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Abstract—Cellular vehicle-to-vehicle (V2V) communications
can support advanced cooperative driving applications such as
vehicle platooning and extended sensing. As the safety critical
applications require ultra-low communication latency and deter-
ministic service guarantee, it is vital to characterize the latency
upper bound of cellular V2V communications. However, the
contention-based Medium Access Control (MAC) and dynamic
vehicular network topology brings many challenges to model the
upper bound of cellular V2V communication latency and assess
the link capability for quality of service (QoS) guarantee. In this
paper, we are motivated to reduce the research gap by modelling
the latency upper bound of cellular V2V with network calculus.
Based on the theoretical model, the probability distribution of the
delay upper bound can be obtained under the given task features
and environment conditions. Moreover, we propose an intelligent
scheme to reduce upper bound of end-to-end latency in vehicular
platoon scenario by adaptively adjusting the V2V communication
parameters. In the proposed scheme, a deep reinforcement
learning model is trained and implemented to control the time slot
selection probability and the number of time slots in each frame.
The proposed approaches and the V2V latency upper bound are
evaluated by simulation experiments. Simulation results indicate
that our network calculus based analytical approach is effective
in terms of the latency upper bound estimations. In addition,
with fast iterative convergence, the proposed intelligent scheme
can significantly reduce the latency by about 80% compared with
the conventional V2V communication protocols.

Index Terms—Autonomous Driving, Broadcasting, C-V2X, Re-
inforcement Learning, Stochastic Network Calculus.

I. INTRODUCTION

VEHICULAR platoons show promising potentials to en-
hance driving safety and road traffic efficiency. By

exchanging messages with neighbour vehicles via Internet
of Vehicles (IoV), autonomous vehicles in the same platoon
can maintain stable driving states and conduct cooperative
driving, which provides superior on-road experience than
conventional individual autonomous driving technologies [1].
There are two mainstream vehicle communication technolo-
gies, IEEE 802.11p based Dedicated Short Range Communi-
cation (DSRC) and 3rd Generation Partnership Project (3GPP)
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cellular vehicle-to-everything (C-V2X). The latter can support
both traditional cellular network based communication and
direct communication between vehicles (V2V) through the so-
called PC5 interface [2]. With the advanced features including
resource reservation and slotted frame structures, cellular V2V
can provide better spectrum efficiency, higher packet delivery
ratio and wider communication range [3]–[5] than DSRC.
Through instant V2V communications, it enables many very
useful road safety applications, such as collision warning,
blind spot warning and lane change warning. Moreover, C-
V2V developed by 3GPP is capable of supporting advanced
cooperative driving applications such as vehicle platooning and
extended sensing.

The platoon-based autonomous driving applications require
much lower communication latency (e.g., one millisecond)
than the traditional cellular V2X applications (100 millisec-
onds) [6], [7]. Moreover, to ensure safety and platoon stability,
vehicles need to periodically broadcast their driving states to
other vehicles, which will significantly increase the network
traffic loads compared to the traditional vehicular networks
[8]–[10]. However, whether the existing protocols can meet
the ultra-low latency requirement in this scenario still lacks
study. For example, considering a platoon whose inter-vehicle
distance is 10 m and the distance error needs to be less than
1%, i.e., 0.1 m. If the speed of this platoon is 100 km/h, each
vehicle should broadcast its driving state within about 3.7 ms.
As the single time slot length of C-V2X mode 4 protocol
is already 1 ms, this distributed access protocol cannot be
directly used in platoon-based autonomous driving scenarios
because it cannot guarantee that vehicles access the channel
within several time slots. Based on our analysis results, it is
recommended to further reduce the length of time slots or add
more frequency resources for autonomous driving applications.

In a practical IoV, V2V communications often adopt the
random access MAC protocol for short message delivery, such
as DSRC and C-V2X mode 4 protocol [2]. The contention-
based MAC protocol and dynamic vehicular network topology
present many challenges to analyse the upper bound of V2V
latency. On the other hand, most existing analytical methods
for V2V communications assume saturated Poisson arrival
traffic, which does not match the actual V2V message traffic
in the cellular V2V channels as the transmissions of cellular
V2V messages follow the MAC protocol and the slotted frame
structure. To the best of our knowledge, there is a lack of
research studies on the upper bound of unsaturated C-V2V
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communication latency. New analytical and control approaches
are needed to model and control the cellular V2V latency in
a unsaturated traffic environment with the framed structure
based MAC protocol.

To fill the gaps mentioned above, we are motivated to
theoretically analyse the upper bound of cellular V2V com-
munication latency and reduce the latency through intelligent
configuration of the MAC protocol parameters. Network cal-
culus provides a new method to analyse the lower bound of
system performance under a specified protocol and traffic flow
condition [11], [12]. The probability upper bound provides
a guarantee that the probability of the delay being longer
than a given value is not higher than the analytical result
of the theoretical model. Consequently, the upper bound
cannot be used as an accurate probabilistic mathematical
description of the transmission delays. Existing analysis work
based on network calculus mainly consider the traditional
contention-based MAC protocols without frame structure, such
as IEEE 802.11 MAC protocol [13], [14]. We design a new
analytical method for C-V2V communications in vehicular
platoon scenarios to model the performance of the frame-based
time division MAC protocols [15]. In addition, an intelligent
control scheme is proposed to reduce the upper bound of
C-V2V communications. In the proposed scheme, a deep
reinforcement learning model is applied to adjust the time slot
re-selection probability and the number of time slots in each
frame. The proposed model is trained and implemented in the
platoon head vehicle. Simulation experiments are conducted
to evaluate the proposed approaches and their impact on road
safety. The main contributions of this paper can be summarized
as follows.

• We propose a theoretical approach to analyse the upper
bound of cellular V2V communication latency by using
stochastic network calculus. It can be adopted as an
efficient tool to evaluate and optimize the performance
of corresponding protocols, and assess the deterministic
latency for many advanced safety applications. To the
best of our knowledge, this is the first work on modelling
the transmission delay upper bound for platoon-based au-
tonomous driving through cellular V2V communications.

• With the stochastic network calculus based analysis
model, we design an intelligent C-V2V communication
optimization scheme with our proposed Smart Protocol
Optimization (SPO) algorithm which is performed by the
head vehicle in a platoon. SPO can adaptively adjust the
system parameters of the MAC protocol using deep re-
inforcement learning technology. Simulation results show
that the proposed scheme is able to reduce the end-to-end
message delivery latency by approximately 80%.

• Based on the simulation experiments, it can be observed
that the end-to-end latency of the cellular V2V commu-
nication defined by the 3GPP standard [16] cannot meet
the latency requirement (one millisecond) of platoon-
based autonomous driving. To enhance the standard pro-
tocol to support these delay sensitive advanced driving
applications, we provide the optimal system parameter
configuration of the MAC protocol.

The rest of this paper is organized as follows. Section II
introduces the related work on the analysis and optimization of
distributed MAC for vehicular networks. Section III presents
an overview of the cellular V2V and system settings. In Sec-
tion IV network calculus is applied to develop the analytical
approach to stochastic delay upper bound. The intelligent
MAC parameter control scheme for platooning driving appli-
cation is presented in section V. Numerical simulation results
are presented and discussed in section VI. Finally, section VII
concludes this paper.

II. RELATED WORK

There are two branches of distributed and contention-based
MAC protocols for V2V communications, IEEE 802.11p and
C-V2X. Performance analysis of distributed MAC for vehicu-
lar networks is an important research issue. More importantly,
V2V communication performance guarantee in the vehicular
networks has significant impact on the road traffic safety and
efficiency. Although the modern V2V communications mainly
consider the C-V2X protocol stack, which is a natural evolu-
tion from the Long-Term-Evolution-Vehicle (LTE-V) standard
[4], some theoretical analysis models of both protocols are
similar. Therefore, it is worth to present related literatures of
both two protocol branches.

The analysis of contention-based MAC protocols for vehic-
ular networks has two main kinds of models, i.e., Markov-
based models and network-calculus based models. As the
first performance analysis using Markov-based models, G.
Bianch [17] analysed the saturation throughput of the IEEE
802.11 Distributed Coordination Function (DCF). Some crit-
ical simplification is used to obtain the collision probability
and became a critical method adopted in many following
works. F. Cali et al. proposed a novel analysis model for
the IEEE 802.11 protocol in [18]. The authors found that the
throughput of the exponential back-off algorithm is equivalent
to p-persistent protocol. Moreover, they also proposed an
adaptive optimization algorithm for the IEEE 802.11 protocol.
Unsaturated throughput of IEEE 802.11 protocol is analysed
in [19], but it only consider the Poisson arrival process, other
applications such as periodic broadcasting applications are not
considered in the analysis model.

The other analyse approaches are network calculus based
models [20]. In [13], J. Xie and Y. Jiang obtained the stochastic
delay upper bound of IEEE 802.11 DCF, which laid the
foundation for many subsequent works. K. Konstantinos et al.
analysed the end to end delay of hybrid vehicular networks
with stochastic network calculus theory in [14].

The performance of IEEE 802.11p and LTE-V2X was
compared in [2]. It was concluded in [2] that the LTE-V2X
protocols are more suitable for periodical messages. In [21],
Q. Ding et al. investigated the existing LTE-V direct protocol
resource allocation schemes. T. Maruko et al. proposed a
collision reduction scheme for LTE-V2X communications in
[22]. The sidelink communication in [22] uses the LTE-V
direction protocol, with packet reception rate increased by
about 5% with the proposed scheme. H. Chihi et al. analysed
the latency of LTE-V mode 4 protocol and proposed an
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optimization algorithm. However, the analysis is a little bit too
simple to provide a reliable delay upper bound guarantee. K.
Xiong et al. optimised the communication and computation
resources for autonomous driving applications in [23]. But
they also did not consider the end-to-end delay analysis and
optimization.

The influence of the network performance on the platoon
traffics has been analysed. In [24], authors use PLEXE, an
open source simulator built based on Veins [25], to analysis
the platoon behaviours in a heterogeneous scenario with co-
operative driving and manual driving.

It is noted that the above mentioned work has analysed some
random channel access protocols with the Markov chain model
or network calculus theory. However, the network calculus-
based performance analysis and optimization for cellular V2V
remain a challenging problem. To the best of our knowledge,
there is no report on the theoretic modelling of the latency
upper bounds for the cellular V2V MAC protocol. The level
of deterministic latency guarantee and the enhancement with
cellular V2V have not been studied for advanced cooperative
driving applications.

III. SYSTEM MODEL

In this section we will present the basics of the cellular V2V
MAC protocol, which is to be analysed later. Some critical
symbols are summarized in Table I.

According to [4], the C-V2X mode 4 is based on the
Time-Divided LTE (TD-LTE) protocol, whose time domain
is divided into time slots. Time is divided into frames, and
one frame is composed of several time slots. One time slot is
the essential unity which cannot be divided furthermore. The
duration of each time slot is 1 ms.

TABLE I
NOTATIONS OF SOME CRITICAL PARAMETERS

Parameter Description
prs Re-select probability in C-V2X mode 4 standard.
T Generation duration for awareness messages.
Ts Translation time for a single awareness message.
N Number of vehicles connected to the V2V network.
Nf Number of time slots in a frame.
pi Channel free probability.
pc Collision probability.
ps Transmission probability for one node in one frame.
⊗ Min-plus convolution of two functions

h(α, β) Maximum horizontal distance between two functions

One time slot is further divided into two periods, Frame In-
formation (FI) and Physical Data Payload Channel (PDPCH).
The FI includes the slots occupy information. The PDPCH
includes the transmission data. The channel that transmits FI is
called Physical Slot Information Channel (PSICH), consisting
of five Orthogonal Frequency Division Multiplexing (OFDM)
symbols. The PDPCH channel has eight OFDM symbols. In
addition, an OFDM symbol called Guard Period (GP) also
exists at the last time slot in a frame for synchronization
between transmitter and receiver. The structure of one C-V2X
mode 4 frame is shown in Fig. 1.

Each node needs to monitor the channel for one frame
duration before trying to occupy time slots. Once one node

Fig. 1. Frame structure of C-V2X mode 4 standard.

finds some free time slots in a frame, it will occupy a time
slot in a p-persistent-like manner. As described in [27], in C-
V2X mode 4 standard, each node has a probability prs, which
stands for the reselect probability. It will occupy a particular
time slot in each frame for a duration Ts with probability prs.
In the original protocol, Ts is a random variable that equals
sums of random variable which is uniformly distributed be-
tween [5, 15], and the number of summed-up random variable
satisfied geometry distribution with parameter 1 − prs. The
original protocol can be found in [27]. However, this paper
only considers the awareness message broadcasting, which is
often supposed to have constant data size, and data is generated
with fixed duration. Consequently, we think Ts is a constant
value. But if we set prs equals 0, all vehicles will transmit at
the beginning of a period, as a result, we use prs to select the
transmission frame.

Each node can only select at most one time slot in each
frame. The whole channel access process is illustrated in Fig.
2. rand (0, 1) in Fig. 2 means generating a real number with
equal probability in interval [0, 1].

Because each time slot has FI, collisions can be detected
within one frame, much faster than the CSMA/CA protocols.
Furthermore, with the FI enhancement, the C-V2X mode 4
standard provides an efficient way to exchange the resource
allocation information between access nodes, preventing the
hidden terminal problem. Consequently, the vehicular network
investigated in this paper is considered as a complete graph,
which means every pair of nodes can communicate with each
other in one hop.

Besides the pre-mentioned benefits, networks in the C-V2X
mode 4 standard ask for accurate synchronisation between
nodes in high dynamic on-road scenarios. In engineering,
nodes in the base station coverage can synchronise from the
Coordinated Universal Time signalling (UTC) module, such
as Global Positioning System (GPS) or Beidou. Nodes out of
the base station need to take a self-synchronisation procedure,
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Fig. 2. Channel access process of C-V2X mode 4 standard.

which may be more inaccurate than the UTC module.

IV. PERFORMANCE ANALYSIS

This section will analyse the performance of the C-V2X
mode 4 standard with stochastic network calculus theory. We
will first analyse some critical probabilities according to the
protocol details. Based on these probabilities, the stochastic
delay upper bound is obtained with the network calculus
theory. The basic knowledge of the stochastic network calculus
theory used in this section is presented in Appendix A.
The analysing results will be further used for the system
optimization in the next section.

A. Critical Probabilities

First, we need to calculate the collision probability. To
simplify the problem, in the C-V2X mode 4 standard service
curve calculation, we assume that each node always has some
packets in the transmitting queue to send. Based on this
assumption, the calculated collision probability will be higher
than practice. But when we calculate the end-to-end delay
bound in the next sub-section, the flows will be modelled as
a non-saturated arrival process with constant rate and fixed
generate duration, which can make the upper bound tight even
if the probability is calculated in the saturation scenario. There
are Nf time slots in one frame and N vehicles connected to
the V2V network.

Inspired by the ideas in [19], to simplify the question, we
assume that each node has the same probability of sending
on any time slot in any frame and the same probability of
collision, which is named ps and pc, respectively. Moreover,
the sending probability ps is related to the probability that the
current frame has some free time slots to use, named pi.

According to the protocol, we can list following equations,

pi =


1, N ≤ Nf
Nf−1∑
k=0

(
N

k

)
pks(1− ps)

Nf−k, N > Nf
, (1)

ps =
pi · prs · (pc + (1− pc) · Ts)

Nf + Ts
. (2)

pc = ps

N−1∑
k=1

(
N − 1

k

)
pks(1− ps)

N−k. (3)

Notice Eq. (3) is a binomial distribution, so it can be further
simplified to

pc = ps
(
1− (1− ps)

N−1
)
. (4)

As a result, we can obtain the collision probability ps and pc
by solving the non-linear equation system consisted of (1), (2)
and (4). This equation system can be solved in a very fast
speed with numerical methods.

Considering the vehicular awareness message are generated
in a fixed duration and a constant data size, we use two
constants, T and Ts, to denote the generating duration and
transmitting frames for a single vehicular awareness message,
respectively. C-V2X mode 4 standard has a maximum try
duration called Tm. If a vehicle cannot access the channel
after Tm time, it will give up the current message. In [15],
Tm = 1500ms. However, we think it is reasonable to assume
Tm = T in the vehicular awareness broadcasting scenario
because old messages should be given up after new vehicular
state messages are generated.

As for each frame has Nf time slots and each time slot is 1
ms, the maximum frame for a vehicle tries to access channel
is
⌊
Tm

Nf

⌋
. At each frame, we can simplify the access process as

a Bernoulli distribution with probability p = pi ·prs · (1−pc).
The first success access frame is a Geometry Distribution with
p as its parameter. With the maximum frame constraint, we
can obtain the mean time for a vehicle accessing the channel
as following,

t̄serv = Nf ·


⌊

Tm
Nf

⌋∑
k=0

(1− p)
k
pk+

⌈
Tm

Nf

⌉1−

⌊
Tm
Nf

⌋∑
k=0

(1− p)kp


+Dr,

(5)

where ⌊x⌋ and ⌈x⌉ are maximum integer less or equal to x
and minimum integer greater or equal to x, respectively. Dr

is the radio transmission delay, which can be found in [28].
And the unit of t̄serv is in millisecond. In addition, because
each time slot only has eight of fourteen symbols are used to
transmit the awareness data, which means effective duration of
one time slot is 4

7 ms, and the actual channel rate can written
as
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r =
4C

7Nf
, (6)

where C is the channel capacity.
Furthermore, the packet loss rate can also be obtained by

pc. In each back-off stage, the transmitter will try to send
at each slot with equal probability. Consequently, the conflict
probability in a stage is equal to conflict probability of a time
slot, i.e. pc. As we clarified before, for the vehicular awareness
message, vehicle will not retransmit if the current back-off
stage exceeds the maximum back-off limit. As a result, we
can obtain the packet loss rate as following,

PL = p

⌊
Tm
Nf

⌋
c , (7)

where PL is the packet loss rate. Because pc is related to
the vehicle number N , we can consider this is a theoretical
analysis result of the interference caused by the competition
between vehicles.

B. Service Curve and Delay Upper Bound

After obtaining the critical probabilities in the previous
section, we can further get the C-V2X mode 4 standard ser-
vice curve. The stochastic network calculus related symbols,
operators and theorems used in this section can be found in
the Appendix of this paper.

We will first obtain the service time for each packet based
on a similar method to [13], which is used to analyse the IEEE
802.11 DCF protocol. Let tserv be the delay for each packet
that from preparing to be transmitted to finished transmitted,
which is called per-packet service delay. The Chernoff bound
is heavily used here, which is presented as follows,

P (X ≥ x) = P
(
eθ·X ≥ eθ·x

)
≤ e−θxE

[
eθX

]
(8)

where X is a non-negative random variable. Notice ex is a
convex function. The following state is always true:

eθX ≤ 1−X +Xeθ (9)

for any 0 ≤ X ≤ 1. Consequently, we can say that

E
[
eθX

]
≤ 1− q + qeθ (10)

where q = E[X] and X is a random variable in interval [0, 1].
To use Eq. (10), we need to scale the delay random variant

into [0, 1]. There are two extreme states give the range of tserv.
One is that a vehicle monitors the state for one frame, than
find the channel is free and transmits its awareness message.
At this state, tserv = Nf +Ts. Another one is the waiting time
exceeds the maximum time and the vehicle gives up. At this
state, tserv = Tm + Ts. Notice that the unit of tserv here is in
milliseconds. So we can define the following variables,

Y =
tserv − (Nf + Ts)

Tm + Ts − (Nf + Ts)
=

tserv − (Nf + Ts)

Tm −Nf
(11)

q =
t̄serv − (Nf + Ts)

Tm −Nf
(12)

y =
x− (Nf + Ts)

Tm −Nf
(13)

then Y will be a random variable between [0, 1] and with q
as its mean value. Combining Eq. (8), (10), (11), (12), (13), we
can get

P (tserv > x) = P (Y > y)

≤ e−θyE
[
eθY

]
≤ e−θy

(
1− q + qeθ

) (14)

Let eθ = y(1−q)
q(1−y) , we can obtain the per-packet service time:

P (tserv > x) ≤
(
q

y

)y (
1− q

1− y

)1−y

. (15)

Notice that θ need to be greater then 0, so y needs to be greater
than q, otherwise Eq. (15) will be false.

According to Eq. (15) and the constant generated duration
of awareness messages, the C-V2X mode 4 standard has the
following weak service curve when t̄serv ≤ T :

β(t) =
L

Ts + t̄serv
t (16)

g(x) =

(
q

y

)y (
1− q

1− y

)1−y

(17)

The vehicular awareness messages are generated in a con-
stant interval, according to [14], its arrival curve is:

αa(t) =
L

T
· t (18)

fa(x) = 0 (19)

where L is the packet size. Moreover, some safety related
messages to show the emergent accidents also need to be
transmitted. We assume these messages are generated in
Poisson arrival process. According to Example 3.9 in [29],
the arrival curve is

αe(t) = λ · t (20)

fe(x) =

∞∑
k=⌈x+λt⌉

{
e−λt[λt]k

k!

}
(21)

According to Theorem 2 in the appendix A, the total arrival
curve except the awareness message of current vehicle is:

α′(t) = (N − 1)αa(t) + αe(t) (22)

f ′(x) =

fe ⊗ fa ⊗ fa · · · ⊗ fa︸ ︷︷ ︸
N−1 times

 (x) (23)

Based on the properties of min-plus convolution in Chapter
1 of [29], we can simplify

f ′(x) = fe(x) (24)
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Fig. 3. Stochastic network calculus analyse process.

According to Theorem 3, the service curve of the current
awareness message is

β′(t) =
[
β(t)− α′θ(t)

]+
, (25)

g′(t) =
(
g ⊗ f ′θ) (x) (26)

where

α′θ(t) = α′(t) + θ · t, (27)

and

f ′θ(x) =

[
fe(x) +

1

θ

∫ ∞

x

fe(y)dy

]
1

. (28)

Based on Theorem 1, we can obtain the delay upper bound
for C-V2X mode 4 standard for vehicular awareness messages:

P [D > h(αa(t) + x, β′(t))] ≤ (fa ⊗ g′)(x) (29)

And finally we can obtain the simplified stochastic delay
upper bound:

P (D > x) ≤

g′
(

(Ts + t̄serv)Tx

TL− (Ts + t̄serv) (N − 1)L− λ− θ

)
(30)

According to Eq. (30), we can derive the delay upper bound
in different scenarios for C-V2X mode 4 standard. The total
analyse process can be summarized in Fig. 3.

The upper bound of the end-to-end delay for the C-V2X
mode 4 protocol is not a mathematical model to describe the
probability distribution of the delay. The network calculus-
based delay upper bound can be used to make sure that
the timeout probability is less than the theoretically analysed
results under any circumstance. As a result, it considers the
worst communication cases to ensure on-road safety. In this

case, it is not tight enough for the simulation results. If we
consider an extreme case that all vehicles choose not to send
packets until reach the maximum retrial times (the reselect
probability prs is set to 1), we can obtain much tighter results
compared to the current simulation results. The results of this
extreme case are shown in Fig. 9. We can find that the upper
bounds of the extreme cases are much tighter than the original
network calculus-based analysed results. As a result, the theory
we use to analyze the delay upper bounds of the C-V2X mode
4 protocol is appropriate.

However, to guarantee the analysis results are the end-to-end
delay upper bound, in Eq. (11) to Eq. (13), we use the extreme
cases to normalize the stochastic variables, which will increase
the gaps between analysis results and the realistic delays. As
a result, we can use the average delay, i.e., t̄serv, to replace the
extreme cases. In this manner, these normalized variables will
be followings.

Ȳ =
tserv − (Nf + Ts)

t̄serv
(31)

q̄ =
t̄serv − (Nf + Ts)

t̄serv
(32)

ȳ =
x− (Nf + Ts)

t̄serv
(33)

From the simulation results, we can find with these mod-
ified variables, more compact upper bounds compared to the
original network calculus-based results can be obtained, which
is valuable in engineering applications. We call this new
proposed mathematical model as Network Calculus Model
based on Average Service Time (NCMAS).

V. INTELLIGENT OPTIMIZATION SCHEME

Based on the theoretical analysed results of the system per-
formance lower bounds, we propose a centralized intelligent
protocol adjust scheme in the vehicular platoon scenarios.
The intelligent algorithm called Smart Protocol Optimization
(SPO) algorithm is periodically performed by the head vehicle
in a centralized manner. As a result, the kernel of the proposed
algorithm is head vehicle selection and intelligent algorithm
design.

A. Platoon-based Smart Framework

The awareness messages are generated in a fixed duration,
which is used to inform other vehicles of the state of the
current vehicle, including position, speed and other factors.
This application often occurs in vehicular platoon scenario.
Moreover, the MAC protocol parameters can be easily syn-
chronized in the same vehicular platoon, which is the basic
assumption of the previous theoretical analysis. Therefore, we
design a centralized vehicular platoon based framework to
implement the smart algorithm in this paper. The vehicular
platoon scenario is illustrated in Fig 4.

Each vehicle in the same platoon should generate awareness
messages to inform other vehicles periodically. In addition,
some other safety-related messages will also be generated,
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Fig. 4. Vehicular platoon scenario.

such as passing through vehicles, roadside units and sensor
data. All of these messages are together assumed to have
a Poisson arrival process. The arrival curve is defined in
Eq. (20) and (21). It is noticeable that other messages may
not use the C-V2X sidelink. Consequently, according to the
practice, we only consider the messages also use the same
communication resource, which will influence the performance
of the awareness message broadcasting.

To adjust the MAC protocol parameters in a centralized way,
a vehicular platoon should select a head vehicle to perform
the optimization algorithm. Although the intelligent algorithms
can be conducted by the edge computing servers [30]–[33], we
only consider the platoon to process the algorithm to ensure
the proposed algorithm can work without the infrastructure
support. Because the neural network in the proposed algorithm
is not very large (limited input and output scale), the computa-
tion time and the communication time play equal roles in the
head vehicle selection. When the platoon is initially formed,
all vehicles have the same protocol parameters with default
values. And with these default configurations, vehicles can
build basic V2V communication links. Therefore, each vehicle
can broadcast its state with the default vehicular network. After
receiving all states in the same platoon, each vehicle can be
compared to determine the head vehicle.

To determine the head vehicle, we need to build a compare
method of different vehicles. Each vehicle has some available
CPU and memory resources for the intelligent algorithms.
Consequently, we use a ordered pair (ci,mi) to represent the
effective CPU frequency and memory size of vehicle i. The
compare method is illustrated as follows,

fc(vi, vj) =



LT,
cj − ci > ct or
|ci − cj | < ct and mi < mj

EQ, |ci − cj | ≤ ct and mi = mj

GT,
ci − cj > ct or
|ci − cj | < ct and mi > mj

(34)

where fc is the compare function. LT, EQ and GT represents
vi < vj , vi = vj and vi > vj , respectively. ct is the CPU
frequency compare threshold to balance the compare priority
of CPU frequency and memory size.

When each vehicle calculates all scores of the vehicles
in the same platoon, vehicles can know which vehicle is

Fig. 5. Flowchart of AHVSA.

the head vehicle. After determining the head vehicle, the
chosen head vehicle will gather the environment information
and perform the intelligent algorithm. Furthermore, the head
vehicle will periodically request the computation resources
of other vehicles. When the head vehicle computes better
parameter values of the MAC protocol in current environment,
it will broadcast the optimized parameters to other vehicles.
And the whole platoon will use the same optimized MAC
protocol parameters in the platoon.

Sometimes the head vehicle needs to be altered caused by
certain reasons. For example, the environment changes caused
by a new vehicle entering the platoon or computation resource
changes. At this moment, the platoon will re-select a new
head vehicle with the pre-mentioned process. The flow of the
head vehicle maintenance is summarized in Fig. 5. We call
the head vehicle maintenance algorithm as Automatic Head
Vehicle Selection Algorithm (AHVSA).

B. Smart Delay Upper Bound Reduction Algorithm

The analysed end-to-end delay results in Eq. (30) has lots
of calculations or operations defined in stochastic network
calculus theory, which are not conventional mathematical
calculations, such as min-plus convolution and horizontal
distance. As a result, it is impossible to optimization the end-
to-end delay with conventional mathematical tools, such as
convex optimization.

Fortunately, artificial intelligent technology provides
general-purpose methods to solve optimization problems in
complex or even unknown scenarios. The essential idea of
the proposed MAC protocol parameter adjusting method is
treating the network calculus analysed results as a black box.
All we know is the input-output corresponding pairs. We
can train the agent by studying from the tests. After training
the intelligent agent, we can put it in the on-line scenes to
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choose the best solution according to the current environment.
With the trained agent, we can use reinforcement learning
algorithm to optimize the network performance.

The main motivation for applying RL in this problem is that
RL has proven superior performances demonstrated for many
other research works, such as high accuracy, fast computation,
strong adaptability and generalization, and small memory
requirement [34]. The strong performance of RL technology
makes it an excellent candidate for safety-critical autonomous
driving applications [35] including the platooning application
studied in this paper. While RL has been widely used for
many system optimization problems, to our best knowledge,
it has not been applied to optimize the network calculus-
based analysed results. Simulation results show that significant
performance improvement can be achieved with RL-based
algorithms over the baseline methods. Moreover, we developed
a new framework for applying the RL models to solve the
delay reduction problem, under which other existing learning-
based models can be also applied. Due to the time limitation,
these investigations are left for our future work.

To set up a reinforcement learning algorithm, we need to
clarify the actions, states and rewards. The awareness message
generation duration T should be a controllable parameter. It
should be in a particular range, denoted by [Tl, Tu], to ensure
road traffic safety and control the network loads. Furthermore,
the re-select probability prs in C-V2X mode 4 standard also
can be specified. Because 3GPP releases do not fix the
number of time slots in each frame, Nf is also a controllable
parameter. The actions of the proposed smart algorithm can
be summarized by the following equation:

A = {(T∆, N∆, p∆)|
T∆ ∈ {−Tp, 0, Tp},
N∆ ∈ {−1, 0, 1},
p∆ ∈ {−pp, 0, pp}}

(35)

where Tp and pp is the change precision for T and prs,
respectively.

The states of the proposed algorithm should contain the
controllable parameters. Moreover, the states have additional
two parameters: the number of connected vehicles N and the
arrival rate of the safety-related packets λ. It is noticeable
that λ can only be measured or observed in practice and is
usually related to the on-road environment. The states can be
summarized as:

T = {(T,Nf , prs, N, λ)} , (36)

where each parameter should stay in its effective range.
The rewards R have a straightforward definition, the suc-

cessful transmission probability (i.e. no time-out probability)
divided by the duration T . The result for state S ∈ T should
be the following equation,

R(S) =
P (d < T |S(T,Nf , prs, N, λ) )

T
(37)

We can run simulations to obtain some observations, which
is some sets of (a, s) pairs, where a and s are action and state,
respectively. We adopt policy gradient reinforcement learning

Fig. 6. Structure of the neural network.

algorithm in this paper. The structure of the designed neural
network is illustrated in Fig. 6. We train the neural network
with the loss function

L(θ) =
∑

log π(a|s, θ)R(s, a), (38)

where θ is the parameter of the neural network, π is the action
probability under the given state and neural network. And the
input of the neural network is a 5-length vector and the size
of its output is 33 = 27.

In summary, we can use network calculus results to obtain
the reward for a certain state with Eq. (37), and use the rewards
to train a neural network with Eq. (38). After training the smart
agent, head vehicle can decide how to adjust platoon MAC
protocol parameters according to the current environment. The
pseudo-code of the proposed RL-based algorithm is shown in
Algorithm 1.

Algorithm 1 Smart Delay Upper Bound Reduction Algorithm
Select a head vehicle by AHVSA.
Initialize each parameters of the neural network with normal
distribution initializer.
repeat

Get probabilities of all possible actions of current state
with neural network θ
Update the neural network by maximizing Eq. (38).

until Neural network parameter θ converges.
Determine actions according to different on-line scenarios
with the trained neural network.
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Fig. 7. The flowchart of smart delay upper bound reduction algorithm.

TABLE II
VALUES OF SOME CRITICAL PARAMETERS IN SIMULATION

Parameter Value
Reselect probability prs 0.4
Generation duration T 100 ms
Transmission time Ts 10 ms
Number of vehicles N 30

Number of time slots in a frame Nf 50
Other flows’ arrival rate λ 1 bits/ms

Simulation Times 20000

The flowchart of the smart delay upper bound reduction
algorithm is shown in Fig. 7. The proposed algorithm will
train a neural network on the selected head vehicle. To update
the parameters of the neural network, we need to calculate the
reward, which include the network calculus-based analysed
results. Consequently, we use network calculus theory to train
the off-line neural network and put the trained network to the
on-line environment.

VI. PERFORMANCE EVALUATION

This section will present the numerical simulation results of
the network calculus-based analysis results and the proposed
smart optimization algorithm results. The parameters of the
simulations which are not specified will be set as the values
in Table II.

We use Wolfram Mathematica to evaluate the performance
of the proposed algorithms and the correctness of the analysis
results. Although there exist some professional numerical
simulation tools, such as NS3 and OMNET++, we use a
general-purpose computing platform with a functional pro-
gramming language to implement the sophisticated network
calculus-related computing. As for the platoon simulation, the
PLEXE [25] software can combine the platooning scenario
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Fig. 8. Per-packet service time

with the communication network to simulate the platoon traffic
behaviors. However, this paper mainly considers communi-
cation performance without need of detailed simulation of
platoon dynamics. Consequently, we choose the simulation
tool according to the communication performance evaluation,
intelligent algorithms function and complex mathematics sup-
ports.

Because the vehicular awareness message is short enough,
the transmission delay can be ignored compared to the channel
access latency. Therefore, in the experiments, this paper does
not consider the the simulation of physical channels. More-
over, for training the neural network, we adopt the ADAM
optimizer. Each episode only has five tries for fast iteration,
max training rounds are set to 100.

Fig. 8 shows the simulation results of per-packet service
time, which can verify the correctness of Eq. (15). The
analyse results mean the delay upper bound calculated by the
theoretical analysed results. The NCMAS mean the results
obtained according to the network calculus theory, but use
the average variable showed in Eq. (31), Eq. (32) and Eq.
(33). The simulated distributions are obtained by performing
20000 times simulations. Because we use a linear function
to fit the experimental function, there has some gas between
the simulation and the analysis results. Nevertheless, we can
find that the analysis results can accurately show the relation
between delay upper bound distributions in different scenarios.
As the analysis results indicate, the delays become greater as
the vehicle number increases, and the difference between the
distributions are accurate enough to be used in the optimization
algorithms. We can find the NCMAS is much more compact to
the simulated results compared to the analyse results. However,
it is not guaranteed that all the simulation results are less than
the average results. Consequently, it is not advised to use the
average results in safety-related applications.

To verify the correctness of the Network Calculus theory, we
compare the theoretical delay upper bounds and the simulation
results in extreme cases in Fig. 9. In the extreme cases, we set
the re-select probability prs to 1, which means vehicles always
choose not to send packets until reach the maximum retrial
times. We can find in these extreme cases, the theoretical delay
upper bounds become tight. As a result, the network calculus-
based analysed results can guarantee that, in each situation,
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Fig. 9. Delay upper bound vs. extreme cases
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Fig. 10. Delay upper bound vs. prs

the probability that the delay exceeds a specific value is lower
than the theoretical model.

The effects of reselect probability, i.e. prs, is showed in
Fig. 10. In these scenarios, increasing the reselect proba-
bility can improve the network performance. Because the
communication resource of the C-V2X mode 4 protocol is
not efficiently used in the default scenarios and standard
parameters. Consequently, if vehicles can more aggressively
try to access the channel, the total delays will be decreased.
If we increase the prs from 0.4 to 0.5, observed from both
simulation and analysis, the delay upper bound corresponding
probabilities can decrease about 1/10, which is a substantial
performance improvement.

Fig. 11 verifies the correctness of the Poisson arrival flows
related analysis. The unit of the Poisson arrival rate is one
bit per millisecond. As the Poisson arrival rate increases, the
other flows will occupy more communication resources, which
leads to performance reduction of the vehicular awareness
messages. In addition, we can find to distinguish between
different arrival rates by simulation, we need to have hundreds
of thousands of simulations, and the analysis method can
calculate the probability in a much faster way, which can
support the proposed optimization algorithms.

We present the loss values and the rewards values of the
training process in Fig. 12 and Fig. 13, respectively. The neural
network is not well trained at the early training period and is
almost in a stochastic search scheme. Therefore, the rewards
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Fig. 11. Delay upper bound vs. poisson arrival rate
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Fig. 13. Training reward

are very unstable, and the loss is not reduced. After 20 training
rounds, the loss value starts to reduce. In this period, which
is in training rounds 20 to 40, the neural network has found
an excellent search direction but is still not converges. After
40 training rounds, the neural network converges in the right
direction. At about the 57th training rounds, the optimizer
searches the solution in a new direction, which leads to high
loss value and low reward. As a result, the neural network
comes back in the next iteration. And then, the loss values
decrease at a slow speed, and the reward stays unchanged.

We can see that the proposed algorithm can converge in
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100 training rounds, which is fast enough compared to most
other smart applications. Nevertheless, the network calculus-
based analysis results need many computation resources. As
a result, the simulations are performed on a computer with
a 2.90G Hz CPU and 16G memory (we do not use GPU to
perform the neural network training) and need about 5 minutes
to finish 100 training rounds. Consequently, we cannot run
the proposed algorithm in an online scenario. Fortunately, the
number of related parameters are not too high, and we can
off-line calculate all of the possible situations.

We apply the proposed smart algorithm to different sce-
narios and measure the rewords in each iteration. Fig. 14
shows the algorithm results of scenarios with different number
of time slots in each frame, i.e. Nf . Because there remain
many available communication resources, the smart algorithm
decides to reduce the number of time slots in each frame,
which means a more aggressive scheme to use the channel.
As a result, the protocol will reduce Nf at each iteration.
When Nf reducing to about 10, the system stays stable and
has a higher performance than the initial state.

The rewards of each iteration for the proposed smart algo-
rithm in scenarios with different initial awareness generation
duration is illustrated in Fig. 15. The generation time has
a complex effect on the system performance. On the one
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Fig. 16. Average transmission delays of default C-V2X mode 4 standard,
CAPS, and the protocol with optimized parameters

hand, longer generation time will make the system try to
transmit less messages. On the other hand, a shorter generation
time will increase the traffic load and reduce the system
performance. Furthermore, because all vehicles share the same
generation time, decreasing the generation time will cause
much traffic and quickly run out the communication resources.
Consequently, the intelligent algorithm slowly increases the
generation time to reduce the system traffic until the generation
time reaches its maximum value.

We calculate the average delays in different scenarios, which
is presented in Fig. 16. We further compared our algorithm
with Collision Avoidance based Persistent Scheduling (CAPS)
algorithm [36]. CAPS has a piggyback-based collaboration
method for collision avoidance that can decrease the channel
busy ratio. However, this method tries to optimize the existing
protocol with fixed protocol parameters. the performance of
CAPS is poor compared to our proposed smart algorithm.
The performance can be improved by about 80% only by
adaptively adjusting the parameters according to the environ-
ment. With the default C-V2X standard, the number of time
slots in a frame is fixed but unspecified by 3GPP. However,
it can dramatically influence the system performance. For
example, if each frame has 50 time slots, one frame will
take 50 milliseconds. Then, only two frames will exceed 100
milliseconds, which is time-bound for conventional safety-
related applications. Consequently, adjusting the parameters
of the C-V2X standard according to the environment can
significantly improve the system performance.

However, from Fig. 16 we can find that the C-V2X mode 4
standard cannot meet the one millisecond delay requirement of
the platoon-based autonomous driving scenarios even with the
proposed intelligent algorithm. It is because the length of each
time slot is specified by 3GPP, which is one millisecond. One
frame contains several time-slots, and nodes need to monitor
the channel for one frame duration before transmitting. As
a result, the transmission delay will exceed one millisecond,
whatever the optimization algorithms do. To satisfy the au-
tonomous driving requirement, the length of time slots should
be further decreased.

We compare some other algorithms with our proposed
algorithm in Fig. 17. We implement the DDPG and Trust
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Region Policy Optimization (TRPO) version of the proposed
algorithm. The simulation results are normalized into range
[0, 1]. We can find because these algorithms need to train
two neural networks, it will cost more memory and comput-
ing time. But for this optimization question with theoretical
analysis results, the optimized rewards are similar. Two non-
learning algorithms are compared to the RL-based algorithm,
which are the Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO), respectively. As for computing time,
these heuristic algorithms have low convergence speeds, which
makes the computation delay longer than intelligent algorithms
such as the RL-based approaches. The heuristic algorithms
obtain worse results than the intelligent algorithms due to the
lack of advanced neural network structure. Furthermore, these
algorithms also need a lot of memory. For example, GA needs
to store lots of results in a population to get the fitness and gen-
erate new populations, and PSO needs to store many particles
to track their search paths. Representative results are presented
in Fig. 3, from which we can find the RL-based algorithm
has a much shorter computational time and smaller memory
requirement, and higher rewards compared to other intelligent
algorithms. The added comparison and corresponding results
indicate the advantage of the RL-based algorithm over the
existing non-learning baselines. Consequently, the proposed
algorithm is efficient enough for the protocol performance
optimization problem.

It is clear that the one millisecond time slot configuration
cannot satisfy the 1ms delay requirement of autonomous
driving. It is reasonable to reduce the time slot length. We
compare the average end-to-end delays of different time slot
length in Fig. 18. In this figure, the default configuration
means the protocol parameters, such as the frame length, the
re-select probability, etc., specified by the standard without
optimization. The optimized configuration means the protocol
parameters that are optimized by our proposed intelligent
algorithm. The values of some critical parameters in the
optimized configuration are shown in Table III. It can be found
that the end-to-end delay is roughly proportional to the time
slot length. To satisfy the 1ms requirement for autonomous
driving, we should decrease the time slot length to no more
than 0.125ms and optimize the protocol by using our proposed
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Fig. 18. Average end-to-end delays with different time slot lengths

TABLE III
KEY PARAMETERS IN OPTIMIZED CONFIGURATION

Parameter Value
Reselect probability 0.57

Number of time slots in a frame 8
Time slot length 0.125ms

Number of vehicles 30

algorithm.
From the simulation results, we can confirm that the smart

algorithms can make reasonable decisions to adjust the C-V2X
mode 4 standard parameters in the right direction based on the
network calculus analysis results with enough accuracy. With
off-line trained neural networks, the smart online vehicular
networks in C-V2X mode 4 standard can self-optimize in
different scenarios. [37]

VII. CONCLUSION

This paper analyses the delay upper bound of C-V2X mode
4 standard for vehicular awareness message broadcasting with
stochastic network calculus theory. We obtain the probability
distribution of the awareness message broadcasting latency
in a vehicular platoon under the given conditions. With the
obtained upper bound of the communication latency, we pro-
posed a smart scheme to improve the system performance by
adjusting the behaviours of the awareness message generation
and the C-V2X mode 4 standard. An implemented framework
of the proposed smart scheme is also presented in this paper.

The simulation experiments indicated the correctness of
the theoretical analysis results and the effectiveness of the
proposed scheme. Moreover, the intelligent algorithm can con-
verge in less than 100 iterations, making the proposed scheme
feasible for a practical environment. In addition, we conclude
that the current C-V2X mode 4 standard is impossible to
meet the 1-millisecond delay requirement of the platoon-based
autonomous driving applications. In order to reduce the end-
to-end delay, the length of time slot in the standard should be
decreased at least to 10−4 second.



13

APPENDIX A
STOCHASTIC NETWORK CALCULUS OVERVIEW

Some basics of stochastic network calculus theory will be
presented here, including the notations, definitions and some
basic conclusions.

In the network calculus theory, elements in networks are
modelled as two types of abstract elements: flows and servers,
which are described by arrival curves and service curves,
respectively [38]. A(t) and A∗(t) are arrival (or input) and
departure (or output) flows, respectively. S(t) is an element
that deals with flows, which can be a router, a channel, and
other things.

Definition 1: A(t) and A∗(t) are total cumulative number
of bits of arrival and departure flow in time interval [0, t),
respectively. Furthermore, A(s, t) = A(t)−A(s),∀t > s.

Definition 2: A flow A(t) has a traffic-amount-centric (t.a.c)
stochastic arrival curve α(t) with bounding function f(x), if
for all 0 ≤ s ≤ t and ∀x ≥ 0 there holds

P (A(s, t)− α(t− s) > x) ≤ f(x), (39)

which is denoted as A ∼ta ⟨f, α⟩.
Definition 3: A server S(t) provides a weak stochastic curve

β(t) with bounding function g(x), denoted by S ∼ws ⟨g, β⟩
if, for all t ≥ 0 and ∀x ≥ 0, there holds

P ((A⊗ β)(t)−A∗(t) > x) ≤ g(x) (40)

where ⊗ denotes the min-plus convolution in network calculus,
which is defined as follows:

(f ⊗ g)(x) = inf
0≤y≤x

[f(y) + g(x− y)] (41)

Definition 4: The delay in network calculus for a bit arriving
at time t means the duration that all bits received before it are
served, which can be expressed as follows,

d(t) = inf [τ : A(t) ≤ A∗(t+ τ)] (42)

Theorem 1: If a system has an arrival flow characterized by
⟨f, α⟩ and a server characterized by ⟨g, β, ⟩, then the delay
d(t) satisfies the inequality

P (d(t) > h(α(t) + x, β(t))) ≤ (f ⊗ g)(x) (43)

where h(a, b) is the maximum horizontal distance between
functions a and b, which is defined as

h(a, b) = sup
s≥0

{inf [τ ≥ 0 : a(s) ≤ b(s+ τ)]} . (44)

Theorem 2: N flows with arrival processes Ai(t) ∼ta

⟨fi, αi⟩,∀i = 1, . . . , N can be aggregated into single flow,
with the following arrival curve:

α(t) =

N∑
i=1

αi(t) (45)

f(x) = f1 ⊗ f2 ⊗ · · · ⊗ fN (x). (46)

Theorem 3: Consider two flows A1(t) and A2(t) pass
through system S, the service curve of S is S ∼sc ⟨g, β⟩,
the arrival curve fo A2(t) is A2 ∼ta ⟨f2, α2⟩, then the service
curve that the system offers to A1 can be characterized by

β1(t) =
[
β(t)− αθ

2(t)
]+

(47)

g1(t) =
(
g ⊗ fθ

2

)
(x) (48)

where

αθ
2(t) = α2(t) + θ · t (49)

and
fθ
2 =

[
f2(x) +

1

θ

∫ ∞

x

f2(y)dy

]
1

, (50)

for any θ > 0. And [x]1 = min{x, 1}.
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