
· exp

{
A(y)− A(x)−

∫ T

0

1

2

(
α2 + α′) (ω(t))dt}

∝ exp

{
−
∫ T

0

[
1

2

(
α2 + α′) (ω(t))− l

]
dt

}
≤ 1.

20 CHAPTER 2. Perfect Sampling

for some lower bound l of α2 + α′.

2.3.2.2 Poisson Process Rejection

Given Theorem 2.3.6, we know how to construct, in theory, a rejection sampler for
the diffusion process (2.5) with its two ends fixed using Algorithm 5. However, the
function ϕ is intractable, for Algorithm 5 to be implementable on (2.9), we need a way
to simulate the event U ≤ exp

{
−
∫ T
0
ϕ(ω(t))dt

}
.

Definition 2.3.4 (Poisson Point Process). Let λ be a σ-finite measure on measurable

space (X,X). A Poisson Point Process of intensity λ is a random countable subset Π of

X such that

(i) for any disjoint measurable sets A1, A2, . . . , An ∈ X , the random variables

N(A1), . . . , N(An) are independent;

(ii) for any A ∈ X , the random variable N(A) follows the Poisson distribution with

intensity λ(A).

Under suitable separability conditions on the space (X,X), the point process can be
seen as a random collection of points {X1, . . . , Xκ} ⊂ X such that for any A ∈ X ,
N(A) denotes the number of points landing within the set A. More specifically, the
probability of no point landing in A is exp(−λ(A)). Using this property, we can simu-
late an event of (2.9).

Proposition 2.3.7. Let ω ∈ C([0, T],R), Φ be a Poisson point process of intensity

1 on the space [0, T] × [0,M], where M is the upper bound of the function ϕ. Let

A := {(t, u) ∈ [0, T] × [0,M] : u ≤ ϕ(ω(t))} denote the region under the curve

ϕ(ω(t)), then

P(N(A) = 0|ω) = exp

{
−
∫ T

0

ϕ(ω(t))dt

}
Proof. By the definition of Φ, the random variable N(A)|ω is Poisson with intensity∫
A
dλ with λ is the Lebesgue measure on [0, T]× [0,M]. Thus

P(N(A) = 0|ω) = exp

{
−
∫
A

dλ

}
= exp

{
−
∫ T

0

ϕ(ω(t))dt

}
.

From the proof, we require that ϕ is bounded both above and below. ϕ is bounded below
is required in the condition 1 and is usually satisfied in practice. However, ϕ is often
not bounded above. We will address this problem later in this chapter, so for now we
assume that ϕ is also bounded above. Then we can rewrite Algorithm 5.

CHAPTER 2. Perfect Sampling 21

Algorithm 6: Rejection Sampling for Bounded ϕ
Input: Starting point x, ending point y, total time T ;

1 Given T,M , simulate κ ∼ Poi(TM);
2 for i = 1, . . . , κ do
3 Simulate ti ∼ U [0, T];
4 Simulate ui ∼ U [0,M];

5 Store Poisson point process Φ := {(t1, u1), . . . , (tκ, uκ)};
6 Simulate the skeleton of a Brownian bridge ω connecting B0 = x and BT = y

at time points 0, t1, . . . , tκ, T ;
7 compute the indicator

I :=
κ∏
i=1

I[ϕ(ω(ti)) < ui]

8 if I = 1 then
9 Accept ω as a realization of QT,x,y.

10 else
11 Otherwise reject ω.

Note that we cannot simulate the full Brownian bridge since its is a continuous stochas-
tic process. However, to compute the indicator at step 3, it is enough to know the values
of the Brownian bridge at the desired time points determined by the Poisson process Φ.
Since the process Φ is independent of the realization of the Brownian bridge ω, we can
simulate Φ before ω.

2.3.2.3 Properties of Brownian Motion/Bridge

Since it is impossible to simulate and store the full trajectory of a continuous stochastic
process, it suffices to design algorithms that simulate the trajectory at requested time
points 0 < t1 < · · · < tn < T .

Brownian Motion
Since Brownian motion satisfies Markov property and every increment Btj −Btj−1

are Gaussian random variables, simulating the Brownian motion on the skeleton points
0, t1, . . . , tn, T can be done by sampling the step sizes incrementally.

Algorithm 7: Brownian Motion
Input: Time points t0 = 0, t1, . . . , tn, tn+1 = T ;

1 Set B0 := 0;
2 for i = 1, . . . , n+ 1 do
3 Sample hi ∼ N (0, ti − ti−1);
4 Set Bi = Bi−1 + hi;

5 Return the skeleton of Brownian motion B := {(ti, Bi)
n+1
i=0 }.

22 CHAPTER 2. Perfect Sampling

Brownian Bridge

Definition 2.3.5. A standard Brownian bridge of time T is a Gaussian stochastic pro-

cess W = (Wt)t∈[0,T] such that E[Wt] = 0,∀t ∈ [0, T] and E[WsWt] = s− (ts/T), for

0 ≤ s < t ≤ T .

Lemma 2.3.8. It is equivalent to seeing a standard Brownian bridge of time T as a

Brownian motion B conditioned on BT = 0.

See, e.g., Theorem 1 Chow (2009).

Lemma 2.3.9. A drifted Brownian bridge W x,y of time T is a Gaussian stochastic

process such that E[Wt] = (1− t/T)x+ ty/T, ∀t ∈ [0, T] and E[WsWt] = s− (ts/T),

for 0 ≤ s < t ≤ T .

Proof. By relocation invariant property of Brownian motion, we can see W x,y
t as the

result of shifting the Brownian motionBt toBt+x and condition onBT+x = y. Using
the Gaussian conditioning formula, we can derive the definition for a Brownian bridge
of time T connecting x and y, i.e., compute E[Wt|WT = y] and Cov(Ws,Wt|WT = y),
the calculation is omitted.

Proposition 2.3.10. Let (Bt)t∈[0,T] be a Brownian motion, then

W 0,0
t = Bt −

t

T
BT

is a standard Brownian bridge of time T . More generally,

W x,y
t = Bt −

t

T
BT + (1− t/T)x+ (t/T)y

gives a Brownian bridge connecting x and y.

Proof. The first equality can be verified by checking the mean and covariance of Bt −
t
T
BT , see, e.g., Theorem 5 of Chow (2009). The second equality is obtained by adding

the mean function to the first equality.

Algorithm 8: Brownian Bridge
Input: Starting point x, ending point y;
Time points t0 = 0, t1, . . . , tn, tn+1 = T ;

1 Simulate a Brownian motion B of time T at time points (ti)ni=1;
2 Set W0 := x, WT := y;
3 for i = 1, . . . , n do
4 Wti = Bti − t

T
BT + (1− t/T)x+ (t/T)y;

5 Return W := {(ti,Wti)
n+1
i=0 }.

CHAPTER 2. Perfect Sampling 23

Fig. 2.1 Plots of the four different processes mentioned in this chapter. The Bessel
bridge (in red) and the Brownian bridge (in cyan) are set to move from zero to one,
while the Bessel process (in green) and the Brownian motion (in purple) only have the
starting point set to zero. It is clear that the Bessel process and the Bessel bridge always
stay above zero.

Bessel Bridge

Definition 2.3.6. A d-dimensional Bessel process denoted by Rd = {(Rt)t∈[0,T]} is

defined as

R
(d)
t =

√√√√ d∑
i=1

(B
(i)
t)2

where B(i), i = 1, . . . , n are n independent 1-dimensional Brownian motions.

Informally, a 3-dimensional Bessel process is a Brownian motion constrained to be
positive (Pitman, 1975) and a Bessel bridge Ry is a Bessel process R conditioned on
the end point RT = y.

Proposition 2.3.11. A 3-dimensional Bessel bridge BBT,0,y = (BBT,0,y
t)t∈[0,T] con-

necting 0 and y > 0 can be obtained by a transformation of three independent standard

Brownian bridges W (1),W (2),W (3) of time T through

BBT,0,y
t =

√
(yt/T +W

(1)
t)2 + (W

(2)
t)2 + (W

(3)
t)2.

See, e.g., Bertoin and Pitman (1994).

24 CHAPTER 2. Perfect Sampling

Algorithm 9: Bessel Bridge
Input: Ending point y;
Time points t0 = 0, t1, . . . , tn, tn+1 = T ;

1 Simulate three independent standard Brownian bridges, denoted W 1, W 2, W 3;
2 Set X0 = 0;
3 for i = 1, . . . , n do

4 Xti =
√
(yti/T +W

(1)
ti)2 + (W

(2)
ti)2 + (W

(3)
ti)2;

5 Return Bessel bridge X := {(ti, Xti)
n+1
i=0 }

2.3.2.4 Decomposition of Brownian Bridge at Its Minimum

Proposition 2.3.12. Let W x,y be a Brownian bridge of time T connecting x and y. Let

τ ∈ [0, T] be the time at which W x,y attains its minimum m. Then conditioned on τ,m,

the process (W x,y
τ−t − m)0≤t≤τ is a Bessel bridge BBτ,0,x−m and is independent of the

process (W x,y
t−τ −m)τ<t≤T which is a Bessel bridge BBT−τ,0,y−m.

See, e.g., Proposition 2 of Asmussen et al. (1995).

Proposition 2.3.13. The joint distribution of (τ,m) given x, y, T is

π(m, τ |x, y, T) ∝ (m− x)(m− y)√
τ 3(T − τ)3

exp

{
−(m− x)2

2τ
− (m− y)2

2(T − τ)

}
(2.11)

for m ≤ min{x, y} and τ ∈ [0, T].

This result appears many times in the literature on passage time of Brownian motion,
see, e.g., Shepp (1979), Karatzas and Shreve (2012).

By Proposition 2.3.12 and 2.3.13, we come to a different algorithm (Algorithm 10)
for simulating a Brownian bridge by first deciding its minimum point. The same routine
can be reused for constructing a Brownian bridge with its maximum point decided first,
see Algorithm 12 and 13.

CHAPTER 2. Perfect Sampling 25

Algorithm 10: Brownian bridge through its minimum
Input: Starting point x, ending point y;
Time points t0 = 0, t1, . . . , tn, tn+1 = T ;

1 Simulate (m, τ) ∼ π(m, τ) from (2.11) using Algorithm 11;
2 Partition the time points into T1 = {t1, . . . , tk} and T2 = {tk+1, . . . , tn} such

that tk < τ < tk+1;
3 Simulate a Bessel bridge BBτ,0,x−m on time points

{τ − tk, τ − tk−1, . . . , τ − t1}, denoted (Lt)t∈[0,τ];
4 Simulate a Bessel bridge BBT−τ,0,y−m on time points {tk+1 − τ, . . . , tn − τ}

denoted (Rt)t∈[0,T−τ];
5 Construct the Brownian bridge W by setting

Wti =

{
Lτ−ti , 0 ≤ i ≤ k

Rti−τ , k < i ≤ n+ 1

6 set Wτ = m;
7 return W .

Algorithm 11: Simulate time and minimum attained by a Brownian bridge
Input: Starting point x, ending point y, total time T ;

1 Set a = y − x;
2 Draw λ ∼ Exp(1);
3 b = (a−

√
2Tλ+ a2)/2;

4 c1 = (a− b)2/2T ;
5 c2 = b2/2T ;
6 Draw u ∼ U [0, 1];
7 if u < (1 +

√
c1/c2)

−1 then
8 Draw V ∼ IGau(

√
c1/c2, 2c1);

9 else
10 Draw V ∼ 1/IGau(

√
c2/c1, 2c2);

11 Return pair (b, T/(1 + V)).

Algorithm 12: Brownian bridge through its maximum
Input: Starting point x, ending point y;
Time points t0 = 0, t1, . . . , tn, tn+1 = T ;

1 Simulate W−x,−y on times points {ti}i=1,...,n using Algorithm 10;
2 Return the trajectory of −W .

Algorithm 13: Simulate time and maximum attained by a Brownian bridge
Input: Starting point x, ending point y, total time T ;

1 Run Algorithm 11 with input (−x,−y, T), denote the return values (m, τ);
2 Return (−m, τ).

26 CHAPTER 2. Perfect Sampling

2.3.3 Layered Construction for Brownian Bridges

Now we shall address the case where ϕ is not bounded above. The idea here is to decide
first the compact interval [a, b] where the Brownian bridge will stay and then compute
the upper bound of ϕ given the interval, i.e., sup {ϕ(x) : x ∈ [a, b]}.

After the interval is decided, we may simulate the position of the maximum/minimum
point of the Brownian bridge and recover the trajectory by decomposing the bridge into
two Bessel bridges using either Algorithm 12 or 10.

Let p(T, x, y,K) denote the probability under WT,x,y (the probability law induced
by a Brownian bridge connecting B0 = x and BT = y) that a trajectory does not leave
the interval [−K,K], K > max{|x|, |y|}.

2.3.3.1 Some Auxiliary Results

For ease of explanation, we define the notion of alternating monotone.

Definition 2.3.7. A series S =
∑
bk is alternating monotone if its partial sum Sn can

be expressed as the sum of a positive sequence an

Sn = a0 +
n∑
r=1

(−1)rar

where an is strictly decreasing, i.e., 0 < ar+1 < ar, ∀r ≥ 1.

A sequence is alternating monotone if it is the partial sum of an alternating mono-

tone series.

Lemma 2.3.14. A sequence (Si)i≥1 is alternating monotone if and only if Si is converg-

ing and S2j−1 < S2j+1 < S2j+2 < S2j , ∀j ≥ 1.

Proof. The forward direction is trivial. Suppose that (Si)i≥1) is a converging sequence
satisfying S2j−1 < S2j+1 < S2j+2 < S2j , ∀j ≥ 1. Then the subsequences (S2j−1)j≥1

and (S2j)j≥1 are strictly monotone converging sequences.

Let S0 = 0, a2j = S2j − S2j−1 > 0 and a2j−1 = S2j−2 − S2j−1 > 0, j ≥ 1. Then

Sn = 0 +
n∑
r=1

(−1)rar.

Note that

a2j − a2j−1 = S2j − S2j−2 < 0, a2j+1 − a2j = S2j−1 − S2j+1 < 0.

and the sequences (dj)j≥1 = (a2j), (ej)j≥1 = (a2j−1) both converge to zero. Hence,
(aj)j≥1 is a positive monotone decreasing sequence converging to zero.

CHAPTER 2. Perfect Sampling 27

Fig. 2.2 The event where u < L by identifying the fact that U < S2j+1.

Remark 2.3.3. An alternating monotone series is always convergent due to Leibniz’s

test.

Proposition 2.3.15. Let (Ai)i≥1, (Bi)i≥1 be two alternating monotone sequences, then

the sequence (Ci)i≥1, Ci =
Ai

Bi+1
is also alternating monotone.

Proof. Firstly, (Ai)i≥1, (Bi)i≥1 are both converging sequences, their quotient (Ci)i≥1 is
also convergent. By definition,

A2j−1 < A2j+1 < A2j+2 < A2j, B2j+1 < B2j+3 < B2j+2 < B2j.

Therefore
1

B2j

<
1

B2j+2

<
1

B2j+3

<
1

B2j+1

.

Grouping with A gives

A2j−1

B2j

<
A2j+1

B2j+2

<
A2j+2

B2j+3

<
A2j

B2j+1

.

Hence, C2j−1 < C2j+1 < C2j+2 < C2j , ∀j ≥ 1 and Lemma 2.3.14 concludes the
proof.

Proposition 2.3.16. Let Sn be alternating monotone with Sn → L, as n → ∞. Draw

a uniform random variable U ∼ U [0, 1], knowing the sequence S1, S2, S3 . . . is enough

to compute the indicator function I[U<L] without knowing the exact value of L.

Proof. By definition, there exists a positive monotone decreasing sequence an such that

Sn = a0 +
n∑
r=1

(−1)rar.

28 CHAPTER 2. Perfect Sampling

Thus

S1 < S3 < S5 < · · · < S2j−1 < · · · < L < · · · < S2j < · · · < S6 < S4 < S2.

Given U ̸= L, one of the two following cases will happen:

1. ∃j > 0, such that U > S2j > L

2. ∃j > 0, such that U < S2j−1 < L.

Knowing the value of the sequence S1, S2, . . . is enough to evaluate I[U<L] and thus
concludes the proof.

From the above proposition, we can write down an algorithm (see also Fig. 2.2) for
simulating the event of probability L where L ∈ [0, 1] is the limit of an alternating
monotone sequence Sn. The simulation strategy will become useful later when we will
see that the crossing probability p(T, x, y,K) can only be expressed as an alternating
monotone series.

Algorithm 14: Alternating Simulation of event u < L

Input : Function for computing S1, S2,;
1 Simulate u ∼ U [0, 1];
2 j = 1;
3 while True do
4 Compute S2j−1, S2j;
5 if u < S2j−1 then
6 Return True.
7 if u > S2j then
8 Return False.

Output: The result of event with probability L = limn→∞ Sn.

2.3.3.2 Layered Partitioning of Path Space

Given a sequence of strictly increasing positive real numbers {ai}i≥1 and conditioned
X0 = x and XT = y are known. Let a0 = 0, x̄ = min{x, y} and ȳ = max{x, y}, we
define the following events:

Ui =

{
sup

0≤t≤T
Xt ∈ [ȳ + ai−1, ȳ + ai)

}
∩
{

inf
0≤t≤T

Xt > x̄− ai

}
,

Li =

{
inf

0≤t≤T
Xt ∈ (x̄− ai, x̄− ai−1]

}
∩
{

sup
0≤t≤T

Xt < x̄+ ai

}
,

Di = Ui ∪ Li, i ≥ 1.

CHAPTER 2. Perfect Sampling 29

Fig. 2.3 A sample path from X0 = x to XT = y with x < y. The trajectory lands in the
fourth layer, i.e., the event D4 happened. (Beskos et al., 2008)

It is easy to check that Di ∩ Dj = ∅, i ̸= j and WT,x,y(∪i≥1Di) = 1. Let I be the
random variable such that Di = {I = i}. Then

{I ≤ i} = {x̄− ai < Xt < ȳ + ai, ∀t ∈ [0, T]}.

Let p(T, x, y,K) denote the probability under WT,x,y (the probability law induced by
a Brownian bridge connecting B0 = x and BT = y) that a trajectory does not leave
the interval [−K,K], K > max{|x|, |y|}. Suppose that p(T, x, y,K) can be simulated,
which in turn can be extended into an algorithm for simulating the event {I ≤ i} by
using the relocation invariance of Brownian bridge. Then it is clear that given the ends
x and y, we can sample the random variable I that determines which layer (or interval)
our target trajectory will live in and derive an upper bound on ϕ.

Remark 2.3.4. The original paper (Beskos et al., 2008) did not specify a searching

algorithm for the layers. Here, we propose to use Algorithm 15 which implements a

binary search that is more efficient than an ordinary sweep search.

Remark 2.3.5. The equal signs in the algorithm blocks (e.g., in Algorithm 15) always

indicate the assignment of value on the right-hand side to the variable (in the computer

memory) on the left-hand side. They do not represent equality, at least not before the

value is assigned.

Remark 2.3.6. For ϕ that is unbounded, it is usually the case that a slight change to the

interval will result in an exponential change to the upper bound M . Hence the interval

increments ai+1 − ai should be tuned to a suitable magnitude, to keep the increment

30 CHAPTER 2. Perfect Sampling

Algorithm 15: Binary Search on Layer I
Input: Starting point x, ending point y, total time T ;
Layer step sequence (ai)i≥1;

1 Draw u ∼ U [0, 1];
2 head = 1, tail = 2;
3 while u > P(I ≤ tail) do
4 head = tail;
5 tail = 2× tail;

6 while head < tail − 1 do
7 mid = ⌊(head + tail)/2⌋;
8 if u < P(I ≤ mid) then
9 tail = mid;

10 else
11 head = mid

12 Return tail.

in upper bound M suitably small. This could lead to the increase of E[I] adding extra

computational cost.

2.3.3.3 Layer Probabilities

Layer Probability for Brownian Bridge
Recall that we use p(T, x, y,K) to denote the probability under WT,x,y that the trajec-
tory of the Brownian bridge does not leave interval [−K,K], K > max{|x|, |y|}.

Lemma 2.3.17. Define for j ≥ 1,

σ̄j(T, x, y,K) = exp

{
− 2

T
[2jK − (K + x)][2jK − (K + y)]

}
τ̄j(T, x, y,K) = exp

{
−2j

s
[4jK2 + 2K(x− y)]

}
and

σj(T, x, y,K) = σ̄j(T, x, y,K) + σ̄j(T,−x,−y,K)

τj(T, x, y,K) = τ̄j(T, x, y,K) + τ̄j(T,−x,−y,K).

Then

p(T, x, y,K) = 1−
∞∑
j=1

{σj(T, x, y,K)− τj(T, x, y,K)}. (2.12)

See, e.g., Theorem 3 of Pötzelberger and Wang (2001).

Proposition 2.3.18. Omitting the function parameters, p is a alternating monotone se-

CHAPTER 2. Perfect Sampling 31

ries of form

p = 1 +
∞∑
r=1

(−1)rar

where

ar =

σj r = 2j − 1

τj r = 2j.

Proof. By (2.12), p indeed takes the form above, we just need to check S2j < S2j+2 <

S2j+1 < S2j−1. With straight calculation,

σ̄j
τ̄j

= exp

[
2

T
(K + x)(4jK −K − y)

]
> 1

σ̄j+1

τ̄j
= exp

[
2j

T
4K(x−K)− 2

T
(K − x)(K − y)

]
< 1.

Thus, σj > τj > σj+1 which leads to the result.

Moreover, the probability of a Brownian bridge W x,y
t , t ∈ [0, T] not leaving the interval

[min{x, y}− ai,max{x, y}+ ai] can be obtained by translating the path by −1
2
(x+ y)

and use the formula for p

F (i) := P(I ≤ i) = p

(
T,
x− y

2
,
y − x

2
,
|x− y|

2
+ ai

)
, i ≥ 1. (2.13)

With Algorithm 14, we can now simulate the probability of the path belonging to layer
I ≤ i. Given I = i, the rest of the construction will roughly follow the steps below:

1. Decide whether the path belongs to layer i due to its maximum or its minimum;

2. Simulate the maximum (or minimum) and the time it is attained;

3. Simulate the skeleton of the path given the maximum (or minimum) and attained
time using Algorithm 10 (or 12);

4. Verify the path between the skeleton points, which are Bessel bridges, indeed
does not leave layer i.

For the last step, we also need to establish the boundary hitting probability for Bessel
bridges.

Layer Probability for Bessel Bridge
To derive the boundary hitting probabilities, we use the property that the probability law
of a Bessel bridge BBx,y

t , t ∈ [0, T] is identical to the probability law of a Brownian
bridge W x,y conditioned on W x,y

t > 0, t ∈ [0, T], see Proposition 1.1 of Pitman (1975)
for a more rigorous setup.

32 CHAPTER 2. Perfect Sampling

Remark 2.3.7. This set of results is needed since we need to verify that the whole tra-

jectory of the Brownian bridge we generated, effectively two connecting Bessel bridges,

is contained in the interval decided at the start. Since we only see a finite set of points

in trajectory, we can only verify the containment by computing boundary-hitting prob-

ability.

Let q(T, x, y,K) denote the probability of a Bessel bridge BBx,y connecting BB0 =

x ≥ 0, BBT = y > 0 does not leave interval (0, K) and q(T, x, y,K;L), K < L,
denote the probability of BBx,y does not leave (0, K) conditioned on it not leaving
(0, L). Then with simple derivation, we have

q(T, x, y,K;L) =
P(BBx,y

t does not leave (0, K)

P(BBx,y
t does not leave (0, L)

=
p(T, x−K/2, y −K/2, K/2)

p(T, x− L/2, y − L/2, L/2)

(2.14)

q(T, x, y,K) = lim
L→∞

q(T, x, y,K;L) =
p(T, x−K/2, y −K/2, K/2)

1− exp{−2xy/T}
. (2.15)

Note that p(T, 0, y,K) = 0, though the limit q(T, 0, y,K;L) exists, by l’Hospital’s
rule,

q(T, 0, y,K;L) = lim
x→0

q(T, x, y,K;L) = lim
x→0

∂p
∂x
(T, x−K/2, y −K/2, K/2)

∂p
∂x
(T, x− L/2, y − L/2, L/2)

=
y −

∑∞
j=1 {ζj(T, y,K)− ξj(T, y,K)}

y −
∑∞

j=1 {ζj(T, y, L)− ξj(T, y, L)}
(2.16)

q(T, 0, y,K) = lim
x→0

q(T, x, y,K) = lim
L→∞

lim
x→0

∂p
∂x
(T, x−K/2, y −K/2, K/2)

∂p
∂x
(T, x− L/2, y − L/2, L/2)

= 1− 1

y

∞∑
j=1

{ζj(T, y,K)− ξj(T, y,K)}

(2.17)

where

ζj(T, y,K) = (2jK − y) exp

{
− 2

T
jK(jK − y)

}
, ξj(T, y,K) = ζj(T,−y,K)

Proposition 2.3.19. Fixing T, y,K. If K > y > 0 and 3K2 − T > 0, then, omitting

the function arguments, the series y −
∑

j{ζj − ξj} is alternating monotone.

Proof. Let

Sn(y) = y −
∞∑
j=1

{ζj − ξj} = y +
∞∑
r=1

(−1)rar(y)

CHAPTER 2. Perfect Sampling 33

where
a2j(y) = ξj(T, y,K), a2j−1(y) = ζj(T, y,K).

(Sn)n≥1 is alternating monotone if ar is also monotone decreasing to 0. Obviously,
ar → 0 as r → ∞, we only need to check it is monotone decreasing.

Recall that y ∈ (0, K).

1. Let
dj(y) :=

a2j−1

a2j
(y) =

2jK − y

2jK + y
exp

{
4

T
jKy

}
.

Note that dj(0) = 1. The derivative is

ddj
dy

(y) =
4jK

(2jK + y)2
exp

{
4

T
jKy

}
((4j2K2 − y2)/T − 1).

Thus if 3K2 − T > 0, we have ddj
dy
(y) > 0 and hence, dj(y) > 1, y ∈ (0, K).

2. Let

ej(y) :=
a2j
a2j+1

(y) =
2jK + y

2(j + 1)K − y
exp

{
2

T
(2j + 1)K(K − y)

}
.

Note that ej(K) = 1. The derivative is

dej
dy

(y) =
2(2j + 1)K

(2(j + 1)K − y)2
exp

{
2

T
(2j + 1)K(K − y)

}
× (1− (2jK + y)(2(j + 1)K − y)/T).

If 8K2 > T , then dej
dy
(y) < 0 and hence ej(y) > 1.

Usually, T is chosen to be quite small in practise, so 3K2 > T is easily achievable.
Therefore by Proposition 2.3.19 and 2.3.15, the probability q in all four cases (2.14) to
(2.17) are alternating monotone and thus can be simulated by Algorithm 14.

34 CHAPTER 2. Perfect Sampling

2.3.3.4 Layered Brownian Bridge

Putting the results we have so far, we can describe in detail how we can simulate a
Brownian bridge conditioned on its layer I . Recall the sketched algorithm for simulat-
ing a layered Brownian bridge:

Algorithm 16: Algorithm Overview for Layered Brownian Bridge
Input: Starting point x, ending point y, total time T ;
Layer step sequence (ai)i≥1, layer I = i;

1 Decide whether the path belongs to layer i due to its maximum or its minimum;
2 Simulate the maximum (or minimum) and the time it is attained;
3 Simulate the skeleton of the path given the maximum (or minimum) and

attained time using Algorithm 10 (or 12);
4 Verify the path between the skeleton points, which are Bessel bridges, indeed

does not leave layer i.

The reason for step 2 in Algorithm 16 is that simply simulating an unconditioned Brow-
nian bridge W and rejecting it if W ̸∈ DI is not efficient enough. In fact, the expected
number of proposals to get an acceptance is infinite (see Beskos et al. (2008)). Thus, we
opt to simulate first the maximum or minimum point of the Brownian bridge, which its
range is decided by the layer I , then using the Bessel decomposition of the Brownian
bridge (Step 4).

Let WDI
denote the law of the Brownian bridge WT,x,y restricted to the event DI

happened, i.e, the Brownian bridgeW x,y belongs to layer I , which is our target measure
for now. Consider the following events:

M̄i =

{
sup

0≤t≤T
Wt ∈ [ȳ + ai−1, ȳ + ai)

}
,M i =

{
inf

0≤t≤T
Wt ∈ (x̄− ai, x̄− ai−1]

}
, i ≥ 1.

Similarly, let WM̄i
, WM i

be the law WT,x,y restricted to the corresponding event. Now,
we rewrite Step 2 to wrap Algorithm 16 in a rejection sampling scheme.

Consider the following proposal measure QDI
= 1

2
WM̄i

+ 1
2
WM i

, i.e., with proba-
bility a half, we will simulate the Brownian bridge given its maximum point and with
the other half probability, a Brownian bridge conditioned on its minimum will be gen-
erated.

Remark 2.3.8. Note that QDI
̸= WDI

, since the events UI and LI are not disjoint,

so the event (UI ∩ LI) ⊂ DI is counted twice under the scheme. Thus in execution,

we need to recognize the case where IUI∩LI
= 1 and reject the proposal bridge with

probability 0.5.

CHAPTER 2. Perfect Sampling 35

Algorithm 17: Refined Algorithm for Layered Brownian Bridge
Input: Starting point x, ending point y, total time T ;
Layer step sequence (ai)i≥1, layer I = i;

1 Sample u ∼ U [0, 1];
2 if u < 0.5 then
3 Simulate the maximum and the time it is attained conditioned on layer

I = i, i.e., from interval [ȳ + ai−1, ȳ + ai);
4 Simulate the skeleton of the path X given the maximum and attained time

using Algorithm 12;
5 Verify that X ∈ DI , if not then reject;
6 else
7 Simulate the minimum and the time it is attained conditioned on layer

I = i, i.e., from interval (x̄− ai, x̄− ai−1];
8 Simulate the skeleton of the path X given the minimum and attained time

using Algorithm 10;
9 Verify that X ∈ DI , if not then reject;

10 if X ∈ UI ∩ LI then
11 Accept X with probability 0.5.
12 else
13 Accept X .

Steps 4,8 of Algorithm 17
Since simulating the maximum point of W x,y restricted to interval [m,M] is equivalent
to simulating the minimum point of W−x,−y restricted to interval [−M,−m], thus it
suffices to modify Algorithm 11 only. Note that from Algorithm 11, the minimum
point b = (a −

√
2Tλ+ a2)/2 where λ ∼ Exp(1). The condition b ∈ [m,M] is

hence equivalent to λ ∈ [2M(M − a)/T, 2m(m− a)/T]. Since the cdf of Exponential
distribution is known, we can use the inversion method to draw from the distribution
restricted to some interval [u, v], see also Example 2.1.1.

Example 2.3.1. Let λ ∼ Exp(1), then the cdf F (x) = 1− e−x. To draw λ from interval

[c, d], we can draw an uniform random variable u ∼ U [1− e−c, 1− e−d] and apply the

preimage to get λ = F−1(u) = − log (u).

For numerical stability, we may consider drawing u ∼ U [0, 1] and get

λ = − log
(
e−c − (e−c − e−d)u

)
= −d+ log

(
ed−c − (ed−c − 1)u

)
.

Usually, the interval range d − c will not be very large in simulation. For large d − c,

one might need to use series expansion to approximate the preimage.

By replacing step 2 of Algorithm 11 with Algorithm 18, we can simulate the minimum
point and time attained for a Brownian bridge conditioned on the layer it lies in. Then

36 CHAPTER 2. Perfect Sampling

Algorithm 18: Draw λ ∼Exp(1) from [m,M)

Input: Starting point x, ending point y, total time T , layer interval [m,M)
1 a = y − x;
2 c = 2M(M − a)/T ;
3 d = 2m(m− a)/T ;
4 Draw u ∼ U [0, 1];
5 λ = −d+ log

(
ed−c − (ed−c − 1)u

)
;

6 Return λ.

based on the position of the minimum, the skeleton of the Brownian bridge can be
simulated by piecing together two Bessel bridges based on Algorithm 11, the same
applies to the maximum point case. Thus, so far, we have generated a path skeleton
for the Brownian bridge where all the skeleton points obey the layer condition. Next,
we need to check the unobserved trajectory, i.e., the trajectories between the skeleton
points indeed obey the layer condition and the rejection scheme.

Verify X ∈ DI

Since the two proposals (from maximum or from minimum) are quite symmetric, we
will only derive the assertions for the minimum case and write down the maximum case
directly. Recall that the event for the minimum point in layer I is

LI =

{
inf

0≤t≤T
Xt ∈ (x̄− aI , x̄− aI−1]

}
∩
{

sup
0≤t≤T

Xt < x̄+ aI

}
,

where x̄ = min{x, y}, ȳ = max{x, y}. Now, the paths between the skeleton points
are all Bessel bridges that does not go below the minimum m ∈ n(x̄ − aI , x̄ − aI−1].
Thus, to verify the path X ∈ Di, we only need to check that each Bessel bridge does
not exceed ȳ + aI . Suppose the path skeleton are generated on the time points T :=

{0, t1, . . . , tk, τ, tk+1, . . . , tn, T}, where τ is the time when the minimum m is attained.
For simplicity, relabel the index set T into the ordered sequence s0, . . . , sn+2, with
s0 = 0, sn+2 = T . With relocation invariance and boundary hitting probability q, the
probability of X ∈ DI is equal to

n+2∏
i=1

q(si − si−1, Xsi−1
−m,Xsi −m, ȳ + aI −m) (2.18)

where each q(si−si−1, Xsi−1
−m,Xsi−m, ȳ+aI−m) is alternating monotone and can

be simulated separately. Since we reject X if X ̸∈ Di, the path is rejected immediately
if q(si − si−1, Xsi−1

−m,Xsi −m, ȳ + aI −m) failed for some i.

For the case of maximum, the inputs should be reflected with respect to zero which

CHAPTER 2. Perfect Sampling 37

gives
n+2∏
i=1

q(si − si−1,M −Xsi−1
,M −Xsi ,M − x̄+ aI) (2.19)

where M is the simulated maximum of the Brownian bridge.

Verify X ∈ UI ∩ LI
Finally, if X ∈ DI , we need to reject X with probability 0.5 if X ∈ UI ∩ LI is true
to avoid double counting. In the case where the minimum m is simulated, the event
X ∈ LI already happened due to X ∈ DI . To check X ∈ UI , we need to verify that

sup
t∈[0,T]

Xt ≥ ȳ + ai−1, given that Xt ≤ ȳ + ai.

Thus, the probability that X ̸∈ UI , i.e., X ̸∈ UI ∩ LI is given by

n+2∏
i=1

q(si − si−1, Xsi−1
−m,Xsi −m, ȳ + aI−1 −m; ȳ + aI −m). (2.20)

If q(si − si−1, Xsi−1
−m,Xsi −m, ȳ + aI−1 −m; ȳ + aI −m) failed for some i, i.e.,

X ∈ UI ∩LI , we can stop checking the remaining terms and accept X with probability
0.5. Otherwise, X is accepted.
For the case of maximum, X ̸∈ LI happens with probability

n+2∏
i=1

q(si − si−1,M −Xsi−1
,M −Xsi ,M − x̄+ aI−1;M − x̄+ aI). (2.21)

Thus, every step of Algorithm 17 can now be implemented, and Algorithm 6 can be
extended to lift the restriction on ϕ being bounded. For a general time-homogeneous
diffusion process driven by equation (2.5)

dXt = α(Xt)dt+ dBt. (2.5)

that satisfies condition 1 can now be simulated with Algorithm 19.

38 CHAPTER 2. Perfect Sampling

Algorithm 19: Path-Space Rejection Sampling
Input: Starting point x, ending point y, total time T ;
Layer step sequence (ai)i≥1;

1 Decide the layer I = i the path belongs to using Algorithm 14 and 15 based on
(2.13);

2 Compute the upperbound M > ϕ(u), for u ∈ [x̄− ai, ȳ + ai];
3 Simulate κ ∼ Poi(TM);
4 for i = 1, . . . , κ do
5 Simulate ti ∼ U [0, T];
6 Simulate ui ∼ U [0,M];

7 Store Poisson point process Φ := {(t1, u1), . . . , (tκ, uκ)};
8 Simulate the skeleton of a Brownian bridge ω connecting B0 = x and BT = y

at time points 0, t1, . . . , tκ, T conditioned on layer I = i using Algorithm 17;
9 compute the indicator

I :=
κ∏
i=1

I[ϕ(ω(ti)) < ui]

10 if I = 1 then
11 Accept ω as a realization of QT,x,y.
12 else
13 Otherwise reject ω.

CHAPTER 3

Monte Carlo Fusion

At the end of the last chapter, we introduced an exact sampling algorithm for generating
diffusion processes. In this chapter, we will look at the problem of sampling from a
product density, where the target distribution is of form

f(y) ∝
m∏
i=1

fi(y). (3.1)

If the y(i) are allowed to be different and each fi is easy to sample from, it is also
easy to obtain a sample from the product density f . Therefore, if we can construct a
stochastic process (X(i)

t)t∈[0,T] such that one can maintain the process at its stationary
state and, at the same time, the marginal distribution of the endpoint X(i)

T ∼ fi. If we
somehow apply the condition that all endpoints coalesce, we can obtain a sample from
the target distribution f(y). Fortunately, the Langevin process is a family of diffusion
processes that admits stationary distributions, which will almost act as a continuous-
time analog of a Markov chain, with the difference that the target distribution will not
become its stationary distribution. The latter step is possible since we can decide the
starting and ending points prior to the generation of the path skeleton in path-space
rejection sampling (Algorithm 19). Due to Dai et al. (2019), we will use the name
Monte Carlo Fusion to call the family of algorithms that samples from distributions
like (3.1) through simulation of diffusion process such that the marginal distribution of
the end point is the target distribution.

3.1 Langevin Diffusion and Density Fusion

Unless indicated otherwise, the subscripts s are usually reserved for the time index, and
the bracketed superscripts (i) are usually reserved for the component index.

39

40 CHAPTER 3. Monte Carlo Fusion

3.1.1 Basic Notions

Definition 3.1.1 (Langevin Diffusion). Let A : Rm → R be a differentiable function.

The Langevin diffusion (Xt)t≥0 is a diffusion process satisfying the Langevin equation

dXt = ∇A(Xt)dt+ σdBt,

where (Bt)t≥0 is an m-dimensional Brownian motion and σ > 0.

The Langevin diffusions appear as the continuous-time analog of ergodic Markov
chains, in the sense that, under suitable conditions, these processes also admit stationary
distributions (Hansen, 2003).

Theorem 3.1.1. Let π : Rm → R is a proper density function and suppose that

∇ log π(x) is continuously differentiable. Then the Langevin diffusion (Xt)t ≥ 0 sat-

isfying

dXt =
1

2
∇ log π(Xt)dt+ dBt

is π-invariant.

See Theorem 2.1 of Roberts and Tweedie (1996).
Using Langevin diffusion, we can construct a stationary process much like the sta-

tionary Markov chain that the MCMC algorithms are pursuing. However, due to the
extra terms in (2.8) in Theorem 2.3.6, we do not simulate a process that is f ∗-invariant.

Proposition 3.1.2. Let (Xt)t∈[0,T] be a stochastic process that is f 2
i -invariant, with tran-

sition function pi(y|x) fromX0 = x toXT = y. Consider a biased process (X̄t)t∈[0,T]

such that the probability law induced by X̄t and Xt are the same conditioned on their

starting and ending points (x,y). The bias is imposed so that the joint distribution of

(X̄0, X̄T) is

p̄i(x,y) = f 2
i (x)pi(y|x)

1

fi(y)
. (3.2)

Then, the marginal distribution of X̄T is fi(·).

Proof. SinceXt is f 2
i -invariant,∫

X
f 2
i (x)pi(y|x)dx = f 2

i (y),

and hence the result.

Consider the following d-dimensional Langevin diffusion processes (X
(i)
t)t∈[0,T], i =

1, . . . ,m driven by equations

dX
(i)
t = ∇Ai(X

(i)
t)dt+ dB

(i)
t ,

CHAPTER 3. Monte Carlo Fusion 41

where Ai(x) = log fi(x). Now, the process X(i)
t is f 2

i -invariant. Furthermore, if we
construct a biased version of X(i)

t , denoted (X̄
(i)
t)t∈[0,T], as in Proposition 3.1.2. Then

the marginal distribution of X̄T is fi(·). Similarly, the joint distribution of
(
X̄

(1:m)
0 , X̄

(1:m)
T

)
conditioned on X̄(i)

T = X̄
(j)
T = y,∀i ̸= j has density

g(X̄
(1)
0 = x(1), . . . , X̄

(m)
0 = x(m), y) =

m∏
i=1

[
f 2
i (x)pi(y|x)

1

fi(y)

]
(3.3)

and the marginal distribution of y is exactly the target distribution f in (3.1).

3.1.2 Construction of Proposal Diffusion

In path-space rejection sampling, we used a Brownian bridge as the proposal diffusion
conditioned on the two ends of the bridge, we computed the Radon-Nikodym derivative
between the measure induced by the target diffusion bridge and the Brownian bridge.
We seek to do the same in this case. Reusing the notations in Chapter 1, we use Q(i)

T,x,y to
denote the measure induced by the unbiased diffusion bridge X(i) connecting X0 = x

andXT = y where x,y are fixed values. Similarly, W(i)
T,x,y denote the measure induced

by a d-dimensional Brownian bridge connectingB0 = x andBT = y.

Condition 2. Let αi(u) = ∇Ai(u).

1.

MT := exp

{∫ T

0

αi(ωt) · dωt −
∫ T

0

1

2
∥αi(ωt)∥2dt

}
is a martingale with respect to the Brownian motionBt.

2. αi is continuously differentiable in all its arguments.

3. The function

ϕi(u) =
1

2

[
∥αi(u)∥2 +∇ ·αi(u)

]
− li ≥ 0,

for some li and for any u, where ∇· is the divergence operator.

Proposition 3.1.3. Under Condition 2, the transition function pi(y|x) can be expressed

with respect to the measure W(i)
T,x,y

pi(y|x) =
fi(y)

fi(x)
· Nd(y;x, TId) · EW(i)

T,x,y

[
exp

{
−
∫ T

0

(ϕi(ωt) + li) dt

}]
, (3.4)

where Nd represents the density function of a multivariate normal distribution of di-

mension d.

42 CHAPTER 3. Monte Carlo Fusion

Proof. Recall from Theorem 2.3.6, (2.8) that

dQT,x,y

dW(i)
T,x,y

(ω) =
Nd(y;x, TId)

pi(y|x)
exp

{
Ai(y)− Ai(x)−

∫ T

0

1

2

(
∥αi∥2 +∇ ·α

)
(ω(t))dt

}
=
Nd(y;x, TId)

pi(x,y)

fi(y)

fi(x)
exp

{
−
∫ T

0

(ϕi(ωt) + li)dt

}
Rearrange and integrate both sides gives the expression we want.

Now simplifying the expression of (3.3) gives

g(x(1), . . . ,x(m),y) =
m∏
i=1

[
f 2
i (x

(i))pi(y|x(i))
1

fi(y)

]

=

[
m∏
i=1

fi(x
(i))

]
· (
√
2πT)−md exp

(
− 1

2T

m∑
i=1

∥y − x(i)∥2
)

· Ex(i),y

[
m∏
i=1

exp

{
−
∫ T

0

(ϕi(ω
(i)
t) + li)dt

}]

The third term is the Radon-Nikodym derivative we dealt with in the previous chapter,
which corrects the Brownian bridge proposal into the target diffusion bridge. Although
the proposal has to be a Brownian bridge, we have the freedom to choose the distribution
ofx(i) and y. The first term above tells us to drawx(i) ∼ fi(·), so consider the following
proposal distribution for (x(1), . . . ,x(m),y)

h(x(1), . . . ,x(m),y) =
m∏
i=1

fi(x
(i))N (y|x̄, (T/m)Id)

where x̄ = 1
m

∑m
i=1 x

(i). The quotient between g and h is proportional to

g(x(1), . . . ,x(m),y)

h(x(1), . . . ,x(m),y)
∝ exp

[
−
∑m

i=1 ∥x(i) − x̄∥2

2T

]
·Ex(i),y

[
m∏
i=1

exp

{
−
∫ T

0

ϕi(ω
(i)
t) + lidt

}]
,

(3.5)
where both terms can be corrected through rejection sampling, see Algorithm 20.

Remark 3.1.1 (Tuning parameter T). Note the two terms in (3.5) varies differently with

T . The first rejection term

exp

[
−
∑m

i=1 ∥x(i) − x̄∥2

2T

]
→ 0 as T → 0

but the second term

exp

{
−

m∑
i=1

∫ T

0

ϕi(ω
(i)
t) + lidt

}
→ 1 as T → 0.

CHAPTER 3. Monte Carlo Fusion 43

Algorithm 20: Monte Carlo Fusion
Input: Time parameter T ;

1 for i = 1, . . . ,m do
2 Simulate x(i) ∼ fi(·);
3 Compute x̄ = 1

m

∑
i x

(i);
4 Simulate y ∼ N

(
x̄, T

m
Id
)
;

5 Simulate u1 ∼ U [0, 1];
6 if log u1 ≤ −

∑
i ∥x(i) − x̄∥2/2T then

7 for i = 1, . . . ,m do
8 Simulate, with one attempt only, the path skeleton for the diffusion

bridge corresponding to measureQ(i)

T,x(i),y
using Algorithm 19;

9 if failed then
10 Go back to Step 1;

11 Accept and output y.

In practice, the choice of T can drastically affect the efficiency of the algorithm and it

is always worth the time tuning the parameter carefully before running a simulation.

Usually, a binary search or grid search is enough for choosing a single T .

3.1.3 Fusion with Variable Time

An intuitive example where the fusion density problem appears is in meta-analysis
(Fleiss, 1993, Smith et al., 1995, Scott et al., 2016), where multiple studies on a common
subject, e.g., the effectiveness of a treatment, under different experimental conditions,
i.e., results not directly fusible, are aggregated. Typically, each study will give a belief
on the subject, in the form of a density fi, and the aggregated belief will be the product
density taking the form of (3.1). Naturally, some beliefs fi will be closer to the final
product than the other, which means the samples x(i) ∼ fi(·) will be closer to the final
sample y ∼ f(·) on average. Therefore, the tuning parameter T for those components
should be smaller for better efficiency. In this section, we will extend the original al-
gorithm and show that using different time parameters for each component is indeed
possible. Due to the increased complexity of tuning the parameters, we also propose an
adaptive way of choosing the parameters later in this chapter.

For each density function fi define a d-dimensional Langevin diffusion process
X(i) := {X(i)

t : t ∈ [0, Ti]} given by

dX
(i)
t = ∇Ai(X

(i)
t)dt+ dB

(i)
t ,

where Ti is now a random variable with probability density τi(t) independent of X(i).
Again, X(i) has invariant distribution ∝ f 2

i (x) over [0, Ti], given Ti being independent
ofX(i). Let pi(y|x, ti) denote the transition density fromX0 = x toXti = y.

44 CHAPTER 3. Monte Carlo Fusion

Fig. 3.1 Fusing four individual densities and the resulting product density.

Proposition 3.1.4. With T = (T1, · · · , Tm) taking values t = (t1, · · · tm), the following

conditional density

g
(
x(1), · · · ,x(m),y

∣∣ t) ∝ C∏
i=1

f 2
i (x

(i))pi(y|x(i), ti)
1

fi(y)
(3.6)

admits the marginal density f for y with any given t. Further, with any density function

τ(t), the joint density g(x(1), · · · ,x(m),y|t)τ(t) admits the marginal density f for y.

Corollary 3.1.5. Under Condition 2, the transition density from x at 0 to y at ti is

given by

pi(y|x(i), ti) =
fi(y)

fi(x(i))
·
(

1√
2πti

)d
exp

(
−∥y − x(i)∥2

2ti

)
·EW(i)

T,x,y

[
−
∫ ti

0

(ϕi(ωt) + li) ds

]
.

Proof. Since ti are fixed, the result follows directly from Proposition 3.1.3.

By taking

h(x(1), · · ·x(m),y|t) = (2π)−
d
2

(
m∑
i=1

t−1
i

) d
2

·
m∏
i=1

hi(x
(i),y|ti)

hi(x,y|ti) = fi(x) exp

[
−∥y − µ∥2

2ti

]
(3.7)

where µ is a function of x, we will have the following theorem.

CHAPTER 3. Monte Carlo Fusion 45

Theorem 3.1.6. Under Condition 2, with given Ti = ti, i = 1, · · · , C, we have

g(x(1), · · · ,x(m),y|t)
h(x(1), · · · ,x(m),y|t) exp(−

∑m
i=1 liti)

(3.8)

=

(
m∏
i=1

ti

m∑
j=1

t−1
j

)− d
2 m∏
i=1

exp
[
−∥x(i)−y∥2

2ti

]
exp

[
−∥y−µ∥2

2ti

]

︸ ︷︷ ︸
ρ(x,y|t)

·E

[
exp

(
−

m∑
i=1

∫ ti

0

ϕi(ω
(i)
s)ds

)]

Proof. The Theorem follows directly from Corollary 3.1.5.

Corollary 3.1.7. By choosing

µ =
1

W

m∑
i=1

1

ti
x(i), (3.9)

where

W =
m∑
i=1

1

ti
.

The term ρ(x,y|t) in equation (3.8) simplifies into

m∏
i=1

exp

[
− 1

2ti
∥x(i) − µ∥2

]
(3.10)

Proof. Note that

log ρ(x,y|t) = −1

2

m∑
i=1

1

ti

[
∥x(i) − y∥2 − ∥y − µ∥2

]
The result holds directly from the following identities.

m∑
i=1

1

ti

[
∥x(i) − y∥2 − ∥y − µ∥2

]
=

m∑
i=1

1

ti
∥x(i)∥2 − 2y⊤

(
m∑
i=1

1

ti
x(i)

)
+ 2y⊤ (Wµ)−W∥µ∥2

=
m∑
i=1

1

ti
∥x(i)∥2 −W∥µ∥2

=
m∑
i=1

1

ti
∥x(i)∥2 − 2µ⊤

(
m∑
i=1

1

ti
x(i)

)
+W∥µ∥2

=
m∑
i=1

1

ti
∥x(i) − µ∥2

46 CHAPTER 3. Monte Carlo Fusion

Corollary 3.1.8. For any distribution densities of T , say τ(t). Let

τ ′(t) ∝ τ(t)

(
m∏
i=1

ti

m∑
j=1

t−1
j

)− d
2

exp(−
m∑
i=1

liti) (3.11)

we have , for µ in (3.9),

g(x(1), · · · ,x(m),y|t) · τ(t)
h(x(1), · · · ,x(m),y|t) · τ ′(t)

(3.12)

∝
m∏
i=1

{
exp

[
− 1

2ti
∥x(i) − µ∥2

]
· E
[
exp

(
−
∫ ti

0

ϕi(ω
(i)
s)ds

)]}

Algorithm 21: MCF with variable ti
Input: Time parameter t1, . . . , tm;

1 for i = 1, . . . ,m do
2 Simulate x(i) ∼ fi(·);
3 Compute W =

∑
i
1
ti

;
4 Compute µ = 1

W

∑
i
1
ti
x(i);

5 Simulate y ∼ Nd (µ,W
−1Id);

6 Simulate u1 ∼ U [0, 1];
7 if log u1 ≤ −

∑
i ∥x(i) − µ∥2/2ti then

8 for i = 1, . . . ,m do
9 Simulate, with one attempt only, the path skeleton for the diffusion

bridge corresponding to measureQ(i)

ti,x(i),y
using Algorithm 19;

10 if failed then
11 Go back to Step 1;

12 Accept and output y.

3.2 Acceptance Guided Parameter Tuning

The previous section presents the algorithm that allows the time parameters Ti to be
random variables. Usually, it is more practical to run the algorithm such that Ti is fixed
before the proposal step. In which case, the rejection step of equation (3.12) may ignore
terms that does not depend on x(i),y as long as it is upper bounded by 1.

From (3.12), it is obvious that when ti is too large or too small, the product proba-
bility will fall towards zero. Ideally one would like to directly analyze (3.12) to get an
optimal choice. However, since the second term of the function is intractable, directly
optimizing the equation is usually not possible.

Moreover, the rejection sampling is two-staged, by checking acceptance for the first
and second term separately, the time cost of being rejected at the first stage (Step 6)

CHAPTER 3. Monte Carlo Fusion 47

is far less than at the second stage. Thus the choice of ti should favor the acceptance
probability for the second stage while keeping the overall acceptance rate acceptable.

Choosing ti usually relies on trial and error since solving numerically for the op-
timal choice is not straightforward. We propose here to simulate a search grid from
the acceptance probability, and thus avoid the need to manually guess a set of random
choices to test on.

3.2.1 Acceptance Probability as Density

From equation (3.12), every ti are independent with each other. In other words, chang-
ing ti will not affect the choice of tj for i ̸= j. Thus we only consider one component
of the equation

exp

[
− 1

2ti
∥x(i) − µ∥2

]
︸ ︷︷ ︸

AP1

·E
[
exp

{
−
∫ ti

0

ϕi(ω
(i)
s)ds

}]
︸ ︷︷ ︸

AP2

(3.12)

AP2 is an expectation with respect to the Brownian measure W and both the expecta-
tion and the integral inside it are intractable. In practise, the rejection step of AP2 is
done by first simulating a path instance ω[0,ti] and then simulating the outcome of

U ≤ exp

{
−
∫ ti

0

ϕi(ω
(i)
s)ds

}
where U ∼ U [0, 1]. Since AP2 is intractable, we can instead work with the lower bound
of AP2

exp

[
− 1

2ti
∥x(i) − µ∥2 −Miti

]
(3.13)

where
Mi := sup

u∈Di

ϕi(u) (3.14)

for some Di ⊂ Rd such thatX(i)
[0,ti]

does not leave Di.

One does not need a choice of Di if ϕi is bounded over Rd. However, for most cases
ϕi is unbounded, and one can simulate the layer intervals Di for each dimension before
simulating the skeleton of the bridge.

Let di = ∥x(i) − µ∥. Equation (3.13) can be split into a product of two improper
density functions as follows

t
− 3

2
i exp

[
− 1

2ti
d2i − (Mi − β)ti

]
︸ ︷︷ ︸

L1

· t
3
2
i exp(−βiti)︸ ︷︷ ︸

L2

(3.15)

48 CHAPTER 3. Monte Carlo Fusion

where

L1 ∼ IG

(√
d2i

2(Mi − β)
, d2i

)
, L2 ∼ Γ

(
5

2
, βi

)
, 0 < βi < Mi.

The choice of βi will affect the efficiency of simulation. In this case, we would like to
make the distributions L1 and L2 match each other as closely as possible. One simple
way is to choose βi such that the mean of two distributions match, i.e.

5

2βi
=

√
d2i

2(Mi − βi)

and

βi =
−25 +

√
252 + 200d2iMi

4d2i
.

It is trivial to verify that βi always lies in (0,Mi). The layered diffusion bridge approach
simulates the layer Ui given the two ends of the diffusion bridge which required the
length ti to be decided before the simulation. In this case, an iterative approach can be
applied as in Algorithm 22

Algorithm 22: Simulating ti w.r.t acceptance probability
Result: A choice for Ti

1 Set t(0)i , i = 1, . . . ,m to some value of your choice;
2 for j = 1,2,. . . do
3 Sample the starting points x(i) ∼ fi(·) for each i;
4 Compute the weighted mean µ by (3.9);

5 Simulate endpoint y ∼ Nd

(
µ,
(∑

t−1
i

)−1
Id

)
with respect to t(j−1)

i ;

6 for i = 1,2,. . . ,m do
7 Simulate the layer Ii (Algorithm 15) starting at x(i) ending at y with

time ti = t
(j−1)
i ;

8 Compute Mi;
9 Simulate t(j)i from the product distribution (3.15) using MCF

(Algorithm 20);

10 end
11 end

CHAPTER 3. Monte Carlo Fusion 49

3.2.2 Same t across all components

When all tis are equal, then the mean µ is a simple average and the lower bound of
acceptance probability becomes

exp

{
−Cσ

2

2t

}
· exp [−Mt]

where

σ2 = C−1

C∑
i=1

∥x(i) − µ∥2, M :=
C∑
i=1

Mi

and Mi is defined the same way as previously. The same split can be applied which
gives

L1 ∼ IG

(√
Cσ2

2(M − β)
, Cσ2

)
, L2 ∼ Γ

(
5

2
, β

)
and β can be chosen to be

β =
−25 +

√
252 + 200Cσ2M

4Cσ2

3.2.3 Search grid from drawn samples

It is clear that the acceptance probability (3.12) is positively skewed, meaning that the
mode is smaller than the mean. The difference in rejection cost means that we would
favor a higher pass rate in the second rejection stage and thus smaller T .

Therefore, one way to set the search grid is by taking various quantiles of the sample
set with denser points near 0 and quickly testing the time efficiency for each case. In
this way, the choice of T can be close to optimal. For the case where Ti are chosen
differently, a multi-dimensional search grid might not be time efficient to test when C
is large, in which case a one-dimensional search grid can be implemented where the
quantile point for each Ti are set to be the same.

3.2.4 Simulation Studies

In this section, two cases will be presented showing the performance of T sampling in
two different views.

3.2.4.1 Case study 1

In this case, we consider to sample from the following density function

f(x) ∝ exp [αx− βex] · exp
[
−1

2
(x+

λ

µ2
ex + λe−x)

]
(3.16)

50 CHAPTER 3. Monte Carlo Fusion

Quantile (t1, t2) Rate Sim. time tmean Rate Sim. time

0.01% (0.018, 0.009) 10.8% 151.67s 0.013 10.8% 151.53s

0.1% (0.026, 0.015) 13.0% 142.42s 0.020 13.0% 143.75s

0.5% (0.052, 0.032) 18.0% 138.50s 0.042 17.7% 142.01s

1% (0.069, 0.041) 20.1% 140.90s 0.055 19.7% 145.52s

5% (0.155, 0.079) 26.1% 166.10s 0.117 25.2% 180.10s

10% (0.225, 0.115) 28.2% 197.60s 0.170 26.7% 222.64s

15% (0.297, 0.147) 29.2% 236.61s 0.222 27.1% 273.00s

20% (0.381, 0.177) 29.2% 285.48s 0.279 26.7% 343.92s

30% (0.584, 0.238) 28.1% 420.42s 0.411 23.6% 579.06s

40% (0.854, 0.303) 24.9% 686.33s 0.578 18.8% 1141.4s

50% (1.221, 0.382) 19.8% 1382.7s 0.801 13.0% 3329.4s

Table 3.1 Case 1, fusing transformed Gamma and transformed inverse Gaussian.

Note that by performning a change of variable x = exp(y), the first component becomes
a Gamma distribution Γ(α, β) and the second becomes an Inverse Gaussian IG(µ, λ).
In specific, Γ(1, 2) and IG(1, 3) are fused together. Algorithm 22 is used to sample 5000
samples and different quantiles are chosen in each dimension for each component. For
a more stable simulation, instead of using the previous T , the median of the current
simulated T s is used. Then for each set of (T1, T2), MCF algorithm is used to draw
100,000 samples from (3.16). For comparison between the case using the same T , the
mean (T1 + T2)/2 of each set previously is used and 100,000 samples are drawn. The
performance is displayed in both time and acceptance rate in table 3.1.

Both the acceptance rate and total simulation time are listed in table 3.1. For the
fusion algorithm, a higher acceptance rate does not always lead to faster simulation due
to the two separate rejection stages. To avoid ambiguity, we here use simulation time
as the eThere are several observations one can make from table 3.1. Firstly, the optimal
T seems to be located close to the 0.5% quantile at about 0.04. Secondly, a higher
overall acceptance rate does not mean a more efficient simulation as the cost of being
rejected at the first stage is much less than being rejected at the second stage. Moreover,
when the difference between T1 and T2 is large, using different T out-performs using
the mean of T1 and T2.

Recall that the optimality of T relates to the equation (3.13), more specifically to
Mi. In this case, both components do not have an upper bound for the function ϕi in
equation (3.14), and Mi, the upper bound within Ui, can vary significantly with the
layer Ui. Moreover, the growth rate also differs for the two components, and thus the
simulated Ti.

CHAPTER 3. Monte Carlo Fusion 51

Quantile (T1, T2, T3) Rate Sim. time Tmean Rate Sim. time

0.01% (0.053, 0.044, 0.059) 0.5% 970.91s 0.052 0.5% 969.43s

0.1% (0.095, 0.087, 0.099) 0.8% 653.81s 0.094 0.8% 650.99s

0.5% (0.154, 0.155, 0.198) 1.3% 525.36s 0.169 1.3% 523.16s

1% (0.193, 0.226, 0.269) 1.6% 521.48s 0.229 1.6% 516.81s

5% (0.391, 0.474, 0.503) 2.1% 759.33s 0.456 2.1% 747.86s

10% (0.557, 0.644, 0.683) 2.1% 1114.53s 0.628 2.1% 1104.7s

15% (0.681, 0.785, 0.830) 2% 1525.72s 0.765 1.9% 1512.31s

20% (0.799, 0.909, 0.958) 1.8% 2033.09s 0.889 1.8% 2005.89s

30% (1.03, 1.14, 1.19) 1.4% 3394.68s 1.12 1.4% 3367.82s

40% (1.27, 1.37, 1.41) 1.1% 5625.12s 1.35 1.1% 5593.73s

50% (1.51, 1.61, 1.64) 0.8% 9198.64s 1.59 0.8% 9166.02s

Table 3.2 Case 2, fusing three Student’s t-distribution.

3.2.4.2 Case study 2

In contrast to the previous case, when the components have better behavior and op-
timal T for each component is close to each other, using different T can hinder the
performance due to the difficulty in perfectly tuning T for each component.

In this case, three translated Student’s t-distributions are fused. Let T (µ, ν) denote
the translated Student’s t-distribution with mean µ and ν degrees of freedom. The target
distribution is

f ∝ T (0, 3) · T (1, 5) · T (−2, 7). (3.17)

The choosing strategy of T is the same as previous case, and again 100,000 samples
are drawn from the target distribution. The result is shown in table 3.2. From the table,
we can see that using different T for each component does not always improve the sim-
ulation efficiency, and in many cases using the mean actually have better performance
(slightly). The underlying reason is that the optimal T for each component might be at
different quantiles and it is hard to perfectly tune it due to the combinatorial complexity.
Instead, since the optimal T s are very close, it is easier to tune when the T is the same
for each component the one can have more luck getting close to the optimal choice.

The Student’s t-distribution is ”well-behaved” because there exists an upper bound
for function ϕ over the whole real axis and the maximum is attained usually not very
far from the mean. In addition, the maximum is quite close for the three components in
this case. Thus the optimal T is also close for each component.

52 CHAPTER 3. Monte Carlo Fusion

3.2.4.3 Interpretation of optimal Ti

From equation (3.12) and the case studies, we may conclude that the choice of Ti is
affected by two main factors:

• Similarity between the component i and the target distribution;

• Growth rate of supϕi.

When a component is closer to the target distribution, it is assigned a greater weight in
µ and thus a smaller Ti and vice versa. This is shown in both simulation cases where
the component with the smallest Ti is the one that is closest to the target distribution.

The absolute size of Ti also depends on the similarity between the components and
the target. If none of the components are similar to the target, then it is less likely for
their proposals i to be close to each other, and larger Ti is assigned to compensate for
the first rejection stage.

In contrast, if the upper bound ϕi grows quickly, then a smaller Ti is preferred, even
though smaller Ti is always preferred, pulling the optimal Ti towards 0. The last two
situations are conflicting, thus the algorithm performance will be low despite having the
optimal Ti if both conditions are present.

CHAPTER 4

Monte Carlo Fusion under Linear Constraints

While in the previous chapter we considered the density fusion problem where the target
distribution of form

f(y) ∝
m∏
i=1

fi(y). (3.1)

Alternatively, the above equation can be viewed as a constrained distribution

f(y(1), . . . ,y(m)) ∝ f ∗(y(1), . . . ,y(m))Iy(1)=···=y(m) ,

f ∗(y(1), . . . ,y(m)) =
m∏
i

fi(y
(i)).

In this chapter, we consider a more general linearly constrained fusion distribution

fH(y
(1), . . . ,y(m)) ∝ f1(y

(1))f2(y
(2)) · · · fm(y(m))1H(y

(1), . . . ,y(m)), (4.1)

where every fi(·) is a proper density function, corresponding to the distribution of y(i).
The notation 1H(y

(1), . . . ,y(m)) asserts the constraint that (y(1), . . . ,y(m)) ∈ H ⊂
Rdm. Here, H will be a linear equality constraint dependent only on y(i).

The linear constraint in the target distribution is motivated by time series models
where the constraint may be the sum of energy consumption. For instance, the total
consumption in a day is equal to the sum of consumption in each hour of that day, in
which case we have a constraint relating to 24 random variables for the hourly reading
and a known constant for the total. We will show a few examples in the next chapter
whereas this chapter will focus on the theoretical derivations for establishing the Monte
Carlo Fusion method with respect to general linear constraints.

It is not straightforward to use classical methods to estimate the mean of y(i) since
its density fH may not have an analytical solution. Even if one may be able to compute
the mean analytically for density (4.1) using the classical approach, such analytical
solutions may not exist for other estimates like confidence intervals (CI), as this requires
solving equations with intractable integrals. This is not hard without constraint, due to
the independence between y(i), i = 1, · · · ,m and the simplicity of fi. However, when

53

54 CHAPTER 4. Monte Carlo Fusion under Linear Constraints

a constraint is added to the model, the independence is lost, and thus not trivial to work
out the estimators analytically even for simple density fi.

4.1 Some Background in Constrained Simulation

In most cases, ordinary simulation methods, like the Metropolis-Hastings method or the
Gibbs sampler, cannot be directly used on linear-equality-constrained problems even for
simple distributions. Due to the reduction in dimensions of the sample space, the linear
hyperplane has zero probability under the full original measure space, and hence, one
has zero chance to draw a sample from the original distribution that lands exactly on
the constraint. For this reason, the difficulty of implementing an MCMC algorithm on
a constrained sampling problem lies in that the algorithm needs to generate proposals
that satisfy the constraint. In practice, task-specific adaptations are usually applied to
the base sampler where proposals are generated in such a way that the constraints are
naturally met without violating the detailed balance (Asselin et al., 2010, Valenzuela
and Mazumdar, 2001, Maggs, 2005).

For a generic setup, the constraint is usually satisfied by means of projection or
transformation onto the constraint set. Zappa et al. (2018) and Chua (2020) both con-
sider generating proposals by sampling from the tangential plane and then projecting
onto the manifold. Chua (2020) presents a way to efficiently expand the base sample
set to n × m weighted samples that are approximately distributed as the target distri-
bution. Zappa et al. (2018) presents a modified Metropolis-Hastings(MH) algorithm
where the proposals are generated through tangential projections onto the manifold.
This algorithm resembles the usual random walk MH algorithm in that each proposal
has a relatively low cost to generate and the rejection rate is directly related to the step
size. Since the proposal generation depends on the result of an iterative solver, there
is an additional rejection stage for reverse projection check to ensure every step is re-
versible, i.e., the iterative solver can also move from the proposal back to the current
state.

The other branch builds upon the Hamiltonian Monte Carlo (HMC) method, where
proposals are generated from a simulated Hamiltonian system. CHMC (Brubaker et al.,
2012) extends HMC where samples are generated by including the constraint into the
Hamiltonian system and the evolution of which is solved by a constrained integrator.
The problem with CHMC is that the usual explicit integrator cannot be adopted as there
is a constraint on the system, and the implicit integrator requires an iterative solver for
each simulation step. A special case is Geodesic HMC (Byrne and Girolami, 2013)
which splits the Hamiltonian system such that the integrator avoids the need for an iter-
ative solver for simulating the Hamiltonian mechanics, given that the geodesic flow can
be exactly computed. This approach can be applied in directional statistics where the

CHAPTER 4. Monte Carlo Fusion under Linear Constraints 55

state space is usually an n-sphere for which the geodesics are explicitly known. Another
problem of HMC is that the simulated Hamiltonian system needs to be reversible up to
momentum reversal for detailed balance to hold. Although such reversibility is usually
satisfied for sufficiently small time steps, this might be violated when the parameter is
tuned for more efficient simulation.

Although MCMC may be adapted, its choice of proposal distributions is usually
limited, e.g., mostly Gaussian-based distributions. In the case of HMC, one has the
freedom to choose the guidance Hamiltonian which relies heavily on the user’s experi-
ence to find a good guidance function. On the other hand, exact sampling under equal-
ity constraints is genuinely hard even for simple constraints like linear ones. The only
equality-constrained exact simulation methods deal with Gaussian distribution (Cong
et al., 2017, Vrins, 2018) or T-distributions (Kibria and Joarder, 2006) under linear
constraints, which has a limited range of application.

In this chapter, we will tackle the problem from another point of view by extending
the Monte Carlo Fusion algorithm to handle linear constraints. Recall that the MCF
algorithm employs m Langevin diffusions, which start from a value at time 0 following
the distribution fi, with their ending points at time T following a Gaussian distribu-
tion with the required constraints. Therefore, the original non-Gaussian constrained
problem becomes a Gaussian constrained problem. Finally, the outcomes based on
Gaussian constraints will be adjusted according to a path-space rejection sampling for
the Langevin diffusion processes. This adjusted ending point at T exactly satisfies the
constraint and has the required target distribution.

4.2 From Unconstrained to Constrained

It is usually hard to find a proposal distribution that is appropriate for the target distribu-
tion and is supported only on the constraint, even for a linear constraint. Luckily, when
the proposal distribution is Gaussian and the constraint is linear, we can easily generate
proposals that land exactly on the constraint.

For this section, we start by restating the result from Chapter 2 with a slight change
to accommodate the more general setup (section 4.2.1), then we move on to prove that
the same Radon-Nikodym derivative can be derived in the constrained case (section
4.2.2) and finally show how the original algorithm needs to be altered in order to deal
with the constrained problem (section 4.2.3).

56 CHAPTER 4. Monte Carlo Fusion under Linear Constraints

4.2.1 Unconstrained Case Revisited

Recall that the general linearly constrained simulation problem allows each component
to take different values

fH(y
(1), . . . ,y(m)) ∝ f1(y

(1))f2(y
(2)) · · · fm(y(m))1H(y

(1), . . . ,y(m)). (4.1)

To avoid the repetition, we shall directly state the target and proposal distributions
which are similar to the ones before.

Proposition 4.2.1. Consider a set of m diffusion processes of length T , with the transi-

tion kernel pi(XT |X0), i = 1, 2, · · · ,m such that process i admits f 2
i (·) as its invariant

distribution. Then the joint density

g
(
x(1), · · · ,x(m),y(1), · · · ,y(m)

)
∝

m∏
i=1

f 2
i (x

(i))pi(y
(i)|x(i))

1

fi(y(i))
. (4.2)

admits the unconstrained target density

m∏
i=1

fi(y
(i))

as the marginal distribution of the ending points
(
y(1), · · · ,y(m)

)
.

The above diffusion processes (X(i)
t)t∈[0,T], i = 1, . . . ,m can be obtained by the same

construction as in Section 3.1.1 driven by equations

dX
(i)
t = ∇Ai(X

(i)
t)dt+ dB

(i)
t ,

where Ai(x) = log fi(x).

Similarly, consider the proposal h as follows:

h(x(1), · · ·x(m),y(1), · · · ,y(m)) =
m∏
i=1

fi(x
(i))(2πT)−1/2 exp

[
−||y(i) − x(i)||2

2T

]
,

(4.3)
which can be easily sampled from.

Theorem 4.2.2. Under Condition 2,

g
(
x(1), · · · ,x(m),y(1), · · · ,y(m)

)
h(x(1), · · · ,x(m),y(1), · · · ,y(m)))

∝ E

[
exp

(
−

m∑
i=1

∫ T

0

ϕi(X
(i)
s)ds

)]
(4.4)

where E is taking expectation over the measure induced by Brownian bridges of length

T connecting (x(1), · · · ,x(m)) and (y(1), · · · ,y(m)).

CHAPTER 4. Monte Carlo Fusion under Linear Constraints 57

Proof. Using the equation (3.4) from Proposition 3.1.3 and simplify g/h gives the de-
sired result.

The above is basically the same as previously in the MCF algorithm, next we need to
check that the constraint on the end point does not affect the Radon-Nikodym derivative.

4.2.2 Restricted Radon-Nikodym Derivative

Proposition 4.2.3 (Randon-Nikodym derivative on submanifold). Let P,O be two prob-

ability measures on the Euclidean space
(
Rmd,B(Rmd)

)
, with density functions fP and

fO respectively, such that P ≪ O. Let

h⃗ : Rmd → Rk, 0 < k < md

be a smooth function such that ∀u ∈ H, where

H := h⃗−1(0) =
{
u ∈ Rmd : h⃗(u) = 0

}
,

the derivative of h⃗ at each dimension, Dh⃗u : Rmd → Rk×md is surjective, where D is

the differentiation operator in each component. Then the following holds:

1. There exists a canonical volume measure VH defined on H.

2. If the integral of fP is finite on H, then there exists an unique measure PH defined

on the measurable space induced by H such that its Radon-Nikodym derivative

w.r.t to VH is proportional to its unconstrained counterpart w.r.t. the Lebesgue

measure du

dPH/dVH ∝ dP/du

3. PH ≪ OH, and

dPH/dOH ∝ dP/dO.

Proof.

1. Suppose that constraint H ⊂ Rn is defined to be the level set of a smooth function

h⃗ : Rmd → Rk

and
H := h⃗−1(0) =

{
u ∈ Rmd : h⃗(u) = 0

}
Suppose also that ∀u ∈ H, the derivative of h⃗ at u, Dh⃗u : Rmd → Rk×md is
surjective. Then by Regular Value Theorem, H is an (md−k)-dimensional man-
ifold. Since the manifold H is defined in Rmd, there exists a Riemannian metric

58 CHAPTER 4. Monte Carlo Fusion under Linear Constraints

g defined on H induced by the Euclidean metric on Rmd. More importantly, the
Canonical Volume measure VH can be defined on (H, g), such that

∫
H dVH is

exactly the volume of H. (Section 1 of Chapter XII Amann and Escher (2009) is
recommended for detailed explanation of canonical volume measure.)

2. Since the probability measure P is defined on the Euclidean space, it has a corre-
sponding density function fP and

dP
du

= fP(u)

Then define the probability measure PH that for any set E ⊂ H measurable by
VH

PH(E) =

∫
E

Z−1
P fP dVH, where ZP =

∫
H
fP dVH <∞.

Uniqueness is obvious. Suppose that there exist another probability measure P̃H

also defined on H such that

dP̃H

dVH (u) = CfP(u), C ̸= 0.

Then
0 = PH(H)− P̃H(H) =

∫
H
(Z−1

P − C)fPdVH.

Since fP is non-negative and not zero everywhere on H, we have C = Z−1
P and

thus PH = P̃H.

3. Since P ≪ O, there exists non-negative function µ defined on Rmd such that

dP
dO

= µ.

Clearly, fP(u)/fO(u) = µ(u). Then

PH(E) =

∫
E

Z−1
P fPdVH =

ZO

ZP

∫
E

Z−1
O µfOdVH.

Thus dPH

dOH =
ZO
ZP
µ ∝ µ and clearly PH ≪ OH.

Example 4.2.1. Consider h⃗(x1, x2) := x21 + x22. Then Dh⃗(x1,x2) =
(
2x1 2x2

)
. Since

(0, 0) ∈ h⃗−1(0) and Dh⃗(0,0) =
(
0 0

)
is degenerate. Thus h⃗−1(0) is not a manifold.

However, h⃗−1(c), c > 0 is a manifold.

Example 4.2.2. If h⃗ : Rn → Rm is linear, ∃A ∈ Rm×n, h⃗(x) = Ax. Then Dh⃗x = A,

thus h⃗−1(c) is a manifold of dimension n−m if and only ifA is full rank.

CHAPTER 4. Monte Carlo Fusion under Linear Constraints 59

Let Q(i)
T,x,y denote the probability measure induced by a Langevin bridge X(i) of

length T starting at x and ending at y. Then we may define a biased Langevin process
with probability law given by

Q(i) ∝ f 2
i (x)pi(y|x)(fi(y))−1 ·Q(i)

T,x,y

which admits the joint marginal distribution for its two ends as f 2
i (x)pi(y|x)(fi(y))−1.

Thus, the product measure Q := Q(1)×· · ·×Q(m) admits g
(
x(1), · · · ,x(m),y(1), · · · ,y(m)

)
defined in (4.2) as the joint distribution of the ends and admits the unconstrained product
density as the marginal density for y.

Let W(i)
T,x,y denote the probability measure induced by a Brownian bridge of length

T starting at x ending at y. Furthermore, let Zi denote a biased Brownian process such
that the product measure Z := Z1 × · · · × Zm admits (4.3) as the joint distribution of
its ends.

Now we can present the main result in the constrained space. Recall the constraint
H in (4.1), which is our target distribution. Denote QH as the measure induced by
constraining the end-point (y(1), . . . ,y(m)) within the set H and clearly QH admits
(4.1) as its ending point marginal distribution. The following Corollary tells us that we
can have a proposal measure ZH having the same constraint and their Radon-Nikodym
Derivative is the same as their unconstrained counterpart.

Corollary 4.2.4 (Constrained derivative). Let the constraint set H ⊂ Rn satisfies the

condition in Proposition 4.2.3. Then

dQH

dZH ∝ dQ
dZ

∝ exp

(
−

m∑
i=1

∫ T

0

ϕi(X
(i)
s)ds

)

where the measure with superscript H denotes the induced measure by constraining its

end-point (y(1), . . . ,y(m)) within the set H.

Proof. By construction, measure Q has the conditional decomposition of

dQ = dQT,x,y · p(dx) · q(dy|dx),

i.e., the diffusion bridge measure connecting x and y, the distribution of end point y
conditioned on x, and the distribution of starting point x. Here, we consider another
conditional decomposition given by dQ = dQ|Y · dYQ, where YQ is a measure on Rm

for the end point y and Q|Y is the measure of the biased Langevin process conditioned
on the end point. Similarly, we consider the same decomposition for Z.

Since Q|Y and Z|Y are both independent of the end point, we have

dQH ∝ dQ|Y dYH
Q , dZH ∝ dZ|Y dYH

Z .

60 CHAPTER 4. Monte Carlo Fusion under Linear Constraints

Thus the result follows by applying Proposition 4.2.3 to dYQ
dYZ

.

Since QH admits (4.1) as the marginal distribution for its end-points (y(1), . . . ,y(m)),
we can use a similar rejection sampling strategy as in Algorithm 20 for sampling from
the constrained density (4.1), given that we can generate proposals from ZH. The de-
tailed expressions of QH and ZH are simply adding the constraint H to Q and Z, re-
spectively (see the proof of Corollary 1).

4.2.3 Simulation from the Constrained Proposal

Now the final problem is to generate samples from the proposal measure ZH which
satisfies the constraint H. Recall the proposal distribution h in (4.3) and apply the
constraint, giving

h̃
(
x(1:m),y(1:m)

)
∝

(
m∏
i=1

fi(x
(i))

)
fy|x

(
y(1:m)|x(1:m)

)
1H(y

(1:m)), (4.3c)

where

fy|x
(
y(1:m)|x(1:m)

)
=

m∏
i=1

(2πT)−1/2 exp

[
−||y(i) − x(i)||2

2T

]
. (4.5)

Algorithm 23: Linearly Constrained Langevin Rejection Sampler
input: Constraint Ay = c; component distributions fi, i = 1, . . . , C; parameter

T
1 Simulate, for each 1 ≤ i ≤ m, x(i) ∼ fi(·) ;
2 Simulate y = (y(1), . . . ,y(m)) ∼ N (x(1:m), TId) constrained on y(1:m) ∈ H ;
3 Simulate a uniform random variable U1 ∈ U [0, 1];
4 if U1 ≤ AP1 = Lηh⃗(x

(1:m)) then
5 for i = 1, ...,m do
6 Simulate a layered Brownian Bridge of length T connecting x(i) and

y(i);
7 end
8 Let U2 ∈ U [0, 1] and simulate the event U2 < AP2 given by expression

(4.4);
9 if U2 < AP2 is true then

10 Accept and return y(1:m);
11 else
12 Go back to step 1;
13 end
14 else
15 Go back to step 1;
16 end

CHAPTER 4. Monte Carlo Fusion under Linear Constraints 61

To simulate a process X from ZH, we just need to simulate the end points from (4.3c)
and then fill in the middleXs, s ∈ (0, T) as Brownian bridges. Denote

ηh⃗(x
(1:m)) =

∫
fy|x

(
y(1:m)|x(1:m)

)
1H(y

(1:m))dy(1:m).

Then we can write the exact formula for h̃
(
x(1:m),y(1:m)

)
, as

h̃
(
x(1:m),y(1:m)

)
=

(
m∏
i=1

fi
(
x(i)
))

· ηh⃗(x
(1:m)) ·

fy|x
(
y(1:m)|x(1:m)

)
1H(y

(1:m))

ηh⃗(x
(1:m))

,

(4.6)
If we consider H being linear, i.e., H :=

{
y ∈ Rmd : Ay = c

}
for some full rank

matrix A ∈ Rk×md and constant c ∈ Rk, then we can find a constant L such that
Lηh⃗(x

(1:m)) < 1 and ∀x(1:m),

L · ηh⃗
(
x(1:m)

)
= exp

[
− 1

2T
(c−Ax(1:m))⊤(AA⊤)−1(c−Ax(1:m))

]
≤ 1, (4.7)

where T is the length of the diffusion bridges.

To simulate Monte Carlo samples from (4.6), we just need to simulate x(i) from
each fi and then simulate y with given x(1:m) from the Gaussian density

f̃y|x
(
y(1:m)|x(1:m)

)
=
fy|x

(
y(1:m)|x(1:m)

)
1H(y

(1:m))

ηh⃗(x
(1:m))

(4.8)

and finally deal with ηh⃗(x
(1:m)) via rejection sampling based on Lηh⃗(x

(1:m)) ≤ 1. Now
we can assemble the results and present Algorithm 23 which simulates exactly from
equation (4.1).

Remark 4.2.1. A key innovation of Algorithm 23, is that it turns the general constrained

density fH for non-Gaussian fi to a constrained Gaussian density (Step 2 of Algorithm

23), which is easy to solve. The algorithm validates the answer from the constrained

Gaussian problem via rejection sampling steps based on Langevin diffusion bridges.

This explains the fact that our algorithm works very well (exact Monte Carlo algo-

rithms) for non-Gaussian constraint problems.

4.2.3.1 Sampling from Linearly Constrained Gaussian

Simulation from linearly constrained Gaussian distribution (4.8) has been studied in
multiple papers (Vrins, 2018, Cong et al., 2017). First of all, let Y := [Y1, . . . , Ym]

⊤

be a multivariate normal distribution, then S =
∑

i Yi is also normal. More impor-
tantly, Y |S = s is another multivariate normal distribution with its mean and covari-
ance computable using the conditional Gaussian formula. Although Y |S = s will have

62 CHAPTER 4. Monte Carlo Fusion under Linear Constraints

a non-invertible covariance matrix, some routines for sampling multivariate normal dis-
tribution will still work and return valid samples. In these cases, one can directly utilize
those routines to do the constrained sampling.

Otherwise, one can achieve the sampling through the transformation method. Con-
sider the following constrained Gaussian distribution

X ∼ N (µ,Σ) subject to AX = c, A ∈ Rk×n, k < n. (4.9)

Since the covariance matrix is always positive definite, Σ can be decomposed into
Σ = UDU⊤, where D is a diagonal matrix with positive diagonal entries and U
is orthogonal. Then

Σ = (UD
1
2)(UD

1
2)⊤

where D
1
2 is computed by taking square root of each diagonal entry of D. Let Z

follow a standard multivariate Gaussian distribution, then X d
= (UD

1
2)Z + µ. Thus

the simulation problem (4.9) is equivalent to simulate

Z ∼ N (0, Id) given that (AUD
1
2)Z = c−Aµ

To simplify the notation, let B = AUD
1
2 , α = c − Aµ and instead consider the

following problem:

Z ∼ N (0, In) given that BZ = α

Let B = PWQ⊤ be a singular value decomposition of B, where P ∈ Rk×k, Q ∈
Rn×n are orthogonal matrices and W ∈ Rk×n is a rectangular diagonal matrix with
non-negative entries on the diagonal, i.e.

W =

w1 0 · · · 0 0 · · · 0

0 w2
. 0 · · · 0

... 0 0 · · · 0

0 · · · 0 wk 0 · · · 0

, wi ≥ 0, i ∈ 1, 2, . . . , k

Then the constraint can be expressed as

W (Q⊤Z) = P⊤α (4.10)

Let Y := Q⊤Z ∼ N (0,Q⊤InQ︸ ︷︷ ︸
=In

). Let yi denote the ith element of Y , and α̃i denote

CHAPTER 4. Monte Carlo Fusion under Linear Constraints 63

−6 −4 −2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cumulative density

x

F
(x

)

Simulation

Ground Truth

(a)

−6 −4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Density function

x

f(
x
)

Simulation

Ground Truth

(b)

Fig. 4.1 CDF and PDF of simulated data against ground truth

the ith element of P⊤α. Then the constraint (4.10) is deterministic given by

yi = α̃i/wi, i = 1, . . . , k.

Since Y is a standard multivariate normal distribution, thus [Yk+1, . . . , Yn] conditioned
on [Y1, . . . , Yk] is still a standard normal distribution. Note that in LCLRS (Algorithm
23), the covariance matrix Σ is always diagonal thus step 1 is not needed.

Algorithm 24: Sampling from a linearly constrained Gaussian distribution
Input: Target N (µ,Σ);
Constraint matrixA and vector c;

1 Compute singular value decomposition Σ = UDU⊤;
2 ComputeB = AUD

1
2 ;

3 Compute singular value decompositionB = PWQ⊤;
4 Compute α̃ = P⊤(c−Aµ);
5 Extract w1, . . . , wk from the diagonal ofW , k is the number of constraints or

number of rows inA;
6 Compute yi = α̃i/wi, for i = 1, . . . , k;
7 Simulate [yk+1, . . . , ym] ∼ Nm−k(0, Im−k);
8 Set Y = [y1, . . . , ym];
9 ReturnX = (UD

1
2)QY + µ;

4.2.3.2 Toy example for constrained sampling

We apply the Algorithm 23 on a relatively simple setting, in order to show that it is
indeed an exact simulation algorithm. Consider the density function

f(x1, x2) ∝
(
1 +

x21
3

)−2(
1 +

x22
5

)−3

1{x1+x2=0}(x1, x2) (4.11)

64 CHAPTER 4. Monte Carlo Fusion under Linear Constraints

which is a product of two Student-T3(0, 12) and Student-T5(0, 12) that is further re-
stricted by a simple sum constraint x1 + x2 = 0.

This constraint density can be expressed as a function of solely x1 or x2, which has
an analytical form. It easily follows

f(x1) ∝
(
1 +

x21
3

)−2(
1 +

x21
5

)−3

(4.12)

and its normalising constant can be numerically computed too.

In the simulation, Algorithm 2 is applied to sample from (4.11), gathering 10,000
samples. Using these samples, we compute the fitted density function and cumulative
function using ecdf and density functions provided by R. The fitted functions are plotted
against the function f(x1) computed using derived expression (4.12). The results are
plotted in Fig. 4.1a and 4.1b. From the figures, we can see that the fitted densities
exactly match the true curve providing a practical validation of the algorithm.

4.3 Poisson Estimator and Particle Filter

However, the performance of LCLRS may drop significantly due to low acceptance
probability if the proposal is not close enough to the target function, which is the case
in our study when sometimes the constraints land away from the typical set of the
unconstrained target distribution. Especially when simulating time series, as the time
propagates, the predictions are more likely to deviate from the constraint, causing the
acceptance rate to drop as the length increases. Therefore, we consider a Particle Filter
with resampling, which is often used in non-linear time series simulations (Fearnhead,
2005, De Bernardis et al., 2016), to make the simulation more practical.

To implement a particle filter, we need to compute the weight of our sampled par-
ticles which is defined by the two acceptance probability AP1 × AP2. Under linear
constraint, AP1 is easy to compute once x and y are simulated. Although AP2 is in-
tractable, it is possible to derive an unbiased estimator for it. Here, we will use the
method discussed in Beskos et al. (2006) and Fearnhead et al. (2008).

Let W(T,x,y) denote the measure of a d dimensional Brownian bridge Xt, {t ∈
[0, T]} connecting X0 = x and XT = y and f : Rd → R be an arbitrary continu-
ous function. Then we may define an unbiased estimator for

EW(T,x,y)

[
exp

{
−
∫ T

0

f(ωt)dt

}]
<∞

given by

exp {(λ− c)T}λ−κ
κ∏
j=1

{
c− f(ωχj

)
}

(4.13)

CHAPTER 4. Monte Carlo Fusion under Linear Constraints 65

Algorithm 25: Particle Filter - LCLRS
input: Constraints Ayt = St;
Unconstrained target (transition) density f(yt|yt−1);
Parameter T ;
Total number of particles n;
Length of the time series τ ;

1 Initialize particles y[i]
0 with weights w[i]

0 ;
2 for t = 1, 2, . . . , τ do
3 for i = 1 . . . , n do
4 Simulate the starting points x[i]

t ∼ f(·|y[i]
t−1);

5 Simulate the particle y[i]
t ∼ N (x

[i]
t , T Id) constrained onAy[i]

t = St;
6 Accept the proposal with probability AP1 given by equation (4.7);
7 Simulate layer I for the BB, and choose λ, c;
8 Generate a set time points {χk}k=1,...,κ for the Poisson Estimator to be

evaluated on;
9 Simulate a BB in layer I of time T connecting x[i]

t and y[i]
t at the time

points {χk}k=1,...,κ;
10 Calculate AP2 using the Poisson estimator given by (4.13);
11 Update weight w[i]

t = w
[i]
t−1 · AP2;

12 end

13 Compute the Effective Sample Size ESSt =
(∑

iw
[i]
t

)2
/
(∑

i(w
[i]
t)

2
)

;

14 if ESSt ≤ n/10 then
15 Conduct resampling;
16 end
17 end

where c ∈ R, λ > 0, κ ∼ Po(λt), χj ∼ U [0, T], j = 1, . . . , κ and ω being a sample
element of W(T,x,y). This is called the Poisson estimator which is an unbiased estimator
for the expectation above (Beskos et al., 2006). A recommended choice for the param-
eters is c = sup f and λ = c − inf f . Thus the direct application of (4.13) is not very
reliable when f is not bounded.

Thus, we apply the layered approach to construct a generalized Poisson estimator.
The state space of W(T,x,y) is partitioned into {L1, L2, . . . } and each Li defines a bound
for which the BBs lie in. Since the layer of the proposed Brownian bridge is known
before we compute the Poisson estimator, we can determine c = supϕ using layer I and
continue the computation. Now, both rejection steps in Algorithm 23 can be replaced
by assigning weight to the current sample, and Algorithm 23 can be extended to an
importance sampling. With (4.7) and the Poisson estimator, a particle filter approach
can be outlined as in Algorithm 25.

The PF approach no longer requires any rejection steps since AP1 and AP2 are
computed numerically and used to update the weights. As presented in Algorithm 25,

66 CHAPTER 4. Monte Carlo Fusion under Linear Constraints

the first rejection step is kept since it impedes minimal computational cost. We only use
the acceptance probability in the second rejection stage AP2 to update the weights. At
each time step t, we need to sample/propagate a set of n particles from the previous step
t − 1. After sampling all particles of time t, the Effective Sample Size (ESS), ESS =

(
∑

iwi)
2 / (

∑
iw

2
i), is computed to check if re-sampling is required. In practice, we

used n/10 as the threshold for resampling as we usually find the batch of particles with
ESS above that threshold to give reasonable estimates. In some of the literature, n/2
is used as the threshold (Doucet et al., 2009). Resampling can be done by various
strategies. In this case, a categorical distribution is constructed using the weights and
n samples are drawn to decide which particles are passed on, also referred to as the
multinomial resampling in Douc and Cappé (2005).

4.4 Mean Squared Error Analysis

To understand the effect of imposing a linear constraint on an unconstrained model, we
conduct a short theoretical study on Gaussian distributions where we can analytically
compute the outcomes. In addition, we conclude, in the Gaussian case, why and when
adding linear constraints can improve the accuracy of estimation. Non-Gaussian models
are compared through simulation studies in the end. For simplicity, we will focus on a
single-step model without considering time-series data.

Consider a simple linear regression setting. Let Y (i) ∼ p(·), i = 1, · · · , n, to be n
independent draws from the true population. Through the linear model, each draw of
Y (i) has a corresponding estimator Ŷ (i) with Ŷ (i) ∼ N (µ̂i, σ̂

2
i) where µ̂i is the fitted

mean of Y (i). Here the predictor Ŷ (i) does not need to be a sensitive predictor of Y (i),
i.e. Ŷ (i) of Y (i) that may have a large bias or uncertainty. Note that the sum

Ŝ :=
n∑
i=1

Ŷ (i),

is also Gaussian. Thus, the joint distribution of (Ŷ1, . . . , Ŷn, Ŝ) is still a multivariate
normal distribution with mean and variance are given by

µ̂ =
[
µ̂1, · · · , µ̂n,

∑n
i=1 µ̂i

]⊤
, Σ̂ = [D,V ;V ⊤, w2]

where

D := diag(σ̂2
1, · · · , σ̂2

n), V :=
[
σ̂2
1, · · · , σ̂2

n

]⊤
, w2 :=

n∑
i=1

σ̂2
i .

Let Ŷ denote the random vector of (Ŷ1, . . . , Ŷn), then its distribution conditioned on

CHAPTER 4. Monte Carlo Fusion under Linear Constraints 67

the constraint is Ŷ
∣∣∣Ŝ = s ∼ N (µ∗,Σ∗) where

µ∗(s) =

[
µ̂1 +

σ̂2
1

w2
(s−

n∑
i=1

µ̂i), · · · , µ̂n +
σ̂2
n

w2
(s−

n∑
i=1

µi)

]⊤
, (4.14)

Σ∗(s) =D −
[
σ̂2
i σ̂

2
j

w2

]1,n
i,j

.

We examine the forecasting (imputation) performance in three aspects:

1. Signed mean deviation of each predictor Ŷ (i) computed by αi := µ̂i − Ŷ (i)

2. Uncertainty of the predictors Var(Ŷ (i))

3. Mean-squared error (MSE) E
[
||Ŷ − Y ||2

]
where MSE, which measures both mean deviation and uncertainty, is a more compre-
hensive evaluation of the performance.

The potential improvement in MSE if the sum of the true values is incorporated into
the model is given by:

E
[
||Ŷ − Y ||2

]
− E

[
||Ŷ − Y ||2

∣∣∣∣∣S =
n∑
i=1

Y (i)

]

=
n∑
i=1

α2
i −

n∑
i=1

(
αi −

σ̂2
i

w2

n∑
j=1

αj

)2

︸ ︷︷ ︸
Ψ1

+
1

w2

n∑
i=1

(σ̂4
i)︸ ︷︷ ︸

Ψ2

(4.15)

where αi = µ̂i − Y (i) is the mean deviation from the true value for the i-th predictor.
We can deduce the following Propositions from equation (4.15).

Proposition 4.4.1 (Garaunteed Uncertainty Reduction). The sum of constrianed vari-

ance tr(Σ∗) is always less than the unconstrained variance with a reduction of

tr(Σ∗)−
m∑
i=1

σ̂2
i =

1

w2

m∑
i=1

σ̂4
i

where w2 =
∑

i σ̂
2
i .

Proof. Follows directly from (4.15) since Ψ2 denotes exactly the difference in uncer-
tainty and Ψ2 ≥ 0.

It is important to note that, we made no assumption about the imputed value Ŷ =

(Ŷ (1), · · · , Ŷ (m)), except that it is independent in its components and is Gaussian. If
we could also bound its error, i.e. having a reasonable statistical model, then we can
deduce a stronger result as follows:

68 CHAPTER 4. Monte Carlo Fusion under Linear Constraints

Proposition 4.4.2 (Uncertainty Domination). Let αi := Y (i) − µ̂i denote the signed

mean deviation of i−th predictor from the true value and Sd denote the sum of αi.

Suppose that the predictors are reasonable that

∃M > 0 such that |αi| ≤ λiM, and also w2 ≥ 2SdM,

then the constrained model always has a non-negative improvement in mean-squared

error compared with the unconstrained model.

Proof. We try to bound Ψ1 in (4.15). Firstly recall that

Sd =
m∑
i=1

αi

Without loss of generality, let Sd ≥ 0, then

Ψ1 = −2Sd

m∑
i=1

λiαi +
m∑
i=1

λ2iS
2
d

≥ −2SdM
m∑
i=1

λ2i

The second line follows by applying the bound on αi. Note that Ψ2 = w2
∑m

i=1 λ
2
i .

Thus

Ψ1 +Ψ2 ≥ w2

m∑
i=1

λ2i − 2SdM
m∑
i=1

λ2i ≥ 0

The main takeaway from Proposition 4.4.2 is actually very similar to Proposition 4.4.1,
namely, it is most appropriate to apply a constrained model when the original model
has a higher uncertainty compared to its expected error.

Remark 4.4.1. We can observe from Ψ1 the formula for the constrained mean devia-

tion, namely αi − σ̂2
i

w2

∑
j αj . Thus the correction on mean deviation is in the favorable

direction only for the components whose αi has the same sign as Sd the overall devia-

tion from the constraint. Ideally, we are expected to see the mean deviation to improve

in all dimensions only if all components have over(under)-estimated the target. How-

ever, it is still possible for components with small αi but large relative variance λi to be

over-corrected and end up with a worse mean deviation.

Remark 4.4.2. When the bias term Ψ1 is not dominated by the variance term Ψ2, then

Ψ1 can be negative and consequently rendering (4.15) negative. Ψ1 can be viewed as

CHAPTER 4. Monte Carlo Fusion under Linear Constraints 69

a quadratic function of αi for every i and when the leading coefficient is negative, the

function is more likely to take a value below zero. One sufficient condition for this to

happen is when λi :=
σ̂2
i

w2 < 1−
√

(n− 1)/n.

Remark 4.4.3. One special case is when λ1 = · · · = λn, in which case Ψ1 is guar-

anteed to be non-negative and the constrained model is always better than the uncon-

strained model in terms of MSE.

4.4.1 Effect of relative variance on MSE

Since there is a guaranteed improvement in the variance component Ψ2, it is interesting
to analyze what happens if Ψ1 is not dominated by Ψ2. Define the following

λi = σ̂i
2/w2, Λ :=

n∑
i=1

λ2i

Ψ1(α) =
n∑
i=1

α2
i −

n∑
i=1

(
αi −

σ2
i

w2

n∑
j=1

αj

)2

= 2(
n∑
i=1

αi)
n∑
i=j

αjλj −

(
n∑
i=1

αi

)2 n∑
j=1

λ2j

= 2
n∑
i=1

α2
iλi + 2

n∑
1≤i<j

αiαj(λi + λj)−
n∑
i=1

λ2j

(
n∑
i=1

α2
i +

n∑
1≤i<j

2αiαj

)

=
n∑
i=1

(2λi − Λ)α2
i + 2

n∑
1≤i<j

(λi + λj − Λ)αiαj

Take α1 for example, the roots lie at

α1 =
1

2(λ1 − Λ)

(
−2

n∑
i=2

(λ1 + λi − Λ)αi ±
√
∆

)

where

∆ =

(
n∑
i=2

(λ1 − λi)αi

)2

≥ 0.

Thus, the equation has a repeated root if and only if λ1 = · · · = λn. In other words,
depending on the mean deviation αi, it is almost always possible for Ψ1 to be negative
and have a negative improvement for the overall MSE.

70 CHAPTER 4. Monte Carlo Fusion under Linear Constraints

4.4.2 Simulation of Gaussian Case

A simulation is conducted to demonstrate the analysis made above, see Figure 4.1. A
total of 100,000 samples are generated from both the constrained and unconstrained
models in each setting. The settings differ by their model deviation α and model un-
certainty σ2. In the first case, the mean deviation is dominated by the variance and we
see improvements in all three predictors (or called imputed values). For the second and
third settings, the variances are kept the same but the mean deviations are increased. We
can see the variance improvement are the same but MSE improvements are not all posi-
tive. However, the total improvement in model MSE is still positive, mainly because the
correction for the third component which has the largest mean error has a large positive
effect on the model MSE. In these two cases, the main contribution to improvement in
overall MSE is no longer the reduction in variance (uncertainty).

Finally, for cases 4 and 5, we examine the situation when αi are large but σ2
i are

small. Note that for the fourth case, the first predictor has a very small relative variance
and is below the 1 −

√
(n− 1/n) threshold, thus the overall MSE improvement is

negative. This is different in the fifth case when the variance in all components is the
same, which matches the condition in Remark 4.4.3 and we observe a small but positive
improvement in MSE.

4.4.3 Simulation of Non-Gaussian case

When the modeling distribution is non-Gaussian, the constrained distribution becomes
intractable and hence there is no analytic formula for measuring the MSE improve-
ment. We have done the same simulation on gamma distribution and the Student’s
t-distribution cases, see also Figure 4.1, to compare with different target distributions.
α and σ2 still represent the mean deviation and variance respectively, and ψ denotes
the shape parameters.

For the Gamma cases, we imitate the situation in Study 1 and set the true value
of Y (1:3) to (4, 20, 25) and kept the shape parameter fixed to 4 in all predictors. In
such a way, the uncertainty of the predictors will vary with their mean as in the real
case. In both cases, we see positive improvements in the overall MSE, whereas the first
case is mainly contributed by the improvement in uncertainty. We see an increase in
uncertainty for the second case since the uncertainty varies with the model mean and
the last two unconstrained predictors underestimate the true value by about half. Thus
the constrained counterparts, which have larger means, also have larger uncertainties
compared with the unconstrained predictors. Thus in the second case, we see the MSE
improvement comes solely from the correction in the bias of the unconstrained predic-
tor. Note that although the unconstrained predictors have smaller uncertainty, they also
have a large bias, which means the uncertainty may have been underestimated.

CHAPTER 4. Monte Carlo Fusion under Linear Constraints 71

The Gamma cases exhibit a different behavior compared to the Gaussian case where
the uncertainty is not guaranteed to improve, so we also run the setup for generalized
Student’s t-distribution where the distribution is also symmetric, like the Gaussian dis-
tribution. The degrees of freedom are fixed to 5 and the density function can be ex-
pressed as

f(x; ν, µ, σ2) =
Γ(ν+1

2
)

√
νπΓ(ν

2
)

(
1 +

(x− µ)2

νσ2

)− ν+1
2

, ν = 5

The four cases examined for Student’s t-distribution use the same parameter setting as
cases 2-5 in the Gaussian simulation and the results almost match case by case. We
see similar improvements in deviation estimation but overall larger improvements in
uncertainty when applying a constraint to Student’s t-distribution compared with the
Gaussian cases. This is reasonable since Student’s t-distribution has a heavier tail than
the Gaussian distribution, and hence a larger uncertainty when the scaling parameter σ2

is the same.

72 CHAPTER 4. Monte Carlo Fusion under Linear Constraints

Gaussian MSE Improv. Devi. Improv. Var. Improv.

α =

σ2 =

(0.1

(1

-1

4

2)

10)
[0.08 0.39 9.06] [0.07 -0.29 0.73] [0.33 1.34 3.34]

α =

σ2 =

(0.1

(1

-2

4

4)

10)
[0.08 -1.49 15.9] [0.06 -0.56 1.39] [0.33 1.34 3.34]

α =

σ2 =

(1

(1

-3

4

8)

10)
[0.70 -11.1 54.7] [0.40 -1.60 4.00] [0.33 1.34 3.34]

α =

σ2 =

(10

(1

-3

2

-5)

3)
[6.78 -3.80 -9.51] [0.34 -0.67 -1.00] [0.33 0.67 1.00]

α =

σ2 =

(10

(2

-3

2

-5)

2)
[13.6 -3.79 -6.46] [0.67 -0.67 -0.67] [0.67 0.67 0.67]

Gamma (shape fixed)

α =

ψ =

(0.1

(4

-2

4

4)

4)
[-0.12 30.0 168.4] [-0.09 -0.11 2.11] [-0.09 30.5 155.7]

α =

ψ =

(1

(4

-10

4

-12)

4)
[-12.1 69.9 137.6] [-1.91 6.80 11.7] [-4.67 -19.8 -6.22]

Student’s t (ν=5)

α =

σ2 =

(0.1

(1

-2

4

4)

10)
[0.28 0.26 21.2] [0.02 -0.60 1.33] [0.28 3.02 12.2]

α =

σ2 =

(1

(1

-3

4

8)

10)
[0.70 -11.8 57.3] [0.46 -1.73 3.82] [0.01 1.48 10.6]

α =

σ2 =

(10

(1

-3

2

-5)

3)
[7.85 -3.09 -7.32] [0.38 -0.69 -0.94] [0.45 1.53 2.98]

α =

σ2 =

(10

(2

-3

2

-5)

2)
[14.3 -2.90 -5.55] [0.66 -0.66 -0.67] [1.53 1.53 1.54]

Table 4.1 Improvements in accuracy when adding sum constraint for different cases.
Improvement in MSE, deviation and variance for all three components of the model are
listed with positive values marked by an underscore and negative values marked in bold.

CHAPTER 5

Applications of Constrained Density Fusion

5.1 Time Series Disaggregation

From the previous chapter, we have seen an extension of the fusion sampler on linear
constraints. Such constraints appear naturally when we deal with time series data, more
specifically, time series that represents the accumulated quantity within a unit of time.
For instance, water usage in a day is the sum of the usage for all the hours in the day,
which means the sequence of 24 one-hour measures from in the day will sum to the
daily reading of that day. In this section, we will primarily work on electricity usage
data as a typical example of accumulated readings.

5.1.1 Background

In the current energy transition to fully autonomous and smart energy systems, an en-
ergy supplier usually has customers with different types of meters installed (Meng et al.,
2018), e.g., customers with smart meters (record energy consumption from every hour
to every minute), customers with time-of-use meters (e.g., Economy 7 in the UK that
a day can be divided into two time periods and the meter records aggregated consump-
tion over the two periods), and customers with traditional meters (record aggregated
consumption). It poses a great challenge for the energy suppliers to fully understand en-
ergy customers’ consumption patterns, especially for the latter two types of customers
with conventional meters in the absence of high time resolution meter data. Even it
is supposed to be easy to know the detailed and high-resolution energy consumption of
customers with smart meters, the smart meter data may still be subject to delays and
lower reliability (Peppanen et al., 2016), or being aggregated to preserve customers’
privacy. For example in the UK, the smart meter data that the distributed network oper-
ators receive will be the aggregated reading without the real-time data (Poursharif et al.,
2017). Therefore, the supplier often has low-resolution data for some (usually recent)
periods, but possibly high-resolution data for the periods before. For those days with
missing high-resolution data from a customer, nonetheless, the energy supplier may
still want to know the more fine-grained energy consumption of such customers. For

73

74 CHAPTER 5. Applications of Constrained Density Fusion

instance, knowing consumption during peak time periods for customers with traditional
meters or consumption during each hour for customers with time-of-use meters helps
understand energy usage behaviors, which is essential to transform the energy systems
in industrialized countries in order to reduce the total energy consumption (Burger et al.,
2015).

A similar problem can be found in power distribution networks where a grid oper-
ator would like to understand when spikes of energy demand could occur. This study
would require a continuous recording of energy usage in the network at a fine-grained
level. Such detailed monitoring needs the installation of additional equipment and stor-
age devices which can be expensive. However, such expenses can be avoided if one
can reasonably predict the peak and trough measurements in each time period given the
low-frequency data.

Overall, such kind of imputation problem often arises in studying time series data,
where each data point represents quantity aggregated for each low-resolution time
period, e.g., time series that record generation/consumption. The prediction of high-
resolution data from low-resolution data is often named as disaggregation in some re-
lated literature (Wang et al., 2020, Rafsanjani et al., 2020). In some cases where the
data set is about a single household, this problem is often simply formulated as data
imputation problem. Throughout this paper, we refer to such problems as disaggre-
gation or imputation in general, but when talking about the statistical models without
constraint we still refer to them as forecasting models or predictors, and we refer to the
high-resolution data estimated from the low-resolution data as imputed data.

5.1.2 Imputation Framework

Let Yj = (Y
(1)
j , · · · , Y (m)

j) denote the high-resolution data for time period j, where the
high-resolution data is the result of naturally dividing each low-resolution data into m
readings. Our target is to impute the missing high-resolution data Yj for time period
j from the existing data set Dj = {Yk, k = 1, · · · , j − 1} and a set of additional co-
variates Ξj containing information related to Yj , under a linear constraint, for example∑m

i=1 Y
(i)
j = Sj . Here Sj corresponds to the low-resolution aggregated reading for time

period j and it is available when we impute the high-resolution readings. Therefore,
if we denote the imputed values as Ŷj = (Ŷ

(1)
j , · · · , Ŷ (m)

j), it must also satisfy the
constraint

∑m
i=1 Ŷ

(i)
j = Sj too. In one of the application problems of this paper, we

consider m = 3, i.e., peak time period (evening), off-peak time period (midnight), and
day-time, since these are of most interest to electricity providers, and different tariffs
are often made on these time periods. The data vector Yj = (Y

(1)
j , · · · , Y (m)

j) follows
a density

∏
i f(y

(i)
j |θ,Dj,Ξ), and Y (i)

j , i = 1, · · · ,m are assumed to be independent
conditioned on all historical data and covariates.

CHAPTER 5. Applications of Constrained Density Fusion 75

−4 −2 0 2 4

−
4

0
−

2
0

0
2
0

4
0

Error Q−Q Plot

Theoretical Quantiles

T
e

s
t

E
rr

o
r

Q
u

a
n

ti
le

s

Fig. 5.1 Residual distribution plot based on AR model for the Irish Smart Meter Trial
dataset.

Such imputation problems are very simple if f is Gaussian. For example, un-
der linear regression models with Gaussian residuals, the response variable Y and its
forecasting value Ŷ will follow Gaussian distributions, with or without the constraint∑m

i=1 Ŷ
(i) = S. This kind of problem may exist in other research areas, such as Huang

et al. (2017) where an anti-radiation missile follows an almost linear trajectory and an
approximated linear constraint is evaluated and imposed on a Kalman Filter, which is a
filter based on updating the Gaussian belief of the system, to produce a robust tracking
performance.

However, if f is not Gaussian, how to solve such a problem is nontrivial since under
the constraint

∑m
i=1 Ŷ

(i) = S, the mean and covariance matrix E[Ŷ |S] and Var(Ŷ |S),
and the density of Ŷ may not have an analytical solution. For electricity consumption
data, the residual distribution based on time series models usually will not be Gaussian
because of the extreme values and the heavier tail of the data (for example, due to
abnormal weather conditions). Considering the dataset used in Section 5.1.4, the Irish
Smart Meter Trial data, we fitted an auto-regressive time series model using the 2009
autumn season data (to avoid seasonal component) and the fitting error is presented
in Figure 5.1 as a quantile-quantile plot where the error points are plotted against its
normal estimation. It is clear from the graph that the Gaussian assumption for residuals
is not appropriate (also evidenced by the Shapiro-Wilk test having a p-value< 2.2e−16).

5.1.3 Basic Time Series Model

Consider two parallel time series {St}t=1,2,3,... and {Yt,i}i=1,2,...,k
t=1,2,3,... where St is the low-

frequency data and Yt,i is recorded at k times the frequency of St with index ordering

76 CHAPTER 5. Applications of Constrained Density Fusion

(t − 1, k) < (t, 1) < (t, 2) < · · · < (t, k) < (t + 1, 1). For the rest of this section,
we will denote the high-frequency data as {Y (1:k)

t }t=1,2,... to show that the time series
{Y (1)

t } to {Y (k)
t } are treated as independent time series and modeled using k separate

models.

Remark 5.1.1. While treating modeling high-frequency data using separately time se-

ries might seem to be imposing a strong independence assumption. This, however, can

be acceptable if the separation is made with respect to the seasonality of this particu-

lar time series. For instance, in energy consumption data, seasonality usually can be

observed in the cycle length of one day. In which case, if every observation of the j-th

time series Y (j)
t corresponds to the reading of the same j-th time slot in each cycle, the

set of independent time series models will still perform well while having one seasonal

component removed. In addition, this approach is also effective if the time series has

multiple seasonality since removing one seasonality can greatly reduce the complexity

of the model. Note here that energy consumption data usually also admits one year as

the cycle length.

5.1.3.1 Autoregressive Model with Gamma Link

In general, we will use the Autoregressive (AR) model to fit each high-frequency time
series Y (j)

t , j = 1, . . . , k. In the same experiment, the k AR models will share the
same model structure, e.g., model order K, choice of additional regressors, but can
have distinct model parameters.

Referring back to Fig. 5.1, it is clear that a vanilla AR model Y (j)
t is not suitable for

our data, since the model residue is clearly not Gaussian. In addition, energy consump-
tion data are non-negative and positively skewed, so one may need to turn towards some
non-Gaussian distributions to model the error term ϵ

(j)
t . Here we use Gamma distribu-

tion to cover the non-negativity and positive skewness (Manning et al., 2005). Now, the
AR model (of order K) with Gamma link can be expressed as:

Y
(j)
t ∼ Γ

(
ψ(j),

ψ(j)

µ
(j)
t

)
, µ

(j)
t =

K∑
r=1

Φ(j)
r Y

(j)
t−r +Ξtβ

(j) (5.1)

for some unknown shape parameter ψ(j), and here the mean µ(j)
t is subject to the con-

straint µ(j)
t > 0. Our link function is the identity function, which is usually not the

canonical choice since the mean of our predictor is still linear. However, this is how
one would expect the time series to work, i.e., having a linear relation in the covariates
Ξt and lagged terms Y (j)

t−r.
In our experiments, the model parameters Φ(j) and β(j) are fitted using the least-

squares method while the shape parameters ψ(j) are chosen to be the maximum likeli-
hood estimate. Let τ denote the total number of days used in the training model. We

CHAPTER 5. Applications of Constrained Density Fusion 77

first fit Φ(j) =
(
Φ

(j)
1 , . . . ,Φ

(j)
K

)
, and β(j) by solving the ordinary least square equation,

i.e., for each (j) ∈ {1, . . . , k}, solve

argmin
Φ(j),β(j)

τ∑
t=1

[
Y

(j)
t − µ

(j)
t

]2
, µ

(j)
t =

K∑
r=1

Φ(j)
r Y

(j)
t−r +Ξtβ

(j)

where the evaluation of the cost function is done by directly replacing Y (j)
i,t by its ob-

served value. Then fixing µ(j)
i,t , fit ψ(j) by maximising the log-likelihood function,

argmax
ψ(j)

ℓ(ψ(j);Ξ,Y (j)) =
τ∑
t=1

[
ψ(j) log(ψ(j)/µ

(j)
t)− log Γ(ψ(j)) +

(ψ(j) − 1) log
(
ψ(j)Y

(j)
t /µ

(j)
t

)
−

(
ψ(j)Y

(j)
t

µ
(j)
t

)]
. (5.2)

Remark 5.1.2. The optimal way to fit the parameters is to solve the maximum likelihood

estimators for Φ(j), β(j) and ψ(j) simultaneously by maximizing the full log-likelihood

function, i.e., every µ(j)
t in (5.2) need to be treated as a function of Φ(j) and β(j). This

optimization problem has a much higher dimension and could lead to stability issues.

In addition, the model choice and fitting are not the primary focus of this study, thus we

used a sub-optimal estimator that can be easily handled.

5.1.3.2 Constrained Imputation

Given the parameter estimates
(
Φ̂(1:k), β̂(1:k), ψ̂(1:k)

)
, we proceed to state the con-

strained model. Let Y (1:k)
t , t = 1, 2, . . . , t̂ be the high-resolution energy consumption

we want to impute with respect to low-resolution time series data {St}t=1,...,t̂ given.
By construction of our AR model, every time point Yt depends only on its previous
times Yt−1,Yt−2, . . . , and the constraint

∑k
j=1 Y

(j)
t = St. Then given its explanatory

variables at time t Ξt, the density of Yt conditional on the past is

f(Yt|Yt−K:t−1) =
k∏
j=1

f
(
Y

(j)
t |Y (j)

t−K:t−1

)
1{∑k

j=1 Y
(j)
t =St

} (5.3)

where the likelihood function is from the Gamma model

f
(
Y

(j)
t

∣∣∣Y (j)
t−K:t−1

)
=

(
ψ̂(j)/µ̂

(j)
t

)ψ̂(j)

Γ
(
ψ̂(j)

) (
Y

(j)
t

)ψ̂(j)−1

exp

(
− ψ̂

(j)Y
(j)
t

µ̂
(j)
t

)
(5.4)

78 CHAPTER 5. Applications of Constrained Density Fusion

and

µ̂
(j)
t =

K∑
r=1

Φ̂(j)
r Y

(j)
t−r +Ξtβ̂

(j). (5.5)

As we can see, for the simulation of each Yt, the target distribution (5.3) follows the
shape of (4.1) where each factored density f

(
Y

(j)
t |Y (j)

t−K:t−1

)
can be simulated with a

linear constraint added across the variables of interest. Thus Algorithm 23 (LCLRS) can
be applied directly to this simulation problem by applying it sequentially in temporal
order Y (1:k)

1 → Y
(1:k)
2 → Y

(1:k)
3 → · · · → Y

(1:k)
D . Following Algorithm 25, to simulate

time point Yt, one would first draw a sample x from (5.3) without the constraint as the
starting points of the Brownian bridge. Then sample y ∼ N (x, T Ik) subject to sum
constraint 1{||y||1=St} which can be vectorized as Ay = St, where A is a row vector of
ones. Then the sampled particle will have its weight multiplied by AP2 given by (4.4).

5.1.4 Study 1: Day-readings Disaggregation

In this section, we consider a problem that electric utility companies encounter. Mod-
ern time-of-use meters are capable of reporting electric usage for three periods per day
(peak time, non-peak time, and midnight). However, such high-resolution meter read-
ings may be missing due to unreliability or delay, etc., and on such days we only obtain
one reading per day as from the traditional meters. We are interested in recovering their
energy consumption in each time period from the aggregated consumption.

We use the dataset from the Irish Smart Meter Trial, which includes half-hourly
energy consumption readings of individual residential smart meters from July 2009 to
the end of 2010 and corresponding questionnaire data of residential customers including
the social-economic data of occupants, the size of household, appliances information,
etc. We processed the data to consider the problem of disaggregating the daily readings
into tridaily readings.

Model Parameter Estimation

In this particular problem, the aggregated readings form a time series recorded once per
day and the goal is to impute a time series with three times the frequency, i.e., giving
three readings per day. Therefore, we will need three separate AR models to impute the
three time series. Recall that the equation for each AR model is given by

Y
(j)
i,t ∼ Γ

(
ψ(j),

ψ(j)

µ
(j)
i,t

)
, µ

(j)
i,t =

K∑
r=1

Φ(j)
r Y

(j)
i,t−r +Ξiβ

(j) (5.6)

where j ∈ {1, 2, 3} is the index.
Terms in equation (5.6) have an additional subscript i to represent the estimation for

the high-frequency readings for customer i. The parameters ψ(j),Φ(j),β(j), however,

CHAPTER 5. Applications of Constrained Density Fusion 79

(a) Constrained simulation

(b) Unconstrained simulation

Fig. 5.2 Energy consumption imputation and error with and without constraints

are shared across all customers in this model. The model order K is chosen to be 7 as
people tend to have their regular activities repeated in the unit of weeks.

A total of eight columns from questionnaire data, including the number of adults/children
in the household, number of bedrooms, and number of large electrical appliances, like
washing machines, tumble dryers, and dishwashers, are used as additional covariates
Ξi in this model. We drop the t subscript as the survey data is time-independent. The
high-frequency data from 30 households across 20 days are used to fit the model pa-
rameters. As mentioned before, Φ and β are fitted through least-squares estimation and
ψ from maximum likelihood estimation.

Result

After estimating the set of parameters
(
Φ̂(1:3), β̂(1:3), ψ̂(1:3)

)
, we have three AR models

of order 7 to estimate separately energy consumption in three time periods of the day.
The imputation is conducted on a separate household to up-scale the daily readings of
14 days to a time series of length 52. By implementing Algorithm 25, the imputation
is done in temporal order progressing in time t, with 100,000 samples of Y (1:3)

t drawn
in each step to compute an estimate for the sample mean, sample variance and, the
95% confidence interval. Results are presented in Fig. 5.2. The imputation results

80 CHAPTER 5. Applications of Constrained Density Fusion

under constrained settings are shown in Fig. 5.2a and the unconstrained predictions are
provided in Fig. 5.2b. In these figures, the sample mean, ground truth, and 95% CI are
plotted in red (diamond), blue (square) and green (dashed) lines respectively.

Looking at Fig. 5.2a and 5.2b we directly see the significance of injecting the sum
constraint information. The sample mean trajectory from the constrained model shows
similar fluctuation as the real trajectory, unlike the unconstrained model where the es-
timated mean is mostly flat. We also see improvements in the estimated 95% CI in the
constrained case, as the 95%-CI is always increasing with time for the unconstrained
case. This is reasonable since without extra information the uncertainty could only in-
crease as extra uncertainty is injected every time step. On the other hand, in Fig. 5.2a,
the constrained 95%-CI does not seem to increase with time. Instead, it increases with
the true value which is reasonable as the variance of Gamma distribution is proportional
to its squared mean.

5.1.5 Study 2: Max-Min Prediction

In this section, we consider the energy consumption modeling problem from the West-
ern Power Distribution challenge (Western Power Distribution Data Challenge, 2013).
Spikes in energy demand could strain the network and one might mitigate the effect by
monitoring the usage and reacting to the surge. However, monitoring the power usage
with high-resolution reading can be expensive since this requires the installation of addi-
tional facilities and an ever-expanding data storage system. Thus, instead of monitoring
with high-frequency in the long term, one might instead want to gather enough data
to train a model to impute the high-frequency data and only maintain a low-frequency
monitoring system. The goal is to predict the peaks and troughs of high-frequency time
series for each half-hour using its average power consumption. The peaks and troughs
are measured with respect to the discretized reading at the higher frequency.

Model Parameter Estimation

For monitoring peaks and troughs of energy usage, we consider the time series at a much
higher frequency than once per day. The low-frequency observation stream will have
a reading every 30 minutes and the high-frequency stream will have a reading every 6
minutes. Both time series record the average power usage within the time interval and
the goal is to estimate the peak and trough values every 30 minutes in the 6-minute time
series.

Using a similar notation as in (5.1), let S(i)
t denote the 30-minute readings and Y (j)

t

denote the 6-minute readings where t still denotes the day number. The difference from
the study in section 5.1.4 is we need more than 5 models to solve the problem since a
30-minute period is not a valid cycle for energy consumption data. Instead, we still use

CHAPTER 5. Applications of Constrained Density Fusion 81

Fig. 5.3 Percentage difference prediction of peak and trough values, comparing the
constrained model with the baseline.

one day as the cycle, and thus we consider each 6-minute period in a day separately
which requires a total of 24× 60÷ 6 = 240 separate AR models. The models can still
be captured by (5.1):

Y
(j)
i,t ∼ Γ

(
ψ(j),

ψ(j)

µ
(j)
i,t

)
, µ

(j)
i,t =

K∑
r=1

Φ(j)
r Y

(j)
i,t−r +Ξiβ

(j) (5.1)

where j ranges from 1 to 240. By splitting the available data into 240 series and exam-
ining the auto-correlation plot for each time series, the order of the AR model is chosen
to be 5 since more distant time points have a correlation close to zero. Each day has 48
half-hours and each half-hour induces a constraint

S
(i)
t =

5∑
j=1

Y
(5(i−1)+j)
t .

Here the number 5 is not the order of the AR model, but because each half-hour period
consists of 5 6-minute periods and thus 5 random variables to be summed. Weather data
near the power station is used as additional covariates Ξ, including an hourly tempera-
ture and humidity reading.

Result

We used 3 months of high-frequency reading (from June to September 2021) to estimate
the 240 sets of parameters (ψ(i),Φ(i),β(i)). Given the low-frequency readings for the

82 CHAPTER 5. Applications of Constrained Density Fusion

subsequent 7 days, we imputed the high-frequency readings and extracted the peaks
and troughs for each 30-minute period. The peak and trough prediction performance is
compared against the naive baseline which uses the 30-minute readings for both peak
and trough estimates. The percentage error in peak and trough predictions is plotted in
Figure 5.3, where red circles represent the baseline percentage errors and blue squares
represent the percentage error for predicted values. We can see clearly that the predicted
values are closer to the true values than the baseline. To be more specific, the RMSE of
our predicted values is only 52% of the baseline RMSE.

5.2 Bias Mitigation in Job Advertisements

Another occasion, perhaps less common, is when one would like to balance the param-
eters of a model, for instance, in Lee-Carter’s model, parameters αi are required to sum
to zero (Lee and Carter, 1992), or the quantity of items contributes towards an overall
output which restricted to take certain value, e.g., zero. In this section, we will look at
the latter situation, where we try to reword a piece of text to reduce bias by balancing
the number of biased words.

To start with, we will quickly review some background literature related to gender
bias. Firstly through the sociology point of view to look at how gender bias affects the
workspace and secondly from the Natural Language Processing (NLP) community to
see how gender bias is reflected in the trained models.

5.2.1 Background

5.2.1.1 Gender bias in job advertisement

Gender inequality in the labor market is longstanding and well-documented. Although
there has been a long-term increase in women’s labor force participation over the past
few decades, research shows persistent gender segregation across many occupations and
industries. Women continue to be underrepresented in senior and managerial positions
(Sohrab et al., 2012), are less likely to be promoted and are perceived as less commit-
ted to professional careers (Wallace, 2008) and as less suitable to perform tasks in the
fields that have been historically male-dominated (Hatmaker, 2013). The hiring pro-
cess is a significant social encounter, in which employers search for the most ‘suitable’
candidate to fill the position (Rivera, 2020, Kang et al., 2016). Research demonstrates
that ‘suitability’ is often defined categorically, is not neutral to bias, and is gendered
(McCall, 2005). The wording of job advertisements, in particular, may play a role in
generating such gender inequality. For instance, Bem and Bem (1973) and Kuhn et al.
(2020) show that job advertisements with explicitly gendered words discourage poten-
tial applicants of the opposite gender from applying, even when they are qualified to

CHAPTER 5. Applications of Constrained Density Fusion 83

do so, which in turn reinforces the imbalance. More recent studies (Born and Taris,
2010, Askehave and Zethsen, 2014) have shown that words describing gendered traits
and behaviors may also entail gendered responses from potential job applicants. Fe-
male students are substantially more attracted to advertisements that contain feminine
traits than masculine traits (Born and Taris, 2010). Traits favored in leadership roles are
predominately considered to be male-biased, correlating with the gender imbalance in
top-management positions (Askehave and Zethsen, 2014). It has been shown that such
bias co-exists with the salary gap where, on average, job posts that favor masculine traits
offer higher salaries compared with job posts that favor feminine traits (Arceo-Gómez
et al., 2020). Research also shows that using gender-neutral terms (e.g., police officer)
or masculine/feminine pairs (e.g., policeman/policewoman) can help reduce gender bar-
rier and attract both male and female applicants (Horvath and Sczesny, 2016, Sczesny
et al., 2016, Bem and Bem, 1973).

5.2.1.2 Bias evaluation at the text level

Many studies can be found that collect and identify masculine and feminine words as
a measure of gendered wording (Bem and Bem (1973); Bem (1974); Gaucher et al.
(2011)). These word lists are consistent with previous research that examined gen-
der differences in language use (Newman et al., 2008). Given the list of gender-coded
words, text-level bias can be quantified by measuring the occurrences of each word
in the list. Gaucher et al. (2011) calculated the percentage of masculine and femi-
nine words in the text to produce two separate scores, for male and female biases re-
spectively, to reveal the fact that job advertisements in male-dominated industries and
female-dominated industries exhibit different score pairs. Tang et al. (2017) presents a
slightly different approach where they assign weights to each gendered word by their
level of gender implications that accumulate over the whole text, with the effects of
masculine words and feminine words offsetting each other Tang et al. (2017).

Another technique of bias evaluation relies on the use of word embeddings. Using
this technique, we can evaluate the level of bias owing to the fact that gender stereotype
bias can be passed on from corpus to the embedding model through training (Bolukbasi
et al., 2016). The Word Embedding Association Test (WEAT), proposed by Caliskan
et al. (2017), is an analogue to the Implicit Association Test (IAT) used in Psychology
studies. The purpose of WEAT is to test and quantify that two groups of target words,
e.g., male-dominated professions vs. female-dominate professions, are indeed biased
towards two groups of attribute words, e.g., {he}, {she}. A similar strategy is devel-
oped in Garg et al. (2018) called Relative Norm Distance (RND) which tests a single
group of target words against two groups of attribute words, though the idea is much the
same as WEAT. The bias of each word is evaluated by computing the difference in norm

84 CHAPTER 5. Applications of Constrained Density Fusion

distance between the word from a masculine word group and a feminine word group.
This approach can be easily extended to the text level by averaging the bias score of
each word in text (Kwak et al., 2021) or taking the average of word vectors prior to bias
evaluation.

5.2.2 Modeling Gender Bias

Using gender-indefinite words alone does not remove gender signaling completely,
since agentic attributes (e.g., active and adventurous), are usually considered to be mas-
culine, and communal attributes (e.g., considerate and sympathetic), are often consid-
ered feminine. These attributes may be favored for certain job positions and it may
not always be possible to find neutral alternatives to replace them. Thus it is more rea-
sonable for the writer to keep these words while using words in the opposite gender to
achieve inclusivity of both female and male applicants. Therefore, our methodology of
mitigating bias in text involves the following steps:

1. Build an evaluation model of gender bias in words and texts;

2. Model probability distribution for the word occurrence of each group;

3. Provide guidance on how many words from each group should be used to mitigate
bias.

5.2.2.1 Quantifying gender bias by words

To measure gender bias in job advertisements, we use a list of words that contain gen-
dered psychological cues that may signal the employer’s gender preferences for job can-
didates. Our word list builds on established inventories, i.e., Bem (1974) and Gaucher
et al. (2011) inventories, which contain words that are well-established in the literature
to signal implicit gender bias. Our word list also includes a further set of cues iden-
tified from job advertisements using expert coding that have not been included in the
Bem and Gaucher inventories. For a full list of words used in our analysis and detailed
information on the latter list, please see Konnikov et al. (2021). Moreover, we assume
that every word in the masculine and feminine groups has a different level of signaling,
so the words are sub-grouped further, in this case into two subgroups for computational
simplicity, where each group of words is split into strongly or weakly masculine (or
feminine) sets. In our setup, we used the GloVe Pennington et al. (2014) word embed-
ding to achieve the split.

We assume that the overall bias expressed from a piece of text is equal to the sum
of the bias expressed from each word, and more importantly, the effect of masculine
words can be canceled out by the usage of feminine words in suitable proportions. Let
Yi denote the bias score of the i-th job text and Xi = (Xi,sm, Xi,wm, Xi,sf, Xi,wf) denote

CHAPTER 5. Applications of Constrained Density Fusion 85

the number of occurrences of each word in the i-th job text aggregated according to the
word groups, i.e., Xi,sf denote the total number of strongly feminine words appearing in
the i-th job text. Let β0,β denote the model parameter, then

Yi = β0 + β
⊤Xi.

5.2.2.2 Gender bias score at the text level

To collect the data for response Yi in a comprehensive manner, we combine two different
metrics to measure the bias at the text level. The first approach is based on the method
proposed by Gaucher et al. (2011), which measures the bias purely through word counts
and produces a score in {−1, 0, 1} for feminine, neutral and masculine respectively.
Since a discrete bias score is not adequate for capturing the degree of bias in texts, we
adopted a word counting approach but modified the metric to give a continuous output
in [−1, 1]. The score is computed as follows. The sign of the score is determined as
in Gaucher et al. (2011) where a negative value represents feminine bias and a positive
value represents masculine bias. The magnitude of the score is computed using the
following equation:

|S1| = max

{
Xmas −Xfem

Xmas
,
Xfem −Xmas

Xfem

}
, (5.7)

in which case when Xmas = Xfem the measure will output 0.

However, this measure does not consider potential differences in the levels of bias
exhibited by different words. Thus, we consider a second bias metric similar to the
Relative Norm Distance (RND) (Garg et al., 2018) or the Word Embedding Association
Test (WEAT) (Caliskan et al., 2017) with the help of a word embedding. Let V be a
word embedding of choice, then V can be seen as a mapping of V : W → Rd, where
W is the vocabulary of the embedding, i.e., the set of all words it can recognize. Every
word in its vocabulary W is assigned a vector of dimension d, which is 300 in GloVe.
With some abuse of notation, we let Vw = V (w) whenever w ∈ W .

Since we need a text-level score, we average the word vectors from the same text
to produce a text vector and compute its cosine distance to each of the masculine and
feminine words in our word list. The difference in average cosine distance is our second
score:

S2 =
1

|M|
∑
w∈M

VT · Vw
∥VT∥ ∥Vw∥

− 1

|F|
∑
w∈F

VT · Vw
∥VT∥ ∥Vw∥

, VT =
1

|T |
∑
w∈T

Vw, (5.8)

where T denotes the text with its cardinality |T | defined as the number of words in T , Vw
denote the word vector of word w, and M, F denotes the set of masculine and feminine
words, respectively. The scores S1 and S2 are combined through a linear combination

86 CHAPTER 5. Applications of Constrained Density Fusion

Algorithm 26: Text-bias evaluation
Input: List of masculine-coded words M; List of feminine-coded words F ;
Word embedding V ;
Text T to be evaluated;
Combination coefficient λ;

1 Count the number of masculine and feminine words in T and get Xm, Xf ;

2 Compute score S1=sign(Xm-Xf)max
{
Xm−Xf
Xm

, Xf−Xm
Xf

}
;

3 Compute text vector VT = 1
|T |
∑

w∈T Vw;
4 Initialize Sm = 0;
5 Initialize Sf = 0;
6 foreach Masculine word w in Masculine list do
7

Sm +=
VT · Vw

∥VT∥ ∥Vw∥

8 end
9 foreach Feminine word w in Feminine list do

10

Sf +=
VT · Vw

∥VT∥ ∥Vw∥

11 end
12 Compute S2 =

1
MSm + 1

FSf ;
Output: Combined score Sλ = S1 + λS2

with coefficient λ to produce the final bias score for every text. In practice, λ is tuned
through grid search, choosing the one with the largest R2 value in the fitting stage (see
the next section).

5.2.2.3 Bias Reduction as a Sampling Problem

The combined scores can be used to estimate the model parameters
(
β̂0, β̂

)
through lin-

ear regression. With the model parameters
(
β̂0, β̂

)
estimated, the goal is to minimize

the overall bias by adjusting the frequency of different word types xi. In theory, elimi-
nating the use of gender-biased words may eliminate the bias completely. However, this
is usually not possible since it can be hard to find neutral replacements for every word.
Thus, we would like to seek a minimal adjustment to the word counts while reducing
the bias. We would need to statistically model the word counts so that the debiased
word count is highly correlated with the original word counts while satisfying some
constraint (of zero bias) at the same time.

Although word counts are always integers, due to the complexity of solving proba-
bilistic integer programming problems, we instead consider the continuous version with

CHAPTER 5. Applications of Constrained Density Fusion 87

a deterministic objective:
β̂0 + β̂

⊤Xi = 0. (5.9)

where Xi is allowed to be a real vector which we can later round to an integer vector
after debiasing.

With respect to the constraint above, the distribution of Xi should also be modeled
in order for the adjusted word counts to be as close to the original as possible. However,
a set of discrete random variables has almost no chance of meeting the zero bias objec-
tive in (5.9). In this case, we consider the Gamma distribution as a continuous substitute
for Poisson distribution since it is also non-negative. We assume that each job text is an
instance of its own text distribution and thus every word count is from the same distri-
bution but with distinct parameters, even for word counts of the same group. Therefore,
rather than finding a common posterior distribution for the word count for each group,
we would like to parameterize each distribution separately. To avoid over-complication,
we leave 1 degree of freedom for each word count distribution to adjust its mean while
using a common rate parameter for each group. Let Xi = (Xi,sm, Xi,wm, Xi,sf, Xi,wf)

and for each word group g ∈ G := {sm,wm, sf,wf}, Xi,g ∼ Γ(αi,g, ψg) with the
density function given by

fi,g(x) =
ψ
αi,g
g

Γ(αi,g)
xαi,g−1 exp(−ψgx), αi,g := X̃i,gψg, (5.10)

where ψg is the fitted rate parameter using the collected word counts for each word
group g separately and the mean of the distribution is chosen as the unadjusted word
count X̃i,g for group g in text i. Now we have the following constrained distribution for
job post i:

fi(Xi) =
∏
g∈G

fi,g(Xi,g;αi,g, ψg) w.r.t. β̂⊤Xi = −β̂0. (5.11)

Finally, we can sample the unknown debiased word counts by simulating from the above
distribution to give a natural choice of wording that also reduces the bias.

5.2.2.4 Constrained density fusion

Let d = |G| denote the number of different word types. Recall that our target is to
sample from the constrained product density function

f(X) ∝
∏
g∈G

f(Xg;αg) w.r.t. β̂⊤X = −β̂0, (5.12)

88 CHAPTER 5. Applications of Constrained Density Fusion

whereX = (Xsm, Xwm, Xsf, Xwf). Hence, Algorithm 23 or 25 can be applied to sample
from the target distribution. Consider the following proposal distribution h(X,Y):

h(X,Y) ∝
d∏
j=1

f(Xj;αj)× ηβ̂(X)×
Nd (Y ;X, TId)1{β̂⊤Y =−β̂0}

ηβ̂(X)
×Q, (5.13)

where

Q = EW(T,X,Y)
[Φ(ω)] , Φ(ω) = exp

[
−

d∑
j=1

∫ T

0

ϕi(ω
(i)
s)ds

]
. (5.14)

Using ′ to denote the derivative symbol, the definition of ϕi is given by

ϕi(x) =
1

2

[
A′
i(x)

2 + A′′
i (x)

]
− li, Ai(x) := log fi(x), (5.15)

with li > −∞ being a lower bound of ϕi. Finally, the normalizing constant η is

ηβ̂(X) = exp

[
− 1

2TB

(
β̂0 + β̂

⊤X
)2]

, B =
∣∣∣∣∣∣β̂∣∣∣∣∣∣2 .

Usually, it would be preferable to implement the particle filter approach as in Algorithm
25 for better efficiency. Since we are not simulating time series in this case, one does
not need to maintain and update the weight of the particles, where the algorithm es-
sentially becomes an importance sampling. By estimating the rejection probability, the
rejection sampling can be turned into an importance sampling approach as presented in
Algorithm 27. The shape parameters ψg in the algorithm are assumed to be known. In
practice, we can estimate a shape parameter for each word group by fitting a Gamma
distribution to the existing data. After simulating enough weighted samples, one can
use the estimated mean as the debiased result. The rounded figure suggests how many
words of each group should be included in the paraphrased text.

5.2.3 Application Result

In this section, we test the evaluation and debiasing strategy and algorithms on a real
job post dataset that consists of 100,000 data points collected from one of the largest
job advertising platforms in the UK. The raw dataset contains job post information in-
cluding job title, job sector, job description, job location, full time or part time job,

and salary. Although job titles can be biased towards a certain gender, such gendered
words have always appeared as part of a pair in the job titles in our dataset, e.g., post-
man/postwoman. Since the other fields are not the primary interest of this paper, we
focused only on the job description data containing the main advertisement text.

The job texts are parsed from HTML to plain text and further processed to remove

CHAPTER 5. Applications of Constrained Density Fusion 89

Algorithm 27: Bias reduction on word counts

Input: Word Counts X̃sm, X̃wm, X̃sf, X̃wf;
Bias weights β̂ = (βsm, βwm, βsf, βwf);
Intercept β̂0;
Gamma rate parameter ψg for each word group, estimated from the dataset;
Number of samples N ; Tuning parameter T ;

1 foreach word group g in G do
2 Compute gamma shape parameter αg = X̃gψg;
3 end
4 for i = 1,. . . , N do
5 foreach word group g in G do
6 Sample Xi,g ∼ Γ(αg, ψg);
7 end
8 Simulate Yi ∼ N (Xi, T Id)1{β̂⊤Yi=−β̂0};

9 Compute normalizing constant ηβ̂(Xi);
10 Compute the Poisson estimate Φ̂i of Qi;
11 Importance weight wi = ηβ̂(Xi) ∗ Φ̂i;
12 end
13 Ȳ =

∑N
i=1wiYi;

Output: Empirical mean Ȳ rounded to the nearest integer;

symbols. Then, the word counts are conducted by counting the total number of words
in an advertisement and counting the occurrences of every word in our word list (see
Konnikov et al. (2021) for a full list of words). Some entries in the word list are root
words, e.g., aggress*, in which case any variant that matches this root, e.g., aggressive

and aggression, shares the same counter. Sometimes regex can match words that are
misspelled, which should not be counted. In this case, we filter out these words by
checking if they are contained in a dictionary. We used WordNet in our implementation.

In the end, the word counts are aggregated according to their word groups, {strongly,
weakly} × {masculine, feminine}. The split is achieved using the GloVe word embed-
ding (Pennington et al., 2014) by ranking the cosine similarity between each word and
the gender direction he− she.

5.2.3.1 Bias score

The text-level bias score is evaluated by combining two distinct measures based on word
counts (Gaucher et al., 2011) and word embeddings (Garg et al., 2018), respectively, as
described in Algorithm 26. Let Sλ denote the combined score using coefficient λ, in this
case, λ = 2 which gives the best R2 score in the regression stage compared with other
candidates in the grid search. We formulate and solve the linear regression problem

Si,λ = β0 + βsmX̃i,sm + βwmX̃i,wm + βsfX̃i,sf + βwfX̃i,wf + ϵi,

90 CHAPTER 5. Applications of Constrained Density Fusion

Estimate Std. Error t value

Intercept −0.1439 *** 0.0035 −40.78

Strong masculine 0.1580 *** 0.0008 199.42

Weak masculine 0.0073 *** 0.0004 16.39

Strong feminine −0.1824 *** 0.0016 −115.45

Weak feminine −0.1440 *** 0.0008 −175.35

R2 0.465

*** p < 0.001

Table 5.1 Estimated weight for each word group.

Fig. 5.4 Histogram of bias score distribution (A) before and (B) after debiasing algo-
rithm is applied. Both scores are measured using the fitted metric in Section 4.1.

where ϵi is i.i.d. Gaussian noise and X̃i,g is the word count for word group g in the
i-th text. The fitted parameters are shown in Table 5.1. We can see from the R2 that
the regression model fits the estimated bias score reasonably well given the relatively
simple and crude split of word groups. Let Sβ denote the bias score estimated using the
model parameters. Our fitted bias evaluation Sβ is consistent with the combined bias
score Sλ with a high Pearson’s correlation, cor(Sλ, Sβ) = 0.68.

The direction of bias in the bias score is recovered with positive towards masculine

and negative towards feminine. In addition, the regression parameter validates the
strong/weak split as the strong groups have coefficients with a larger magnitude than the
weak groups. Overall, we can see that masculine words are assigned smaller weights,
which can be caused by the wider usage of masculine words in the job text, similarly
for the intercept which is negative.

CHAPTER 5. Applications of Constrained Density Fusion 91

Fig. 5.5 (A) Raw improvement and (B) percentage improvement plotted against the un-
signed bias score before debiasing. In the percentage plot, only positive improvements
are plotted since the points with negative improvement were already close to no bias
and thus not relevant to the context.

Statistics Among those with

all data improv. > 0 bias > 0.23 bias > 0.75

mean |before| 0.4149 0.4536 0.6269 1.2362

mean |after| 0.0628 0.0588 0.0647 0.0677

mean improv. 0.3521 0.3948 0.5623 1.1685

mean % improv. 32.77% 75.92% 86.08% 93.89%

Table 5.2 Mean unsigned bias before and after debiasing with mean improvement and
percentage improvement for different groups of data.

5.2.3.2 Debiasing Result

With the bias weights β̂ and intercept β̂0 estimated, we progress to sample the debi-
ased word counts to reduce overall bias while keeping the relevant word counts close
to the original version. For each word group, we fit a Gamma distribution to the
100,000 data points to get the corresponding rate parameter, (ψsm, ψwm, ψsf, ψwf) =

(0.362, 0.258, 0.353, 0.350). Then we assume that the word count of group g in the
i-th text Xi,g, g ∈ G is a random variable that follows a Gamma distribution, Xi,g ∼
Γ(X̃i,gψg, ψg). Let f(Xi,g) given by (5.10) denote its density function. To debias each
job text, we consider sampling from the target distribution (5.12)

The simulation is done by following Algorithm 27, and Figure 5.4 shows a compar-
ison of bias score distribution before and after applying our bias mitigation approach.

92 CHAPTER 5. Applications of Constrained Density Fusion

Before debiasing, the majority of job advertisements have bias scores between −2.0 and
2.0. After the bias mitigation, the bias score distribution is reduced to between −0.25

and 0.25 as shown in Figure 26 (b), with a high concentration around 0.
The individual improvements are plotted in Figure 5.5a and 5.5b. The bias im-

provement is computed by taking the difference between the unsigned (absolute value)
bias score before debiasing and the unsigned bias score after debiasing. To avoid over-
crowding the scatter plot, both Figure 5.5a and 5.5b contain 3000 randomly sampled
data points from the output. In Figure 5.5a, the bias improvement is strongly linear
with the unsigned bias before debiasing and the linear relation has a slope close to 1.
More importantly, the majority of points (over 90%) have positive improvements while
the points with negative improvements have a very small unsigned bias score (< 0.23)
in the first place. In practice, the debiasing process of these points can be omitted since
their original level of gender bias is close to 0.

Therefore, we only use the points with positive improvements in Figure 5.5b, where
the percentage improvement is plotted against the unsigned bias score before debiasing.
Overall, 67.7% of the points have percentage improvements greater than 75%, and the
percentage increases to 99.9% for those with unsigned bias score greater than 0.75.
From Table 5.2 we can see that the mean improvement gets better when we filter out
texts with a lower magnitude of bias. For texts with a bias score of > 0.75, the mean
improvement percentage is 93.89% while the mean bias score after debiasing is 0.0677,
which is very close to the mean debiased score across all data points 0.0628.

CHAPTER 6

Discussion

Perfect sampling is an important area in computational statistics that demands further
exploration and research. The promise of having no convergence issue is an attractive
advantage for favoring exact methods over non-exact (MCMC) algorithms. On the list
of perfect sampling algorithms we introduced in this thesis, we started with the most
general framework which is ”rejection sampling” where one samples from the proposal
distribution and corrects the outcomes by a rejection step using a probability propor-
tional to the density quotient. We showed that the rejection sampling framework can
also be extended to simulate diffusion bridges which are fundamentally infinite dimen-
sional random variables. Based on the simulation of diffusion bridges, we introduced
the Monte Carlo Fusion algorithm that samples from product densities. Although MCF
is again an algorithm for sampling from finite dimensions, its rejection does not require
the estimation of the bounding constant M in the usual rejection sampling (Algorithm
2). This boosts the versatility of rejection sampling and allows it to be implemented
easily on product densities.

Although the mechanism of MCF is based on simulating diffusion processes, only
the endpoint is returned as the accepted sample, which means the time length T can be
chosen freely. From Chapter 3, we discussed the problem that when T is inappropriate,
the efficiency of the algorithm drops significantly. For that purpose, we introduced
and investigated the setup where the tuning parameter T can be chosen separately for
different fusion components. In short, choosing Ti separately does boost performance
provided that the values are appropriately tuned. However, the tuning strategy may be
further improved by better estimating the second acceptance probability.

In chapter 4, we looked at another extension of the MCF algorithm which allows it
to simulate the product density with respect to a linear constraint. We have analyzed
theoretically, in the Gaussian case, that adding a sum constraint to an unconstrained
model could in many cases improve the MSE. One must be aware that adding the con-
straint does not make the mean estimation closer to the true value in every dimension.
The main benefit of applying the sum constraint is to reduce uncertainty in the model
and such reduction in uncertainty outweighs the marginal increase in bias in cases when
the mean estimation is relatively accurate but the uncertainty is high. Through simu-

93

94 CHAPTER 6. Discussion

lation, we have also shown the effect of applying such sum constraint to some other
non-Gaussian models and the theoretical result carried over quite well.

The extension is demonstrated to be effective when dealing with imputation prob-
lems in time series models, where the problem of uncertainty propagation becomes
rather significant. In the first application setting, we mainly looked at the problem of
oversampling, i.e., magnifying the frequency of a time series by imputing the higher
frequency readings with respect to a sum constraint. This is applicable to all time series
that record accumulated values like consumption or flow, e.t.c. The same approach can
also be applied to imputing missing values in time series provided that the aggregated
value exists. Another application we examined is to reduce the aggregated bias in a
piece of text, which happens to have a sum constraint. Although the bias evaluation
model is rather simple, we showed that the potential applications of this algorithm are
not limited to time series models.

As for future work, we can see several potential improvements to the works sum-
marized in this thesis:

• The layered partition of the path space in the path-space rejection sampling algo-
rithm (Algorithm 19) is defined across the full time length. However, when the
starting and ending pointsX0 andXt are distant from each other, the width of the
layer interval will be large. As a result, the upper bound for ϕ could be large even
for the first layer. If it is possible to apply different layer intervals for different
time sections of the path, e.g., by incrementally deciding the position of skeleton
points, one should be able to improve the acceptance rate by having tighter layer
bounds.

• The tuning algorithm for the time parameter in Chapter 3 could be improved by
better estimating the expectation of acceptance rate AP2. One may also consider
a hierarchical model for tuning the set of time parameters ti.

• In all the diffusion simulations we presented in this thesis, the proposal diffu-
sion is always a Brownian motion. Though the choice is not limited, one may
consider other proposal diffusion processes like the Ornstein-Uhlenbeck process
(Dai et al., 2019) or other guided proposal processes Schauer et al. (2017).

• Chapter 4 and 5 worked with the linearly constrained MCF algorithm which we
were able to derived smoothly from the base MCF setup due to the use of the
Gaussian proposal. However, in non-linear constraints, there is no obvious way
to sample the two ends of the diffusion process. Extending MCF to address non-
linear constraints would be an interesting and challenging work to take on, where
one shall find an efficient way to generate proposals that land exactly on the con-
straint.

CHAPTER 6. Discussion 95

• In the energy consumption disaggregation problems, we used several indepen-
dent time series to model the different fusion components, e.g., three independent
time series are used for disaggregating the daily consumption into tridaily read-
ings. This imposes a rather strong assumption that could undermine the model
performance. It would be worth considering using multi-dimensional distribu-
tions to model the fusion components so that the correlations between them can
be retained.

References

Amann, H. and Escher, J. (2009), Analysis III, Springer.

Arceo-Gómez, E. O., Campos-Vázquez, R. M., Salas, R. Y. B. and López-Araiza, S.
(2020), Gender stereotypes in job advertisements: What do they imply for the gender
salary gap?, in ‘Mexico. Retrieved from http://conference. iza. org/conference files’.

Askehave, I. and Zethsen, K. K. (2014), ‘Gendered constructions of leadership in Dan-
ish job advertisements’, Gender, Work and Organization 21(6), 531–545.

Asmussen, S., Glynn, P. and Pitman, J. (1995), ‘Discretization error in simulation
of one-dimensional reflecting brownian motion’, The Annals of Applied Probability

5(4), 875–896.

Asselin, P., Evans, R. F. L., Barker, J., Chantrell, R. W., Yanes, R., Chubykalo-Fesenko,
O., Hinzke, D. and Nowak, U. (2010), ‘Constrained monte carlo method and cal-
culation of the temperature dependence of magnetic anisotropy’, Physical Review B

82(5), 054415.

Bem, S. L. (1974), ‘The measurement of psychological androgyny.’, Journal of Con-

sulting and Clinical Psychology 42(2), 155.

Bem, S. L. and Bem, D. J. (1973), ‘Does sex-biased job advertising “aid and abet” sex
discrimination?’, Journal of Applied Social Psychology 3(1), 6–18.

Bertoin, J. and Pitman, J. (1994), ‘Path transformations connecting brownian bridge,
excursion and meander’, Bulletin des sciences mathématiques 118(2), 147–166.

Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2008), ‘A factorisation of dif-
fusion measure and finite sample path constructions’, Methodology and Computing in

Applied Probability 10(1), 85–104.

Beskos, A., Papaspiliopoulos, O., Roberts, G. O. and Fearnhead, P. (2006), ‘Exact and
computationally efficient likelihood-based estimation for discretely observed diffusion
processes (with discussion)’, Journal of the Royal Statistical Society: Series B (Statis-

tical Methodology) 68(3), 333–382.

96

References 97

Beskos, A., Roberts, G. O. et al. (2005), ‘Exact simulation of diffusions’, The Annals

of Applied Probability 15(4), 2422–2444.

Binder, K. (1997), ‘Applications of monte carlo methods to statistical physics’, Reports

on Progress in Physics 60(5), 487.

Bird, G. (1981), ‘Monte-carlo simulation in an engineering context’, Progress in Astro-

nautics and Aeronautics 74, 239–255.

Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V. and Kalai, A. T. (2016), ‘Man
is to computer programmer as woman is to homemaker? Debiasing word embeddings’,
Advances in Neural Information Processing Systems 29, 4349–4357.

Born, M. P. and Taris, T. W. (2010), ‘The impact of the wording of employment adver-
tisements on students’ inclination to apply for a job’, The Journal of Social Psychology

150(5), 485–502.

Brubaker, M., Salzmann, M. and Urtasun, R. (2012), A family of mcmc methods on
implicitly defined manifolds, in ‘Artificial Intelligence and Statistics’, pp. 161–172.

Burger, P., Bezençon, V., Bornemann, B., Brosch, T., Carabias-Hütter, V., Farsi, M.,
Hille, S. L., Moser, C., Ramseier, C., Samuel, R., Sander, D., Schmidt, S., Sohre, A.
and Volland, B. (2015), ‘Advances in understanding energy consumption behavior and
the governance of its change – outline of an integrated framework’, Frontiers in Energy

Research, https://doi.org/10.3389/fenrg.2015.00029 .

Byrne, S. and Girolami, M. (2013), ‘Geodesic monte carlo on embedded manifolds’,
Scandinavian Journal of Statistics 40(4), 825–845.

Caliskan, A., Bryson, J. J. and Narayanan, A. (2017), ‘Semantics derived automatically
from language corpora contain human-like biases’, Science 356(6334), 183–186.

Chow, W. C. (2009), ‘Brownian bridge’, Wiley interdisciplinary reviews: computational

statistics 1(3), 325–332.

Chua, A. J. (2020), ‘Sampling from manifold-restricted distributions using tangent bun-
dle projections’, Statistics and Computing 30(3), 587–602.

Cong, Y., Chen, B., Zhou, M. et al. (2017), ‘Fast simulation of hyperplane-truncated
multivariate normal distributions’, Bayesian Analysis 12(4), 1017–1037.

Dai, H. (2019), ‘A review on the exact monte carlo simulation’, Bayesian Inference on

Complicated Data .

98 References

Dai, H., Pollock, M. and Roberts, G. (2019), ‘Monte carlo fusion’, Journal of Applied

Probability 56(1), 174–191.

Davis, P. J. and Rabinowitz, P. (2007), Methods of numerical integration, Courier Cor-
poration.

De Bernardis, C., Vicente-Guijalba, F., Martinez-Marin, T. and Lopez-Sanchez, J. M.
(2016), ‘Particle filter approach for real-time estimation of crop phenological states
using time series of ndvi images’, Remote Sensing 8(7), 610.

Djuric, P. M., Huang, Y. and Ghirmai, T. (2002), ‘Perfect sampling: a review and appli-
cations to signal processing’, IEEE Transactions on Signal processing 50(2), 345–356.

Douc, R. and Cappé, O. (2005), Comparison of resampling schemes for particle filter-
ing, in ‘Ispa 2005. proceedings of the 4th international symposium on image and signal
processing and analysis, 2005.’, IEEE, pp. 64–69.

Doucet, A., Johansen, A. M. et al. (2009), ‘A tutorial on particle filtering and smoothing:
Fifteen years later’, Handbook of nonlinear filtering 12(656-704), 3.

Durrett, R. (2019), Probability: theory and examples, Vol. 49, Cambridge university
press.

Fearnhead, P. (2005), ‘Using random quasi-monte-carlo within particle filters, with ap-
plication to financial time series’, Journal of Computational and Graphical Statistics

14(4), 751–769.

Fearnhead, P., Papaspiliopoulos, O. and Roberts, G. O. (2008), ‘Particle filters for par-
tially observed diffusions’, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 70(4), 755–777.

Fishman, G. (2013), Monte Carlo: concepts, algorithms, and applications, Springer
Science and Business Media.

Fleiss, J. (1993), ‘Review papers: The statistical basis of meta-analysis’, Statistical

methods in medical research 2(2), 121–145.

Flury, B. D. (1990), ‘Acceptance–rejection sampling made easy’, Siam Review

32(3), 474–476.

Friedman, A. (1975), Stochastic Differential Equations and Applications: Volume 1,
Elsevier Science.

Garg, N., Schiebinger, L., Jurafsky, D. and Zou, J. (2018), ‘Word embeddings quantify
100 years of gender and ethnic stereotypes’, Proceedings of the National Academy of

Sciences 115(16), E3635–E3644.

References 99

Gaucher, D., Friesen, J. and Kay, A. C. (2011), ‘Evidence that gendered wording in
job advertisements exists and sustains gender inequality.’, Journal of Personality and

Social Psychology 101(1), 109.

Girsanov, I. V. (1960), ‘On transforming a certain class of stochastic processes by abso-
lutely continuous substitution of measures’, Theory of Probability and Its Applications

5(3), 285–301.

Glasserman, P. (2004), Monte Carlo methods in financial engineering, Vol. 53,
Springer.

Haggstrom, O. and Nelander, K. (1999), ‘On exact simulation of markov random fields
using coupling from the past’, Scandinavian Journal of Statistics 26(3), 395–411.

Hansen, N. R. (2003), ‘Geometric ergodicity of discrete-time approximations to multi-
variate diffusions’, Bernoulli 9(4), 725–743.

Hatmaker, D. M. (2013), ‘Engineering identity: Gender and professional identity nego-
tiation among women engineers’, Gender, Work and Organization 20(4), 382–396.

Horvath, L. K. and Sczesny, S. (2016), ‘Reducing women’s lack of fit with leadership
positions? Effects of the wording of job advertisements’, European Journal of Work

and Organizational Psychology 25(2), 316–328.

Huang, Y., Wang, X., Guo, Y. and An, W. (2017), State estimation with incomplete lin-
ear constraint, in ‘2017 20th International Conference on Information Fusion (Fusion)’,
IEEE, pp. 1–6.

Huber, M. (1998), Exact sampling and approximate counting techniques, in ‘Proceed-
ings of the thirtieth annual ACM symposium on Theory of computing’, pp. 31–40.

Itô, K. (1951), ‘On a formula concerning stochastic differentials’, Nagoya Mathemati-

cal Journal 3, 55–65.

Kang, S. K., DeCelles, K. A., Tilcsik, A. and Jun, S. (2016), ‘Whitened résumés: Race
and self-presentation in the labor market’, Administrative Science Quarterly 61(3), 469–
502.

Karatzas, I. and Shreve, S. (2012), Brownian motion and stochastic calculus, Vol. 113,
Springer Science and Business Media.

Kibria, B. G. and Joarder, A. H. (2006), ‘A short review of multivariate t-distribution’,
Journal of Statistical research 40(1), 59–72.

Kingman, J. F. C. (1992), Poisson processes, Vol. 3, Clarendon Press.

100 References

Konnikov, A., Denier, N., Hu, Y., Hughes, K. D., Ding, L., Al-Ani, J. A., Rets, I. and
Tarafdar, M. (2021), ‘Word inventory for work and employment diversity, (in)equality
and inclusivity’. pre-print on SocArXiv.

Kuhn, P., Shen, K. and Zhang, S. (2020), ‘Gender-targeted job ads in the recruit-
ment process: Facts from a Chinese job board’, Journal of Development Economics

147, 102531.

Kwak, H., An, J., Jing, E. and Ahn, Y.-Y. (2021), ‘Frameaxis: Characterizing mi-
croframe bias and intensity with word embedding’, PeerJ Computer Science 7, e644.

Lee, R. D. and Carter, L. R. (1992), ‘Modeling and forecasting us mortality’, Journal

of the American Statistical Association 87(419), 659–671.

Maggs, A. (2005), ‘Monte carlo simulation of a model of water’, Physical Review E

72(4), 040201.

Manning, W. G., Basu, A. and Mullahy, J. (2005), ‘Generalized modeling approaches
to risk adjustment of skewed outcomes data’, Journal of Health Economics 24(3), 465–
488.

Mazhdrakov, M., Benov, D. and Valkanov, N. (2018), The Monte Carlo method: engi-

neering applications, ACMO Academic Press.

McCall, L. (2005), ‘The complexity of intersectionality’, Signs: Journal of Women in

Culture and Society 30(3), 1771–1800.

Meng, F., Zeng, X.-J., Zhang, Y., Dent, C. J. and Gong, D. (2018), ‘An integrated
optimization+ learning approach to optimal dynamic pricing for the retailer with multi-
type customers in smart grids’, Information Sciences 448, 215–232.

Meyn, S. P. and Tweedie, R. L. (2012), Markov chains and stochastic stability, Springer
Science and Business Media.

Mitha, F. and Huber, M. L. (2012), ‘Monotonic multigamma coupling for perfect sam-
pling’, Journal of Statistical Computation and Simulation 82(4), 603–622.

Murdoch, D. J. and Green, P. J. (1998), ‘Exact sampling from a continuous state space’,
Scandinavian Journal of Statistics 25(3), 483–502.

Murray, L. M. (2013), ‘Bayesian state-space modelling on high-performance hardware
using libbi’, arXiv preprint arXiv:1306.3277 .

Newman, M. L., Groom, C. J., Handelman, L. D. and Pennebaker, J. W. (2008), ‘Gender
differences in language use: An analysis of 14,000 text samples’, Discourse Processes

45(3), 211–236.

References 101

Pennington, J., Socher, R. and Manning, C. D. (2014), Glove: Global vectors for word
representation, in ‘Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP)’, pp. 1532–1543.

Peppanen, J., Zhang, X., Grijalva, S. and Matthew, R. (2016), ‘Handling bad or missing
smart meter data through advanced data imputation’, Conference: IEEE PES Innovative

Smart Grid Technologies (ISGT), September, DOI: 10.1109/ISGT.2016.7781213 .

Pitman, J. W. (1975), ‘One-dimensional brownian motion and the three-dimensional
bessel process’, Advances in Applied Probability 7(3), 511–526.

Pötzelberger, K. and Wang, L. (2001), ‘Boundary crossing probability for brownian
motion’, Journal of applied probability 38(1), 152–164.

Poursharif, G., Brint, A., Black, M. and Mark, M. (2017), ‘Analysing the ability of
smart meter data toprovide accurate information to the ukdnos’, 24th International Con-

ference and Exhibition on Electricity Distribution (CIRED), September .

Propp, J. G. and Wilson, D. B. (1996), ‘Exact sampling with coupled markov chains and
applications to statistical mechanics’, Random Structures and Algorithms 9(1-2), 223–
252.

Rafsanjani, H. N., Moayedi, S., Ahn, C. R. and Alahmad, M. (2020), ‘A load-
disaggregation framework to sense personalized energy-use information in commercial
buildings’, Energy and Buildings 207, 109633.

Rivera, L. A. (2020), ‘Employer decision making’, Annual Review of Sociology

46, 215–232.

Robert, C. P., Casella, G. and Casella, G. (1999), Monte Carlo statistical methods,
Vol. 2, Springer.

Roberts, G. O. and Rosenthal, J. S. (2004), ‘General state space markov chains and
mcmc algorithms’, Probability surveys 1, 20–71.

Roberts, G. O. and Tweedie, R. L. (1996), ‘Exponential convergence of langevin distri-
butions and their discrete approximations’, Bernoulli pp. 341–363.

Schauer, M., Van Der Meulen, F. and Van Zanten, H. (2017), ‘Guided proposals for
simulating multi-dimensional diffusion bridges’, Bernoulli 23(4A), 2917–2950.

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I. and McCul-
loch, R. E. (2016), ‘Bayes and big data: The consensus monte carlo algorithm’, Inter-

national Journal of Management Science and Engineering Management 11(2), 78–88.

102 References

Sczesny, S., Formanowicz, M. and Moser, F. (2016), ‘Can gender-fair language reduce
gender stereotyping and discrimination?’, Frontiers in Psychology 7, 25.

Shepp, L. A. (1979), ‘The joint density of the maximum and its location for a wiener
process with drift’, Journal of Applied probability 16(2), 423–427.

Smith, T. C., Spiegelhalter, D. J. and Thomas, A. (1995), ‘Bayesian approaches
to random-effects meta-analysis: a comparative study’, Statistics in medicine

14(24), 2685–2699.

Sohrab, G., Karambayya, R. and Burke, R. J. (2012), ‘Women in management in
Canada’, Women in Management Worldwide: Progress and Prospects pp. 165–181.

Tang, S., Zhang, X., Cryan, J., Metzger, M. J., Zheng, H. and Zhao, B. Y. (2017),
‘Gender bias in the job market: A longitudinal analysis’, Proceedings of the ACM on

Human-Computer Interaction 1(CSCW), 1–19.

Valenzuela, J. and Mazumdar, M. (2001), ‘Monte carlo computation of power gener-
ation production costs under operating constraints’, IEEE Transactions on Power Sys-

tems 16(4), 671–677.

Vrins, F. (2018), ‘Sampling the multivariate standard normal distribution under a
weighted sum constraint’, Risks 6(3), 64.

Wallace, J. E. (2008), ‘Parenthood and commitment to the legal profession: Are mothers
less committed than fathers?’, Journal of Family and Economic Issues 29(3), 478–495.

Wang, S., Li, R., Evans, A. and Li, F. (2020), ‘Regional nonintrusive load moni-
toring for low voltage substations and distributed energy resources’, Applied Energy

260, 114225.

Western Power Distribution Data Challenge (2013), https://codalab.lisn.
upsaclay.fr/competitions/213#learn_the_details.

Wilson, D. B. (2000), ‘How to couple from the past using a read-once source of ran-
domness’, Random Structures and Algorithms 16(1), 85–113.

Zappa, E., Holmes-Cerfon, M. and Goodman, J. (2018), ‘Monte carlo on manifolds:
Sampling densities and integrating functions’, Communications on Pure and Applied

Mathematics 71(12), 2609–2647.

https://codalab.lisn.upsaclay.fr/competitions/213#learn_the_details
https://codalab.lisn.upsaclay.fr/competitions/213#learn_the_details

	ABSTRACT
	ACKNOWLEDGEMENT
	Introduction
	Sampling and Monte Carlo Integration
	Applications of Monte Carlo Methods
	Bayesian Inference
	Ising Model

	Families of Sampling Methods
	Contributions

	Perfect Sampling
	Random Variables from Random Numbers
	Inversion Method
	Rejection Sampling

	Asymptotically Exact — Markov Chain Monte Carlo Methods
	Basic Notions of Markov Chain
	Some Properties and Results
	Metropolis-Hastings Algorithm
	Coupling from the Past

	Perfect Sampling for Diffusion Processes
	Diffusion Processes, Itô's Lemma and Girsanov Theorem
	Rejection Sampling for Diffusion Process
	Layered Construction for Brownian Bridges

	Monte Carlo Fusion
	Langevin Diffusion and Density Fusion
	Basic Notions
	Construction of Proposal Diffusion
	Fusion with Variable Time

	Acceptance Guided Parameter Tuning
	Acceptance Probability as Density
	Same t across all components
	Search grid from drawn samples
	Simulation Studies

	Monte Carlo Fusion under Linear Constraints
	Some Background in Constrained Simulation
	From Unconstrained to Constrained
	Unconstrained Case Revisited
	Restricted Radon-Nikodym Derivative
	Simulation from the Constrained Proposal

	Poisson Estimator and Particle Filter
	Mean Squared Error Analysis
	Effect of relative variance on MSE
	Simulation of Gaussian Case
	Simulation of Non-Gaussian case

	Applications of Constrained Density Fusion
	Time Series Disaggregation
	Background
	Imputation Framework
	Basic Time Series Model
	Study 1: Day-readings Disaggregation
	Study 2: Max-Min Prediction

	Bias Mitigation in Job Advertisements
	Background
	Modeling Gender Bias
	Application Result

	Discussion
	 REFERENCES

