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Intelligent Reflecting Surface-assisted Over-the-Air
Computation for Backscatter Sensor Networks

Sun Mao, Ning Zhang, Jie Hu, and Kun Yang

Abstract—For achieving efficient data aggregation and energy
supply in internet of things, this paper investigates the optimal
design for an intelligent reflecting surface (IRS)-aided backscat-
ter sensor network with over-the-air computation (AirComp).
To ensure the accuracy of data aggregation, this paper presents
a mean-squared error (MSE) minimization problem via jointly
optimizing the normalization factor, power splitting ratios of
backscatter devices (BDs), and phase shifts of IRS. Inspired by
the block coordinate descent technique, we propose an alter-
nating optimization method to solve the formulated non-convex
problem. Specifically, we derive the optimal normalization factor
and power splitting ratios in closed-form expressions, and exploit
the variable substitution technique and semi-definite relaxation
method to address the phase shift optimization subproblem.
Simulation results demonstrate the significant MSE reduction
achieved by the proposed method, in comparison with other
benchmark methods.

Index Terms—Intelligent reflecting surface, over-the-air com-
putation, backscatter communications, mean-squared error.

I. INTRODUCTION

In the foreseeable future, a massive number of Internet
of Things (IoT) devices will be deployed to collect envi-
ronment data and to enable various smart applications, such
as industrial automation, intelligent transport systems, smart
agriculture, and so forth. Nevertheless, the restricted spectrum
resource imposes great pressure on wireless data aggregation
from ubiquitous IoT devices. In recent years, over-the-air
computation (AirComp) technique is proposed to support fast
and efficient data aggregation via utilizing the superposition
property of wireless channels [1]–[4]. So far, AirComp tech-
nique has been extensively investigated in existing works [5]–
[7]. In [5], Liu et al. investigated the computation-optimal
strategy for a typical AirComp system, and they revealed the
ergodic performance and scaling laws for large-scale AirComp
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systems. In [6], the authors studied the optimal design for the
broadband AirComp systems, where the sensor device can
transmit their data to the fusion node over multiple selected
frequency channels. The authors in [7] developed the optimal
AirComp policy considering spatial-and-temporal correlated
sensing signals.

Besides the data aggregation, the convenient energy supply
is another bottleneck for massive low-power IoT devices.
Ambient backscatter communication is recognized as a can-
didate solution for realizing sustainable IoT networks [8]–
[10]. On the one hand, backscatter devices can reduce their
power consumption by modulating and reflecting wireless
signals to carry their own information to intended receivers,
instead of generating radio-frequency signals independently.
In addition, backscatter devices are able to split one part of
received signals for harvesting energy to prolong their lifetime.
However, the double pathloss of backscatter communication
restricts its applicability in IoT networks.

Recently, intelligent reflecting surface (IRS) has been envi-
sioned as an innovative technique that can improve the per-
formance of wireless communications, via adjusting its ampli-
tudes and phase shifts to reconstruct the wireless transmission
environment intelligently [11]–[13]. In [14], the authors pro-
posed an optimization framework for IRS-assisted backscatter
communication systems, where the IRS was properly equipped
to enhance the communication performance between the tag
and the reader. They further presented a joint transmit and
reflect beamforming optimization strategy to minimize the
system power consumption. In [15], Shi et al. investigated the
mean-squared error (MSE) minimization problem for an IRS-
empowered wireless powered Aircomp systems. To reduce the
cost of channel estimation, Zhai et al. in [16] proposed a
two-timescale optimization method to solve the average MSE
minimization problem for IRS-assisted Aircomp systems. In
particular, the transmit power of IoT devices and receive
beamforming of access point were optimized in the short time-
slot based on the real-time channel state information (CSI),
and the reflect beamforming of IRS was optimized in the long
frame based on the channel statistics. As described above, the
existing works utilized the IRS to improve the performance
of backscatter communications or AirComp. Nevertheless,
to be best of our knowledge, the efficient integration of
IRS, backscatter communications and AirComp have not been
investigated in existing works. It can be expected that the
optimal design for such an integration system can achieve
fast data aggregation and sustainable energy supply in IoT.

Therefore, this article proposes a novel design framework
for IRS-assisted backscatter sensor networks with AirComp.
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To balance the data aggregation and energy supply, we formu-
late a MSE minimization problem under the power harvesting
requirements of BDs, through jointly optimizing the normal-
ization factor, power splitting ratios of BDs, and phase shifts
of IRS. Inspired by the block coordinate descent technique,
we develop an alternating optimization algorithm to solve
the joint optimization problem, which is strictly non-convex
due to the complex objective function and highly coupled
optimization variables. In particular, the optimal normaliza-
tion factor and power splitting ratios are derived in closed-
form expressions for reducing the algorithm’s computational
complexity. Besides, the variable substitution technique and
the semi-definite relaxation method are exploited to solve
the phase shift optimization subproblem. Numerical results
demonstrate that the proposed method can reduce the MSE
significantly compared with existing benchmark methods.

The rest of this article is summarized as follows. Section II
introduces the system model and the formulated MSE mini-
mization problem. In Section III, we develop a low-complexity
alternating optimization method with proved convergence.
Simulation results in Section IV will reveal the performance
of our proposed scheme. This article is summarized in Section
V.

Notations: This article adopts the lowercase letter, boldface
lowercase letter, and boldface uppercase letter to indicate
the scalar, vector and matrix, respectively. Re(x) stands for
the real component of complex number x. xH and diag(x)
indicates the hermitian transpose and diagonalization of vector
x, respectively. Rank(X) and Tr(X) represent the rank and
trace of matrix X, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, this paper considers an IRS-assisted
backscatter sensor networks including a power beacon (PB),
an access point (AP), an IRS with M reflection units, and K
backscatter devices (BDs). The index sets of BDs and IRS’s
reflection units are denoted by K = {1, 2, · · · ,K} and M =
{1, 2, · · · ,M}, respectively. Each BD is able to receive and
backscatter the signal from the power beacon, for carrying its
own information to the AP. To alleviate the effect of double
pathloss of backscatter communications, an IRS is equipped to
assist the backscatter communications between BDs and AP.
Moreover, the channel coefficients between the power beacon
and the k-th BD, between the k-th BD and the IRS, between
the IRS and the AP, and between the k-th BD and the AP are
indicated by gD,k ∈ C1×1, hH

T,k ∈ C1×M , hR ∈ CM×1, and
hD,k ∈ C1×1, respectively. According to [17], it is supposed
that the perfect CSI can be acquired by utilizing the existing
channel estimation methods for IRS-assisted communication
systems.

In this scenario, each BD is equipped with a sensor
to collect some environmental parameters (e.g., humidity,
temperature, and so forth), and the AP aims to obtain the
target function of aggregated data from all BDs, instead of
recovering the individual data of each BD. Specifically, the
AirComp technique is adopted to improve the data aggregation

Fig. 1: IRS-assisted backscatter sensor networks with over-the-air
computation.

efficiency. Defining xk as the data measured by the k-th BD,
thus the target function at the AP is given by

f = ϕ

(
K∑

k=1

ψk(xk)

)
, (1)

where ψ and ϕ represent the pre-processing function at the k-
th BD and post-processing function at the AP, respectively. We
denote sk = ψk(xk) as the symbol backscattered by the k-th
BD, which satisfies E(sk) = 0, E(sksHk ) = 1 and E(sksHm) =
0 for k ̸= m. Besides, this paper considers a case that the AP

desires to obtain the target function f =
K∑

k=1

sk [15]. It should

be noted that other target functions can also be computed by
using proper pre-processing and post-processing functions.

In the considered time block, the signal received at the k-th
BD can be expressed as

yT,k = gD,k

√
Pte, ∀k ∈ K, (2)

where Pt is the transmit power at the power beacon, and e
denotes the unmodulated downlink energy signal with unit
power. Then, the BDs split a part of the received signal for
harvesting energy, and modulate and backscatter the rest part
for carrying their own information to the AP [18]. Defining
νk ∈ [0, 1] as the power splitting ratio and ηk ∈ (0, 1] as the
linear power conversion factor, so the power harvested by the
k-th BD is given by

Ek = ηk(1− νk)|gD,k|2Pt, ∀k ∈ K. (3)

Furthermore, the received signal at the AP from all BDs will
be

y =
K∑

k=1

gD,k(h
H
T,kΓBhR+hD,k)

√
νk
√
Ptske+ n, (4)

where n ∼ CN (0, δ2) denotes the additive white Gaussian
noise (AWGN), and ΓB = diag{ejα1 , ejα2 , · · · , ejαM } stands
for the phase shift matrix of IRS, where αm ∈ (0, 2π]
represents the phase shifts of m-th reflection unit on IRS.
After receiving the signal y, the AP utilizes the normalization
factor θ to recover the target function f . Therefore, the
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estimated function at the AP is expressed as

f̂ =
y√
θ
=

K∑
k=1

gD,k(h
H
T,kΓBhR+hD,k)

√
νk
√
Ptske+ n

√
θ

.

(5)

B. Problem Formulation

Despite the benefits brought by the AirComp technique,
it also introduces severe computation distortion due to the
noise signal and the unequal channel coefficients. In general,
the computation error is quantified by the mean-squared
error (MSE) between the target function f and the estimated
function f̂ . Therefore, this paper concentrates on minimizing
the MSE via jointly optimizing the normalization factor, power
splitting ratios of BDs, and phase shift matrix of IRS. It is
worth to noting that the MSE has been extensively adopted
as a performance indicator to evaluate the signal distortion in
AirComp-enabled networks [15], [16], and it can be calculated
as

MSE(f, f̂) = E
[
|f − f̂ |2

]
= E

∣∣∣∣∣ y√θ −
K∑

k=1

sk

∣∣∣∣∣
2


=
K∑

k=1

∣∣∣∣∣gD,k(h
H
T,kΓBhR+hD,k)

√
νk
√
Pt√

θ
− 1

∣∣∣∣∣
2

+
δ2

θ
.

(6)

Therefore, the MSE minimization problem can be formu-
lated as

minimize
{νk,θ,ΓB}

K∑
k=1

∣∣∣∣∣gD,k(h
H
T,kΓBhR+hD,k)

√
νk
√
Pt√

θ
− 1

∣∣∣∣∣
2

+
δ2

θ

s.t. C1: ηk(1− νk)|gD,k|2Pt ≥ Emin,k, ∀k ∈ K,
C2: 0 ≤ αm ≤ 2π, ∀m ∈ M,

C3: 0 ≤ νk ≤ 1, ∀k ∈ K,
C4: θ > 0,

(7)
where C1 indicates that the power harvested by BDs should
be larger than the minimum power requirement Emin,k, C2
represents the phase shift constraints of IRS, C3 restricts the
power splitting ratios of BDs, and C4 is the normalization fac-
tor constraints. It is observed that (7) is a strictly non-convex
problem due to the highly coupled optimization variables, such
as ΓB and νk. Therefore, there is no standard method to tackle
it. In the following section, an alternating optimization method
is developed to obtain the optimal solution of (7).

Remark 1 (Scalability of Backscatter AirComp): In practice,
the proposed IRS-aided AirComp can also be exploited in
large-scale backscatter sensor networks. while the compu-
tation accuracy will be degraded due to the challenge in
aligning the signals from massive BDs by a common reflection
beamformer. Nevertheless, the issue may be alleviated in the
future ultra-dense networks, since a larger number of multiple-
antenna AP and IRS will be deployed, and it will lead to
higher possibility to align the signals from BDs.

Remark 2 (Extension to Broadband Systems): In the broad-
band backscatter network with multiple frequency channels,

the estimated function at the AP is expressed as the sum
of multiple single-channel estimated functions, which will
further lead to the similar-structure MSE expression and
optimization problem. Therefore, the proposed method in this
paper can be exploited in the scenario with multiple frequency
channels. Moreover, it is quite challenging to obtain the CSI
of all channels for IRS-aided broadband backscatter networks,
especially when IRS is equipped with a large number of
reflection units. Hence, the performance gain introduced by
multiple frequency channels may be counteracted by the huge
costs of channel estimation. To tackle this issue, our future
work will investigate the statistical CSI-based method for IRS-
aided broadband backscatter sensor networks with AirComp.

III. PROPOSED SOLUTION

Based on the block coordinate descent (BCD) technique,
we propose an alternating optimization method to solve the
non-convex MSE minimization problem (7), where the nor-
malization factor θ, power splitting ratios {νk, ∀k ∈ K} of
BDs, and phase beamforming matrix ΓB of IRS are optimized
alternately until convergence. In particular, we derive the
optimal normalization factor and power splitting ratios of
BDs in closed-form expressions, and the variable substitution
technique and semi-definite relaxation method are adopted to
obtain the optimal phase beamforming matrix of IRS.

A. Normalization Factor Optimization
Given {ν∗k ,Γ∗

B}, we reformulate the problem (7) by opti-
mizing the normalization factor θ as

minimize
θ>0

K∑
k=1

∣∣∣∣∣gD,k(h
H
T,kΓ

∗
BhR+hD,k)

√
ν∗k

√
Pt√

θ
− 1

∣∣∣∣∣
2

+
δ2

θ
.

(8)
Defining β = 1√

θ
and bk = gD,k(h

H
T,kΓ

∗
BhR+hD,k)

√
ν∗kPt,

(8) will be converted to

minimize
β>0

K∑
k=1

|bkβ − 1|2 + δ2β2. (9)

In the following Theorem 1, we will derive the optimal
normalization factor in closed-form expression.

Theorem 1: The optimal normalization factor θ∗ is given
by

θ∗ =
1

(β∗)2
=


δ2 +

K∑
k=1

|bk|2

K∑
k=1

Re(bk)


2

. (10)

Proof: According to the convex optimization theory,
(9) can be proved as a typical convex problem, and its
optimal solution can be found in the stationary point. The first
derivation of objective function in (9) to β can be derived as

∂(
K∑

k=1

|bkβ − 1|2 + δ2β2)

∂β
=

K∑
k=1

(2β|bk|2−2Re(bk))+2δ2β.

(11)
By setting (11) to zero, we can obtain the optimal normaliza-
tion factor as given in (10).
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B. Power Splitting Optimization

Given {θ∗,Γ∗
B}, (7) will be reduced to the following

problem

minimize
{νk}

K∑
k=1

∣∣∣∣∣gD,k(h
H
T,kΓ

∗
BhR+hD,k)

√
νk
√
Pt√

θ∗
− 1

∣∣∣∣∣
2

(12a)

s.t. ηk(1− νk)|gD,k|2Pt ≥ Emin,k,∀k ∈ K, (12b)
0 ≤ νk ≤ 1,∀k ∈ K. (12c)

Problem (12) can be decoupled into K subproblems to op-
timize the power splitting ratio {νk} for each backscatter
device. The k-th subproblem is given by

minimize
νk

∣∣∣∣∣gD,k(h
H
T,kΓ

∗
BhR+hD,k)

√
νk
√
Pt√

θ∗
− 1

∣∣∣∣∣
2

(13a)

s.t. ηk(1− νk)|gD,k|2Pt ≥ Emin,k, (13b)
0 ≤ νk ≤ 1. (13c)

let mk =
gD,k(h

H
T,kΓ

∗
BhR+hD,k)

√
Pt√

θ∗ and uk =
√
νk, (13) can

be rewritten as the following convex problem

minimize
uk

|mk|2u2k − 2Re(mk)uk (14a)

s.t. 0 ≤ uk ≤

√
1− Emin,k

ηk|gD,k|2Pt
. (14b)

Next, we will derive the optimal power splitting ratio in the
following Theorem 2.

Theorem 2: The optimal power splitting ratio {ν∗k} of
problem (14) is expressed as

ν∗k = (u∗k)
2 = min

{(
Re(mk)

|mk|2

)2

, 1− Emin,k

ηk|gD,k|2Pt

}
, ∀k ∈ K.

(15)
Proof: Since the optimal solution of convex problem (14)

can be found in the stationary point or the boundary point, so
we can derive the optimal power splitting ratio as described
in (15).

C. Phase Beamforming Optimization

For given {ν∗k , θ∗}, (7) is simplified to the phase beamform-
ing optimization subproblem

minimize
ΓB

K∑
k=1

∣∣∣∣∣gD,k(h
H
T,kΓBhR+hD,k)

√
ν∗k

√
Pt√

θ∗
− 1

∣∣∣∣∣
2

(16a)
s.t. 0 ≤ αm ≤ 2π, ∀m ∈ M. (16b)

We set ck =
gD,k

√
ν∗
k

√
Pt√

θ∗ , v = [ejα1 , · · · , ejαM ]T , and ek =

hH
T,kdiag(hR), which make

gD,k(h
H
T,kΓBhR+hD,k)

√
ν∗
k

√
Pt√

θ∗ =

ck(ekv +hD,k). Since the objective function of (16) is still
complex, so we further define the following expressions

dk = ckek,

fk = dH
k ckhD,k − dH

k .
(17)

Based on above expressions, problem (16) is rewritten as

minimize
v

K∑
k=1

(vHdH
k dkv + vHfk + fHk v) (18a)

s.t. [vvH ]mm = 1, ∀m ∈ M. (18b)

Due to the quadratically equality constraint, (18) is still
nonconvex. We further define v̂ = [vT , 1]T and V̂ = v̂v̂H .
(18) is then transformed to

minimize
V̂

Tr
(
V̂G

)
(19a)

s.t. [V̂]mm = 1,∀m ∈ {M,M + 1}, (19b)

V̂ ≽ 0, (19c)

Rank(V̂) = 1, (19d)

where

G =
K∑

k=1

[
dH
k dk fk
fHk 0

]
. (20)

Based on the semi-definite relaxation technique, we drop the
rank-one constraint (19d), and the relaxed version of (19) can
be solved by CVX. It is worth noting that the obtained V̂∗

may be not rank-one. Therefore, we make v̂∗ ≈
√
λ∗maxu∗

max,
where λ∗max and u∗

max denote the maximum eigenvalue and its
corresponding eigenvector of V̂∗.

In summary, the proposed alternating optimization method
is illustrated in Algorithm 1. Next, we will prove the conver-
gence of Algorithm 1 in the following Theorem 3, and analyze
its computational complexity.

Algorithm 1: Alternating optimization method for solving
(7)

1 Initialize: Setting (ν(0)k ,Γ
(0)
B ), and the iteration factor

n = 1.
2 Repeat:
3 Calculating the normalization factor θ(n) by utilizing

Theorem 1;
4 Obtaining the optimal power splitting ratio {ν(n)k }

according to Theorem 2;
5 Acquiring the optimal phase shift matrix V̂(n) by

solving the relaxation version of (19);

6 Recovering v̂(n) ≈
√
λ
(n)
maxu(n)

max;
7 Update the iteration factor n = n+ 1;
8 Until convergence.
9 Obtaining optimal solution (θ∗, ν∗k ,Γ

∗
B).

Theorem 3: The proposed alternating optimization-based
Algorithm 1 can converge to the optimal solution within
several iterations.

Proof: Defining MSE(θ, νk,ΓB) as the objective function
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of (7), we have

MSE(θ(n), ν(n)k ,Γ
(n)
B )

(c1)
≥ MSE(θ(n+1), ν

(n)
k ,Γ

(n)
B )

(c2)
≥ MSE(θ(n+1), ν

(n+1)
k ,Γ

(n)
B )

(c3)
≥ MSE(θ(n+1), ν

(n+1)
k ,Γ

(n+1)
B ),

(21)
where (c1), (c2) and (c3) hold because the optimal
MSE are obtained from (8), (12) and (16), respectively.
Therefore, MSE(θ(n+1), ν

(n+1)
k ,Γ

(n+1)
B ) is not larger than

MSE(θ(n), ν(n)k ,Γ
(n)
B ). Since the value of MSE is limited, we

can derive that Algorithm 1 will coverage to an optimal so-
lution after several iterations according to the Cauchy theory.

The computational complexity of Algorithm 1 is divided
into two parts, including the iteration number and per-iteration
complexity. In each iteration, the method needs to solve
three subproblems, i.e., normalization factor optimization sub-
problem, power splitting optimization subproblem, and phase
beamforming optimization subproblem. Since we derive the
optimal normalization factor and power splitting ratios in
closed-form expressions, thus the corresponding computa-
tional complexity is expressed as O(K + 1). The interior
point method-based solver is adopted to solve the phase
beamforming optimization subproblem (19) with (M + 1)2

optimization variables and M + 2 constraints, so the cor-
responding computational complexity can be expressed as
O(((M +1)2 +M +2)(M +1)4

√
M + 2 log(1/ϵ)), where ϵ

stands for the tolerance factor. Defining In as the number of
iterations of Algorithm 1, the total computational complexity
of Algorithm 1 is expressed as O(In(K + 1 + ((M + 1)2 +
M + 2)(M + 1)4

√
M + 2 log(1/ϵ))).

IV. PERFORMANCE EVALUATION

This section provides the simulation results to reveal the
MSE achieved by the proposed IRS-assisted backscatter sen-
sor networks with AirComp, in comparison with the following
two benchmark methods:

• Without IRS: In this scheme, no IRS is equipped to assist
the backscatter communications between BDs and AP.

• Random phase shift: In this scheme, the phase shifts
of reflection units on IRS are selected from [0, 2π] ran-
domly, and the normalization factor and power splitting
ratios of BDs are optimized by exploiting the proposed
method in this article.

Furthermore, we consider two scenarios with K = 2
BDs and K = 4 BDs, respectively. The AP, power beacon,
IRS, and BDs are located at (0,0,10), (6,0,8), (3,1,5), and
[(2,-1,0),(4,0,0),(4,1,0),(3,2,0)], respectively. The channels are
modeled as

Cc =
√
Pld−ξ(

√
1

Mr + 1
CNLoS +

√
Mr

Mr + 1
CLoS), (22)

where Pl = −30 dB represents the path-loss at the unit
distance, d indicates the distance between communication
nodes, and ξ denotes the path-loss factor (i.e., ξ1 = ξ2 =
ξ3 = 2.5 and ξ4 = 4 stand for the path-loss factor for

the PB-BD, BD-IRS, IRS-AP, BD-AP links, respectively),
Mr = 2 is the Rician factor, and CNLoS and CLoS represent
the Rayleigh fading and Line-of-Sight (LoS) components,
respectively. Moreover, we set the other simulation parameters
as follows: ηk = 0.8, Pt = 5 W, and δ2 = 10−9 W.
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Fig. 2: Power harvesting requirements versus MSE with M = 60.

Fig. 2 shows the MSE versus the power harvesting re-
quirement Emin,k. It is seen from this figure that the MSE
increases with the power harvesting requirements of BDs.
As Emin,k increases, each BD must split a higher ratio of
received signal for harvesting energy, and it will lead to a
higher MSE of data aggregation. This observation also reveals
the tradeoff between the data aggregation and energy supply
for considered systems. Besides, it is also observed that the
proposed method can achieve a smaller MSE in comparison
with the Without IRS scheme and the Random phase shift
scheme. This is due to the fact that the optimal design of
IRS’s phase shift has great potential to reduce the MSE by
enhancing the communication quality between the AP and
BDs. Furthermore, the considered system exhibits a higher
MSE when a larger number of BDs are deployed, since it is
hard to align all the channels from BDs to the AP by utilizing
a single reflection beamformer at the IRS.
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Fig. 3: Number of reflection units versus MSE with Emin,k = 5uW.

Fig. 3 shows the MSE versus the number of reflection units
integrated on the IRS. We observe that the MSE achieved
by the proposed scheme decreases rapidly with the size of
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reflection units at the IRS. Because the additional reflection
units contribute to extra degrees of freedom for improving the
accuracy of data aggregation. Meanwhile, it is also found that
the proposed scheme can achieve higher performance gain
than benchmark methods when the IRS is integrated with
a larger number of reflection elements. Fig. 4 depicts the
convergence of Algorithm 1. As observed, Algorithm 1 can
converge to the optimal MSE within a few iterations under
different K and M . It verifies that the proposed alternating
optimization method has good convergence properties and low
computational complexity.
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Fig. 4: Convergence of Algorithm 1 with Emin,k = 5uW.

V. CONCLUSION

In this article, we investigated the MSE minimization prob-
lem for IRS-assisted backscatter sensor networks with over-
the-air computation, via jointly optimizing the normalization
factor, power splitting ratios of BDs, and phase shifts of
IRS. In order to tackle the coupled optimization variables,
an alternating optimization method was presented to solve
the non-convex MSE minimization problem. In particular,
the optimal normalization factor and power splitting ratios
were derived in closed-form expressions, and the semi-definite
relaxation method and variable substitution technique were
adopted to solve the phase shift optimization subproblem.
Finally, numerical results demonstrated the significant MSE
reduction achieved by our proposed IRS-assisted strategy, as
compared with existing benchmark methods.
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