
Sensory Features in Affective Analysis: A Study Based 

on Neural Network Models 

Abstract. This study proposes an ensemble model to incorporate sensory features 

of lexical items in English from external resources into neural affective analysis 

frameworks. This allows the models to take the combined effects of bi-directional 

feeling between the sensory lexicon and the writer to infer human affective 

knowledge. We evaluate our model on two affective analysis tasks. The ensemble 

model exhibits the best accuracy and the results with 1% F1-score improvement 

over the baseline LSTM model in the sentiment analysis task. The performance 

shows that perceptual information can contribute to the performance of sentiment 

classification tasks significantly. This study also provides a support for the 

linguistic finding that correlations exist between sensory features and sentiments 

in the language. 
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1   Introduction 

Affective analysis, a broader term for sentiment analysis and emotion recognition, is 

highly demanded in the social media text analysis. It is also crucial for various 

applications, such as opinion based product recommendation [3], opinion mining [7], 

and medical artificial intelligence (AI) [12]. Although affective analysis has been 

studied extensively using different methods applied on different types of data, text is 

one of the most important types of data so far [6]. Existing research on affective analysis 

mainly centers on learning features through the use of neural networks, such as 

Convolutional Neural Network (CNN) [5], Gated Recurrent Unit (GRU) [17], Long-

Short Term Memory Network (LSTM) [2], Memory network [8], and Pre-trained 

transformer strategies [4]. Those models, though achieving promising results, have also 

presented drawbacks in terms of explainability, as their grey box approaches are unable 

to highlight the salient words or phrases that link to the affective information and thus 

contribute less to reflect human-understandable emotion components [13]. However, 

the neural networks approach, which learns from large-scale raw data while devaluing 

a myriad of existing external resources (e.g., linguistic ontology, cognition-grounded 

data, and affective lexicon), has showed great usefulness in feature engineering 

approach and could thus complement the automatic learn features for the neural model 

to human cognition process. Furthermore, with the recent neural cognitive trend in 

Natural Language Processing (NLP), it has been shown that modern language 

algorithms partially converge towards brain-like solutions among all NLP tasks, where 

affective analysis is one of the most cognition driven tasks [1]. Specifically, two 

phenomena rally behind the cognitive theories of affective analysis [9]. First, people 

react to the same event with a variety of different emotions, where the reaction is subject 



to individuals’ biases based on their cognitive experiences. Second, different events 

may trigger the same emotion, as there are only a limited number of emotional reactions 

cognitively. Thus, cognition grounded data obtained in crowdsourcing should be 

helpful in building a cognitive driven neural model for the affective analysis. 

This study incorporates sensory features of lexical items from external resources into 

neural affective analysis frameworks. This allows the models to take the joint effects of 

bi-directional feeling between the external knowledge and the text to infer human 

affective knowledge. To the best of our knowledge, this study is one of the first to 

explore the coupled effects of manually annotated affective vectors and neural networks 

for the affective analysis, which somehow involves the implicit engagement of human 

readers to help sentiment prediction. In the rest of our paper, Section 2 gives a review 

of sensory features in language resources, and Section 3 presents our models based on 

the sensory features. To obtain empirical evidence, Section 4 shows a series of 

experiments based on five benchmark datasets with comprehensive comparisons on 

different models. The last section is conclusion. 

2   Sensory features in affective analysis 

The sensory features employed in this current study are mainly derived from the 

sensory rating task on lexical items, which has been initiated by Lynott and Connell 

[10]. In the task, participants were asked to rate the extent to which they can experience 

something denoted by a lexical item by feeling through touch, by tasting, by seeing, by 

hearing, and by smelling. Lynott et al. [11] have added one more dimension for the 

sensory features of English lexicon (i.e., the modality of interoception). 

In terms of the correlation between sensory features and sentiments in the language, 

Winter [14] is one of seminal work. The study has found that sensory features related 

to taste and smell are more emotion loaded for English lexicon. Similarly, this pattern 

has also been observed for Mandarin Chinese [18], except that gustatory features are 

more positive, while olfactory features are more negative. Thus, this study presumes 

that the correlations between sensory features and sentiments should be incorporated 

into neural network models for the affective analysis in the text. 

3   Our model 

This section elaborates how the affective awareness based on the perceptual features in 

the English lexicon is employed and incorporated into the neural sentiment 

classification frameworks for the affective analysis. 

3.1   External sensorimotor resource 

The external resource utilized by this study is The Lancaster Sensorimotor Norms [11], 

which was collected through the ratings of 3,500 individual participants of English 



native speakers using Amazon’s Mechanical Turk 1  platform. The Lancaster 

Sensorimotor Norms covers the annotations in six perceptual modalities (touch, 

hearing, smell, taste, vision, and interoception) and five action effectors (mouth/throat, 

hand/arm, foot/leg, head excluding mouth/throat, and torso) for 39,707 lexical 

concepts. The range of the vector is from 0 to 5. As this study focuses on the affective 

analysis, we only employ the perceptual information in the six modalities, where the 

value of each dimension is denoted as vj, j ∈ [0, 5]. For example, the vector of “blue” 

is [0.25, 0, 0.15, 0.5, 0, 4.45], corresponding to the auditory, gustatory, haptic, 

interoceptive, olfactory, and visual score. 

3.2   Model structure 

 

 
 

Fig. 1. The architecture of our model 

 

Input and output. The goal of sentiment analysis is to assign an affective label for a 

piece of input texts, reflecting the writers’ attitude. The label types can either be binary 

for polarity indication or numerical for both polarity and strength. Let D denote a 

collection of documents for sentiment classification. Each document d ∈ D is first 

tokenized into a word sequence with maximum length n, then the word embeddings wi 

of these sequence are jointly employed to represent the document d = {w1, w2, . . . , wi, 

. . . , wn}(i ∈ 1, 2, . . . , n). 

To inject the sensory features into the neural framework, we apply a word embedding 
layer. We use perceptual vector to encode the input document d in Fig. 1. For sensory 

learning, each word embedding is first factorized into 6 embedding factors, each of 

which will be adapted to capture sensory semantics over each sensory dimension (i.e., 

auditory, gustatory, haptic, interoceptive, olfactory, and visual domains) through 

training. In other words, the sensory representation of the word is directly expressed in 

lexicon-level. For the other two groups, we choose the more traditional embedding 

models. One is based on the GloVe [15] pre-training model for word embedding, and 

the other uses random embedding. 

LSTM encoder adopts the mode of gated mechanism, including Input Gate, Forget 

Gate, and Output Gate. Its core is Cell State, which refers to the state of the cell used 

 
1 https://www.mturk.com 



for information dissemination. Memory Cell accepts two inputs: the output value of the 

last time ht-1 and the input value at this time xt.. Send these two parameters into the 

Forget Gate first, and get the information with less weight ft. ft is the information that 

we want to forget. 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

 

Then we can enter the Input Gate and get the information to be updated it, which is 

the information with larger weight compared with the previous cell. Input Gate also 

gets the cell state 𝐶̃𝑡 at this time. 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝐶̃𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3)   

 

With Forget Gate and Input Gate, we can update cell state Ct. 

 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶̃𝑡 (4) 

 

Finally, the output values of the Forget Gate and Input Gate are combined to calculate 

the output signal ℎ𝑡, where at the same time, ℎ𝑡 is also the input signal of the next 

time. 

 

𝑜𝑡 = σ(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡) (6) 

 
Ensemble learning. In the final classification layer, we should fuse the features from 

both the two regular representations learning branches and perceptual learning branch. 

To that end, the three branches first handle the sentiment classification tasks separately. 

The learned document representations from each branch are first fed into the dense 

layers with sigmoid activation to yield the sentiment prediction. The document vector 

v is a high level representation of the document and can be used as features for 

document classification: 

 

𝑝 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑐𝑣 + 𝑏𝑐) (7) 

 
We use the Binary Cross-Entropy of the correct labels as training loss: 

 

𝐿 = −
1

𝑁
∑ 𝑦𝑖 ∙ 𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

 (8) 

 
So far, we have obtained the sentiment prediction of three kinds of word embedding 

sources. Finally, the three branches are fused to the final prediction result through 

voting. 



4   Experiment results 

Performance evaluations are conducted on two datasets and our model is compared 

with a series of commonly used baseline methods. 

4.1    Datasets 

The two benchmarking datasets include movie reviews from IMDB, and a toxic 

comment dataset [16]. For IMDB dataset, the reviews are collected from IMDB website, 

where each review is associated with a binary sentiment label indicating positive or 

negative polarity. The toxic comment dataset which is widely used for toxic detection 

and Kaggle competition founded by Jigsaw and Google. This dataset is seven classes 

and the types of toxicity are: toxic, severe toxic, obscene, threat, insult, and identity 

hate. We merge six types of toxic as positive, no toxic as negative.   

Table 1 shows the statistics of the five datasets for experiments including the number 

of the train set, the number of test set, the ratio of classes, the number of vocabulary 

and the number of classes. They exhibit different characteristics, allowing the model 

evaluations in various scenarios. 

 

Dataset Ntrain Ntest Rclasses(pos:neg) Nvoc C 

IMDB 

Toxic Dataset 

25,000 

119,621 

25,000 

39,874 

25,000 : 25,000 

16,149 : 143,346 

88582 

166465 

2 

2 
Table 1: Statistics of the two benchmark datasets 

4.2    Baseline Methods 

To examine the effects of perceptual knowledge in experimental comparisons, three 

baseline systems are used in the evaluation in table 2. 

 

 IMDB Toxic Dataset 

Model Acc F1 AUC Acc F1 AUC 

LSTM-Random 0.865 0.856 0.857 0.962 0.803 0.868 

LSTM-GloVe 0.880 0.882 0.883 0.964 0.805 0.871 

LSTM-Perceptual 0.870 0.869 0.858 0.964 0.803 0.877 

Ensemble Model 0.892 0.891 0.889 0.966 0.814 0.875 
Table 2: Evaluation of different methods; best result in accuracy is marked in bold 

 
Their main settings are described as follows: 

• LSTM-Random takes 128 dimension random embeddings to represent the document 

vectors and use LSTM as classifier. 

• LSTM-GloVe takes the word embeddings of GloVe pre-train model to represent the 

document vectors and uses LSTM as classifier. 

• LSTM-Perceptual takes the word embeddings of perceptual six-dimension-vector 

model to represent the document vectors and uses LSTM as classifier. 



• Ensemble Model gets the final prediction is made by integrating the above three 

baseline models. 

4.3    Performance Evaluation 

The performance measures we use include Accuracy (ACC), F1-score (F1) and Area 

Under Curve (AUC) for our model. Table 2 shows the result of our experiment. In these 

two groups of sentiment classification tasks, Ensemble Model exhibits the best 

accuracy, but the accuracy of LSTM-Perceptual is less than LSTM-GloVe. This proves 

that for some vocabularies in some documents, perceptual information representation 

is helpful for sentiment classification. But not all vocabularies are applicable. The 

ensemble Model also achieves the best performance at F1 and AUC in IMDB. But the 

results are with only a 0.2% accuracy improvement over other models in Toxic Dataset. 

One possible explanation is that the toxic dataset is extremely unbalanced. As shown in 

Table 1. The ratio of positive cases to negative cases is only 0.11:1. Therefore the 

accuracy is usually very high and will not be greatly improved. In this unbalanced data 

set, the value of F1 is particularly important. F1-score can show the actual ability of the 

model on the unbalanced data set. Another reason may be that there are limited 

connections between sensory words and toxic language behaviors. The ensemble 

Model exhibits the best accuracy and results with a 1% F1-score improvement over 

other models. The above data shows that sensory information representation can 

improve the performance of sentiment classification tasks. 

4.4 Case Study 

To explore how sensory modalities knowledge improves sentiment classification tasks, 

we explore the specific case study. First, we chose the word "sad," which ultimately 

represents negative. In the GloVe pre-training word embedding, another word that 

describes negative "gloomy" only has a similarity of 0.36 with "sad." In contrast, in our 

perceptual space vector model, "gloomy" and "sad" have a similarity of up to 0.99. This 

shows that in some cases, the perceptual vector model has a more beneficial effect on 

sentiment classification than the traditional methods and makes the classification 

results tend to be correct. 

5   Conclusion 

This paper proposes a novel cognition-grounded model to improve the neural sentiment 

analysis model through sensory features of lexical items from external resources. An 

ensemble model takes the combined effects of bi-directional feeling between the 

external knowledge and the writer to infer human affective knowledge. The ensemble 

model considers both textual and sensory features. Evaluations of benchmark datasets 

validate the effectiveness of our method in sentiment analysis and related tasks, as our 

method outperforms other baseline approaches that use local context information to 

build their neural models. Thus, sensory data containing significant affective meaning 



can be leveraged into affective analysis tasks. The ensemble mechanism can also be 

combined with other models to provide room for further improvement. An important 

finding of our work is that sensory rating data gives a better gain in capturing synonyms 

and is closely related concepts than original word embedding information. This 

explains the improved performance of the sentiment-related task. While in the toxic 

language detection task, our work has a relatively limited improvement. 

Our work also indicates that the quality and scale of sensory lexicon greatly 

influence the ensemble model's effectiveness. We anticipate even more significant 

improvements with a larger scale of data in more fine-grained sensory information. 

Another future work is building a more deep-level fusing model by leveraging affective 

lexicon into both feature and model levels. 
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