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Abstract

In this note we identify and illustrate some shortcomings of the poisson com-

mand in STATA. Specifically, we point out that the command fails to check for the

existence of the estimates and show that it is very sensitive to numerical problems.

While these are serious problems that may prevent users from obtaining estimates,

or even produce spurious and misleading results, we show that the informed user

often has available simple work-arounds for these problems.
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1. INTRODUCTION

Besides being the most widely used estimator for count data (see Winkelmann, 2008,

and Cameron and Trivedi, 1997), Poisson regression is also becoming increasingly used to

estimate multiplicative models for other non-negative data (see, among others, Manning

and Mullahy, 2001, and Santos Silva and Tenreyro, 2006). The availability in STATA

of a command that estimates Poisson regression has been an important reason for the

increasing popularity of this estimator. However, researchers using Poisson regression,

especially those using it to estimate gravity equations as recommended by Santos Silva

and Tenreyro (2006), often find that the algorithm implemented in STATA’s poisson

command does not converge. There are two main reasons for this. First, as noted by Santos

Silva and Tenreyro (2010), there are instances in which the estimates do not exist and if

that is the case the convergence of the algorithm used to maximize the likelihood function

can only be spurious. Second, even when the estimates exist, researchers using STATA

may have trouble to get Poisson regression estimates because the poisson command is

very sensitive to numerical problems. In this note we describe how researchers can identify

some of the situations that may lead to convergence problems and propose some simple

work-arounds.

2. THE NON EXISTENCE OF THE ESTIMATES

Let yi and xi denote respectively the variate of interest and the vector of covariates,

and assume that the researcher specifies E(yi|xi) = exp(x′iβ). In a sample of size n, β̂, the

Poisson regression estimate of β, is defined by

n∑
i=1

[
yi − exp

(
x′iβ̂
)]
xi = 0. (1)

The form of (1) makes clear that β will be consistently estimated as long as the condi-

tional mean is correctly specified. That is, the only condition required for the consistency

of the estimator is that E(yi|xi) = exp(x′iβ). This is the well known pseudo-maximum

likelihood result of Gourieroux, Monfort and Trognon (1984).
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However, Santos Silva and Tenreyro (2010) have shown that β̂ does not always exist

and that its existence depends on the data configuration. In particular, the estimates may

not exist if there is perfect collinearity for the sub-sample with positive observations of

yi.1 If the estimates do not exist, it is either impossible for the estimation algorithm to

converge or convergence is spurious. The following STATA code illustrates the situation

where convergence is not achieved:2

drawnorm x1, n(1000) seed(101010) double clear

generate double u=rpoisson(1)

generate y=exp(1+10*x1)*u

generate double x2=(y==0)

poisson y x1 x2, robust

An example where the convergence is spurious is given by the code below:

drawnorm x1, n(1000) seed(101010) double clear

generate double y=rpoisson(1)

generate double x2=(y==0)

poisson y x1 x2, robust

The non-existence of the maximum likelihood estimates in Poisson regression is anal-

ogous to what happens in binary choice models when there is complete separation or

quasi-complete separation, as described by Albert and Anderson (1984) and Santner and

Duffy (1986). In the case of binary models, it is standard to check for the existence of

the estimates before starting the actual estimation. In contradistinction, the poisson

command in STATA does not check for the existence of the estimates and therefore it is

important that users investigate whether or not the estimates exist. Because the regres-

sors that may cause the non-existence of the estimates are characterized by their perfect

collinearity with the others for the sub-sample with yi > 0, they can easily be identified in

STATA by using a simplified version of the three-step method suggested by Santos Silva

and Tenreyro (2010):
1See also Haberman (1973).
2The code used in this note produces the desired results in STATA/IC 11.1 for Windows (32-bit).

Using other flavours of STATA, for example MP versions, may lead to different outcomes.
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Step 1: Construct a subset of explanatory variable, say x̃i, comprising only the regressors

that are not collinear for the observations with yi > 0;

Step 2: Using the full sample, run the Poisson regression of yi on x̃i.

The following code, where it is assumed that all variables with names starting with x

are regressors, illustrates the implementation of the procedure:3

local _rhs "x*"
_rmcoll ‘_rhs’ if y>0
poisson y ‘r(varlist)’, robust

This procedure ensures that the estimates exist by eliminating all potentially problem-

atic regressors, even those that actually do not lead to the non-existence of the maximum

likelihood estimates.4 Therefore, the researcher should subsequently investigate one-by-

one all the variables that were dropped to see if any of them can be included in the model.

Carefully investigation of the variables to be excluded is particularly important when the

model contains sets of dummies with several categories: in this case dropping one of the

dummies implies an arbitrary redefinition of the reference category which is unlikely to be

sensible. In any case, dropping some regressors should never be an automatic procedure

because it changes the model specification and therefore the researcher should carefully

consider what is the best way to find an interesting specification for which the (pseudo)

maximum likelihood estimates exist.

It is worth noting that the non existence of the estimates can also occur in any regression

model where the conditional mean is specified in such a way that its image does not include

all the points in the support of the dependent variable. Therefore, unless the data are

strictly positive, this problem can occur not only in the Poisson regression but also in other

models specifying E(yi|xi) = exp(x′iβ), and in models for limited dependent variables like

the Tobit (Tobin, 1958). In all these cases, the identification of the problematic regressors

can be done using methods akin to the one described above.

3We are grateful to Markus Baldauf for help with the development of an earlier version of this code

and to an anonymous referee for suggesting this much simple version using the _rmcoll command.
4A less strict criterion to select the regressors to be dropped is used by default in the ppml command

briefly discussed below.
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3. NUMERICAL DIFFICULTIES

Even if the (pseudo) maximum likelihood estimates of the Poisson regression exist,

STATA may have diffi culty identifying them due to the sensitivity to numerical problems

of the algorithms available in the poisson command. In particular, we are aware of three

situations in which the algorithms in the poisson command have trouble locating the

maximum and may not converge, even when the (pseudo) maximum likelihood estimates

of the Poisson regression are well defined.

The simplest case in which STATA finds it diffi cult to find the Poisson (pseudo) max-

imum likelihood estimates is when y has some very large values. The following STATA

code illustrates the situation:5

drawnorm u x1 x2, n(1000) seed(101010) double clear
generate double y=exp(40+x1+x2+u)
poisson y x1 x2, robust difficult

In this example the Poisson regression does not converge, at least not in a reasonable

number of iterations. Obviously, in this case the problem can easily be by-passed just by

re-scaling the dependent variable, say, by dividing it by exp (40).

A second situation in which STATA finds it diffi cult to locate the solution of (1) occurs

when the regressors are highly collinear and have very different magnitudes. The following

STATA code illustrates the situation:6

drawnorm u e x1, n(1000) seed(101010) double clear
generate x2=(x1<-2)
generate double x3=20+x1+(e/100)*(x1<-2)
generate double y=exp(1+x1+x2+u)
poisson y x1 x2 x3, robust difficult

In this case, again, the Poisson regression does not converge but a simple work-around

is available: if the third regressor is re-centered at zero convergence is achieved with ease.

These two examples suggest that, when facing convergence problems, researchers should

re-scale and re-center their data in a way that reduces possible numerical problems. How-

ever, even if that is done, STATA will have trouble finding the (pseudo) maximum like-

5We are grateful to Alexandros Theloudis for showing us a dataset where this situation occurs.
6We are grateful to Avni Hanedar for showing us a dataset where this situation occurs.
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lihood estimates of the Poisson regression when the covariates are extremely (but not

perfectly) collinear. The following example illustrates this situation:

drawnorm u e x1, n(1000) seed(101010) double clear
generate double x2=(x1+e/20000)
generate double y=exp(1+x1+x2+u)
poisson y x1 x2, robust difficult

In cases like this it is generally not possible to bypass the problem using some sort of

data transformation and different work-arounds are needed.7

4. WORK-AROUNDS

An obvious option to explore when the (pseudo) maximum likelihood estimates exist

but convergence is not achieved with the default options is to try one of the different

optimization methods offered by the poisson command. However, for instance in the

third example in Section 3, none of the methods available leads to satisfactory results.

Indeed, in that case, with the NR and the BHHH options the algorithm fails to converge and

with the DFP and the BFGS options the algorithm converges to a result that is far from

the optimum. Alternatively, one can ensure convergence just by relaxing the convergence

criteria. This, however, is a risky option because the algorithm may be stopped too soon,

therefore not delivering the desired (pseudo) maximum likelihood estimates. This is what

happens, for instance, in the second example in the previous section when the nonrtol

option is used.

A simple work-around that often (but by no means always) works is to use the glm

command with the options family(poisson) link(log) irls. Indeed, the iterated re-

weighted least squares algorithm provided by the glm command appears to be much more

stable than the algorithms available in the poisson command and it produces the correct

results in the three examples presented in Section 3.

To facilitate the estimation of Poisson regressions while STATA does not improve the

reliability of poisson, we have written the ppml command which checks for the existence

of the (pseudo) maximum likelihood estimates and offers two methods to drop regressors

7Of course, the researcher may want to reconsider the specification being used.
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that may cause the non-existence of the estimates. Estimation is then implemented using

the glm method and ppml warns if the variables have large values that are likely to create

numerical problems or if there are signs that the convergence is spurious.8 Further details

on ppml can be found in the corresponding help file.

5. CONCLUSIONS

In this note we have illustrated some shortcomings of the poisson command in STATA.

We believe that should be relatively easy to update the command so that it checks for the

existence of the Poisson regression estimates and is more resilient to numerical problems.

While an upgraded version of poisson is not available, practitioners can use our ppml

command, which checks for the existence of the estimates before trying to estimate a

Poisson regression, and provides several warnings about possible convergence problems.
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