
Adaptive Intelligent Systems for
Extreme Environments

Yufan Lu

A thesis submitted for the degree of Doctor of Philosophy in

Computing and Electronic Systems

School of Computer Science and Electronic Engineering

University of Essex

April 6, 2023

Abstract

As embedded processors become powerful, a growing number of embedded systems

equipped with artificial intelligence (AI) algorithms have been used in radiation

environments to perform routine tasks to reduce radiation risk for human workers.

On the one hand, because of the low price, commercial-off-the-shelf devices and

components are becoming increasingly popular to make such tasks more affordable.

Meanwhile, it also presents new challenges to improve radiation tolerance, the

capability to conduct multiple AI tasks and deliver the power efficiency of the

embedded systems in harsh environments. There are three aspects of research work

that have been completed in this thesis: 1) a fast simulation method for analysis

of single event effect (SEE) in integrated circuits, 2) a self-refresh scheme to detect

and correct bit-flips in random access memory (RAM), and 3) a hardware AI

system with dynamic hardware accelerators and AI models for increasing flexibility

and efficiency.

The variances of the physical parameters in practical implementation, such

as the nature of the particle, linear energy transfer and circuit characteristics,

may have a large impact on the final simulation accuracy, which will significantly

increase the complexity and cost in the workflow of the transistor level simulation

for large-scale circuits. It makes it difficult to conduct SEE simulations for large-

scale circuits. Therefore, in the first research work, a new SEE simulation scheme

is proposed, to offer a fast and cost-efficient method to evaluate and compare

the performance of large-scale circuits which subject to the effects of radiation

particles. The advantages of transistor and hardware description language (HDL)

i

ABSTRACT ii

simulations are combined here to produce accurate SEE digital error models for

rapid error analysis in large-scale circuits. Under the proposed scheme, time-

consuming back-end steps are skipped. The SEE analysis for large-scale circuits

can be completed in just few hours.

In high-radiation environments, bit-flips in RAMs can not only occur but may

also be accumulated. However, the typical error mitigation methods can not handle

high error rates with low hardware costs. In the second work, an adaptive scheme

combined with correcting codes and refreshing techniques is proposed, to correct

errors and mitigate error accumulation in extreme radiation environments. This

scheme is proposed to continuously refresh the data in RAMs so that errors can not

be accumulated. Furthermore, because the proposed design can share the same

ports with the user module without changing the timing sequence, it thus can be

easily applied to the system where the hardware modules are designed with fixed

reading and writing latency.

It is a challenge to implement intelligent systems with constrained hardware

resources. In the third work, an adaptive hardware resource management system

for multiple AI tasks in harsh environments was designed. Inspired by the “re-

freshing” concept in the second work, we utilise a key feature of FPGAs, partial

reconfiguration, to improve the reliability and efficiency of the AI system. More

importantly, this feature provides the capability to manage the hardware resources

for deep learning acceleration. In the proposed design, the on-chip hardware re-

sources are dynamically managed to improve the flexibility, performance and power

efficiency of deep learning inference systems. The deep learning units provided by

Xilinx are used to perform multiple AI tasks simultaneously, and the experiments

show significant improvements in power efficiency for a wide range of scenarios

with different workloads. To further improve the performance of the system, the

concept of reconfiguration was further extended. As a result, an adaptive DL soft-

ware framework was designed. This framework can provide a significant level of

adaptability support for various deep learning algorithms on an FPGA-based edge

ABSTRACT iii

computing platform. To meet the specific accuracy and latency requirements de-

rived from the running applications and operating environments, the platform may

dynamically update hardware and software (e.g., processing pipelines) to achieve

better cost, power, and processing efficiency compared to the static system.

List of publications

• Y. Lu, X. Zhai, S. Saha, S. Ehsan, and K. McDonald-Maier. A self-scrubbing

scheme for embedded systems in radiation environments. In 2020 IEEE 26th

International Symposium on On-Line Testing and Robust System Design

(IOLTS), pages 1–4. IEEE, 2020.

• Y. Lu, X. Zhai, S. Saha, S. Ehsan, and K. D. McDonald-Maier. Fpga

based adaptive hardware acceleration for multiple deep learning tasks. In

2021 IEEE 14th International Symposium on Embedded Multicore/Many-

core Systems-on-Chip (MCSoC), pages 204–209. IEEE, 2021.

• Y. Lu, X. Chen, X. Zhai, S. Saha, S. Ehsan, J. Su, and K. McDonald-

Maier. A fast simulation method for analysis of SEE in vlsi. Microelectronics

Reliability, 120:114110, 2021.

• Y. Lu, X. Zhai, S. Saha, S. Ehsan, J.Su and K. McDonald-Maier. A simu-

lation and evaluation scheme for Single Event Effects in VLSI. In 2021 8th

International Workshop on Analogue and Mixed-Signal Integrated Circuits

for Space Applications (AMICSA), ESA, 2021.

• Y. Lu, X. Zhai, S. Saha, S. Ehsan, and K. D. McDonald-Maier. A self-

adaptive SEU mitigation scheme for embedded systems in extreme radiation

environments. IEEE Systems Journal, 16(1):1436–1447, 2022.

• C. Gao, S. Saha, Y. Lu, R. Saha, K. McDonald-Maier and X. Zhai. Deep

Learning on FPGAs with Multiple Service Levels for Edge Computing. 2022

iv

LIST OF PUBLICATIONS v

27th International Conference on Automation and Computing (ICAC), IEEE,

2022.

• Lu, Y., Gao, C., Saha, R., Saha, S., McDonald-Maier, K. D., & Zhai, X.

(2022). FPGA-Based Dynamic Deep Learning Acceleration for Real-Time

Video Analytics. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

13642 LNCS, 68–82. https://doi.org/10.1007/978-3-031-21867-5 5

Prizes and awards

• The prize of Xilinx University Program (XUP), Xilinx Adaptive Computing

Challenge 2021 [1], All-in-one Self-adaptive Computing Platform for Smart

City [2]. The design is based on the third part of the work in this

thesis.

vi

Acknowledgments

I would like to thank my supervisors – Professor Klaus D. McDonald-Maier and

Dr. Xiaojun Zhai, for their invaluable supervision, support and tutelage during the

course of my PhD degree. My gratitude extends to the China Scholarship Council

for the funding opportunity to undertake my studies at the University of Essex.

Additionally, I would like to express gratitude to Dr Sangeet Saha for his treasured

help in experiments and paper writing. I also thank Ying Li for her support during

Xilinx Adaptive Computing Challenge 2021. I want to thank Dr Chris Frost for

his help in neutron radiation experiments. I would like to thank my friends, lab

mates, and colleagues - Dr. Shichao Yu, Dr. Junpeng Shi, Dr. Zuyuan Zhu,

Dr. Bingxin Cai, Dr Lili Yan, Kai Zhang, Shengnan Li, Tao Chen, Phil George,

Yucheng Wang and Zeba Khanam for a cherished time spent together during the

pandemic. My appreciation also goes out to my family for their encouragement

and support throughout my studies.

vii

Contents

Abstract i

List of publications iv

Prizes and awards vi

Acknowledgments vii

1 Introduction 1

1.1 Background . 1

1.2 Simulation of radiation effects . 4

1.3 Error mitigation techniques for memory system 6

1.4 Adaptive intelligent systems . 8

1.4.1 Adaptive hardware design 9

1.4.2 Adaptive DL inference . 10

1.5 Contributions . 10

1.6 Organisation of the thesis . 14

2 Literature review 15

2.1 Overview of radiation environments 15

2.1.1 Space environment . 16

2.1.2 Atmospheric and terrestrial radiation environment 17

2.1.3 Artificial radiation environment 18

2.2 Single Event Effect . 19

2.2.1 Background of SEE . 19

viii

CONTENTS ix

2.2.2 Mechanisms responsible for SEEs 19

2.2.3 Classification of SEEs . 21

2.3 SEE simulation and evaluation . 24

2.3.1 Radiation experiments . 24

2.3.2 SEE simulations at the transistor level 26

2.3.3 SEE simulations at the gate level 27

2.3.4 SEE simulation in hardware description language 30

2.4 SEE mitigation methods . 31

2.4.1 Triple modular redundancy 32

2.4.2 Error correction codes . 33

2.4.3 Scrubbing . 34

2.5 Intelligent hardware system . 37

2.5.1 Deployment of DL models 39

2.5.2 Hardware accelerators for DL inference 40

2.6 Partial reconfiguration of FPGAs 44

2.6.1 Mechanism of partial reconfiguration 44

2.6.2 Applications of partial reconfiguration 45

2.6.3 Challenges of FPGA system with partial reconfiguration . . 49

2.7 Conclusion . 50

3 Simulation of SEEs in integrated circuits 52

3.1 Introduction . 52

3.2 The proposed SEE simulation scheme 54

3.2.1 Process of SEE simulation 54

3.2.2 The basic component for SEE simulation 56

3.2.3 Propagation between multiple units 59

3.2.4 Large circuits . 60

3.3 Implementation of SEE models . 62

3.3.1 Selection of basic components 63

3.3.2 The used circuit unit in simulation 64

CONTENTS x

3.3.3 Injection currents . 65

3.3.4 Simulation of SEE models 67

3.4 SEE simulation of large-scale circuits 70

3.4.1 Implementation of HDL circuit units 71

3.4.2 Script tools for injection . 72

3.4.3 Propagation of SEE induced errors 74

3.5 Simulation results of large-scale circuits 75

3.5.1 The simulation of the ISCA89 circuits 75

3.5.2 Simulation of the SEE mitiagtion circuits 77

3.5.3 Time required for the simulation 79

3.6 Conclusion . 80

4 Self-adaptive SEU mitigation for RAM 83

4.1 Introduction . 83

4.2 Architecture of the self-refresh RAM 85

4.2.1 Switcher for operations . 86

4.2.2 Refresh controller . 86

4.2.3 Output buffer . 87

4.3 Hardware implementation . 88

4.3.1 Design of the FSM . 88

4.3.2 Conflicts of operations and strategy of scanning 91

4.3.3 Parallel architecture . 93

4.4 Fault injection platform and hardware simulation 94

4.4.1 Design of hardware fault injection platform 95

4.4.2 Fault injection in the hardware platform 96

4.4.3 Results of simulations . 97

4.5 Neutron radiation experiments . 100

4.5.1 Setup of the neutron experiment 100

4.5.2 Hardware implementation of the proposed design 101

4.5.3 Analysis of the return data 105

CONTENTS xi

4.5.4 Results of the radiation experiment 106

4.6 Conclusion . 109

5 Hardware acceleration for multiple tasks 111

5.1 Introduction . 111

5.2 The system with dynamic management 113

5.2.1 Software architecture . 113

5.2.2 Hardware architecture . 115

5.3 Working flow of the proposed system 117

5.3.1 Acceleration tasks . 117

5.3.2 The management of the accelerator pool 120

5.3.3 The strategies of reconfiguration 120

5.4 Experiments of the dynamic deployment 122

5.4.1 The setup of the experiments 122

5.4.2 The power consumption and performance of different con-

figurations . 123

5.4.3 The results of the proposed hardware adaptive system . . . 124

5.5 Conclusion . 125

6 AI system with adaptive DL inference 127

6.1 Introduction . 127

6.2 Overview of the proposed system 129

6.2.1 Neural network architecture search 129

6.2.2 Neural network model compilation 130

6.2.3 Software and hardware run-time management 130

6.3 DNN model optimisation . 131

6.3.1 Brief introduction to once-for-all network 131

6.3.2 Model generation and optimisation 131

6.4 System hardware/software co-design 132

6.4.1 Hardware architecture . 132

CONTENTS xii

6.4.2 Software implementation . 135

6.4.3 Dynamic DNN model switching method 135

6.5 Experiments . 138

6.5.1 Overall system setup . 138

6.5.2 Hardware configuration . 139

6.5.3 Software configuration . 140

6.5.4 Results and analysis . 141

6.6 Conclusion . 145

7 Conclusions and future work 147

7.1 Summary of Research . 147

7.2 Novel Contributions . 149

7.3 Future works . 150

A Demo of adaptive AI system 153

B Source Code 159

B.1 Python program: generate SEE models in netlists 159

B.2 Verilog code: Design of FSM in self-refreshing RAM 165

B.3 Shell scripts: build Gstreamer pipelines 171

B.4 Python management interfaces for adaptive platform 181

B.5 C++ program: VVAS plugins . 194

B.5.1 Parse commands from the management program 194

B.5.2 Conduct inference with DPU 200

Bibliography 210

List of Figures

1.1 Road map of the works in this thesis 11

2.1 The transient pulse caused by ionization and collection process . . . 20

2.2 The simulation of SEU injection in the SRAM cell 23

2.3 SEE injection in 3D TCAD simulation 26

2.4 SEE injection in OxRRAM memory cell 28

2.5 SEE injection in a chain of shift registers during clock rising 29

2.6 TMR fault masking. 32

2.7 An example of Error correcting codes (ECC) 33

2.8 The architecture of refreshing memory cell 35

2.9 External scrubbers for configuration memory in FPGAs 36

2.10 The internal refresh scheme by using ICAP 36

2.11 The scrubber based on dual-port RAMs 37

2.12 Hardware implementation platform distribution 41

2.13 The configuration memory layer and the hardware logic layer 44

3.1 The comparison between a typical SEE evaluation scheme and the

proposed scheme . 53

3.2 The workflow of the proposed scheme 55

3.3 The original transient SEE pulse and the generated SEE digital pulses 57

3.4 The voltage change of the bit flip 58

3.5 The propagation effects on positive and negative pulses 60

3.6 A TMR module for SEE injection 62

xiii

LIST OF FIGURES xiv

3.7 The circuit diagram of the QFFQX1M in SMIC gate library 64

3.8 The location of injection current source in the inverter circuit . . . 67

3.9 The simulation results of SEE positive pulse in the inverter circuit . 68

3.10 The comparison of the output voltages of the inverter with and

without following circuits . 68

3.11 The implementation of the SEE model of the inverter 71

3.12 The transient pulse in HDL simulation 72

3.13 The HDL simulation for large-scale circuits 73

3.14 Errors blocked by logic gates and registers 74

3.15 The outputs of the S27 in HDL simulation 76

3.16 The outputs of the S27 with buffers in HDL simulation 77

3.17 The error rates of the circuits in ISCAS89 without buffers and the

circuits with buffers . 77

3.18 The time required to SEE HDL simulations for ISCAS89 benchmark

circuits . 79

4.1 The scheme of the external scrubber platform 84

4.2 Sequence of the input operations stream 87

4.3 Sequence of the output data stream 88

4.4 the finite-state machine of the controller 89

4.5 The timing diagram without address conflicts 89

4.6 Writing address conflicts . 91

4.7 The actual timing Diagram of the proposed scheme 92

4.8 Architecture of Multi refresh controllers 94

4.9 Architecture of Hardware Fault Injection Platform 95

4.10 The block diagram of the injection modules for evaluating the pro-

posed design . 96

4.11 Results of simulations with 80 µs injection time 98

4.12 Error rates for different average injection time 99

4.13 Setup of neutron radiation experiment 100

LIST OF FIGURES xv

4.14 The hardware costs with the scale of the design 101

4.15 The power consumption with the scale of the design 103

4.16 Number of the errors in the unhardened RAMs 104

4.17 Observed errors in hardened and unhardened RAMs 105

4.18 Comparison between the conventional ECC RAMs and the self-

refresh ECC RAMs . 107

5.1 The system architecture of the proposed scheme 114

5.2 The hardware architecture of the adaptive system 116

5.3 The hardware architecture of dynamic partition. 116

5.4 The acceleration tasks in hardware accelerator pools 118

5.5 The deployment of hardware accelerators 119

5.6 The comparison of the weights between queue A and B 120

5.7 Weight changes when applying the strategies 121

5.8 The setup of the experiments for dynamic deployment 123

5.9 The power consumption and the performance of the system in dif-

ferent configurations . 124

6.1 The system architecture of the proposed scheme. 129

6.2 The model generation and optimisation technique. 132

6.3 The hardware architecture of the proposed platform. 133

6.4 The hardware architecture of the proposed platform. 134

6.5 Video processing pipelines in the proposed system 136

6.6 Design of the communication framework 138

6.7 System setup diagram . 139

6.8 Testing scenarios for AI tasks . 141

6.9 Total energy consumption for running different models 142

6.10 Latency in different scenarios . 143

6.11 FPS of the proposed system in different scenarios 144

A.1 ReID for pedestrians . 153

LIST OF FIGURES xvi

A.2 Pose detection . 154

A.3 ReID task for cars . 154

A.4 Multiple DL processing branches 155

A.5 Adjust frame processing intervals. 156

A.6 Modify the running model. 157

A.7 System performance with and without adaptive management 158

List of Tables

2.1 The basic categories of SEEs . 22

2.2 Hardware platforms for AI acceleration 43

3.1 The netlist of the S27 circuits . 63

3.2 Time required of the SPICE simulation to build SEE models 66

3.3 The lookup table with initial delay parameters 69

3.4 The SEE model of INVX2M unit 70

3.5 The SEE model of DFFQNX1M unit 70

3.6 S27 circuits with different fault-tolerant methods 78

3.7 S1423 circuits with different fault-tolerant methods 78

3.8 S38584 circuits with different fault-tolerant methods 79

3.9 The time required for SEE injection simulation in S27 79

4.1 Specifications of hardware fault injection platform 98

4.2 Specifications of Hardware Implementation 102

4.3 EU cross sections in neutron radiation environments 108

4.4 Comparison between existing scrubbers 108

5.1 The configuration of accelerator pools. 123

5.2 The performance of the proposed system in different cases. 125

6.1 Performance of Different Models . 135

6.2 Sub-module resource utilisation . 140

6.3 Parameters of the used DNN models 141

xvii

Abbreviations

AI artificial intelligence.

ASICs application-specific integrated circuits.

AXIs Advanced eXtensible Interfaces.

BCH Bose–Chaudhuri–Hocquenghem.

BRAM block random access memory.

CAD computer-aided design.

CMOS complementary MOS.

CRs cosmic rays.

DD displacement damage.

DFX Dynamic Function eXchange.

DL deep learning.

DNNs deep neural networks.

DPR Dynamic reconfiguration.

DPU Deep-Learning Processor Unit.

DRAM dynamic random-access memory.

DSP digital signal processor.

xviii

Abbreviations xix

DUT devices under test.

ECC error correction code.

ECUs electronic control units.

FPGA field-programmable gate array.

FPS frame rate per second.

FSM finite-state machine.

HDL hardware description language.

IC integrated circuit.

ICAP internal configuration access port.

IoT Internet of Things.

LUT lookup table.

MFLOPs million floating-point operations per second.

MOS metal-oxide-semiconductor.

MOSFET metal–oxide–semiconductor field-effect transistor.

NAND NOT-AND.

NLP natural language processing.

NMOS n-channel MOS.

OTP one-time programmable.

PIPB propagation-induced pulse broadening.

PL programmable logic.

Abbreviations xx

PLL Phase-locked loop.

PMOS p-channel MOS.

PR partial configuration.

PROM programmable read-only memory.

PS processing system.

RAM random access memory.

RS Reed-Solomon.

RTL register transfer level.

SEC-DED single-error correctable and double-error detectable.

SEE single event effect.

SEU single event upset.

SPICE simulation program with integrated circuit emphasis.

SRAM static random-access memory.

STR space-time redundancy.

STT-RAM non-volatile spin-transfer torque RAM.

TCAD technology computer-aided design.

TID total ionising dose.

TMR triple modular redundancy.

VART Vitis AI Runtime.

VCU video codec unit.

VLSI very large-scale integration.

Abbreviations xxi

VVAS Vitis Video Analytics SDK.

ZB zettabytes.

Chapter 1

Introduction

1.1 Background

The recent advances in artificial intelligence (AI) namely in machine learning and

deep learning (DL), have been successfully applied in a wide range of areas, includ-

ing image classification [3, 4], speech recognition [5], object detection [6], semantic

segmentation [7] and natural language processing (NLP) [8]. Meanwhile, thanks to

the continued development of integrated circuit technologies, nowadays integrated

circuits are becoming cheaper and more powerful. It makes DL applications in-

creasing popular in mobile and embedded devices (e.g., smartphones, wearable

devices, self-driving cars, robotic systems and other Internet of Things (IoT) de-

vices [9]).

The impact of DL in embedded systems for radiation environments is also grow-

ing [10]. On the one hand, DL algorithms are very well suited to handle complex

and varying scenarios. For example, DL can play an active role in the operation

of a spacecraft in space environments, allowing for precise automated control and

facilitating onboard tasks, such as docking or navigation [11]. In addition, the

hardware platforms are becoming more affordable and accessible, thus widening

the range of DL applications in radiation environments [12]. This increased acces-

sibility also contributes to the research of DL deployment on constrained platforms

themselves [13, 14], especially because the communication channel is often limited

1

CHAPTER 1. INTRODUCTION 2

in radiation environments.

However, there remain many challenges related to building hardware systems

for radiation environments [15]. The first is the deployment of DL applications.

Like with many other embedded systems, the onboard computational power is not

sufficient compared to the requirements of DL applications [16]. As DL applica-

tions were introduced into an increasing number of tasks, the conflicts become

more apparent than ever. For instance, a satellite may run multiple DL appli-

cations simultaneously, such as weather monitoring, vegetation and ground cover

classification and object detection [17], thus requiring additional hardware capa-

bility. However, the extra hardware normally brings extra volume, weight and

power consumption, which is often not practical in such systems.

In addition to challenges faced by DL for embedded systems, radiation effects

impose extra requirements [18]: the need for radiation-hardened hardware, robust-

ness and extensive verification. Radiation environments include natural radiation

environments (e.g., space environment [19]) and man-made radiation environments

(e.g., nuclear power systems [20]). In such radiation environments, energetic par-

ticles can hit, penetrate and interact with semiconductor materials, causing faults

in hardware systems. Commonly, there are two major types of radiation effects,

1) cumulative effects and 2) single event effects (SEEs), which have been reported

as the dominant effects on electronic systems [21]. On the one hand, it is challeng-

ing to design hardware circuits for radiation environments, due to highly frequent

SEEs in extreme radiation environments, where the error rate could be more than

10 per device per minute [22]. On the other hand, there are increasing challenges

for SEE simulation, as today’s integrated circuits are becoming increasingly larger.

The motivation of this thesis is to strengthen AI systems in radiation envi-

ronments. There are three aspects of research work that have been completed in

this thesis: 1) a fast simulation method for analysis of SEE in integrated circuits,

2) a self-refresh scheme to detect and correct bit-flips in random access memory

(RAM) and 3) an AI hardware acceleration system with hardware reconfiguration

CHAPTER 1. INTRODUCTION 3

for increasing reliability, flexibility and efficiency.

Firstly, due to the complexity of SEE and the increasingly large size of existing

circuits, it has become a challenge to design a large-scale circuit suitable for the

verification and simulation of SEE mitigation performance. Current tools usually

require simulation and SEE injection for a specific physical netlist [23]. However,

when designing digital circuits, we often encounter the problem of how to easily and

quickly verify the performance of different logic designs in a radiated environment,

without generating a physical netlist for each iteration of the design. Therefore,

in the first research work, a new SEE simulation scheme is proposed to offer a

fast and efficient method to evaluate and compare the performance of large-scale

circuits subject to the effects of radiation particles.

Secondly, when an operation is conducted in a strong radiation environment

such as a nuclear power system, errors can be accumulated much faster than in

traditional radiation environments. Considering that the RAM is typically the

most SEE-sensitive element in embedded systems, it is critical to harden RAMs.

However, even the typical radiation-resistant components intended for the space

environment may not be able to meet the requirements in our case, such as nuclear

power systems. Therefore, in the second work, a portable scheme combined with

error correction code (ECC) and refreshing techniques is proposed to correct errors

and mitigate error accumulation in extreme radiation environments. Compared to

other works, it can be easily applied to the existing hardware modules for extreme

radiation environments.

In the third work, a combination of the requirements for DL deployment and

SEE mitigation performance is used to build an adaptive intelligent system for

extreme environments. The concept of “refreshing” is also extended. At the

hardware level, the features of field-programmable gate array (FPGA) are utilised,

partial reconfiguration, to improve the reliability of the systems. More importantly,

this feature also provides the capability to manage the hardware resources for

DL acceleration. The on-chip hardware resources, such as lookup table (LUT),

CHAPTER 1. INTRODUCTION 4

block random access memory (BRAM) and digital signal processor (DSP), are

dynamically managed to improve the flexibility, performance and power efficiency

of deep learning inference systems. At the software level, to further increase the

resilience of the system, a flexible DL software framework is introduced in addition

to the hardware reconfiguration. When facing various work scenarios, a range of

DL networks with different model complexities can be dynamically switched in

real time for adapting to different performance, power and accuracy requirements.

1.2 Simulation of radiation effects

Modelling and simulating the effects of ionising radiation have been long used for

better understanding the radiation effects on the operation of devices and circuits

[24, 25]. In SEE simulations, we can inject SEEs and observe the outputs of circuits

to see what SEE will cause. SEE simulations can offer the possibility of reducing

radiation experiments and testing the hypothetical devices or conditions, which

are not feasible (or not easily measurable), by experiments. In addition, due to

the smaller feature sizes in microelectronics and the higher price of manufacturing

processes [26], it is becoming more important to use the simulation for the SEE

resistant designs.

However, the complexity of SEEs makes it difficult to perform fast and accurate

SEE simulations, especially in large-scale circuits. SEEs are fundamentally the

collection of electron-hole pairs [27], which are generated in ionisation processes.

The collection of electron-hole pairs is observed as transient currents or the charge

of circuit cells. Depending on the energy released by the particles, semiconductor

materials (e.g., linear energy transfer) and the physical designs of the circuit, the

magnitude of the current and voltage of the pulses might vary. To achieve accurate

SEE evaluation results, many parameters have to be taken into account. Obviously,

this kind of SEE simulation requires massive calculation power for even a single

metal-oxide-semiconductor (MOS) component. Furthermore, in digital circuits,

the propagation of errors will also be affected by the propagation path and logic

CHAPTER 1. INTRODUCTION 5

designs, which makes the SEE simulation highly complex.

Although physically-based numerical simulation tools, such as simulation pro-

gram with integrated circuit emphasis (SPICE) and technology computer-aided

design (TCAD), are popular for the analysis of SEEs at the transistor level, the

study of radiation effects at circuit level with logic designs is still limited. Because

integrated circuits are becoming larger and contain tens of billions of transistors, it

is unrealistically time and resource intensive to carry out fault injections in large-

scale circuits, which causes challenges to arise between costs and accuracy in the

SEE evaluation and simulation.

System level simulation, such as simulation based on hardware description

language (HDL), is another method to rapidly evaluate the SEE mitigation per-

formance of the circuits [28]. As the HDL simulation is based on the behaviour

model of circuits, it features high efficiency for large-scale circuits. Normally, the

HDL SEE simulation carries out the error injections in the data stream or memory

units, based on the probability of bit-flips [29]. However, the behaviour of the cir-

cuit does typically not reflect the actual physical parameters of the circuit, which

have a strong correlation with SEEs.

It raises a question:“is it possible to combine the advantages of semiconduc-

tor simulation tools and HDL simulation tools to analyse the SEE in large-scale

circuits?” When comparing the SEE mitigation performance of different logic de-

signs in radiation environments, we care more about the propagation and logic

responses, than the changes in currents and voltages. In such cases, the SPICE

simulation is too slow, and the HDL simulation based on error rates is not precise

enough.

To resolve these issues, a new SEE simulation scheme is proposed, to offer a fast

and cost-efficient method to evaluate and compare the performance of large-scale

circuits in this thesis. The scheme consists of the following features: 1) building the

SEE behaviour models based on SPICE or TCAD, 2) generating the HDL netlists

and injection scripts based on the HDL designs, 3) applying the SEE behaviour

CHAPTER 1. INTRODUCTION 6

models in the HDL simulations to analyse and compare the performance of the

circuit designs and 4) modifying the hardware designs according to the results and

repeat the simulation processes.

1.3 Error mitigation techniques for memory sys-

tem

Static random-access memory (SRAM) cells are normally based on the 6-transistors

(6T) structure [30], as a high risk to catch glitches. It makes SRAM highly suscep-

tible to single event upsets (SEUs)[31, 32]. Nowadays, with more computer systems

deployed in radiation environments, SEUs in RAM components have become the

primary short-term reliability concerns in space systems [31].

In order to mitigate SEU in RAMs, a series of error mitigation strategies have

been considered, including: triple modular redundancy (TMR) technology, ECC

and Scrubbing technology [33, 34, 35, 36, 37]. TMR is a recognised technique for

improving the reliability of the circuit in a radiation environment[38]. It can be

applied to a range of applications from circuit modules to top systems. ECC is

widely known as an anti-interference encoding strategy to enhance the reliability

of memory devices and communication systems [39]. The key concept is to use

extra bits to store redundant information for error correction. Scrubbing or re-

freshing is an effective error mitigation technology for memory devices to resolve

the accumulation of errors [40, 41, 42, 43]. To apply this strategy, data in RAMs

will be read out, corrected and written back. Therefore, additional bandwidth is

required to conduct refreshing operations [44].

There are still some difficulties to apply those strategies in extreme radiation

environments. Firstly, unlike most computer systems designed for the natural

terrestrial environments with low error rates (less than one correctable error per

year [45]), the hardware systems in extreme radiation environments, such as space

or nuclear power systems, face much higher radiation density and error rates. It

CHAPTER 1. INTRODUCTION 7

makes ECC designs more complex [46]. Secondly, the hardware resources are

normally expensive and constrained in radiation-specific systems [47]. However,

TMR also incurs a high overhead cost. It is not a good option for low-cost systems.

Scrubbing or refreshing seems to be an effective error mitigation technology

for memory devices to resolve the accumulation of errors in extreme radiation

environments [40, 41, 42, 43, 44]. The basic idea is to overwrite memory cells with

the correct data when an error has been detected. A conventional scrubbing scheme

consists of reading, detection and rewriting. Compared to the simple ECC, the

systems equipped with scrubbing techniques can be applied to check each memory

unit periodically. Each unit may be checked frequently, before the accumulation

of multiple-bit flips, in case these errors are not correctable. Therefore, scrubbing

is appropriate for data retention in memory (e.g., DRAM [48], STT-RAM [49],

NAND flash [50]). Because the FPGA structure is also based on RAMs, it is

applicable to FPGAs.

However, when it comes to an FPGA system with many pre-designed hard-

ware modules using block random access memory (BRAM), the existing hardening

methods are often problematic. Firstly, due to the pre-designed finite-state ma-

chine (FSM) in the hardware modules, modifications in the time sequence of the

hardware modules will be difficult, which means that we cannot simply add the

correction operations. Secondly. considering the usage of the dual-port BRAMs,

there will not be enough RAM access ports to connect scrubbers to. Thirdly, be-

cause the TMR methods will need triple the resources to work, the available RAM

space will be limited.

Therefore, considering the high error rate in extreme environments and the

convenience of the application to the existing circuit modules, a hardening scheme

combined with ECC and refreshing techniques is proposed, to correct errors and

mitigate error accumulation in extreme radiation environments. It is designed to

extend the operation time of electronic devices that are exposed to high radiation,

causing errors to occur every second. It features high reliability, flexibility and low

CHAPTER 1. INTRODUCTION 8

hardware costs. In this work, FPGAs are used to build prototypes for real-world

radiation experiments. The experiment results show that the proposed design can

significantly mitigate errors in extreme radiation environments.

Furthermore, the configuration RAM of FPGAs is also subject to the concept

of “refreshing”. Reconfiguration is a capability of FPGAs that may be used to

alter hardware functionality as well as hardened circuits. Considering that the

AI hardware systems for radiation environments face challenges, including not

only radiation effects but also constrained computational capability and energy

resources, it could be a potential solution for both issues. Therefore, an adaptive

intelligent system based on the concept of reconfiguration is also investigated as

the fellow on work.

1.4 Adaptive intelligent systems

In addition to the effects of radiation, it is a challenge to deploy AI systems on

embedded devices.

When it comes to intelligent systems, there are many challenges for hardware

design including energy efficiency [51], performance [52] and limited hardware re-

sources [53]. Compared to standard AI systems, intelligent systems in radiation

environments face more challenges. The systems in radiation environments are

more sensitive to power consumption, because they are expected to have longer

operation times. For example, satellites often need to be powered by solar energy

to operate for several years on launch missions [54]. In the radiation environment

of nuclear power plants, robotic systems also require a longer operation time to

reduce the risks to human operators during maintenance [55]. Furthermore, AI

hardware systems for radiation environments must consider the radiation effects

in the design stage. Some parts of hardware resources are used for error detection

and correction, which leaves fewer resources for AI applications. Moreover, con-

sidering that most of the hardware systems for use in radiation environments are

highly mission-dependent, the flexibility of the hardware is also important.

CHAPTER 1. INTRODUCTION 9

1.4.1 Adaptive hardware design

Therefore, there are sensible reasons to choose FPGAs for DL acceleration in

harsh environments when the budget is limited [56] and high power efficiency is

required. Although one-time programmable (OTP) FPGAs are available currently,

the dominant types are SRAM based FPGAs, which can be reprogrammed as

the design evolves. These FPGAs store information about the user circuit in

SRAMs. On the one hand, SRAMs can be reconfigured to deploy different circuits,

which brings high flexibility. On the other hand, as mentioned above, SRAMs are

vulnerable to radiation effects. In radiation environments, high-energy particles

can easily cause SEUs, which makes FPGAs less reliable than other hardware

components. Fortunately, there are already many radiation-resistant hardening

methods available for FPGAs. By using the reconfiguration feature, the circuits

can be refreshed to dynamically mitigate errors.

The motivation of the third work is to fully use the reconfiguration feature of

FPGAs to improve the efficiency of AI inference instead of just error mitigation.

The third work considers a combination of the requirements for DL deployment

and SEE mitigation performance, in order to build an adaptive intelligent system

for extreme environments. By using “Dynamic Function eXchange (DFX)” [57],

a reconfiguration feature of Xilinx (FPGA Vendor) latest FPGAs, the executing

system is capable of dynamically allocating the hardware resources according to

the exact requirements such as performance and power consumption. Through the

deployment of hardware accelerators with different configurations, it is achievable

to dynamically adjust the performance, power consumption and available FPGA

resources for various tasks. Under the proposed scheme, the hardware accelerators

are grouped into accelerator pools to accept acceleration tasks, so the reconfigura-

tion can be conducted seamlessly, without disrupting the executed programmes.

CHAPTER 1. INTRODUCTION 10

1.4.2 Adaptive DL inference

Due to a distinct evolution of DNN architectures [58, 59], there have been more

sophisticated network architectures proposed to improve the network inference

performance. Despite the massive potential demonstrated by such new DL archi-

tectural concepts [60] to improve on the current DL techniques, they are likely to

introduce the type of hardware and software required to deliver such capabilities

efficiently in the future.

Since the concept of reconfiguration can be used in hardware design, there is

a natural idea to apply ’reconfiguration’ to software design. To further improve

the efficiency of the hardware system proposed in the third work, an adaptive DL

software framework is proposed to provide significant support for the adaptability

of various DL algorithms on an FPGA-based edge computing platform. In this

work, the concept of “dynamic reconfiguration” was adopted. The dynamic DNNs

model was also taken into account, where multiple DNNs can be dynamically

deployed for different conditions. The system is capable of configuring both the

hardware and software processing pipelines dynamically to achieve better cost,

power and processing efficiency for the dedicated application requirements and

operating environments. More importantly, a practical FPGA-based test platform

for real-time model management is designed and implemented in this work. It

may help to develop subsequent optimisation algorithms for hardware and software

scheduling.

1.5 Contributions

The works in this thesis can be divided into two categories: 1) hardening circuits in

radiation environments and 2) improving the efficiency of AI inference on hardware

systems. The road map of the works is shown in Fig. 1.1. The works in this thesis

started from the SEE simulation for large-scale circuits, as it is the preparation

step of SEE hardening design. Subsequently, a SEE hardening design based on the

CHAPTER 1. INTRODUCTION 11

SEE simulation

Refreshing RAM for

radiation hardening

Adaptive accelerators at

hardware level

Adaptive AI model at the

software level

Refreshing/Scrabbing Reconfiguration Dynamic switching

Adaptive Intelligent

Systems for Extreme

Environments

Figure 1.1: Road map of the works in this thesis.

refreshing concept was proposed to mitigate errors in RAM devices in the second

work. The keyword of the second work is refreshing. The third work focused on

the challenges of AI inference works for embedded platforms. By adopting the

concept of refreshing, hardware reconfiguration was used to improve flexibility,

performance and efficiency. Moreover, the concept of reconfiguration was further

extended in the final chapter, where an adaptive DL software framework was also

proposed to further improve the flexibility, performance and efficiency of embedded

platforms. The contributions of each work are summarised as follows.

In the first work, a new SEE simulation scheme is proposed to offer a fast

and cost-efficient method to evaluate and compare the performance of large-scale

circuits. The main contributions of this work can be summarised as follows:

1. The SEE simulation scheme provides a rapid, convenient and universal com-

parison method with which to evaluate the designs of circuits in the context

of SEEs. Due to various manufacturing processes, physical layouts and radi-

ation environments, the simulation tools and simulation environments may

also vary in different SEE research. It is difficult to repeat or compare

those experiments directly. The SEE models can be easily integrated into

the current circuit design workflow without significant cost. It can create a

universal simulation environment to provide a quick analysis of the relative

performance, which can significantly reduce the total simulation time for the

time-consuming back-end simulation.

2. This work introduces a range of new SEE behaviour models. Based on the

CHAPTER 1. INTRODUCTION 12

transistor level simulations, the SEE behaviour models are firstly embedded

into a range of digital functions in the HDL described circuits, the transient

currents and voltages are then converted into digital pulses and bit-flips.

Unlike the typical transistor level based SEE behaviour models that fully

rely on low-level current and voltage simulation inputs, the SEE models use

only high-level digital functions in HDL. Therefore, they can offer lightweight

and fast simulations for large-scale circuits.

3. This scheme can offer a high level of flexibility in the design. All parts in this

scheme including gate components, SPICE simulation and HDL simulation

are decoupled. The gate components can be modified to adapt to different

manufacturing processes, and the SEE SPICE model can be also modified

to adapt to different radiation environments, as required. In this way, the

scheme can make full use of existing models to build simulation environments

and be adapted for various requirements.

In the second work, a self-refreshing scheme with ECC is proposed, to harden

the RAM systems based on CPUs and customised circuits in extreme environ-

ments. The main contributions of this work are stated as follows:

1. This design is highly flexible. Compared to conventional external scrubbers

[61, 62, 63], the controller module is transparent to other modules. No addi-

tional latency is introduced in the systems. There is no need to modify the

designs to adapt to the hardware changes, hence, it can be easily applied in

various embedded systems.

2. The design is an area-efficient design, which makes it suitable to harden low-

cost computer systems. Compared to conventional internal scrubbers [64],

this design requires no dedicated components (e.g., ICAP). In systems with

multiple customised modules, which operate separate RAMs, this design can

be deployed multiple times to protect one or more modules.

CHAPTER 1. INTRODUCTION 13

3. The SEU mitigation design can achieve high SEU correction rates in various

conditions. The results of the simulation and the radiation environment test

follow the same trend. In the simulation, the design can correct more than

99.97% of SEUs errors at the SEU injection rate of 6.25× 104 bit/s. During

the one-hour neutron radiation experiment, the SEU correction rate achieves

100%.

There are two parts in the third work. In the first part, an adaptive hardware

system intended for DL tasks is proposed, to manage the hardware resources seam-

lessly according to the exact system requirements. In the second part, an adaptive

DL software framework is proposed to provide a significant level of adaptability

support for various DL algorithms on an FPGA-based edge computing platform.

The main contributions of this work are stated as follows:

1. An improved flexible DNN hardware accelerator framework that can be ap-

plied to configure the hardware and software processing pipelines dynam-

ically is proposed, to improve the power consumption and latency perfor-

mance metrics.

2. The efficiency of the Deep-Learning Processor Unit (DPU) with different

hardware configuration is evaluated, which can be useful for future optimi-

sation. In our experiment, DPUs with different frequencies show similar

power efficiency at full speed. When DPUs are not fully in use, the power

efficiency decreases with increasing frequency and size.

3. A practical FPGA-based test platform for real-time software and hardware

management is designed and implemented in this work. It can help to develop

subsequent optimisation algorithms for hardware and software scheduling.

4. A comprehensive evaluation of DNN model sizes and inference performance

is conducted, with Xilinx DPUs used in video analytic applications. This

framework allows run-time reconfiguration to increase the power and com-

puting efficiency of both the DNN model/software and hardware, to meet

CHAPTER 1. INTRODUCTION 14

the requirements of dedicated application specifications and operating envi-

ronments.

1.6 Organisation of the thesis

As the introduction of the thesis, Chapter 1 introduces the motivation and contri-

butions of the works. Chapter 2 reviews the background of the radiation effects

on electronics, SEE hardening works, DL acceleration and AI hardware. Chapter

4 presents a radiation hardening design for RAMs. Chapters 5 and 6 discuss a

system design on FPGAs for DL in hardware and software respectively, in which

the reconfiguration features of FPGAs are used to improve the reliability, flexibil-

ity and power efficiency of the AI systems. Chapter 7 concludes all the work in

this thesis and presents the future works.

Chapter 2

Literature review

This chapter contains a review of the background of the study and the related

published works. Firstly, this chapter contains an overview of the radiation en-

vironments and the challenges for electronic devices. Secondly, it presents the

introduction of SEE, which is the dominant effect in radiation environments. The

existing works related to SEE simulation and mitigation are reviewed, and the

drawbacks of the current methods are also discussed. Thirdly, the background of

hardware systems for AI inference is introduced. The advantages of FPGAs are

analysed. The reconfiguration feature offers FPGAs high computational perfor-

mance, power efficiency, flexibility and SEE mitigation performance, thus making

it suitable for radiation environments.

2.1 Overview of radiation environments

Radiation widely exists in our environments. For example, in the terrestrial en-

vironment, radiation sources could be the secondary cosmic rays in the Earth’s

atmosphere or radioactive contaminants inside chip materials. To a large extent,

in space, radiation sources could be the trapped particles, the particles emitted

by the sun, and galactic cosmic rays. Radiation can be generated in biomedical

devices, nuclear power plants and artificial environments in high-energy physics

experiments. This section contains a brief overview of space, atmospheric, ter-

15

CHAPTER 2. LITERATURE REVIEW 16

restrial, and artificial radiation environments. The radiation effects in different

environments and different electronics devices will also be compared.

2.1.1 Space environment

Natural space radiation can be classified into three categories: 1) electrons and

protons trapped by planetary magnetic fields (e.g. Earth), 2) cosmic rays (very

energetic atomic nuclei) produced in supernova explosions within and outside our

galaxy [19] and 3) protons and a tiny fraction of heavier nuclei produced in ener-

getic solar events.

The planet radiation belts, also known as the Van Allen belts [65, 66], were the

first discovery of the space age, measured with the launch of a US satellite, Explorer

1, in 1958 [67]. It is a zone of trapped megaelectron volt (MeV) particles. Most

of the particles originate from solar wind and are captured by the magnetosphere

of planets [68, 69].

Cosmic rays (CRs) are high-energy particles that originate outside the solar

system [70, 71]. CRs originate as primary CRs, which are those originally produced

in various astrophysical processes. CRs is composed of around 98% nuclei and 2%

electrons and positrons [71]. The energy of CR particles may exceed 1020 eV

[72, 73]. Due to the high energy, CR particles can easily penetrate integrated

circuit chips, posing a significant risk to the operational stability of spacecraft

such as satellites and the safety of astronauts.

The sun is both a source and a modulator of space radiation [74]. Solar CRs

consist of the high-energy particles emitted by the sun. They were registered for

the first time in 1942 [75], 30 years after the discovery of Galactic CRs. Nor-

mally, solar protons have insufficient energy to penetrate the Earth’s magnetic

field. However, during unusual solar events [76], primarily in solar flares, protons

can be accelerated to sufficient energies to reach the Earth’s magnetosphere and

ionosphere around the north pole and south pole.

It has been reported multiple times that electronic devices in satellites suffer

CHAPTER 2. LITERATURE REVIEW 17

faults [77] in space environments. For example, the NASA/DoD Tracking and

Data Relay Satellite (TDRS-1) experienced upsets in RAM chips in the control

systems. The rates of 1 to 2 per day clearly showed modulation with CRs, while

during the solar particle events of September to October 1989, the rates reached

20 per day [78]. Another example is a hardware failure in the instrument carried

by the European Remote Sensing Spacecraft (ERS1). A latch-up failure occurred

and led to a loss of the instrument [79].

2.1.2 Atmospheric and terrestrial radiation environment

Like the other planets, the Earth is continuously irradiated by CRs, including solar

and galactic rays. Fortunately, with the combined effect of the Earth’s magnetic

field and atmosphere, most high-energy particles will not reach the Earth’s surface.

Earth has a thick atmosphere of oxygen and nitrogen, which can interact with CRs

to mitigate radiation.

When CRs arrive at the earth’s atmosphere, the collision with atoms and

molecules consumes energy. It generates a cascade of lighter particles, including

x-rays, protons, alpha particles, ions, muons, electrons, neutrinos, and neutrons.

They are called air shower secondary radiation or cascades particles. Those par-

ticles may continuously interact with the atmosphere. When they finally hit the

ground, most of them are the third to seventh generation cascade particles.

In atmospheric environments, the peak of the cosmic ray intensity occurs at

about 10-25 km [80, 81], which is also the altitude of many commercial flights. In

the last 40 years, it has been discovered that the electronics in aircraft systems,

which are subjected to increasing levels of cosmic radiation and their secondaries

as altitude increases, are also sensitive to SEEs. The soft error-rates increase with

the altitude [82].

The experiments conducted by IBM and Boeing showed that the failure rate

of electronics at airplane altitude is about one hundred times worse than at sea

level. [83]. Some works demonstrated that ions are the primary sources at higher

CHAPTER 2. LITERATURE REVIEW 18

altitudes than 20 km while the SEUs derived from neutron interactions are domi-

nant at lower altitudes [84, 85]. Researchers found that SEU rates would increase

during large-scale solar particle events.

2.1.3 Artificial radiation environment

In addition to radiation in the natural environment, there are some man-made

radiation sources as well, including nuclear power systems, nuclear weapons ex-

periments, particle accelerators and medical radiation. In these radiation envi-

ronments, electronic devices can also be affected by high-energy particle rays and

experience soft errors.

With the Trinity test of 1945, the nuclear weapon testing era began, as did the

global distribution of radioactive fallout from those tests. Between 1945 and 1980,

over 500 nuclear tests that injected radioactive debris into the atmosphere were

conducted at various sites around the world [86]. The extremely high energy in

nuclear tests has strong effects on electronics. The effects were first noticed in the

Starfish nuclear weapon test conducted by the US in 1962. The tests were held on

Johnston Island in the Pacific Ocean. The particles from the test were injected into

the Earth’s atmosphere, which formed a radiation belt at an altitude of around 400

km and caused faults in electronics. For instance, the Telstar satellite experienced

a total ionising dose (TID) that was 100 times larger than expected. Within seven

months, the Starfish nuclear weapon test destroyed seven satellites [87].

Nuclear power systems are also one of the most common man-made radiation

environments. In 2020, nuclear power in the United Kingdom generated 16.1% of

the country’s electricity [88]. During the routine operation of nuclear installations,

the releases of radionuclides are low. Radiation is mainly generated in the nuclear

fuel cycle, including mining, milling, and reactor operation.

In nuclear power systems, electronic devices need to deal with radiation as

well. Cherenkov radiation [89] is an example of radiation effects, generated by

an underwater nuclear reactor. It occurs when a charged particle (such as an

CHAPTER 2. LITERATURE REVIEW 19

electron) passes through a dielectric medium at a speed greater than the phase

velocity (speed of propagation of a wavefront in a medium) of light in that medium.

Although many of the systems developed for space applications are specialized for

high ionizing radiation transients, the electronic devices in nuclear power systems

care more about neutron radiation and TID than about the proton, electron, and

heavy-ion radiation. In addition, temperature and ageing are factors to consider

in the design of such systems.

In general, nuclear applications will require rad-hard circuitry to survive MGy

TID and 1016n/cm2 neutron fluences, while the commercial devices for low-earth

orbit satellites are designed to survive 1 − 10 KGy TID. Applying the existing

space-application rad-hard electronics in terrestrial neutron environments requires

additional research [90].

2.2 Single Event Effect

2.2.1 Background of SEE

As mentioned in Chapter 1, there are two major types of radiation effects, 1) cu-

mulative effects and 2) SEEs. Cumulative effects are the long-term effects that can

change the parameters of semiconductor materials, and these can be divided into

two categories: 1) TID [91] and 2) displacement damage [92]. By contrast, SEEs

arise through the action of a single ionizing particle as they penetrate sensitive

nodes within electronic devices. During the penetration, random glitches are gen-

erated, which may lead to system failure in the worst scenarios. In recent years,

the family of SEEs has been proved to cause the dominant effects on electronic

systems in radiation environments [21].

2.2.2 Mechanisms responsible for SEEs

SEEs are induced by the ionization process during the penetration of high-energy

particles in semiconductor materials. Typically, there are two steps in the physical

CHAPTER 2. LITERATURE REVIEW 20

Figure 2.1: The transient pulse will be generated due to the ionization and collec-
tion process. It is a structure of an inverter. The input A is 1 and the output B
is 0. The PMOS between Vcc and B is the sensitive node.

mechanisms of SEEs: 1) the charge deposition by the energetic particle strike and

2) the subsequent collection of that charge by devices in the region of particles

strike [27].

The charge deposition is the process of releasing charge in a semiconductor

device. Charge deposition can be caused by direct or indirect ionization. Direct

ionization is a mechanism by which incident particles, mostly heavy ions, directly

ionize semiconductor materials during penetration. In contrast, the indirect ion-

ization is caused by the secondary particles created in nuclear reactions between

the incident particle, mostly protons and neutrons, and the struck device. Both

mechanisms will free electron–hole pairs and provide the basis for the subsequent

generation of instantaneous currents, which is also the key reason for integrated

circuit malfunction.

The collection is the second step in the SEE mechanism. When a particle

strikes a semiconductor device, the most sensitive regions in the integrated circuits

are usually reverse-biased PN junctions. The high field present in a reverse-biased

junction depletion region can collect the particle-induced charge through drift pro-

cesses efficiently, thus leading to a transient current at the junction contact. The

strikes near a depletion region can also result in significant transient currents as

carriers diffuse into the vicinity of the depletion region field where they can be

CHAPTER 2. LITERATURE REVIEW 21

efficiently collected.

The transient currents can be observed as instantaneous voltage pulses in the

logic gate devices. Fig. 2.1 shows the illustration of a SEE glitch in an inverter.

At the very beginning, input A of the inverter is high, and output B is low. There

is a voltage difference directly between Vcc and output B, and the PN junction is

also reverse-biased. When a high-energy particle strikes the region between Vcc

and B, the p-channel MOS (PMOS), many electron-hole pairs are created due to

ionization. Subsequently, the electrons and holes move toward the two segments,

respectively, and a transient current is generated under the influence of the voltage

difference. From a macroscopic point of view, when an energetic particle bombards

the inverter, a brief positive pulse is generated at the output.

If a particle hits the region between output B and Vss, there will not be a

strong collection process and transient current due to the low voltage difference.

Hence, in the current state, where input A is high, the PMOS is a sensitive node,

while the n-channel MOS (NMOS) is not. It can also be expected that if we change

the input value to low, then the sensitive node will be PMOS.

2.2.3 Classification of SEEs

All of the possible effects are grouped by the family of SEEs on electronic com-

ponents. Typically, they can be divided into a number of effect categories. Table

2.1 list the family of SEEs. There are both soft (recoverable) and hard (unrecov-

erable) errors. In this thesis, I will mainly discuss SETs and SEUs, which are two

dominant soft errors in the SEE family [93].

2.2.3.1 Single event transient

SET refer to the transient currents or voltages which affect combinational circuits.

When SETs occur, there may be a transient in gate output. Sometimes, those

transient pulses may propagate through subsequent gates and eventually cause a

SEU when it reaches a memory element [95].

CHAPTER 2. LITERATURE REVIEW 22

Table 2.1: The basic categories of SEEs [94].
SEU Single event upset Temporary change of memory or control bit
SET Single event transient Transient introduced by single event
SEL Single event latch up Device latches in high current state
SES Single event snap back Regenerative current mode in NMOS
SEB Single event burn out Device draws high current and burns out

SEGR Single event gate rupture Gate destroyed in power MOSFET
SEFI Single event functional interrupt Control path corrupted by an upset
MBU Multi-bit upset Several bits upset by the same event

To cause a fault in the circuit system, a SET must meet four criteria as follows

[96]:

1) The generated transient current in SET must be strong enough to propagate

through the circuit, which means that the charge deposition and collection have

to be strong enough. In other words, the particle should carry sufficient energy to

hit the sensitive node.

2) There must be an open logic path for pulses to finally reach a memory

element, which means that the design of the logic path could affect the performance

of radiation resistance.

3) The SET should have amplitude and duration to change the state of the

memory element. It is related to the physical layout of the circuits. The duration of

SET pulses is not consistent during the propagation. The pulses could be extended

or narrowed in different gate chains. Hence, the circuit netlist is a parameter

affecting the radiation resistance performance.

4) In synchronous sequential circuits, the SET must arrive at the latch during

the latching edge of the clock. It is worth mentioning that the frequency of the

circuits can also be affected by the probability that transient glitches are captured

as valid data. As the frequency increases, the frequency of clock edges will also

increase. According to the fourth criteria, it is easier for SETs to be captured.

In addition, a higher frequency circuit typically means faster or fewer gates per

pipeline stage. In this case, SETs will have a greater ability to propagate.

CHAPTER 2. LITERATURE REVIEW 23

a

NMOS

NMOS

VDD b

S G D

VDD

NMOS

Particle

strike

NMOS

Figure 2.2: (a) Schematic diagram of two cross-coupled inverters in CMOS tech-
nology. A current pulse is injected at the drain of the off NMOS transistor. (b)
Mixed Mode simulation is used to simulate SEU. The Off NMOS is studied by
means of device simulation and the remaining transistors are studied with the
coupled circuit simulator [30]

2.2.3.2 Single event upset

SEUs are the bit-flips in storage cells. In SRAMs, SEU could be a reversed state.

In DRAMs, SEU could be wrong values due to the change in stored charge. In

logic circuits, SEUs can also be the error bits when a SET is captured by a latch

or a flip-flop. In this thesis, SEUs refer to the upset in SRAM devices.

SRAM is one of the most sensitive components to SEUs. Most SRAM cells

are based on the 6T structure with two coupled complementary MOS (CMOS)

inverters and two NMOS accesses. The two inverters form a loop circuit that feeds

the output back into the input. At any given moment, these two inverters have

reversed inputs with one input of high and one output of low. There will always

be two sensitive nodes with one PMOS and one NMOS, because they are in the

“off” state. When they are struck by the particle, there will a transient pulse fed

back into the cell. When the charge is adequate enough to cause an upset, then

there is a SEU. Fig. 2.2 shows the simulation of SEU injection in the SRAM cell.

CHAPTER 2. LITERATURE REVIEW 24

A transient current is injected into the circuit to simulate the SEU.

2.2.3.3 Multi-bit upsets

In addition to single bit upset (SBU), there could be more than one upset in the

circuit system, which can be referred to as multi-bit upset (MBU). Multiple errors

can be generated when a particle travels through the sensitive node in different

cells or when the free carriers of the ion track can be collected by different junctions

of transistors of several memory cells.

The upsets could be in the same word or different words in the logic aspect. If

the upsets are in different words, then the typical mitigation methods for SBU, like

hamming correcting codes, are still effective. However, if the bits are in the same

word, it will be difficult to detect and correct errors. In addition, as the elementary

cell area is continuously decreasing for successive technology nodes, the probability

that recoils have a range long enough to reach different cells increases. In this case,

the probability of multiple cells upsets increases [95].

2.3 SEE simulation and evaluation

The SEE simulation can offer the possibility of reducing radiation experiments and

testing the hypothetical devices or conditions which are not feasible (or not easily

measurable) by experiments [24, 25]. To study the effects of SEEs, researchers

need to simulate the generation of SEEs in circuits, which is normally referred to

as the injection of SEEs [97]. The SEEs injection can generally be divided into

two main categories. One is to inject SEEs through radiation experiments and the

other is to simulate the occurrence of SEEs using simulation tools.

2.3.1 Radiation experiments

There are two primary methods of radiation experiments: 1) ground-based radi-

ation experiments and 2) space flight experiments. The space flight experiment

CHAPTER 2. LITERATURE REVIEW 25

is a realistic measurement performed by spacecraft. In space flight experiments,

circuits are exposed to the real working radiation environment, so that the results

of space flight experiments can accurately reflect the circuit response. Space flight

experiments are the most effective way of verifying whether a chip can operate

stably in space. Over the last century, SEE research has mainly been based on the

errors detected in satellite-based systems. However, there are fewer opportunities

today to conduct space flight experiments due to the long period and high price. In

addition, space radiation experiments cannot be used as a universal experimental

method.

Ground-based radiation experiments are also known as ground-based simula-

tion experiments or ground-based irradiation experiments. Ground radiation ex-

periments are conducted using several radiation sources such as heavy ion acceler-

ators, proton accelerators [98], 252CF sources [99, 100], neutron sources [101, 102]

and pulsed lasers [103]. Ground-based radiation experiments can be relied on

to simulate various environments via different irradiation intensities and different

particles. The ground-based radiation environment is relatively accurate as it uses

a realistic radiation environment that also produces realistic SEEs. In addition,

the ground environment has more controllable variables and better experimental

flexibility compared to the space environment.

However, there are drawbacks as well. Firstly, the equipment and facilities for

ground-based radiation sources are generally large and expensive, and the use and

maintenance of the equipment are costly. For example, the ISIS pulsed neutron

source [104] in the UK is expected to spend £16 million on radioactive waste

disposal after it stops running. Secondly, only a few facilities can conduct ground-

based radiation. It takes a long time to apply for slots and to wait in the queue.

Due to the high time and economic costs, research teams tend to conduct software

simulation instead of radiation experiments.

CHAPTER 2. LITERATURE REVIEW 26

Figure 2.3: SEE injection in 3D TCAD simulation. A heavy ion hits the center of
the channel [108].

2.3.2 SEE simulations at the transistor level

Over the last two decades, TCAD (technology computer aided design) has proven

its value and steadily expanded its role in the advancement of technology. As

CMOS scaling continues, semiconductor devices are being pushed to their physi-

cal limits, requiring such advanced physics as quantum mechanics to be included

in modeling these advanced semiconductor transistors. So far, the TCAD commu-

nity has responded to and answered the challenges in providing tools and novel

techniques to address the increasing complexity of modeling semiconductor tran-

sistors with new architectures, transport phenomena, switching mechanisms, and

materials [105].

SEE researchers have also noticed the advantages of TCAD and TCAD has

been widely used for SEE as a simulation tool at the transistor level. At this level,

the size of the circuit is usually limited to the circuit size of a few semiconductors.

In transistor simulations, the parameters such as the density ionization and the

structure of the semiconductor can be modified easily, which is helpful during the

study on how to design radiation-resistant semiconductors [106, 107].

Traditionally, these tools tend to build a model to describe the currents and

voltages in the SEE. Typically, these tools take three steps to conduct simulations

[30]. The first one is to take a large number of physical parameters as inputs (e.g.,

CHAPTER 2. LITERATURE REVIEW 27

particle energy, material, angle, orientation, external electric field, physical size

and 3D structure). Normally, the more physical parameters there are, the more

accurate the results will be. The second one is to create transport models and

transfer equations to predict the ionization process. In SEEs, electron-hole pairs

are created in ionization, which can be expressed as an energy-based transfer or

as a power-based transfer. For example, the drift-diffusion model was taken as the

standard level of solid-state device modeling for many years. The third one is to

convert all output results to the changes in current and voltage. Fig. 2.3 shows

an example of the SEE simulation 3D TCAD [108] with a heavy ion hitting the

center of the channel. The 3D structure of the transistor and the hit point of the

particle are included in the simulation.

To perform calculations with a large number of parameters limits the use of

traditional modeling methods. As the number of transistors in a circuit grows,

the parameters involved in the calculation will increase by orders of magnitude

with unaffordable costs concerning simulation time. At present, a range of sim-

plified methods has been proposed about how to conduct simulations to solve the

problems.

2.3.3 SEE simulations at the gate level

SEE simulation can be performed using the standard simulation codes widely used

in the integrated circuit (IC) industry for circuit design and optimisation, such as

the popular Berkeley SPICE [109], Silvaco SmartSPICE [110], Synopsys HPSICE

[111], Orcad PSPICE [112] and Mentor Graphics ELDO simulators [113]. Such

circuit simulators solve systems of equations that describe the behavior of electrical

circuits (e.g., Kirchoff’s laws) [30].

The simulation codes in SPICE are based on the compact model. As the basic

components, compact models can describe the static or dynamic electrical be-

haviour of the different elementary devices (e.g., transistors, diodes and resistors)

constituting the circuit. Unlike the model at the transistor level, the compact mod-

CHAPTER 2. LITERATURE REVIEW 28

radx

rady

RESET

MP4

SET

VDD GND GND

VDD

SET

MP1

RESET

MN2

V3

MN3

VDD/2GND

V3

MN5 MN6

TE

X12

BE

Figure 2.4: SEE injection in OxRRAM memory cell [114].

els are based on the analytical formulas that approximate the measured terminal

characteristics, which significantly reduces the complexity of the calculation

By using SPICE, the simulation circuit can be scaled up to tens of transistors.

In SPICE, the single-event induced transient is usually modeled as a current source

connected at the struck node of the circuit. The accuracy of the transient current

used as the input stimulus may have a considerable impact on the precision. Fig.

2.4 shows an example that SEEs is injected in Oxide Resistive RAM (OxRRAM)

as transient sources [114], where the magnitude of injection current represents the

intensity of radiation.

Because of the increased scale of simulation and the convenience of operating

the circuit, SPICE can analyse the behaviours of the circuits, which is impossible in

traditional transistor simulation. Fig. 2.5 shows an example that a SEE is injected

into a chain of shift registers during clock rising. The timing of SEE injection is

controlled so that the behaviours in different circuit states can be observed.

Although today’s EDA companies all provide SPICE simulators with different

algorithms for IC design, the so-called “fast simulation” on large scale circuits will

take days to weeks to complete on a cluster of powerful servers. When it comes to

the SEE simulation, the complexity further increases considering the time sequence

and injection nodes. Hence, the scale in SEE SPICE simulation seems to be limited

CHAPTER 2. LITERATURE REVIEW 29

D1 Q1

CK

CK

IN

1

Q
3

0

1

Q
3

0
5.00E-07 7.00E-07

t（s）

t（s）

t（s）

t（s）

t（s）

t（s）

9.00E-07

CK CK CK CK
SETNo SET

OUT

a)

c)b)

D2 Q2

CK

D3 Q3

CK

D4 Q4

CK

D* Q9

CK

1

Q
4

0
5.00E-07 7.00E-07 9.00E-07

5.00E-07 7.00E-07 9.00E-07

1

O
U

T

0
5.00E-07 7.00E-07 9.00E-07

1

O
U

T

0
5.00E-07 7.00E-07 9.00E-07

1

Q
4

0
5.00E-07 7.00E-07 9.00E-07

Figure 2.5: SEE injection in a chain of shift registers during clock rising [115].

CHAPTER 2. LITERATURE REVIEW 30

at the “gate-level” (the circuits with a small number of gates).

2.3.4 SEE simulation in hardware description language

It is common today to use HDL in an IC development flow for those chips with

many billions of transistors. After the design specification step in the IC design

cycle, HDL is introduced to create behavioural models for representing architec-

tural data flow. Subsequently, individual modules are coded at register transfer

level (RTL). This is synthesized later into the connections of available components

as offered in the technology library. The library includes commonly used primitive

components such as flip-flops, logic gates, memory, and phase lock loops. The con-

version output is known as gate level equivalent circuits. Before a new IC design

is sent for fabrication, it is normally simulated on HDL compliant simulators to

prove design viability.

Simulation semantics are time driven. At each time step, every circuit node

is numerically evaluated for convergence. Then the simulator advances to the

next time step and repeats the evaluation cycle. This is an intensive computation

process. Although SPICE was originally designed as a general-purpose circuit

simulator, the numerical details of voltage and current at every time step in SPICE

are unnecessary for today’s digital circuit functionality verification [116]. For the

reason of higher efficiency, the dominant HDLs are higher-level languages (e.g.

Verilog and VHDL) focusing on circuit behaviours.

Despite their tantalising efficiency advantages in very large-scale integration

(VLSI) simulation, Verilog or VHDL seem to be unpopular in SEE simulations.

The reason for this is obvious: SEE has a strong correlation with the physical

level, but HDL simulation is abstracted from the behaviour of the circuit, which

means that HDL circuits do not correspond to the real physical netlist, and it is

not possible to find the correct sensitive node in an HDL circuit. There are some

works trying to address the problem. In paper [117], the authors proposed a fault-

injection method for HDL design by converting circuits into LUTs based design

CHAPTER 2. LITERATURE REVIEW 31

for deployment on FPGAs. In paper [118], the authors proposed a SEE injection

method by simulating SEE behaviours. However, it only includes three behaviours

(i.e., stuck, pulse and bit-flip) without detailed parameters and propagation effects.

Most models in HDL simulations are based on error rates to inject SEEs. How-

ever, probability-based HDL models do not describe SETs very well. When these

models are used, some basic parameters, such as width, delay and propagation,

are not well included in the simulation. It results in the lower accuracy of HDL

simulations compared to SPICE and TCAD. Therefore, the HDL simulation of

SEE is yet to be investigated.

To sum up, HDL simulations are fast and convenient which make it suitable for

large scale circuits. However, compared to gate level simulation, HDL simulations

are less accurate. In this thesis, both simulations are unitized. In this way, the

SEE simulation can be accurate and efficient for analyzing SEE mitigation designs.

2.4 SEE mitigation methods

SEE mitigation methods for IC can also be discussed at different levels ranging,

including physical [119], gate [120], circuit design and systems levels [121]. At

the physical level, the basic idea is to mitigate the ionisation effect by improving

materials. At the gate level, the physical wiring, channel width and charge size

of metal–oxide–semiconductor field-effect transistor (MOSFET) can be improved

to enhance the radiation resistance of the circuit. At the circuit design level,

the circuit layout and logic design can also affect the response of the circuit to

SEE. The relevant sensitive nodes can be spatially separated to avoid being hit

together by single particles. At the system level, there are more methods available

to reinforce the circuitry. The common idea is to use redundancy to improve the

reliability of the system. For example, multiple processors can be used as hot

redundancy for data stream processing [122].

For embedded systems, most of the SEE mitigation methods are in circuit de-

sign and systems. For instance, TMR, Duplication with Compare (DWC) [123]

CHAPTER 2. LITERATURE REVIEW 32

Input

Module 1

Module 2

Module 3

Voter Output

Figure 2.6: TMR fault masking.

or Reduced Precision Redundancy (RPR) [124]. Alternatively, information re-

dundancy techniques can be used to detect and mask failures in certain types of

circuits, for example ECCs or Algorithm Based Fault Tolerance (ABFT) [125].

Apart from failure masking, failure recovery techniques can also be used to mit-

igate errors during run-time. Failure recovery is usually done by refreshing the

memory, which is often referred to as scrubbing [126].

2.4.1 Triple modular redundancy

TMR is a recognised technique for improving the reliability of the circuit in a

radiation environment. Fig. 2.6 shows the traditional structure of a TMR sys-

tem. The circuit is replicated three times and a simple majority voter is placed on

the outputs. It can be applied to a range of applications from circuit modules to

top systems. For example, TMR was used on an 8051-like micro-controller design

and shown to completely address design failures due to single-bit configuration

upsets [127]. However, a TMR also incurs a high overhead cost. Firstly a TMR

design requires at least three times hardware resources for redundancy. More-

over, additional logic is required to implement the voting circuits. Some studies

have shown that TMR can require up to six times the area of the original circuit

[128]. Secondly, TMR can negatively affect timing, because the voters inserted

follow combinational logic, thereby increasing the path lengths. Thirdly, the extra

resources ultimately require more power [129].

CHAPTER 2. LITERATURE REVIEW 33

Error correction

Data bits Parity bits

Figure 2.7: Hamming (7,4) is a linear ECC that encodes four bits of data into
seven bits by adding three parity bits.

2.4.2 Error correction codes

ECC is widely known as an anti-interference encoding strategy to enhance the

reliability of memory devices and communication systems. The idea is to use

extra bits to store redundant information. Compared to TMR, ECC technology

requires fewer hardware resources and less memory space. ECC is therefore widely

used in memory devices or communication systems as a SEE mitigation technology

for fault detection and correction [130, 131, 132, 133, 134, 135]. Modified Hamming

codes and Hsiao codes [136, 137] are the most widely used single-error correctable

and double-error detectable (SEC-DED) codes. Fig. 2.7 shows the distribution

of bits in Hamming(7,4) codes. However, when circuits work for a long time

in radiation environments, there might be multiple errors that exceed SEC-DED

corrective capability. To deal with multiple errors, Bose–Chaudhuri–Hocquenghem

(BCH) code and Reed-Solomon (RS) code [138, 139] utilise additional parity-bits

to carry out correction. However, the capability of these ECC is still limited [140].

If the system is incapable of correcting the existent bit flips in a limited time,

then the bit flips can eventually accumulate and may cause unrecoverable errors.

Moreover, with the increasing capability of the correcting code, the complexity of

the correcting code will also significantly rise concerning the hardware resources

and memory space.

CHAPTER 2. LITERATURE REVIEW 34

2.4.3 Scrubbing

Scrubbing or refreshing is an effective error mitigation technology for memory de-

vices to resolve the accumulation of errors [40, 41, 42, 43, 44]. The basic idea is to

overwrite memory cells with the correct data when an error has been detected. A

conventional scrubbing scheme consists of reading, detection and rewriting. Com-

pared to the simple ECC, the systems equipped with scrubbing techniques can

be applied to check each memory unit periodically. Each unit may be checked

frequently, before the accumulation of multiple bit flips, in case these errors are

not correctable. Therefore, scrubbing is appropriate for data retention in memory

(e.g., DRAM [48], STT-RAM [49], NAND flash [50]). Because the FPGA structure

is also based on RAMs, it is applicable to FPGAs.

Many works have been done for applying refreshing to memory. Typically,

the works can divided into three categories: 1) refreshing cells, external scrubber

and internal scrubber. There are two aspects can be used to compare refreshing

methods: 1) the number of failure occurrences that are to be expected either

during a specific mission time frame or the overall mission lifetime and 2) trading-

off power, area and reliability overheads [141].

2.4.3.1 Refresh memory cells

Paper [142] presents a refresh circuit for resolving the soft-error failures that occur

in the memory cell. Two voltage-sense amplifiers are added to detect the errors in

bit lines. When errors occur, voltage-sense amplifiers can trigger data refreshing

operations.

Fig. 2.8 shows the architecture of the refreshing memory cell. The refresh

circuit consists of SA1 (1-input), SA2 (2-input) and an error detection unit. SA1

and SA2 are the voltage-sense amplifiers used to detect the RAM state of the

register cell. By comparing the voltage of different locations, different states of

the memory device can be recognised.

CHAPTER 2. LITERATURE REVIEW 35

SA2

Register

Cell

Detection

Unit

Hard error

(Mark as broken)

Soft error

(Refresh)

SA1

SA2

Figure 2.8: Adding a refresh circuit to the memory cell (SA indicates voltage-sense
amplifiers) [142].

2.4.3.2 External scrubber

Typically, the external scrubber [61, 62, 63, 31] is independent of the target de-

vices. For example, in paper [61],a separate FPGA is programmed as the external

scrubber for Geostationary Mission. In this paper, a programmable read-only

memory (PROM) was used to save the initial program. Overwriting the contents

of configuration memory on a periodic basis can prevent system failure due to error

accumulation.

It is a post-configuration write operation in the configuration memory of Xil-

inx FPGA without disrupting system operation. The basic block diagram of the

system is shown in Fig. 2.9. There are two FPGAs in this scheme: 1) a targeted

SRAM FPGA required to be hardened and 2) an external scrubber implemented

in a separate FPGA.

During the power stage, the configuration parameters of Xilinx FPGA are

first initialized to their default value. Configuration takes place after the proper

initialization of the configuration parameters. A read-back test is then performed

immediately after successful configuration to ensure there are no hard errors in

the target devices. The scrubbing operation on the FPGA resources is conducted

only after a successful read-back test. The contents of configuration memory are

refreshed at an interval of six minutes.

CHAPTER 2. LITERATURE REVIEW 36

FPGAs
External Scrubber

PROM 0

PROM 1

Writing

Watch

Dog

Figure 2.9: Refreshing the configuration memory in FPGAs by using external
scrubber and PROM.

ICAP

Module 0 Module 1 Module 2

Majority

Vote

FSM

Decoder of

FRAME_ECC

Address

Controller

U
se

r
D

es
ig

n
S

cr
u
b
b
er

Figure 2.10: The internal refresh scheme by using ICAP to access the configuration
memory [64].

2.4.3.3 Internal scrubber

Another method is to use an internal scrubber in the scrubbing scheme. In papers

[64, 143], the authors proposed scrubbing methods for FPGA configuration RAM.

The papers apply the internal scrubbing method through the internal configuration

access port (ICAP) to read and write configuration RAMs.

The basic architecture [64] of the scrubbing platform is illustrated in Fig. 2.10.

The FRAME ECC logic calculates the syndrome value according to the bits in one

frame including the ECC bits by reading frames from the configuration RAMs. The

majority voter is designed to detect the unexpected outputs in the user design.

Once the errors are detected, the FSM in the srcubber is triggered to refresh

the configuration RAMs. This method is suitable for configuration RAMs. In

the configuration RAMs, bits are static, so there are no additional read or write

operations to occupy the access ports.

CHAPTER 2. LITERATURE REVIEW 37

Vote Vote

Scrubber

Scrubber

Scrubber

BRAM 1

BRAM 0

BRAM 2

Figure 2.11: Using dual-port RAMs to implement scrubbers in BRAM systems
[144].

However, scrubbing methods can be challenging in BRAMs, if all available ports

are in use. In paper [144], the authors proposed a scheme combined with TMR

and scrubbing methods, as shown in Fig. 2.11. In this paper, dual-port BRAM

modules are used to mitigate error in the LEON3 processor. The processor uses

only one port or the BRAM modules, which leaves the other port for scrubbing

operations. In this scheme, BRAM and scrubber are tripled and the correct value

is determined by voting between the redundant copies. However, this method will

still occupy the BRAM access ports. To apply this method, single-port BRAMs

are replaced by dual-port BRAMs. If the dual-port BRAMis already in use, then

the method in paper [144] will be limited.

2.5 Intelligent hardware system

The radiation effect is not the only challenge for intelligent systems in extreme

environments. The implementation of the hardware system for AI algorithms is

another challenge.

Modern AI started from the experiment with electronic neural nets [145] in the

1950s. Compared to those traditional methods of machine learning and pattern

recognition, the key advantage of DL is that it does not require the extraction

of manual features. When trained for a particular task, DL systems learn multi-

layer hierarchical representations of the suitable data for the task automatically.

However, the idea of backpropagation requires the use of neutrons with continuous

CHAPTER 2. LITERATURE REVIEW 38

non-linearities (e.g., sigmoids), which was not practical before the 1980s when the

workstation performance was under one million floating-point multiply-accumulate

operations per second [146].

Due to the rapid advancement of digital technologies in recent years, deep neu-

ral networks (DNNs) have emerged as a key technique in modern AI, which enables

high accuracy for many applications [147]. However, there remain some chal-

lenges facing the practical application of DNNs, for example, intensive arithmetic

operations and memory bandwidths[148] are required for resource-constrained

edge devices, which hinders general CPUs from achieving the expected perfor-

mance. Therefore, various hardware accelerators have been applied to improve

the throughput of DNNs, such as application-specific integrated circuits (ASICs)

[149], FPGAs and graphic processing units (GPUs) [150].

To sum up, the challenges of the AI hardware for embedded systems can be

concluded in four aspects: 1) power and energy efficiency [51]: the biggest chal-

lenge for an embedded system is power efficiency, as most embedded systems are

powered by batteries. With a given battery, the lifetime of an embedded system

primarily depends on the amount of power consumption. At present, these neural

networks run on powerful GPUs (e.g., Nvidia 3090) that dissipate a huge amount

of power in typical application scenarios, which is not suitable for embedded sys-

tems. 2) performance [52]: With more powerful AI applications deployed on edge

devices, the demand for computing power is becoming increasingly higher. For

the reason of the costs, embedded systems cannot simply increase their comput-

ing power, by adding servers as in cloud environments or using the most powerful

chips. 3) limited hardware resources [53]: For current multiple-task systems, edge

devices are increasingly required to operate more than one AI task. However, the

constrained hardware resources (e.g., DSPs and RAMs) are typically insufficient

to support multiple tasks, which poses challenges for resource allocation. 4) heat

dissipation [151]: unlike cloud servers, which can rely on water cooling and en-

vironment control methods to reduce temperatures, embedded systems are often

CHAPTER 2. LITERATURE REVIEW 39

unable to use large heat sinks due to weight and size constraints. Hence, embed-

ded systems are less efficient than others at dissipating heat and cannot use chips

with high heat and power consumption, which further limits the performance of

embedded devices.

To build an intelligent hardware system, it is critical to overcome those chal-

lenges in two aspects: 1) deployment of DL models and 2) deployment of hardware

accelerators.

2.5.1 Deployment of DL models

With the development of unsupervised, self-supervised, weakly supervised and

multi-task learning, the DL network is getting increasingly larger. Despite the

improvement of semiconductor technology, current chips still face difficulties in

meeting the requirements of rapidly growing computing power for neural networks.

Furthermore, in embedded systems, where power and resource hardware resources

are limited, it remains a challenge even nowadays to deploy high-performance

accelerators and neural networks, not to mention in harsh environments.

The earlier efforts on deploying DL models can be divided into cloud and edge

categories. Compared to edge and embedded devices, cloud devices have many

advantages in power and computing performance, which makes it easier to deploy

networks. However, cloud computing means that data must be sent to severs,

which incurs extra costs. Firstly, with the increasing number of mobile and em-

bedded devices, the amount of data generated by embedded devices has gradually

exceeded the processing capacity of the cloud. By 2020, 50 billion IoT devices had

been connected to the internet. On the contrary, it was also estimated that nearly

850 zettabytes (ZB) of data were generated outside the cloud [152], while global

data center traffic was only 20.6 ZB. Secondly, the data transmission between cloud

and edge devices will induce delay. However, mangy new types of applications like

cooperative autonomous driving have strict requirements. The physical distance

makes it impossible to shrink the delay. Finally, cloud technology heavily depends

CHAPTER 2. LITERATURE REVIEW 40

on the internet connectivity. Hence, it will be inappropriate, if the edge systems

have to operate in harsh environments like the radiation environments where net-

work connection cannot be continuously maintained. Edge computing emerges as

an attractive alternative. By comparison, in the offline mode, the training task is

still performed in the cloud, but the trained model is sent to the mobile or edge de-

vices to conduct inference locally (edge-side inference). However, the trained deep

models may have a large number of parameters and require complex computations,

which poses great challenges for the limited resources in embedded systems.

2.5.2 Hardware accelerators for DL inference

There are many hardware accelerators for AI inference. According to the pa-

pers published in recent years [153], the hardware used for DL implementation in

research can be divided into a number of categories. Fig. 2.12 shows the overall

distribution of the papers according to this categorization. As can be seen from the

figure, the hardware accelerators used for neural network deployment are mainly

based on FPGAs, GPUs and ASICs. The differences are listed in Table 2.2.

The ASICs for DL applications (e.g., AI chips) have performance and power

consumption advantages. Compared to the powerful general-purpose chips (e.g.,

CPUs), the ASICs for DL are designed to have greater parallel computation power

and memory bandwidth. Hence, many companies have developed or are devel-

oping their own AI chips. For example, IBM launched its “neuromorphic chip”

TrueNorth AI in 2014 [154]. TrueNorth contains 5.4 billion transistors, 1 mil-

lion neurons and 256 million synapses, so it can efficiently perform deep network

inference and deliver high-quality data interpretation.

However, although it is a great option to implement DL accelerators, the un-

affordable price prevents ASICs from being used in the research or scenarios (e.g.,

space and nuclear power plants) with small production quantities. Unlike ASICs,

FPGAs are flexible for changes and updates after implementation. FPGAs are

semiconductor devices based on a matrix of configurable logic blocks connected

CHAPTER 2. LITERATURE REVIEW 41

COLLECTED RESEARCH PAPERS

Others:Raspberry pi:1.0%

ASIC:2.9%

FPGA:66.7%

Compaison Studies:6.9%

GPU:22.5%

FPGA GPU Compaison Studies ASIC Others:Raspberry pi

Figure 2.12: Hardware implementation platform distribution in the collected re-
search papers [153].

CHAPTER 2. LITERATURE REVIEW 42

via programmable interconnects. FPGAs can be reprogrammed to the desired

application or functionality requirements after manufacturing. This feature dis-

tinguishes FPGAs from ASICs because ASIC design cannot be altered after fab-

rication. This feature makes FPGAs much more flexible for changes and updates

after implementation. Furthermore, FPGAs usually take less implementation time

than ASICs, making them ideal for prototyping and validation.

FPGAs used to be selected for low speeds, complexity and volume designs in

the past, while current FPGAs quickly push the 500 MHz performance barrier.

FPGAs are considered as to be an easy and suitable alternative solution to DL

acceleration with unprecedented logic density increases and other features, such as

embedded processors, DSP blocks, clocking and high-speed serial at a low price.

Despite the slightly higher power consumption than ASICs, the high flexibility and

rapid prototyping capabilities make FPGAs the dominant devices in research.

GPU is also known as the display core. It is a chip dedicated to the image and

graphics-related processing on personal computers, workstations, game consoles

and mobile devices (such as tablet computers and smartphones). One feature of

GPUs is their capability to perform intensive scalar and parallel computing, which

makes them a promising option for DL acceleration. Another feature of GPUs is

that they are designed with a fast memory hierarchy with direct memory access to

resolve memory bandwidth issues. This allows higher transfer rates while reducing

time costs.

Unlike FPGAs and ASICs providing hardware level solutions, GPUs provide

software level solutions. FPGAs and ASICs provide higher flexibility during the

design stage and accelerators can be particularly optimized for DL applications.

By contrast, GPUs are severely restricted by the existing underlying hardware. It

results in the lower performance or power efficiency of GPUs in some cases.

The implementation cost for both GPU and FPGA is considered medium com-

pared to ASIC. This is because of the high fabrication cost of ASICs. Although

fabrication costs are also high for GPUs, a large volume of production lowers the

CHAPTER 2. LITERATURE REVIEW 43

per chip price. On the other contrary, because GPU manufacturers tend to use

advanced processes, the performance of GPUs is rather excellent at the same price.

Therefore GPUs are popular in the cloud and server-side GPUs. Moreover, the

power-efficient embedded system tends to use FPGAs.

Therefore, there are sensible reasons to choose FPGAs for DL acceleration

in harsh environments when the budget is limited, and high power efficiency is

required. The radiation environment is such an environment where hardware sys-

tems place a higher demand on performance, weight, volume, energy efficiency

and adaptability. Considering that most of the hardware systems for radiation

are highly mission-dependent, the production number is not sufficient to cover the

production of ASICs. By contrast, FPGAs can take advantage of the flexibility

to build affordable hardware systems. The potential of FPGAs has been noticed

for a while as the co-processing hardware for image and signal processing in harsh

environments (such as satellites).

Table 2.2: Hardware platforms for AI acceleration [153].
FPGA ASIC GPU

Required technical
skills

VHDL/Verilog,
FPGA de-
velopment
environment

VHDL/Verilog,
CAD tools for
chip fabrication

GPU high-level
programming
skills

Implementation
time/Time to mar-
ket

Medium High Medium

Implementation
level

Hardware Hardware Software

Implementation fex-
ibility

High High Low

Flexibility for
changes after imple-
mentation

High Low High

Cost Medium High Medium to low
Energy efficiency Medium High Low
Area efficiency Low High Low
Performance Medium High Medium to low

The power efficiency of GPUs in specific computation tasks is normally high. How-
ever, due to the architecture for general purpose, the overall power efficiency in
embedded system is low.

CHAPTER 2. LITERATURE REVIEW 44

(b)

Virtual Hardware

Library

lnputs
Outputs

Active content

ON-chip content

ROUTING RESOURCES

(a)

LOGIC RESOURCES

HARDWARE LAYER

CONFIGURATION MEMORY

LUT FF

FF
LUT

Figure 2.13: (a) Typical FPGA architecture consisting of configuration memory
and hardware logic layer. (b) Multi-context FPGAs increase effective logic capacity
by using more than one configuration memory plane. [155]

2.6 Partial reconfiguration of FPGAs

As their capabilities and sizes have increased, FPGAs have been used in a wide

range of domains, where their reconfigurability offers a distinct advantage over

the implementation of ASICs. This feature offers FPGAs unmatched hardware

flexibility. Moreoever, modern FPGAs have the capability to dynamically recon-

figure partial regions, which is referred to as partial configuration (PR). Through

this feature, the hardware function can be changed at runtime in response to the

application requirements [155].

There are many reasons for which the partial dynamical configuration on a

single FPGA is advantageous. These include: 1) reducing the size of the FPGA

required to implement a given function, with the consequent reductions in cost

and power consumption; 2) providing flexibility in choosing the algorithms or

protocols available to an application; 3) enabling new techniques in design security;

4) improving FPGA fault tolerance; 5) accelerating configurable computing; and

6) delivering updates (fixes and new features) to those deployed systems.

2.6.1 Mechanism of partial reconfiguration

Conceptually, all FPGA devices can be considered as being composed of two dis-

tinct layers: the configuration memory layer and the hardware logic layer [156], as

shown in Fig. 2.13 (a). In the hardware layer, there are plenty of computational

hardware resources, including LUTs, flip-flops, DSPs, memory blocks, transceivers

CHAPTER 2. LITERATURE REVIEW 45

and so on. The hardware layer also contains some routing resources and switch

boxes that allow components to be connected to form a circuit. Both the com-

putational resources and routing resources can be controlled by the RAMs in the

configuration layer. When FPGAs are powered on, the configuration memory will

keep the configuration details via a binary file called configuration file or bitstream.

This binary file contains all the information that determines the implemented cir-

cuit, such as the values stored in the LUTs, the initial set and reset status of the

flip-flops, the initialisation values for memories, the voltage standards of the input

and output pins and the routing information for the programmable interconnect

to enable the resources to form the described circuit. The function implemented

by the hardware logic layer is thus wholly determined by the values stored in the

configuration memory [155].

PR refers to the modification to the partial configuration information while

the others remain unchanged. As the configuration memory is modified, the cor-

responding regions in the hardware layer will also be changed. Dynamic reconfig-

uration (DPR) is different from PR. It refers to the modification to the hardware

designs during the runtime without a reset. Today, the mainstream FPGAs (e.g.

Xilinx) support PR functionality via dedicated internal interfaces (e.g. ICAP) to

rewrite the configuration RAMs. Due to the lack of drivers and software support,

DPR used to be applied in only a few projects. For now, the latest Xilinx FPGAs

support a new feature called dynamic function exchange (DFX), packaging DPR

and corresponding software.

2.6.2 Applications of partial reconfiguration

2.6.2.1 Dynamic system adaptation

The systems are applied to dynamically modify their behaviour for various envi-

ronments. It is particularly useful in applications in which the high computational

requirements exceed what software can provide. Due to the high flexibility of FP-

GAs with PR, It is popular in such applications as software defined radio [157].

CHAPTER 2. LITERATURE REVIEW 46

With the use of PR, various hardware filters for radio processing are implemented

according to the requests. In paper [158], a cognitive radio design is proposed.

It can modify the functionality at runtime, making operations more effective in

unknown environments. Another example is the applications with adaptive data

clustering (e.g., K-means clustering and support vector machines), where kernels

are selectively modified with multiple kernels hosted in the same FPGA [159, 160].

PR allows individual classifiers to be adapted to meet the need for many identical

classifiers in the system.

In automotive applications, the potential of PR has been observed. Because the

vehicle’s life is normally much longer than the updating cycle time of algorithms,

the ability to continuously update hardware is very attractive. In addition, FPGAs

with PR provide the capability of rapid development in driver assistance applica-

tions. In paper [161], the authors propose a system combining CPUs and FPGAs.

The CPU is used for control and management in this system, while FPGA is used

for image processing.

Within space applications, PR is widely used because of resource constraints.

In paper [162], the authors propose a design on Virtex-4 FPGA for a well-established

network-on-chip protocol in the space community. In this works, PR is used to

implement hardware functions for different purposes such as credit-based flow con-

trol, the detection of link errors, link error recovery and hot-plug ability.

FPGAs with PR are ideal for building a hardware system for changing sce-

narios, as hardware functions can be modified on the fly according to the require-

ments. Most of the PR examples are application-specific. The flexibility improves

the adaptability of FPGAs across a range of domains.

2.6.2.2 Partial reconfiguration for radiation

Essentially, PR is based on a similar idea to scrubbing: using new data (hard-

ware bitstreams) to overwrite the previous data in the memory (configured RAM).

Therefore, PR can be used to mitigate errors in FPGAs, as SRAM-based FPGAs

CHAPTER 2. LITERATURE REVIEW 47

are highly vulnerable to SEUs. PR has been proposed as a solution to mitigate

SEUs in SRAM-based FPGAs because it provides an auxiliary path to the config-

uration memory. In paper [163], the authors partition the FPGA into a number of

regions to isolate SEU errors, and then apply duplication with comparison to en-

sure correct computation. If the outputs of identical modules are different, there is

an error. Once an error is detected, that region is reconfigured. In paper [164], the

authors proposed a scrubbing method for configuration RAMs. The bitstream is

stored in a radiation-hardened memory and refreshed by a configuration controller.

Some other methods enable redundancy through PR. In paper [165], redundant

electronic control units (ECUs) are implemented in PR regions. When there are

detected errors, the corresponding region is reconfigured, and the redundant ECU

performs as a backup.

2.6.2.3 System cost reduction

PR can help reduce overall system cost by enabling time multiplexing of the func-

tionality on a smaller chip instead of a larger FPGA. Because the energy con-

sumption of smaller chips is generally low, this also helps reduce the overall cost

[155]. PR has been proved to be useful for media-related processing, as they

are resource-constrained applications. In paper [166], PR is used for the imple-

mentation of an MP3 decoder. In paper [167], the authors proposed a PR-based

scalable H.264/AVC deblocking filter architecture. The filter adapts to different

user requirements at runtime. In paper [168], the AdaBoost algorithm for human

detection is implemented by using PR. There are two computationally intensive

tasks: integral image computation and feature extraction/decision. By dynami-

cally implementing the corresponding hardware function, the required hardware

resources can be significantly reduced.

To sum up, when the requirement is low cost, the use of PR can be divided

into two categories. One is the deployment of different hardware functions through

time-division multiplexing, thus reducing the consumption of resources. The other

CHAPTER 2. LITERATURE REVIEW 48

one is the scalable hardware design for different scenarios.

2.6.2.4 High-performance computing

Through PR, FPGA can also provide the capability of computing acceleration

within the general-purpose computing systems. In paper [169], a design of high-

performance reconfigurable computing is proposed. The FPGA takes on a signif-

icant proportion of a large scientific application, with PR allowing the fabric to

be used in different computational steps during runtime, when the applications

are too large to fit on a single FPGA. In paper [170], the authors used PR for an

autonomous computing system with placement and routing implemented on the

FPGA fabric itself, which allows the FPGA to create new circuit bitstreams for

self-modifying hardware. In paper [171], the authors proposed a real-time oper-

ating system for highly adaptive efficient and dependable computing on FPGAs.

In this system, each task can apply for hardware resources to build accelerators.

However, the accelerator is not adjustable for the same task.

Another very popular scenario of FPGA is cloud computing [172]. For example,

Microsoft used FPGAs to deploy accelerators for Bing search [173]. In paper [174],

the author proposed a scheme to manage multiple PR blocks as virtual FPGAs,

which can make it easier to manage resources. In paper [175], the authors provide a

comprehensive survey on FPGA-based hardware accelerators for cloud computing.

FPGAs have also been used in neural networks, where algorithms are con-

stantly changing and upgraded. PR can provide adaptation to AI tasks for the

inference computation . In paper [176], the authors proposed an online evolvable

pattern recognition system, where the classification module dynamically evolves

using PR. In this paper, a processor configures a PR region with different classifi-

cation modules to evaluate the input pattern.

CHAPTER 2. LITERATURE REVIEW 49

2.6.3 Challenges of FPGA system with partial reconfigu-

ration

PR has shown significant advantages in such applications as autonomous driving,

communications and space. This also includes AI hardware systems under nuclear

radiation. However, there are still many challenges in using PR to implement such

an AI system.

Firstly, it remains challenging to implement a system with multiple accelerators

on the current commercial FPGAs due to the limited support in tools and drivers.

To build such a system, developers need to overcome the limitations of existing

flows, including hardware design, cabling planning, driver implementation, system

calls and application optimisation. Even though such FPGA providers as Xilinx

have provided some of the automation tools, it is still very difficult to introduce

an abstract concept into a specific system.

Secondly, more research is required on how to manage multiple accelerators on

FPGAs appropriately. When PR techniques are applied, there may be multiple

accelerators in FPGA systems. It presents a challenge for optimising the system

with multiple accelerators and applications. In addition, during PR, the switching

of hardware functions should avoid any impact on running applications.

The third issue is the scheduling of PR to achieve the best performance. Ob-

viously, it is not free to conduct reconfiguration. Although Xilinx claims that

their FPGAs can configure small blocks in milliseconds, the reconfiguration of the

larger accelerator and the switching of the device tree will take seconds. From an

application perspective, switching too frequently is likely to outweigh the benefits.

Finally, it is still a question of how to build the autonomously self-adaptive

systems that combine reconfiguration capability with intelligence and the ability

to adapt to bitstream capabilities, which will be discussed in this thesis.

CHAPTER 2. LITERATURE REVIEW 50

2.7 Conclusion

As we can conclude, the challenges fall into two categories: SEE and DL. Specifi-

cally, the challenges include SEE simulation for large circuits, SEE mitigation for

extreme radiation environments, limited resources for AI inference, flexibility for

multiple tasks and power efficiency for long-term operation.

Firstly, SEE simulations require more computational resources and time, if we

want more accurate results. Due to the complexity of SEE and the increasingly

large size of existing circuits, it has become a challenge to design a large-scale

circuit suitable for the verification and simulation of anti-SEE performance. On

the one hand, transistor or gate-level tools (e.g., SPICE) are accurate enough for

small-scale circuits. However, The requirement for a large amount of computa-

tional power prevents them from being used for large circuits. On the other hand,

although the HDL can simulate the behaviours of large-scale circuits, it lacks de-

tails in SEE to analyse the SEE propagation. To address the issue, in Chapter 3,

I will present a new SEE simulation scheme combining the advantages of SPICE

and HDL simulation.

Secondly, in strong radiation environments such as a nuclear power system,

errors can accumulate much faster than in traditional radiation environments. In

this case, the typical error mitigation methods intended for the space environment

may not be able to meet specific requirements. The TMR technique incurs a

high overhead cost. The ECC has limited capability to deal with accumulated

errors. The scrubbing methods have the potential to mitigate SEUs. However, it

requires extra hardware support (e.g. additional IO ports), limiting the range of

applications. Due to the long-term effects in strong radiation environments, the

devices will only work for hours and be replaced. The error mitigation performance

and costs will be more important than power consumption. Therefore, in chapter

4, I will present a portable scrubbing design requiring no additional IO ports.

Thirdly, when it comes to AI systems, the biggest challenges are the high

requirements for DL deployment, including weight volume, power consumption,

CHAPTER 2. LITERATURE REVIEW 51

price, radiation resistance and complex scenarios. The reconfigurable feature

makes FPGAs a perfect option. On the one hand, reconfigurable technology has

proven system reliability in radiated environments. On the other hand, the recon-

figurable feature provides FPGAs with adaptability for various scenarios. Some of

the works have proposed to utilize reconfiguration features to improve and solve

the problems in the hardware aspect. However, I think the system can be fur-

ther improved by adopting the concept in both hardware and software. Therefore,

an adaptive hardware resource management system based on the reconfiguration

feature is designed for multiple AI tasks in harsh environments. It can improve

comprehensive performance, including reliability and power efficiency. Further-

more, the idea of the dynamical switch is adapted at the software level. A series of

DL networks are pre-built in different sizes. When facing various work scenarios,

the networks can be dynamically switched in real-time to adapt to different per-

formance, power and accuracy requirements. The work is presented in chapters 5

and 6.

Chapter 3

Simulation of SEEs in integrated

circuits

3.1 Introduction

Today’s strategies to evaluate the effects of SETs and SEUs on the integrated

circuits of different designs still have certain limitations. Real world radiation ex-

periments (e.g., outer space experiments or nuclear radiation facility experiments)

demand sophisticated mechanical setup and they are expensive as well. Indeed,

they can provide “high level” results like “error rates” and “sensitivity to radia-

tion” of different chips, but the detailed radiation effects on various circuit modules

are hard to find, due to the complexity of the integrated circuits.

Existing transistor simulation tools, which are transistor-based analog circuit

simulation, can produce accurate results by considering detailed physical param-

eters (e.g., capacitance, resistance, current, voltage, and 3D structure) in simula-

tion. However, they will take days to weeks to complete on a cluster of powerful

servers. When it comes to the SEE simulation, the complexity further increases

considering the time sequence and injection nodes.

HDL level simulation might be used to quickly assess the SEE mitigation per-

formance of circuits. It carries out the error injections in the data stream or

52

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 53

memory units based on the probability of bit-flips [29, 28], which makes HDL sim-

ulations lacking in detail when analysing SEEs (especially SETs) in some specific

circuits. Moreover, the HDL design only describes the behaviour of the circuit and

does not reflect the actual size of the circuit, so the accuracy of the SEE injection

based on the error rate is also questionable.

SEE models

SEE HDL

models

Update

Convert

SPICE simulation

Figure 3.1: The comparison between a typical SEE evaluation scheme and the
proposed scheme.

To utilise the advantages of SPICE simulation and HDL simulation tool, a new

SEE simulation scheme is proposed [177, 178], to offer a fast and cost-efficient

method, requiring less time and computational resources for SEE simulations, to

evaluate and compare the performance of large-scale circuits. The scheme con-

sists of the following features: 1) creating SEE behaviour models using SPICE or

TCAD, 2) generating HDL netlists and injection scripts using the HDL designs,

and 3) using the SEE behaviour models in HDL simulations to study and com-

pare the performance of the circuit designs. 4) Based on the results, update the

hardware designs and rerun the simulation operations.

Validation of the proposed scheme has been conducted using a 180nm logic gate

library from the SMIC [179] to build a set of SEE models for the simulation. The

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 54

baseline circuits that we used in this work, are a series of commonly used circuit

designs from the ISCAS89 benchmark [180]. Experimental results exhibit that the

proposed scheme can handle SEE simulations for more than 40 different circuits

with the sizes varying from 100 transistors to 100k transistors. Additionally, using

low-level SEE behaviour models, the proposed simulation scheme is able to provide

details of the error propagation and vulnerable logic design in the HDL simulation.

As shown in Fig. 3.1, compared to the typical SEE evaluation scheme, the proposed

scheme provides a rapid solution to analyse the vulnerable modules in the logic

designs before post layout simulations.

3.2 The proposed SEE simulation scheme

The workflow of the proposed scheme is shown in Fig. 3.2. Due to the complexity of

the large-scale circuits, it is very difficult to directly undertake physical simulation

for VLSI. Because all digital circuits are made up of basic logic components, a set

of SEE behaviour models for logic components will be generated in the proposed

scheme. The SEE behaviour models are generated from SPICE simulations based

on the gate libraries and SEE SPICE models. In this scheme, the SEE behaviour

models can be reused for different HDL designs so that there is no need to re-

conduct the generation of the SEE behaviour models. It also provides the flexibility

to customise the gate libraries and SPICE models to achieve more accurate results.

3.2.1 Process of SEE simulation

The process of the SEE simulation for VLSI includes three steps: 1) generate the

SEE models for basic circuit units, 2) build HDL netlists for the large-scale circuits

and 3) carry out simulation and analysis.

The first step is the most important step in the proposed scheme. The accuracy

of the SEE models determines the accuracy of the simulation results. On the

physical level, SEEs are transient currents caused by the particles, which can be

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 55

HDL Design HDL
Simulation

Gate
Components

SEE

Behaviour

Model

SEE

SPICE

Model

SPICE
Simulation

Figure 3.2: The workflow of the proposed scheme. SPICE simulation part can be
skipped, if SEE behaviour models have been generated.

affected by the capacitance between the transistors, the resistance of the circuit

wire, the semiconductor material of the chips and the intensity of the radiation.

In this step, we use transient current sources in the SPICE to simulate the SEEs.

By injecting the transient current at the sensitive circuit nodes, the changes of

voltage will be observed on the output ports.

The second step is to build HDL netlists of large-scale circuits. Compared

to the small circuits, the large-scale circuits are much more complicated. In a

circuit with thousands of transistors, there might be millions of possibilities which

need to be simulated. It is not viable to do that in SPICE. We replace the basic

logic components with the corresponding SEE models. Therefore, HDL netlists

should correspond with the structure of the physical circuits. However, normal

HDL designs do not indicate the physical circuits directly. Here, we generate the

SPICE netlists by EDA tools and components library, which can be converted into

HDL netlists. A script tool is also designed to replace the basic components and

generate new HDL netlists automatically.

The third step is to undertake simulations and analysis. Considering that the

large-scale circuits may contain hundreds of inputs and outputs, the simulation

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 56

bench files are also generated by scripts automatically.

In this final step, the simulation test-bench codes contain three parts: 1) input

generation, 2) SEEs injection and 3) error detection. The input generation part

is used to generate specific input data streams to represent different software pro-

grams. The injection part is used to control the SEE injection. The error detection

part is used to monitor the output and analyse the errors. In this scheme, two

identical designs are used as a reference module and an experiment module respec-

tively. When the simulation starts, both modules are monitored. By comparing

the outputs, the errors can be then detected. The number of errors was noted for

subsequent analysis.

3.2.2 The basic component for SEE simulation

In order to generate the SEE model of those basic logic components, a concept

of the basic circuit unit is introduced in this work. The basic circuit unit is a

“black box”, with inputs and outputs and relationships between the inputs and

outputs which can be represented by an equation. When SEEs occur in this unit,

the effects of the SEE (i.e., digital pulses and bit-flips) can also be represented

through this equation.

Therefore, we can build HDL SEE models of the integrated circuits by using

equations. The model should include two parts: 1) the behaviours of the circuits

without errors and 2) the effect of SEEs on operational circuits. In digital circuits

(including combinational and sequential circuits), the output will only be affected

by the current inputs and states. The equation of the normal behaviour of the

circuits can be represented as follows:

On = f(Sn, In), (3.1)

where On represents the current output of the circuit, In represent the current

inputs and Sn represents the current state of the circuit.

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 57

As indicated in Chapter 2, SETs and SEUs are two main types of soft errors in

SEEs. SETs can generate digital pulses that will propagate through the following

circuits. SEUs can cause bit-flips and they will change the current state of the

circuits. I represented SETs and SEUs in separate equations.

SET

1

0

Peak

Particle Hit

Delay

Figure 3.3: The original transient SEE pulse and the generated SEE digital pulses.

When charged particles strike a sensitive area in the circuit unit, a transient

current will be generated, which will cause a voltage pulse. If the peak voltage

exceeds the threshold voltage of value “1”, then a digital pulse will be generated.

The waveform of the voltage pulse and the corresponding digital pulse is shown in

Fig. 3.3. When one charged particle strikes a transistor in the circuit, the pulse

will appear at output ports after a delay. The duration time of the signal at the

output ports is the width of the pulse. According to the different current states

and the propagation paths, the output signal can be a positive pulse, a negative

pulse or no pulse. For the output of one SET on transistor K, the equation can

be then represented as follows:

OSET,k =

0 0 < t < Td,

fSET,k(Sn, In) Td ≤ t < Td + Tw,

0 Td + Tw ≤ t,

(3.2)

where OSET,k represents the output signal of SETs on one transistor, fSET,k(Sn, In)

represents the outputs of pulses which can be positive pulse, negative pulse and

no change and t represents the elapsed time of the events, Td represents the time

for the pulses to propagate to the outputs from the strike point and Tw represents

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 58

the width of the pulses.

The possibility of triggering the OSET,k depends on the radiation cross section

of the transistors. To simplify the process of the analysis, we assume that the

size of the area under the radiation for each transistor is the same. Therefore, if

there are N transistors in the circuit unit, then the probability that each transistor

will trigger the OSET,k will be 1/N . When a SET occurs in the circuit unit, the

equation for this circuit unit can be then represented as follows:

OSET = fc(OSET,1, OSET,2, ..., OSET,N), (3.3)

where fc is a choice function, which indicates the transistors struck by the particles,

and OSET represents the output of SETs on this circuit.

SEU

1

0

Peak

Particle Hit

Delay

Figure 3.4: The voltage change of the bit flip.

Similar to the effects of SETs, the effects of the SEUs can also be represented

mathematically. As shown in Fig. 3.4, when SEUs occur in the circuit unit, the

state of the circuit will be changed, which may also change the output of the

circuit unit. Therefore, the equation of the SEU on one transistor K can be then

represented as follows:

SSEU,k =

 0 0 < t < Td,

fSEU,k(Sn) Td ≤ t,
(3.4)

where SSEU,k represents the new state of the circuit unit after the SEUs on tran-

sistor k, Td represents the propagation time and fSEU,k represents the effects of

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 59

the SEU on transistor k.

Therefore, the effects of the SEUs on the circuit unit can be then represented

as follows:

SSEU = fc(fSEU,1, fSEU,2, ..., fSEU,N), (3.5)

where SSEU represents the new state of the circuit unit after the SEUs in this circuit

unit, fSEU,k represents the effects of the SEU on transistor k and fc represent a

choice function, when SEUs occur, one of the fSEU,k functions will be triggered.

3.2.3 Propagation between multiple units

In physical circuits, the observed voltage changes depend on not only the hitted

units themselves, but also the propagation path. When SEEs occur in logic gate

chains, the width of the transient pulses may significantly increase or decrease

in the propagation, which is called propagation-induced pulse broadening (PIPB)

effect [181].

As shown in [182], the PIPB effect is induced by unbalanced propagation delay

of the rising edge and the falling edge in logic gate chains, Fig. 3.5 shows an

example of the PIPB effect. In this figure, the “Diving signal” is the output pulse

of the previous circuit unit, assuming that there is a SET occurring in the previous

unit. The observed pulse is then the input pulse of the next circuit unit. TLH

represents the time for the voltage to change from low to high and THL represents

the time for voltage to change from high to low, which includes the propagation

time, charging time and discharging time. When the rising edge time (TLH) is

longer than the falling edge time (THL), the detected width of the positive pulse

will reduce, while the negative pulse will widen. When the SEE occurs in the long

logic gate chains, the propagation effect will be accumulated, which may further

affect the transient pulses significantly.

The rising and the falling edge delays depend on the capacitance of the nodes,

which are related to the number of driven gates [182]. In this work, the detected

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 60

Driving signal

Observed pulse

T_LH T_HL T_HL T_LH

(a) positive pulse (b) negative pulse

Figure 3.5: The propagation effects on positive and negative pulses, which caused
by the difference between the rising and the falling edge propagation time.

propagation delay at input wires of unit K is represented as follows:

dt(I) =

 TLH I = 0,

THL I = 1,
(3.6)

where dt(I) represents the detected propagation delay, I represents previous valid

input values, TLH represents rising edge delay and THL represents the falling edge

delay.

Hence, the input of the unit can be represented as follows:

I ′n = I(tn−dt(I)) (3.7)

where I ′n represents the input value of the current state for operations, tn represents

the current moment and dt(I) represents the detected propagation delay.

3.2.4 Large circuits

Large circuits are composed of many small circuits or circuit units. When the

circuits are struck by the particles, SEEs may occur in any of the small circuits.

The probability of a SEE occurring in the specific units corresponds to the SEE

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 61

cross section of the units and the size of the circuit units. The SEE cross section

represents the number of events per unit of fluence. For the circuits in one chip,

the SEE cross section should be identical. Therefore, the probability of the SEEs

for each unit should correspond to the size of the circuits. In other words, the

larger circuits may have higher chances to capture particles and generate more

SEEs.

Fig. 3.6 shows an example of SEE injection in a large circuit, which is a TMR

module with 4 sub-modules. There are three identical big functional modules (i.e.,

M1 M2 and M3) and a small voting module (i.e., M4). If a SEE occurs in the TMR

module, then the transient pulse should occur in one of those modules. However,

considering that the size of the functional module and the voting module are very

different, it is likely that the pulse occurs in the bigger sub-modules: M1, M2 or

M3. The size of the unit is relative to the probability of the SEE function of the

unit that is triggered.

Therefore, when one SEE occurs in one complex circuit with M circuit units,

the probability (Pi) that the unit i is struck can be represented as follows:

Pi =
si

s1 + s2 + ...+ sM
=
si
S
, (3.8)

where s1, s2..sM represents the sizes of each circuit unit respectively in this large

circuit, S represents the total size of the circuits and si represents the size of the

unit i.

Integrated circuits consist of PMOS and NMOS transistors. The size of the cir-

cuits can be represented by the number of the PMOS and NMOS. The probability

of the occurrence of SEEs can be represented as follows:

Pi =
si
S

=
Npmos,i + λNnmos,i

Npmos + λNnmos

, (3.9)

where Npmos,i represents the number of the PMOS in unit i, Nnmos,i represents the

number of the NMOS in unit i, Npmos represents the number of all PMOS in this

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 62

complex circuit, Nnmos represents the number of all NMOS and λ represents the

ratio of the size of the PMOS and NMOS.

M1

M2

M3

M4Input Output

TMR Module

Voting circuit

Figure 3.6: A TMR module for SEE injection. M1, M2 and M3 are three identical
modules. M4 is the voting module. M1, M2 and M3 are bigger in size than M4.

We assume that the PMOS and NMOS transistors have an identical sensitive

size that can catch particles to ease calculations. In that case, the λ is equal to 1

and the probability can be represented as follows:

Pi =
si
S

=
Nmos,i

Nmos

, (3.10)

where Nmos,i and Nmos,i represent the numbers of the MOS in unit i and the

number of all MOS in the large circuit respectively. By using the SEE models and

the probability for each unit, the SEE simulation scheme for large circuits can be

then implemented.

3.3 Implementation of SEE models

The SEE models of the circuit units form the foundation of the predication scheme.

To obtain accurate models, the physical parameters were included in the circuit

unit simulations. In this work, the circuit units are simulated in HSPICE [183], a

Synopsys circuit simulator for accurate circuit simulation.

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 63

3.3.1 Selection of basic components

In this scheme, the basic units to generate SEE models can be a set of gate com-

ponents or other circuit modules in the targeted designs. The SEE models will

be more accurate if additional transistors are covered in the HSPICE simulations.

However, the larger the units are, the more difficult the transistor simulation will

be. Considering the complexity of the integrated circuits, the basic units with

smaller size and higher reusability can ease both transistor level simulations and

system level simulations. Thus, the gate components are better options.

Table 3.1: The netlist of the S27 circuits

The SPICE netlist:
.subckt S27 GND VDD CK G0 G1 G17 G2 G3
XDFF2 G7 CK G13 DFFQNX1M
XDFF0 G5 CK G10 DFFQNX1M
XDFF1 G6 CK G11 DFFQNX1M
XU10 G14 G0 INVX2M
XU11 G17 G11 INVX2M
XU12 G8 G14 G6 AND2X1M
XU13 G15 G12 G8 OR2X1M
XU14 G16 G3 G8 OR2X1M
XU15 G9 G16 G15 NAND2X1M
XU16 G10 G14 G11 NOR2X1M
XU17 G11 G5 G9 NOR2X1M
XU18 G12 G1 G7 NOR2X1M
XU19 G13 G2 G12 NOR2X1M

For instance, Table 3.1 shows the HSPCE netlist generated from the S27 cir-

cuit, which is one of the ISCAS89 benchmark circuits. QFFQX1M, INVX2M,

AND2X1M, OR2X1M, NAND2X1M and NOR2X1M in the HSPICE code indi-

cates different gates used in physical circuits, respectively. Those components are

all units required for the S27 circuit. It is possible to combine parts of the com-

ponents into a bigger unit. However, it will significantly increase the complexity

of the following simulations. Considering the reusability and small size of those

components, it will be suitable to choose those components as basic circuit units

in the following simulations. In this work, 14 components from the gates library

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 64

were used in the simulation of circuits in ISCAS89 from the smallest one to the

largest one.

3.3.2 The used circuit unit in simulation

The ISCAS89 [184] benchmark circuits are coded in HDL. The physical parameters

(e.g., capacitance, resistance) are not included in the ISCAS89 files. In order to

obtain the physical architecture of the basic units, HDL designs need to be firstly

compiled and implemented. After the implementation, the SPICE netlists are

generated and the logic devices in the HDL codes are replaced with the logic

components in the physical gate libraries. In this work, a 180 nm gate library

[179] from the SMIC was used to build SEE models.

Fig. 3.7 shows the circuit diagram of the DFFQNX1M, which is a flip-flop

in the SIMIC 180 nm gate library. This is a sequential circuit that consists of

22 transistors. As mentioned in section 3.2, SEEs are affected by the current

Vcc

Vss

Vcc

Vss

Vcc

Vss

Vcc

Vss

Vcc

Vss

Vcc

Vss

S

S

S

CN

C CN

CC

CN

D

D

Vcc

Vss

Vcc

Vss

CK C
CN

Figure 3.7: The circuit of the QFFQX1M in SMIC gate library.

inputs and states. In order to build accurate models, it is necessary to cover all

circumstances in the SPICE simulation. The number of possibilities corresponds

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 65

with the number of inputs and the number of states. Therefore, The workload for

building the SEE models can be estimated by the number of inputs and states.

For a K-size circuit with Ni changeable inputs and Ns changeable states. the

possibilities for the circuit can be represented as follows:

St = 2Ni × 2Ns ×K, (3.11)

where the St represents the number of the probabilities which need to be simulated

and the K represents the number of the transistors in this circuit.

The probabilities can also be used to evaluate the time required to build SEE

models. For example, QFFQX1M has 1 circuit state and 5 inputs including D, C,

CK, VDD and VSS. When the circuit is working, the VDD and VSS are constant

and the D, C and CK are changeable. According to Equation 3.11, the number of

circumstances for all transistors is equal to 176, which is also the number of the

simulation rounds required for building the SEE model.

The time required can be predicted by the probabilities and the time required

for each simulation round. Table 3.2 shows the time required for the SPICE

simulation for all units used in this work. The SEE models of small units can

be generated in several minutes, while the SEE models of big circuits (e.g., QF-

FQX1M) will take several hours. In general, the SEE models for all units could

be generated in hours.

3.3.3 Injection currents

Both SETs and SEUs are caused by ionizing particles and transient currents.. At

present, the most common methods for simulating single-particle effects are to

inject the transient currents to the target node, where the location is struck by

high-energy particles. The current sources are used in this work to generate the

transient currents to simulate single-particle effects. The intensity of the current

reflects the intensity of radiation and the capability of energy absorption.

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 66

Table 3.2: Time required of the SPICE simulation to build SEE models
Unit Size of the unit Number of probabilities Time required

INVX2M 2 4 1 s
OR2X1M 6 24 16 s
OR3X1M 8 32 31 s
OR4X1M 10 160 238 s

NOR2X1M 4 16 6 s
NOR3X1M 6 48 32 s
NOR4X1M 8 128 121 s
AND2X1M 6 24 16 s
AND3X1M 8 32 31 s
AND4X1M 10 160 238 s

NAND2X1M 8 32 6 s
NAND3X1M 10 160 32 s
NAND4X1M 12 192 480 s
QFFQX1M 25 176 196 min

In order to improve the accuracy of the SEE model, the injection currents

should follow the trends of the physical effects. There are some current models for

SEE simulation (e.g., the rectangular pulse model, the double exponential pulse

model and the transient pulse model [185, 186]).

However, for the rectangular and the double exponential pulse, it has been

proven that the peak of the currents could be 20% lower than real transient currents

[185]. Here, we use a transient current model which is based on the quantity of

the electricity generated by the ionisation effects. Compared to the other models,

the current waves generated by this model are closer to the real currents of the

SEEs [187].

The equation of the transient pulse model can be represented as follows:

I(t) =
2Q

τ
√
π

√
t

τ
exp

{
−t
τ

}
, (3.12)

where the Q represents the quantity of the free electricity generated by the ion-

ization effects, which is also the quantity of free electricity in the injection, τ

represents the physical parameters related to the electricity absorption, which is

affected by the materials of the semiconductors, physical shapes and architecture

of the transistors. The higher value of τ means the slower current changes in the

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 67

circuits. Normally, Q is between 100 fC (femto-coulomb) and 150 fC [188] and τ

is between 25 ps and 35 ps (picosecond) [30] for the circuits between 100 nm and

200 nm. We considered the circuits are from the 180 nm gate library, Q is set at

100 fC and τ is set at 25 ps.

Vcc

Vss

1

-
+

Current Source

Voltage Pulse

A

B

Vss

Vcc

Figure 3.8: The location of injection current source in the inverter circuit, when
the PMOS in the inverter is struck by the particle.

3.3.4 Simulation of SEE models

3.3.4.1 Implementation of current sources

The direction of the SEE transient currents are affected by the electric field di-

rection. Therefore, the injection current source should correspond to the electric

field. Fig. 3.8 shows the examples of the injection current source in the SMIC 180

nm inverter circuit. If the output of the inverter is “0”, then the PMOS will be

the sensitive gate. In this case, the SEE transient current flows from Vcc to the

output port, which will cause a positive pulse. If the output is “1”, the direction

of the transient current is from the output port to Vss causing a negative pulse.

Therefore, the current source will be connected to the sensitive gates to generate

pulses in the simulation.

When transient currents are injected, corresponding voltage changes will be

observed at output nodes. Fig. 3.9 shows the voltage change of the inverter

output in the SPICE simulation. The peak of the voltage pulse is about 2.74 V

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 68

Figure 3.9: The simulation results of SEE positive pulse in the inverter circuit.
The input of the inverter is “1” and the PMOS is struck by the particle.

and the time duration is about 0.2 ns. When it is converted to the digital model,

the time duration is the width of the digital pulses.

3 3.05 3.1 3.15 3.2 3.25 3.3

Time(ns)

0

0.5

1

1.5

2

V
o
lt

ag
e(

V
)

Not connected

Connected

Figure 3.10: The comparison of the output voltages of the inverter with and with-
out following circuits.

3.3.4.2 Propagation effects

Due to the different connections of the circuits, the voltage curve of transient

pulses are not constant. Fig. 3.10 shows the voltage curve of transient pulses

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 69

Table 3.3: The lookup table with initial delay parameters

Number of units
Specifications (ps)

Rising edge delay Falling edge delay
1 79 64
2 97 80
3 112 92
4 127 104
5 141 115
6 159 131
7 178 146

in the inverter circuit with one and without following circuits. Compared to the

separated inverter without following circuits, the output voltage curve in inverter

with following circuits is smoother, which causes propagation effects in the circuits.

As mentioned in Section III, increasing number of logic gates increases the

capacitance of the connection node, which will increase rising edge and falling

edge delay. In this chapter, a lookup table is built to represent Equation 3.7.

Considering that the number of driven gates can be obtained by simply counting

how many times the output wires are used in the netlist, THL and TLH parameters

can be initialised, when final netlists are generated. Table 3.3 shows the pre-built

lookup table used in the simulation. For example, if a previous units is driving

three following units, then the rising edge from the previous output should be

detected by the following units 112 ps later.

3.3.4.3 The width of the digital pulses

The width of the digital pulses represents the time duration of the voltages, which

can be sampled as incorrect values. In CMOS devices, the threshold voltage of

logic “0” is normally 0.3(V cc − V ss). When voltages are lower than 0.3(V cc −

V ss), the sampled values will be logic “0”. The threshold voltage of logic “1”

is 0.7(V cc − V ss). When voltages are higher than 0.7(V cc − V ss), the sampled

values are “1”. In this work, the threshold voltages are represented as follows:

VH =
V cc− V ss√

2
+ V ss, VL =

V cc− V ss
2 +
√

2
+ V ss, (3.13)

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 70

where VH represents the threshold of the high voltages and VL represents the

threshold of the low voltages. The width of the positive pulse is the duration of

the voltage peaks which are higher than VH . The width of the negative pulse is

the duration of the voltage peaks which are lower than VL.

Table 3.3 shows the specifications of the two pulses. The width of the pulse in

the inverter with following circuits is 15% wider than the pulse in separate circuit.

Finally, the digital SEE models can be generated by using the SPICE simulation

results. The digital SEE models of the INVX2M and DFFQNX1M are shown in

Table 3.4 and Table 3.5, which include the trigger conditions, possibilities, the

width of the pulse in different circumstances and the output delay.

Table 3.4: The SEE model of INVX2M unit
Inputs probability Width (ns) Delay (ns)

SET 0 50% 0.22 0.0
1 50% 0.22 0.0

SEU X 0% / /

Table 3.5: The SEE model of DFFQNX1M unit
Inputs-States* probability Width (ns) Delay (ns)

SET XXX 8% 0.22 0.0
0X0 4% / 0.10

SEU 0X1 8% / 0.12
1X0 8% / 0.11
1X1 4% / 0.10

* The data input, CLK and Stored bit

3.4 SEE simulation of large-scale circuits

In order to carry out simulations for large-scale circuits on the system level, the

SEE models generated from the SPICE simulation need to be integrated into the

HDL circuit units. Therefore, the original logic components (e.g., OR gates and

AND gates) are replaced with the circuit unit modules that contains the digital

SEE models. Considering the large number of logic components, Python script

tools are developed to automatically generate HDL codes.

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 71

3.4.1 Implementation of HDL circuit units

Circuit units are used to replace the original logic components. Therefore, the

function of the original logic components should also be covered by the circuit unit.

The circuit units will include the function of the original logic components and the

SEE models. There are three parts of the circuit unit models: 1) original logic, 2)

configurable parameters and 3) the functions of the SEE models to generate the

bit-flips and digital pulses.

Inverter in netlist Circuit unit with SEE model

Figure 3.11: The implementation of SEE model of the inverter.

Fig. 3.11 shows the implementation of SEE model of the inverter. In the origi-

nal netlists, the inverters are simple circuit blocks only with the “NOT” function.

In the generated netlists, the inverters are replaced by the HDL modules which

consist of the “NOT” function and the SEE model function to conduct SEE in-

jection. If there is no SEE, the module will work as the inverter. When the SEE

injection is conducted, the injection programme will try to call the functions of the

SEE model to force the circuits to generate a digital pulse. As with the inverter,

other logic gates will be also replaced. In this way, we can rebuild the netlist for

the HDL simulation.

The SEE model is implemented as a task functions in Verilog. When the SEEs

are triggered, the task functions will be called by the injection scripts. The task

functions simulate the pulse caused by forcing signals on the output wire to be

incorrect for a certain time and simulate the bit-flips by changing the circuit states.

Fig. 3.12 shows the example of the SEE output in the inverter in the HDL

simulation. The “x” is the input of the inverter and “nx” is the output. The SEE

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 72

Figure 3.12: The transient pulse in HDL simulation. “x” is the input of the inverter
and “nx” is the output of the inverter. The pulse is injected at the moment of 64
ns in the inverter unit.

occurs at 64 ns and the function of the SEE model is triggered at the same time.

SPICE simulation also shows a negative pulse lasting for 0.22 ns.

In the HDL simulations, the SEEs are represented by injection functions in

the units. Considering that there is only one unit struck by the particle in the

single event, therefore only one of the injection functions should be triggered. We

marked all circuit units and injection functions with unique IDs to indicate the

circuit units. In this way, only one function will be accessed during SEE injections.

The IDs can be calculated by the following equation:

IDk =
k−1∑
i=1

si (3.14)

where si represents the size of the marked circuit units, the number of the MOS-

FETs in the circuit unit. During SEE injections, the scripts will generate a ran-

dom number under the range of the IDs. If the number is between the IDk and

IDk + sk, then the SEE function in the unit k will be triggered. The probability

will be calculated using Equation 3.10.

3.4.2 Script tools for injection

Large-scale HDL designs contain many circuit units. For example, S38584, the

largest circuits in ISCAS89, contains 11,448 logic units. It is difficult to design the

test bench by handcraft. Hence, we design a tool based python script to generate

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 73

the test-bench codes automatically. The test-bench codes include three parts: 1)

input generation, 2) SEE injection and 3) output analysing.

The design of the HDL simulation for large-scale circuits is shown in the Fig-

ure. 3.13. In the HDL simulation, the target circuits will be instantiated twice.

Therefore, there will be two identical designs in the HDL simulation. One of the

modules is the injection circuit where we inject the SEE. The other one is the

reference circuit, which is used for error detection. Considering that the pulses

caused by SETs could be easily blocked by registers, I added a set of registers as

output buffers. If the pulses are blocked by the registers, then the pulses will not

affect the following sequential circuits.

Reference Circuit

Injection Circuit

B
u

ff
er

B
u

ff
er

In
p

u
ts

O
u

tp
u

ts

O
u

tp
u

ts
 w

it
h

 b
u

ff
er

s

Figure 3.13: The HDL simulation for large-scale circuits.

In the HDL simulation, there are two types of inputs generated by the scripts,

which are random inputs and specific inputs. In this scheme, the random inputs

are generated based on the given switch probabilities of input signals. If the HDL

bench codes just drive the target design with the random inputs, the difference in

the data stream will not be observed. If the test-bench codes drive the circuits

with specific input data streams, the SEE mitigation performance of the input

streams can also be evaluated.

The test-bench codes call the functions in the SEE models to carry out injec-

tions. Calling the SEE function with the unique ID, the SEE injection can be

conducted. If the error can finally reach the output of the circuit, it will be ob-

served. By comparing the outputs, the errors can be detected and recorded. We

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 74

use scripts to calculate the number of errors, the number of SEEs and the error

rates of the design.

3.4.3 Propagation of SEE induced errors

When SEEs occur in the large-scale circuits, some error may not be visible at the

output ports of the circuits. The pulses may be blocked in the propagation path

by the logic gates and registers.

Figure 3.14: Errors blocked by logic gates and registers. SEE occurs in the XOR
gate. If C or D is “0”, the pulses will be blocked by AND gates. If CLK is not
flipping, the pluses will be blocked by registers.

Fig. 3.14 shows the scenario where SEE errors are blocked by logic gates and

registers. There are two different propagation paths of the errors in this figure. In

the first propagation path, because the current input ‘C’ is “1”, the error generated

in the OR gate can reach the register. However, the registers only sample the input

signals at the positive edge of the clock. There is a high chance that the pulse

will not be sampled, which means that the error is blocked. In the second path,

because the input signal ‘D’ is “0”, the error cannot go through the AND gate,

which means that the errors are blocked by the logic gate.

Considering the above cases, the scripts will also monitor the signal after buffers

to see if adding buffers is helpful to mitigate errors. When generating bench codes,

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 75

scripts will automatically add registers connected to the output wires. The original

outputs will be compared to the outputs of the buffers, which are used to analyse

the effects of the errors on the following circuits.

3.5 Simulation results of large-scale circuits

We used the same generated SEE behaviour models to analyse the performance

of more than 40 circuits from ISCAS89 benchmark circuits, which represents that

the circuits are under the same circumstances. In addition, I compared the SEE

mitigation performance of the same circuits using TMR and register space-time

redundancy (STR) technology.

3.5.1 The simulation of the ISCA89 circuits

There are more than 40 circuits in ISCA89, among those, the S27 circuit is the

smallest. It contains 13 circuit units. S28584 circuit is the largest one. It contains

11,448 circuit units. The simulation results in the circuits indicate the effects of

SET and SEU effects between small-scale and large-scale circuits.

Fig. 3.15 shows the SEE injection in the S27 circuits, where the G0, G1, G2

and G3 are inputs of the S27 circuits. The G17 is the output of the S27, where the

scripts do the SEE injection. The G17 ref is the output wire of the reference unit.

The flag wire indicates the SEE injection. At the positive edges of the flag wire,

the SEEs are injected. In this figure, there is a positive pulse at the G17 wire,

which is different from the signal at G17 ref. The variable werr cnt shows the

number of the observed errors.

Fig. 3.16 shows the comparison of the circuits with and without output buffers.

“G17” is the output of the injection circuit and “G17 ref” is the output of the ref-

erence circuit. “result” is the output of the buffer which is connected to the “G17”

and “result ref” is the output of the buffer which is connected to the “G17 ref”. In

the simulation, the output buffers are used to filter out digital pulses to evaluate

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 76

Figure 3.15: The outputs of the S27 in HDL simulation. The signal “G17” is the
original output of S27. “G17 ref” is the reference output of S27. A transient pulse
can be observed in “G17”.

bit flip rates.

Fig. 3.17 shows the error rates of the ISCAS89 circuits with and without

buffers. This result indicates the bit-flips rates and the total error rates, respec-

tively. In this figure, the error rates of the small circuits without buffers drop

significantly, while the error rates of the circuits with output buffers remain sta-

ble. This can be attributed to the fact that the SEE induced pulses are likely to

be blocked by the registers and logic designs, while the bit-flips cannot be blocked

by the register. Considering there are more registers in larger circuits, there could

be a high chance that the pulses are blocked by the registers in the propagation

path. Therefore, the error rates of circuits without buffers decrease along with

decreases in the circuit size.

Additionally , when the circuits are becoming larger, there will be more unused

propagation paths and invalid states, where the errors cannot affect the following

circuits. That is why the observed error rates in the simulation decrease slightly

with the circuit size. It is possible to utilise the redundant states and path to

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 77

Figure 3.16: The outputs of the S27 with buffers in HDL simulation. The signal
“result” and “result ref” are buffered “G17” and buffered “G17 ref”.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

100 200 400 800 1600 3200 6400 12800 25600 51200 102400

E
rr

o
r

ra
te

Circuit size

No buffer

With buffer

Figure 3.17: The error rates of the circuits in ISCAS89 without buffers and the
circuits with buffers.

improve the SEE mitigation performance.

3.5.2 Simulation of the SEE mitiagtion circuits

The simulation results of the circuits without mitigation show that there are a

large number of error bits caused by the pulses. Therefore, I evaluated the SEE

mitigation performance of STR and TMR methods.

The STR method only hardens registers. With extra registers as redundancy,

STR can fix the one-bit errors by itself. In addition, the registers will sample input

signals at different moments, which means that it can filter out digital pulses.

TMR is a popular method for SEE mitigation systems. It triples the modules for

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 78

Table 3.6: The error rates of the S27 circuits with different fault-tolerant methods
Original Design TMR STR*

Inputs 4
Outputs 1

Transistors 121 389 184
Error rates without buffers 0.0792 0.0195 0.0620

Error rates with buffers 0.0106 0.00130 0.00131
* space-time redundancy

Table 3.7: The error rates of the S1423 circuits with different fault-tolerant meth-
ods

Original Design TMR STR
Inputs 17

Outputs 5
Transistors 5,102 15,436 8609

Error rates without buffers 0.0226 0.0024 0.0091
Error rates with buffers 0.0033 0.00016 0.00027

redundancy and uses an extra voting module to select the correct outputs.

TMR has the best error mitigation performance with the highest hardware costs

and the STR technology has a balance between performance and costs [189, 190,

191]. Therefore, we validated the proposed scheme by comparing the performance

of both methods in the proposed scheme.

The Table 3.6, 3.7 and 3.8 shows the simulation results of S27, S1423 and

S38584 with different hardening technologies. S27 represents the small circuits,

S1423 represents the medium sized circuits and the S38584 represents the large

circuits.

The simulation results show that the proposed scheme provides details analysis

to evaluate and compare the SEE mitigation performance of different circuits.

Firstly, the proposed scheme provides a general analysis includes 1) SET rates, 2)

SEU rates, 3) changes of the circuit size and 4) error rates with buffers. It helps to

exclude unnecessary hardening methods. For example, compared to TMR, STR

could be a better option to harden the S27 circuit with the same performance and

much lower costs. Secondly, with HDL simulations, the proposed scheme provides

the waveform analysis, which can be used to address the vulnerable parts and the

error propagation paths.

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 79

Table 3.8: The error rates of the S38584 circuits with different fault-tolerant meth-
ods

Original Design TMR STR
Inputs 38

Outputs 304
Transistors 125,940 385,724 155,886

Error rates without buffers 0.0094 0.0040 0.0065
Error rates with buffers 0.0017 0.00027 0.00035

3.5.3 Time required for the simulation

In this chapter, the time cost of HDL simulation is elaborated. We can evaluate

the time required for the HDL simulation by averaging time costs for each SEE

injection. Fig. 3.18 shows the time required for the HDL simulation with one

million SEE injections in the ISCAS89 circuits. By using HDL models, one million

SEEs can be injected into the S27 circuit (121 transistors) in just 55 s, while it

will take 55 hours in S38584 (125940 transistors). The time required for SEE

simulation increases nearly linearly with the scale of the circuits.

54.86

257.86

403.24
403.59

689.88

349.08 391.90

360.94

406.93

367.44

372.20

996.82

1047.99

631.58

753.16

798.82

1363.91

1111.51

8201.30

17708.45

37240.36

57360.07

173170.85

200369.54

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

100 200 400 800 1600 3200 6400 12800 25600 51200 102400

T
im

e
co

n
su

m
p

ti
o

n
 (

s)

Circuit size

time consumption per million injections

Figure 3.18: The time required to SEE HDL simulations for ISCAS89 benchmark
circuits.

Table 3.9: The average time required to run the S27 circuit for 1 ms in different
simulation environments

Average time cost
HDL simulation without injection 0.473 s

The proposed simulation with SEE injection 0.676 s
SPICE simulation with SEE injection 67,000 s

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 80

In this chapter, the time requirements in different simulation environments are

also tested. Due to the long time required for large circuits to run simulations

in SPICE, S27, the smallest circuit in the benchmark circuits, is used for the

comparison. There are three simulations including HDL simulation without SEE

injection, SEE HDL simulation and SEE SPICE simulation.

Table 3.9 shows the average time required for HDL simulations and SPICE

simulation to run for 1 ms. The time precision of HDL simulation and SPICE

simulation is set to 1 ps, so that the required time could be compared directly.

The HDL simulation with SEE injection for S27 takes 0.676 s to run for 1 ms. The

time required increases slightly from 0.473 s to conduct SEE injections. Compared

to SPICE simulation, which costs 67000 s (i.e., ≈18.6 hours) to run the simulation

for 1 ms, the HDL SEE simulation shows a great advantage concerning simulation

efficiency. Due to the high complexity and huge number of possibilities, it is

unlikely to run HSPICE simulations to analyse SEE error rates of large integrated

circuits. There are two reasons that accuracy is not included here. Firstly, it is too

expensive to produce real chips in this study. Hence, there is no data from real-

world radiation experiments as reference. Secondly, there SPICE simulation costs

too much time. The SEE simulations for large circuits can not even be finished

in SPICE. Therefore, there is no accuracy results for large circuits from SPICE

simulations.

3.6 Conclusion

In this chapter, a fast and cost-efficient method is proposed to evaluate and com-

pare the performance of large-scale circuits under the effect of radiation particles.

Compared to typical methods, it requires less simulation time and computational

resources. SPICE simulations are used to build a set of general SEE models to

simplify the processes of the evaluation of SEE effects on large-scale circuits. The

proposed scheme has been evaluated using 40 different circuits from the ISCAS89

benchmark circuits. It is shown that the scheme can analyse the circuits with

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 81

sizes varying from 100 transistors to 100k transistors. We have also compared and

evaluated the simulation results of the circuits using TMR and STR technology.

The results prove the correctness of the scheme. The main contributions of this

work can be summarised as follows:

1) The proposed SEE simulation scheme provides a rapid, convenient and uni-

versal comparison method to evaluate the designs of circuits in the context

of SEEs. Due to various manufacturing processes, physical layouts and radi-

ation environments, the simulation tools and simulation environments may

also vary in different SEE research. It is difficult to repeat or compare those

experiments directly. The proposed SEE models can be easily integrated into

the current circuit design workflow without significant cost. It can create a

universal simulation environment to provide a quick analysis of the relative

performance, which can significantly reduce the total simulation time for the

time-consuming back-end simulation.

2) The proposed work introduces a range of new SEE behaviour models. Based

on the transistor level simulations, the SEE behaviour models are firstly

embedded into a range of digital functions in the HDL described circuits,

the transient currents and voltages are then converted into digital pulses and

bit-flips. Unlike the typical transistor level based SEE behaviour models that

fully rely on low-level currents and voltages simulation inputs, the proposed

SEE models use only high level digital functions in HDL, therefore it can

offer lightweight and fast simulations for large-scale circuits.

3) The proposed scheme can offer a high level of flexibility in the design. All

parts in this scheme including gate components, SPICE simulation and HDL

simulation are decoupled. The gate components can be modified to adapt

to different manufacturing processes, and the SEE spice model can be also

modified to adapt to different radiation environments, as required. In this

way, the proposed scheme can make full use of existing models to build

CHAPTER 3. SIMULATION OF SEES IN INTEGRATED CIRCUITS 82

simulation environments and be adapted for various requirements.

Chapter 4

Self-adaptive SEU mitigation for

RAM

4.1 Introduction

The previous chapter introduce a SEE simulation methods, which can be used to

evaluate the performance of SEE mitigation design. To design an embedded sys-

tem, it is critical implement SEE mitigation designs. In this work, a portable SEE

mitigation scheme is proposed to correct errors and mitigate error accumulation

in extreme radiation environments.

SRAM cells are susceptible to SEUs, as discussed in Chapter 1. For long-term

operation, it is required to harden SRAM devices, especially for the devices that

are intended to function in radiation environments. A variety of error mitigation

solutions have been considered in order to mitigate faults in memory systems.

TMR, ECC, and scrubbing are three typical error mitigation methods for RAMs.

[33, 34, 35, 36, 37].

Existing hardening approaches have difficulty being applied to an FPGA sys-

tem with several pre-designed hardware modules employing BRAMs. To begin

with, due to the pre-designed FSM in the hardware modules, changing the time

sequence of the hardware modules would be tough. Therefore we cannot simply

83

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 84

add the corrective operation. Second, due to the use of dual-port BRAMs, there

will be insufficient RAM access ports to connect scrubbers. Third, because the

TMR approaches will require treble the amount of resources, RAM space will be

constrained.

External

Module

(CPU)

Switcher

Refresh

Controller

Output

Buff

ECC

Encoder

ECC

Decoder

Block RAM

RAM Clock : 2×System Clock : 1×

ECC Refresh Controller

Sequential circuit Combinational logic

Figure 4.1: The scheme of the external scrubber platform.

To harden RAM systems based on CPUs and customised circuits in extreme

environments, a self-refreshing scheme with ECC is presented [192]. It is designed

to extend the life of commercial electronic equipment that are exposed to high

levels of radiation and experience faults every second. It features high reliability,

flexibility and low hardware costs. Considering the systems for radiation environ-

ments usually operate at a relatively low frequency, the frequency of the RAM can

be doubled to fully use the bandwidth. In this way, the spare bandwidth can be

used to operate data refreshing where the refresh operations can be performed si-

multaneously with the normal read and write operation. The refresh operations are

performed by a small separate scrubber inserted between the modules and RAMs.

The scrubber can transmit all writing and reading operations to the RAMs with-

out additional delay. With this scheme, the scrubber is transparent to the external

modules. The design provides flexibility in case of porting the design to different

hardware platforms. Considering that, in the FPGA designs, many customised

modules operate the RAMs with fixed reading or writing latency. The proposed

scheme introduces no additional latency for error detection and correction which

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 85

means that it can be easily implemented in the consumable embedded platforms

for special radiation tasks without modifications.

A Xilinx Virtex-5 XC5VLX110T [193] FPGA is utilised to develop a hardware

simulation platform, while an Artix-7 XC7A15T-1CPG236C [194] FPGA is used

to build a prototype for radiation experiments. The simulation platform, which

consists of both hardware and software components, is presented for real-time SEU

injection and performance verification. The hardware and software co-simulation

shows that the proposed design can handle more than 99.9% and 99.97% of errors,

while the SEU rates are 1 × 104 bit/s and 6.25 × 104 bit/s respectively. In the

neutron radiation experiment, the observed error rate for unhardened RAM was

1.2 bit/(KB·h). The errors rates for conventional ECC ram are approximately

4.3× 10−4 bit/(KB·h), while the self-scrubbing RAM is less than 8.7× 10−5 bit/(

KB·h).

4.2 Architecture of the self-refresh RAM

Fig. 4.1 shows the system block diagram of self-refresh ECC RAM. Unlike the

scrubbing scheme with dual-port RAMs where scrubbers use separated ports, the

self-refresh controller and user modules share the same RAM ports in the proposed

system. In this scheme, the self-refresh controller is not only a scrubber used to

“clean” errors in RAMs, but also a transmitter used to pass data from the user

module to RAM devices. In addition, to minimise the effect on the read and write

timing sequence of the user module. The controller and RAMs operate at double

the frequency of the user clock, which means that the ECC refresh controller runs

faster than user modules and is thus able to utilise extra clock cycles to perform

additional tasks (e.g., fault detection and error correction) without interrupting

the normal operations.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 86

4.2.1 Switcher for operations

As mentioned, the purposes of the controller are 1) transmitting operations from

user modules and 2) scrubbing RAMs. When the proposed scheme is applied in

the system. The user module will access the controller with original read and write

operations. For user modules, the controller will work just as a simple configured

BRAM. The switcher will pass all controller signals from the user module to RAMs.

By using classic RAM control circuits, the multiple features (e.g., enable signal

and mask function) can be easily implemented for various hardware systems.

To achieve this purpose, the operations from user modules and the scrubber

should be carefully arranged to ensure the timing sequence remains unchanged.

Assuming that the outputs are ready in the next user clock cycle in the original

timing sequence, the controller should also follow the same timing sequence. In the

controller, a switcher module is designed to re-arrange the sequence of operations

from two directions: 1) user module and 2) refresh controller. As shown in Fig.

4.2, the external operations from the user module and the refreshing operations

are interlaced by the switcher. Considering that the controller is working at the

double frequency of the user clock, there will be one clock cycle left (in the 2×

clock domain) to transmit and return data.

However, one clock cycle is still very limited to conduct transmission and ECC

coding. Therefore, in this scheme, Hamming code is used as the correcting code.

Because of its simple calculations, the decoder and coder can be designed fully

based on logic gates. In this way, the coding processes will not require additional

cycles.

4.2.2 Refresh controller

The refresh controller is a core module of the proposed self-refresh ECC RAM. It

has two operating modes: 1) the scan mode and 2) the refresh mode. When the

system is working, the refresh controller continuously generates reading commands

to read all memory units in the RAM periodically. Simultaneously, it checks the

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 87

External operations

Refreshing operations

... ...

Figure 4.2: Sequence of the input operations stream. Operations from the user
module and refresh controller will be placed one by one.

outputs of the ECC decoder, which is a combinational logic module to decode the

outputs of the RAM. When SEUs occur, the ECC decoder can detect and fix the

errors per byte. An error flag will also be asserted to indicate the occurrences of

SEU. Then the refresh controller will be switched to refreshing mode and generate

a writing command to refresh memory units.

4.2.3 Output buffer

In order to resolve the timing problems, a buffer module is set between the ECC

decoder and output port. Because the operations sent to the RAM are interlaced,

the output data stream is also interlaced. To ensure that the external module will

not be affected, the sequence of the output data stream needs to be re-arranged

accordingly. As shown in Fig. 4.3, the output buffer module will block the outputs

of refreshing operations. In other words, the output buffer allows only the outputs

of external operations to go through in order to prevent the external module access

to the data of refreshing operations.

In this architecture, the external operations (e.g., reading and writing) and

internal operations (e.g., refreshing) execute parallelly. The performance of the

systems will therefore not be affected.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 88

External operations

Refreshing operations

...

Figure 4.3: Sequence of the output data stream. The read data of the user module
will be buffered, while the read data of the refresh controller will be blocked.

4.3 Hardware implementation

As mentioned in the last section, as all operations from the external modules (i.e.,

CPU) and the refresh controller are interlaced, the controller must arrange the

sequence of the operation stream carefully. The details of the FSM that enables

this and how to handle the conflicts between external modules and internal modules

will also be discussed.

4.3.1 Design of the FSM

To distinguish from user module operations, in this work, “R/W operation” indi-

cates read and write operations from user modules, while “scrubbing operation”

indicates operations from the refresh controller. Considering the different clock

domains of the user module and the refresh controller, the operation sequence

needs to be carefully arranged. In this work, the cycles (2× clock domain) used

by the refresh controller are called “refresh cycles”, while the remaining cycles are

called “user cycles”. The refresh operations will be distributed into the “refresh

cycles”.

The state machine diagram of the refresh controller is shown in Fig. 4.4.

The progress of refreshing starts from the rising edge of the user clock (1× clock

domain). In this way, the output sequence can be synchronised with the user clock

domain.

The refresh progresses start from state 0 (S0), indicating that it is in refresh

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 89

S0start

S1

S2

S3

read data no error conflicts

error

synchronize

write back

Figure 4.4: There are four states in this FSM: S0 (start,next), S1 (check), S2
(refresh) and S3 (synchronise). The read or write operations from the refresh
controller can only be conducted in S0 and S2, because the RAM access port is
occupied by the user module operations in S1 and S3.

sys clk

RAM clk

R/W addr addr 1 addr 2 addr 3

buff out D1 D2 D3

CHK addr addr A addr B

FSM S0 S1 S0 S1 S2 S3

RAM we

RAM addr A 1 B 2 B 3

RAM din DB

RAM dout DA D1 DW D2 DB D3

Figure 4.5: Example of the timing diagram without address conflicts. Addresses
1, 2 and 3 are different from address A and B. The refresh processes will not affect
user operations.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 90

cycles. In state 0 (S0), the RAM input port is occupied by the refresh controller

for reading data from the target address (address A). Then in the next cycle (S1),

output data from address A (DA) will be ready at the RAM output port. Because

the decoder is combinational logic, the correcting results is also ready in the same

clock cycle. If there is no error in the current address, the address controller will

move to the next address, and the FSM will move to the next round and return

to S0. If the decoding results show the data from the target address is incorrect

(DW), the FSM will switch to the error processing state (S2). In this state, the

corrected data will be written back to the targeted address. After writing back,

the targeted memory unit will be refreshed. Finally, in state 3, the controller will

be synchronised to ensure that S0 start from the next rising edge of the user clock.

Fig. 4.5 shows examples of the timing sequence of refreshing. “CHK addr”

is the checking address, which is read by the refresh controller. “R/W addr”

represent the address operated by the user module. “RAM addr” represent the

actual RAM address in operation. The CHK addresses and the R/W addresses

are represented by alphabet and numbers, respectively, to indicate that the user

module and refresh controller are accessing the different addresses.

In this figure, “addr A” represents an address with correct data, while “addr

B” represent an address with incorrect data. FSM start from S0 to read the data

in address A. The output data and checking results are ready in the next state

S1. Because there is no error, the FSM moves back to the S0 to read the data in

address B. If there is an error in address B, then FSM will move to S2 to overwrite

corrected data to address B. Finally, FSM is synchronised in S3 to ensures the S0

starts from the refresh clock cycle.

Furthermore, the buffer module will block the RAM outputs used by the refresh

controller. The outputs of the buffer (D1, D2, D3) will correspond to the sequence

of the user module operations (address 1, address 2, address 3). All the refreshing

operations are invisible to the external modules. Following the shown timing

sequence, the user R/W operations will not be interrupted by either reading or

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 91

rewriting processes. Hence, the self-refresh ECC RAM works like a normal single-

port RAM for the user modules.

4.3.2 Conflicts of operations and strategy of scanning

Typically, the FSM works as shown in Fig. 4.5, the refreshing progress without

errors lasts for two RAM cycles, and the refreshing progress with errors lasts for 4

RAM cycles. The user module may write new data to the same address that the

refresh controller is rewriting. In this case, the new data may be covered by the

out-of-date “corrected” data. In this work, cases in which the user module and

refresh controller access the same address are called “address conflict”.

sys clk

RAM clk

R/W addr addr 5 addr 6 addr 7

R/W we

R/W din ND6

CHK addr addr 5 addr 6

FSM S0 S1 S0 S1 S2 S3

RAM we

RAM addr 5 5 6 6 6 7

RAM din ND6 D6

RAM dout D5 D5 DWND6 D6

Figure 4.6: The errors caused by writing address conflicts. The user module is
writing new data (ND) to address 6, while the refresh controller is writing the
“corrected” data (DW is corrected to be D6) to the same address. The ND is
overwritten by D6.

Fig. 4.6 shows the time sequence of the address conflict in the refreshing

processes. In this figure, the user module and refresh controller are accessing the

address 5 and 6 at the same time. In the shown case, the data in address 6

is incorrect. The user module is writing new data to address 6 (ND6), while the

refresh controller is reading the old data from address 6 (D6). In the S1 for address

6, ND6 is written to address 6. However, out-of-data D6 is written subsequently

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 92

in S2 due to the previous checking results.

To solve this problem, the refresh controller mush monitor the address of user

operations to ensure that there is no address conflict. In the proposed design, if

the refresh controller accesses the address that is being written, it will give up

the current operation and move to the next address directly, regardless there is an

error or not. In this way, the refresh controller will not write out-of-date data back

to the address in address conflicts by the costs of two cycles. However, considering

that most external modules will access memory devices by order of address, there

is a good chance that the refresh controller and the user module will continue

accessing the same address. Thus, to lower the probability of the address conflict,

the refresh controller accesses the memory units in reverse order.

sys clk

ram clk

R/W addr addr 5 addr 6 addr 7

R/W we

R/W din ND6

CHK addr addr 7 addr 6 addr 5

FSM S0 S1 S0 S1 S0 S1

RAM we

RAM addr 7 5 6 6 5 7

RAM din ND6

RAM dout D7 D5 DWND6 D5

Figure 4.7: The actual timing Diagram of the proposed scheme. In address con-
flicts, the refresh controller gives up overwrite operations. Error bits are still
corrected by the ECC decoder. The scan order of the address is also reversed to
reduce address conflicts.

An example of the actual timing sequence of the proposed scheme is shown in

Fig. 4.7. The user module accesses memory units by order of address 5, 6 and 7,

while the refresh controller accesses memory units by address 7, 6 and 5. When

there is an address conflict, the refresh controller will skip the current address

(address 6), and check the next address (address 5), while the user module will

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 93

access a different address (address 7) in the next user clock cycles. In this way,

there will be no continuous address conflicts.

4.3.3 Parallel architecture

Due to the difference between error refreshing and no error refreshing processes,

the time of scanning all memory units is not constant. In this system, scanning

time is based on the memory size, clock frequency and the number of detected

errors. In a RAM where N memory units are under detection, the frequency of

the working clock is f , and the scanning time T , can be represented by:

T =
2n1 + 4n2

f
=

2(N + n2)

f
(4.1)

where n1 represents the number of memory units without errors and n2 represents

the number of memory units with errors.

In order to correct errors before the occurrence of the sequential error, the scan-

ning time should be less than the error generation time. Therefore, the maximal

scanning time (Tmax) for stable executing can be represented by:

Tmax =
1

NR
(4.2)

where R represents the generation rate of bit flips and N represents the number

of memory units under detection. For example, if the given generation rate of bit

flips in an environment is 1 × 10−3 bit/(N·h), the scanning time for 1 MB RAM

should be less than 1× 10−3 hours.

T =
2(N + n2)

mf
, (4.3)

where m represents the number of refresh controllers, n2 represents the number

of memory units with errors and N represents the number of total memory units

under detection.

In this way, the number of units under detection can be altered to change the

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 94

scanning time. By using such multi refresh controllers, the time of scanning can

decrease significantly, which decides the system’s performance of SEU mitigation.

External

Module

Refresh

Controller 1

Refresh

Controller 2

Refresh

Controller 3

RAM1

RAM2

RAM3

System Clock : 1x RAM Clock : 2x

Figure 4.8: Architecture of multi refresh controllers.

The architecture of multi refresh controllers is shown in Fig. 4.8. The large

RAM is divided into a set of smaller RAMs. The external module can access each

small RAM by different addresses. Hence, different architecture can be used ac-

cording to different environments. On the one hand, additional refresh controllers

can be used in high radiation environments to compensate and achieve higher

performance. On the other hand, the number of refresh controllers can also be

reduced to save hardware resources at lower performance.

In addition, using small RAMs rather than large RAM means that the size of

the refresh controller can also be small. Considering that RAMs run at twice the

system clock frequency, it can also help resolve the setup time problems.

4.4 Fault injection platform and hardware sim-

ulation

A hardware simulation platform was built to carry out hardware SEU fault in-

jection, verify the performance of the self-refresh ECC memory technology and

conduct functional tests. The self-refresh ECC RAM was implemented in this

platform to evaluate the performance.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 95

4.4.1 Design of hardware fault injection platform

This platform includes an FPGA part performing SEU hardware simulation and a

PC software for data analysis and human-computer interaction. Those two parts

communicate via UART. The PC client part is mainly responsible for the operation

control of the SEU simulation platform and the display of error correction results.

The FPGA part is designed to implement SEU fault injection and ECC verification.

PC
UART

TX

/

RX

Buffer of Operations

FPGAFPGASEU Injection

In
je

ct
io

n
 C

o
n

tr
o

ll
er

Reference RAM

Injection RAM D
et

ec
te

r

Figure 4.9: Architecture of Hardware Fault Injection Platform.

The main architecture of the hardware platform is shown in Fig. 4.9. The

operations communicated from the PC are stored in a buffer. There are two

RAMs under test: 1) a reference RAM which is a RAM without injection and 2)

an injection RAM, where the SEU injection is conducted. In this work, both the

reference RAM and the injection RAM will be replaced by the proposed design.

When a simulation test starts, the reference RAM and the injection RAM will

be read or written simultaneously according to the pre-generated operations. At

the same time, the injection controller will inject the error bits into the memory

units of the injection RAM to simulate the occurrence of SEU. The platform

can also simulate the intensity of radiation by adjusting the probability of the

occurrence of the SEE and the frequency of SEU injection. This allows it to

evaluate the effects of different factors and the performance of hardening design

in different situations. Through an equivalent circuit without the injection, the

simulation platform can simulate the module’s state in both radiation and non-

radiation environments.

In this work, the errors that may affect the system are called functional errors.

In the unhardened RAMs, all the errors read by the system are functional errors,

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 96

while in the proposed systems, functional errors are the errors not corrected by

the refresh controller. In the simulation, different outputs between the injection

RAM and the reference RAM can suggest functional errors. The SEE mitigation

performance is evaluated by comparing the functional error rates. All data gen-

erated in the RAM operation is exported to the PC to analyse the capability of

SEU mitigation of the tested module in real-time.

4.4.2 Fault injection in the hardware platform

Refresh

controller

Refresh

controller

Injection

controller

BRAM Module

BRAM Module

Read/Write

Controller

Output

Comparison

Injection RAM

Reference RAM

Figure 4.10: The injection controller will bypass the refresh controller and write
error bits into RAMs directly. The BRAM module is modified to accept data from
both the refresh controller and the injection controller.

Unlike the software simulation, the hardware simulation cannot simply simulate

the occurrence of SEU by just specifying bit flip. The hardware simulation plat-

form has incorrect bits written into the target memory units to simulate SEUs. To

ensure that the RAM logic function will not change during execution, we adopted

the idea of self-refresh ECC RAM and doubling the system clock to make the

injection controller operate at a higher frequency. Hence, the proposed simulation

system can make use of extra clock cycles to perform SEU injections.

Also, to detect the effects of SEUs on different instruction sequences in RAM,

another RAM is used to store instructions. By reading or writing the RAM with

a specific operation order, this platform can also simulate the code execution of

different software programs. Hence, the capability of SEU mitigation in different

programmes can also be evaluated.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 97

Fig. 4.10 shows the block diagram of the injection modules for evaluating

the proposed design. In the simulation, the injection controller is connected to the

BRAM module directly. BRAM modules are not just BRAMs. It is a module with

BRAMs inside and can conduct operations from the refresh controller and injection

controller. By using a similar method (e.g., double frequency), the refreshing

operations controller will not be affected.

During hardware simulations, the refresh controller should keep sending read

or write operations to the BRAM module. The read/write controller will work as

the user module and keep sending operations to refresh the controller. Meanwhile,

the injection controller writes error bits into BRAMs from time to time. Inside

the injection controller, there is a random number generator. After each injection,

it will generate a random interval time for the next injection. The random seed,

average injection time and floating range can be set by users. The actual interval

will float randomly within the range around the average time.

4.4.3 Results of simulations

Table 4.1 shows the main technical specifications of the SEU hardware simulation

platform, which is built on a Xilinx Virtex-5 XC5VLX110T FPGA. The system

works at a frequency of 100 MHz and has the ability of SEU injection at a maximal

frequency of 50 MHz. The executor programming simulated by the hardware

platform works at a frequency of 25 MHz which equals the frequency of reading

or write (R/W) operations. Hence, according to Equation 4.1, the scanning time

is approximately 160 µs, and the SEU rate is 6.25× 104 bit/s.

There are three simulation modes to satisfy different requirements: 1) Single-

mode means performing all saving R/W operations for one round, which is designed

to test certain programmes, 2) Loop mode means repeating R/W operations for

specified times rounds, which is designed to test the performance of the systems

in a specified time, 3) Unlimited mode means continuously R/W operations until

it is stopped by users, which is designed to evaluate the error rates.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 98

Table 4.1: Specifications of hardware fault injection platform
Description Specifications

RAM size for SEU injection 4096
Size of command buffer 4096

Maximum number of R/W operations 4096 × 256
System clock 100 MHz

Frequency of Read or Write operation 25 MHz
Clock of refresh controller 50 MHz

Max frequency of SEU injection 50 MHz
Simulation mode Single/Loop/Unlimited

0 0 0 0 0 0 0 0 1 0

111 110 111 109 110 113 111 110 110 111

200

248 253 258 264
241

274
255

267
256

0

50

100

150

200

250

300

350

400

9 18 27 35 44 53 62 71 80 88

N
u
m

b
er

 o
f

er
ro

rs

Simulation time (ms)

Results of Hardware Platform Simulation

SEU injection
Unhardened RAM
Hardened RAM

Figure 4.11: Results of simulations with 80 µs injection time.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 99

Figure 4.12: Error rates for different average injection time.

Fig. 4.11 shows the performance of the self-refresh ECC RAM and an un-

hardened RAM in hardware simulation. The injection time represents the average

interval time between two SEUs. In this simulation, all the operations are gener-

ated by the PC in a randomly generated order. Because the number of operations

is much higher than the number of memory units, the injection controller may

access the same unit multiple times before the errors in this memory unit are cov-

ered or refreshed by new data. In other words, the number of detected functional

errors may be greater than the number of SEU injections. As we can see, after

using the self-refresh ECC technique, the number of functional errors is reduced

to almost 0, which validates that the proposed design effectively avoids functional

errors caused by SEU. Error rates of different average injection times are shown

in Fig. 4.12. When the average injection time is more than 100 us, which means

that the SEU rate is 1 × 104 bit/s, the self-refresh ECC RAM can handle 99.9%

of errors. When the injection time is equal to the scanning time, which is 160 µs,

the self-refresh controller can handle 99.97% of the errors.

The injection RAM and the reference RAM are changeable in this platform.

By replacing the injection RAM and the reference RAM with other hardened

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 100

Radiation RangeRadiation Range

Neutron

Source

DUT

Neutron

Source

DUT

DUT1

DUT2

Radiation Room

Neutron

Beam

PC

UART

UART

Neutron

Source

Figure 4.13: Setup of neutron radiation experiment.

RAMs, this platform can also be used to evaluate the performance of other SEU

reinforcement designs. The reliability, functionality and effectiveness of self-refresh

ECC RAM are verified by this platform. However, hardware simulation is not

equivalent to testing with real radiation. Therefore, it is necessary to test the

proposed systems in real radiation environments.

4.5 Neutron radiation experiments

In order to evaluate the real-world performance of the system, the experiments

are conducted with neutron radiation. Neutron radiation was used to create an

extreme environment to evaluate the SEU mitigation performance of self-refresh

ECC RAM [195, 196, 197].

4.5.1 Setup of the neutron experiment

Radiation experiments were conducted at the ChipIr facility at ISIS, Didcot, UK

[198]. ChipIr provides a neutron spectrum which is suitable to emulate the effects

of terrestrial neutrons in electronic devices and systems. The ChipIr neutron flux

(with En > 10 MeV) has been measured to be approximately 5 × 106 cm2s−1.

The neutron flux at ChipIr is about 8 to 9 orders of magnitude higher than the

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 101

0

20

40

60

80

100

120

0

200

400

600

800

1000

1200

1400

8 39 67 98 128 159 189 220 251

N
u
m

b
er

 o
f

3
6
K

b
 B

R
A

M
s

N
u

m
b

er
 o

f
L

U
T

s

LUTs in unhardened design

LUTs in hardened design

BRAM in unhardened design

BRAM in hardened design

Available RAM size

Figure 4.14: The hardware costs with the scale of the design.

terrestrial flux at sea level. As calculated by the scientists from ISIS, the radiation

dose on water (human body) is about 20,000 mSv/h in our experiments.

Two experiments are designed to evaluate the proposed design: 1) comparison

between unhardened RAMs and the self-refresh RAMs and 2) comparison between

the conventional ECC RAMs and the self-refresh RAMs. In the experiments, the

systems are placed under the neutron beams for several hours, which amounts to

a neutron yield of 6.5 × 1010 per hour considering a 7 cm x 7 cm beam. This is

equivalent to more than half a million years of natural exposure.

The setup of the neutron experiment is shown in Fig. 4.13. The devices under

test (DUT) are placed in the radiation room. Because of the strong penetration

of the neutron beam, it can penetrate all test boards. The DUTs in the radiation

room are connected to the PC in the control room by long USB cables. In order to

reduce the impact of other electronic components, the communication modules and

power supplies used in the experiment were kept outside of the radiation range.

4.5.2 Hardware implementation of the proposed design

In the radiation experiment, the self-refresh ECC RAM is implemented on Digilent

Cmod A7-15T which is a low-price entry-level FPGA development board. The chip

on this board is an Artix-7 XC7A15T-1CPG236C FPGA with 112.5 KB block

RAM inside.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 102

Table 4.2: Specifications of Hardware Implementation

Description
Specifications

Unhardened RAM self-refresh ECCRAM
Available RAM size 32 KByte 32 KByte

BRAM* 16.0 21.50
LUT 562(5.4%) 681(6.5%)

LUTRAM 8 8
FF 467 575

* The number of the 36Kb BRAM used in the FPGA

The basic architecture of DUT is similar to the hardware injection platform

discussed above, but no injection controller and reference RAMs. The design of the

experiment circuit includes two parts: 1) the UART controller and 2) the target

RAM. When the boards are working, the PC client sends compressed write or read

commands to the FPGA part via UART periodically. Subsequently, the UART

controller operates target RAMs according to those commands. All outputs of

the read operations will be sent to the PC immediately to avoid the impacts of

radiation.

The specification of the hardware of the whole design is shown in Table 4.2.

Both the reference RAM and the target RAM have the same available memory size,

which is 32 KB and the same available bandwidth for external modules. Hence,

the self-refresh ECC RAM consumes slightly more memory and requires a higher

frequency of the RAM clock. The unhardened design and hardened design consume

16 and 21.5 BRAM units, respectively. The operating frequency of the unhardened

RAM and the self-refresh ECC RAM are 50 MHz and 100 MHz, respectively. The

number of the LUTs for the entire design included UART and operation parts.

The unhardened design and hardened design use 562 and 681 LUTs, respectively.

The additional 121 LUTs are used to build the self-refresh controller.

The scalability of the proposed design is shown in Fig. 4.14. It shows the

trends of the utilisation of LUTs and BRAM with available RAM size. When

the available RAM size is 8KB, the unhardened and hardened designs consume

560 and 688 LUTs, respectively. When the available RAM size was 256 KB, the

unhardened and hardened designs consume 720 and 932 LUTs, respectively. The

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 103

a.

b.

Figure 4.15: The power consumption with the scale of the design.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 104

additional utilisation of the LUTs scales up slightly for wider bandwidths. The

refreshing controller itself does not scale up. The utilisation of BRAM grows

linearly with the available RAM size.

� 	� ��� �	� ���
��������������������

�

	�

���

�	�

���

�	�

���

��
��
��

�
��
���

���
��
��
��
��
��
��
��
��
��

����
��

���������

���������
����������
����������

Figure 4.16: Number of the errors in the unhardened RAMs.

The power analysis generated by the Vivado analysis tool is shown in Fig.

4.15. Compared to the unhardened RAM, the power consumption of the hardened

systems also slightly scale up with the RAM size. There are two parts to the

additional power consumption. Firstly, the dynamic power consumption of the

self-refresh ECC RAM increases for operating at a higher frequency. Secondly, the

hardened design consumes more power for the additional control circuits.

When the available RAM size is 8 KB, the unhardened RAM and the hardened

RAM consume 0.001 W and 0.003 W, respectively. When the available RAM size

is 256 KB, the unhardened RAM and the hardened RAM consume 0.02 W and

0.038 W, respectively. However, the RAMs consume much less power than the

processor in the designs. The total chip power consumption does not increase

significantly. When the RAM size is 256 KB, the hardened system consumes 1.4%

more power than the unhardened system.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 105

���� ���� ���� ��	� ��
� ���� ���� ���� ��!���#(%&�
�

��

��

	�

�
(!

�#
���

�'�
� �

$&

��&('&�#����('%#"�%����'�#"��)$�%�!�"'
�"��%��"������
�� ��%��%�&���������

���� ���� ���� ��	� ��
� ���� ���� ���� ��!���#(%&�
����

����

����

����

����

����

�
()

���
���

�"
���

!
*�&

�

��� � ()�#����('%#"������'�#"
��('%#"�%����'�#"

Figure 4.17: Observed errors in hardened and unhardened RAMs during the one
hour neutron experiment.

4.5.3 Analysis of the return data

The entire FPGA board was placed in the radiation room during the radiation ex-

periments. Hence the communication and control modules implemented in FPGAs

were also irradiated. It is possible that the detected error bits are false-positive

results instead of the actual errors in BRAMs. Fortunately, it is possible to iden-

tify the error types in the systems. In the experiments, the PC will read back all

the raw data from the FPGAs every 5 seconds. the current read back data with

the next data will be compared to see if there are some changes. According to our

experiment, it can be found that the error bits can be categorised into three types:

1) bit flips that can be read back continuously, 2) transient bit flips that show up

once and 3) many unexpected error bits in line. In the proposed design, if there

are too many multiple error bits in a byte unit for the controller to fix, the refresh

controller will leave it alone and rewrite the correcting codes to avoid repeating

detection. Hence, if there are errors in BRAMs that refreshing cannot correct,

behaviours of errors should fall in the first category. Because the communication

modules keep receiving and sending data, it is likely that errors in the commu-

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 106

nication modules are refreshed by the new data instead of continuously showing

up in the location of the read back data. Finally, if there are a large number of

unexpected errors, it is most likely that a failure happened in the controller sys-

tems. Therefore, the errors in the proposed design can be identified if the errors

are repeatedly presented in the reading back data.

4.5.4 Results of the radiation experiment

4.5.4.1 Unhardened RAMs

The number of errors in the unhardened RAMs with different memory size is shown

in Fig. 4.16. In the experiments, the experiments are conducted with the 32 KB

RAMs and 64 KB RAMs for 4 hours. The number of the observed errors in both

32 KB and 64 KB RAMs increases linearly with the radiation time. After 4 hours

of radiation experiments, the average number of the observed errors in the 32 KB

RAMs is 159. The average number of observed errors in the 64 KB RAMs is 303,

which is approximately double the number of the errors in the 32 KB. The errors

rates of the RAM in the given radiation environments can be represented as follow:

R =
Nerror

Tradiation · SRAM

, (4.4)

where the R represents the error rates of the RAM in the given environment,

Nerrors represents the number of the error bits in total, Tradiation represents the

radiation time and the Sram represents the size of the RAM. Therefore, it can

calculated that the observed error rates of the RAMs under the neutron radiation

in this paper is approximately 1.2 bit/(KB·h).

4.5.4.2 Unhardened and self-refresh RAMs

The results of the neutron radiation experiments of the comparison between un-

hardened RAMs and the self-refresh RAMs are shown in Fig. 4.17. The number

of bit flips in self-refresh ECC RAM remains at zero during the entire experiment,

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 107

� 	� ��� �	� ��� �	� ��� �	�
�������������������

�

�

�

�

�

	

��
��
�

�
��
���

���
��
��
��
��
!�
��
��
��
��

���!������������
�������� �����

Figure 4.18: Comparison between the conventional ECC RAMs and the self-refresh
ECC RAMs.

while the number of bit flips in unhardened RAM rises to 32 in the initial 1.5

hours. As both RAMs are working in the same radiation environment, it proves

that the design of self-refresh ECC RAM is effective for SEU mitigation.

4.5.4.3 ECC and self-refresh RAMs

The comparison results between conventional ECC RAM and self-refresh RAM

are shown in Fig. 4.18. In this experiment, the conventional ECC RAM is the

RAM hardened by Xilinx official ECC modules [199], which is used as the reference

RAM. After the 360 minutes radiation experiment, the total number of observed

errors in the conventional ECC RAM is five while the number of errors in the

self-refresh RAM is only one.

Table 4.3 shows the SEU cross-section of BRAMs on Artix-7 FPGAs in different

neutron radiation experiments. Despite the experiments performed in different

radiation environments, the SEU cross-section of unhardened RAMs is about the

same order of magnitude. Compared to the unhardened RAMs and conventional

ECC RAMs, the self-refresh RAMs achieve better error mitigation performance

in neutron radiation environments. In our experiment, the error rates of the self-

refresh RAMs are 8.7× 10−5 bit/(KB · h) and the calculated SEU cross-section is

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 108

Table 4.3: SEU cross sections of SRAM on Artix-7 FPGAs in neutron radiation
environments

Radiation facili-
ties

Integrated
flux (MeV)

Hardening
Cross section
(cm2 · bit−1)

ChipIr (this
work)

10 None 2.22× 10−14

ChipIr (this
work)

10 ECC 5.79× 10−16

ChipIr (this
work)

10 SR* 1.16× 10−16

CERN [200] 20 None 3.18× 10−14

GENEPI2 [201] 14.2 None 1.2× 10−14

TTEA [202] 1 None 7.6× 10−15

* SR indicates self-refresh.

Table 4.4: Comparison between existing scrubbers

processor
scrubbing
rate

RAM size

Proposed no 20us 32KB
internal [23] no 19.32 us 161 B
external [203] yes 360s 96-1392* KB
* The scrubber is designed to scrub the whole Virtex-4 devices. The RAM

size of Virtex-4 ranges from 96KB to 1392KB

1.16× 10−16 cm2 · bit−1, which is one-fifth of the error rate of the ECC RAM.

When the experiment continues, there will be noticed errors in the RAM with

self-scrubbing methods. The radiation effects can cause only soft errors but also

hard errors. The hard errors can not be corrected. If the number of hard errors

exceeds the capability of error correction. The errors will be observed. Normally,

the RAM units should be banned for accessing, which is not discussed in this

thesis.

4.5.4.4 Internal and external scrubbers

Table 4.4 shows the comparison between internal and external scrubbers. Com-

pared with internal scrubbers, the proposed scrubber has a higher scrubbing rate.

Compared with external scrubbers, the proposed design require neither proces-

sor to conduct scrubbing operation nor dedicated components to access RAMs.

Therefore, the proposed scheme has advantages in flexibility and SEE mitigation

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 109

performance.

4.6 Conclusion

This chapter proposes a scheme that combines ECC and refreshing methods to

mitigate SEUs for the devices supposed to work in extreme radiation environ-

ments. Compared to the conventional refreshing method, it can refresh memory

units separately with high frequency without interrupting operations from the user

module. The proposed scheme requires no additional RAM ports so that it can be

applied in a wide range of hardware systems. In addition, by modifying parallel

architecture according to the density of radiation, this design can achieve a balance

between performance and hardware costs.

The experiments are conducted in neutron radiation environments. It is shown

that the error rates remain robust irrespective of the RAM size. The comparison

of the radiation experiments also shows that the self-refresh scheme is an effective

strategy for hardening embedded systems and the error rate of the self-scrubbing

RAM is one-fifth of the conventional ECC RAM.

The main contributions of this work are stated as follows:

1) The design is highly flexible. Compared to conventional external scrubbers

[61, 62, 63], the work is transparent to other modules. No additional latency

is introduced in the system. There is no need to modify the designs to adapt

to the hardware changes, hence, it can be easily applied in various embedded

systems.

2) The design is an area-efficient design, which can be used to harden low-cost

computer systems. Compared to conventional internal scrubbers [64], this

design requires no dedicated components (e.g., internal configuration access

port). In systems with multiple customised modules which operate separated

RAMs, the proposed design can be deployed multiple times to protect one

or more modules.

CHAPTER 4. SELF-ADAPTIVE SEU MITIGATION FOR RAM 110

3) The SEU mitigation design can achieve high SEU correction rates in various

conditions. The results of the simulation and the radiation environment test

follow the same trend. In the simulation, the proposed design can correct

more than 99.97% of SEUs errors at the SEU injection rate of 6.25 × 104

bit/s. In the neutron radiation experiment, the SEU correction rate achieves

100%, when the flux of neutron radiation is 5× 106 cm2s−1.

Chapter 5

Hardware acceleration for

multiple tasks

5.1 Introduction

Due to the requirement of substantial computational resources, it is practically

difficult to execute multiple challenging hardware tasks simultaneously in resource-

constrained systems. For example, a typical FPGA-based satellite system [17] is

required to execute multiple algorithms (tasks), including general spacecraft oper-

ations (e.g., automated control and navigation), the analysis of payload data (e.g.,

weather and atmospheric monitoring [204]) and radiation hardening (e.g., SEU

mitigation [17]). Such systems are constrained by processing resources, memory,

power and even communication bandwidth. Moreover, high accuracy and timeli-

ness are required to execute the respective mission-critical tasks. Therefore, it is

challenging to ensure the efficient execution of multiple applications on the basis

of dynamic performance, low hardware costs and low power consumption.

As an important feature of modern FPGAs, PR [162] is capable of dynamically

reconfiguring the specific areas of an FPGA after its initial configuration [205].

A typical application of PR is the dynamical deployment of multiple identical

modules (circuits) for TMR systems [163] to mitigate transient faults. The PR

111

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 112

feature improves flexibility and enables the hardware reuse of systems based on

FPGAs.

However, due to the challenges arising from the PR technique (e.g., difficulties

in the design for both hardware circuit design and software drivers), the appli-

cation of PR is still limited. As mentioned in Chapter 2, Xilinx launched a new

technology known as DFX [206]. It represents a comprehensive solution involv-

ing many parts such as PR features, hardware IPs and software run-time, which

contributes a convenient methodology to the design and dynamic implementation

of applications. Under this framework, Xilinx also offers standard DPU IP to

accelerate AI inference tasks, which facilitates the building of PR systems.

In this work, an adaptive hardware system intended for DL tasks [207] is pro-

posed to manage the hardware resources seamlessly according to the exact system

requirements. By using DFX, the executing system is capable of dynamically

allocating the hardware resources according to the exact requirements, e.g., per-

formance and power consumption. Through the deployment of hardware accel-

erators with different configurations, it is achievable to dynamically adjust the

performance, power consumption and available FPGA resources for various tasks.

Under the proposed scheme, the hardware accelerators are grouped into acceler-

ator pools to accept acceleration tasks, so the reconfiguration can be conducted

seamlessly, without disrupting the executed programmes.

The power consumption and performance of the proposed system are evalu-

ated in this work by implementing multiple hardware configurations which range

from one DPU at 100 MHz to two DPUs running at 300 MHz. According to the

experimental results, the proposed scheme is effective in improving the efficiency

of the resource-constrained systems operated under multiple scenarios. Compared

to the conventional system, the proposed system consumes 38% and 82% of power

in the case of low working loads and high working loads, respectively. Under ex-

treme scenarios, the proposed system can reduce energy consumption by as much

as 75.8%.

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 113

5.2 The system with dynamic management

Considering the tasks and working loads related to resource-constrained embedded

systems that may vary from one scenario to another, the accelerators are typically

designed to accommodate maximum working loads. Thus, there exist redundant

hardware resources because the maximum given resources are not required for

most tasks. Considering the multiple task system, the redundant resources of

one task cannot be used directly for other tasks, which will lead to the waste of

hardware resources. In order to fully utilise the hardware resources for improving

the efficiency of the system, an adaptive hardware system is proposed in this work

to dynamically manage the hardware resources. In this system, the accelerators

will be flexibly allocated according to different workloads and task scenarios.

5.2.1 Software architecture

Fig. 5.1 shows the overall system architecture of the proposed scheme consisting of

three layers: 1) the management of acceleration requests from applications, 2) the

mapping of the acceleration tasks on hardware accelerators and 3) the management

of reconfiguration in physical partitions.

In this system, the top layer is the software layer, which is conducted by PS.

“APP1”, “APP2” and “APP3” represent the respective applications, which may

require hardware acceleration. When the system is executed, the requests from

applications will be sent to the acceleration tasks for management. Depending on

the type of their corresponding accelerator, these tasks will be placed in a number

of task queues. When there are free accelerators in the system, the task manager

will send them to the hardware accelerators.

Intended to manage the hardware accelerators and hardware resources, the

middle layer includes both processing system (PS) and programmable logic (PL).

There are two parts in this layer: configuration manager and accelerator pool

manager. The configuration manager aims to manage the hardware configurations

and conduct partial reconfiguration. It is capable of dynamically deploying new

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 114

APP1 APP2 APP3

Accelera�on Task Management

Par��on

1

Par��on

2

Par��on

3

Par��on

4

Par��on

5

Accelerator Management

Hardware Resources

So�ware Applica�ons

Hardware Manager

Figure 5.1: The system architecture of the proposed scheme. ”APP1” and ”APP2”
have the same orange color, which means that they can share the same accelerators.
The blue color of ”APP3” indicates that it requires another accelerator.

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 115

accelerators to achieve better performance or releasing unused hardware resources

to reduce power consumption. The accelerator pool manager is purposed to man-

age the accelerators. Considering the changes to hardware configurations, it is

unrealistic to send the acceleration tasks from the top layer to the accelerators

directly. Therefore, the accelerators with the same functionalities are categorised

into the same groups, which are referred to as accelerator pools. During the re-

configuration, there will be no change to the pools, which allows the acceleration

tasks to be sent to the pools regardless of the changes in the hardware.

The bottom layer is the hardware resources layer which is aimed to manage

the partitions in the PL part. In this scheme, the dynamic hardware resources

are divided into multiple partitions in advance, with the physical partitions fixed

in the system. In each partition, there will be some requisite hardware resources

for deploying the accelerators, including LUTs, RAMs and DSPs. When the ap-

plications are running, those partitions can be reconfigured separately. In case

additional performance is required for the acceleration tasks, free partitions will

be deployed to build the accelerators in run-time. If the performance is satisfac-

tory, the partitions can also be reconfigured as empty partitions. In this way, the

amount of power consumption could be reduced.

5.2.2 Hardware architecture

The system proposed in this work is targeted at Zynq UltraScale+ devices. In gen-

eral, there are two major parts in this architecture: an ARM-based PS and PL,

which contains LUTs, RAMs, DSPs and other dedicated hardware blocks. The

PL part is divided into two regions: a static region and a dynamic region. Fig. 5.2

shows the basic hardware architecture of the proposed system. The static region

is the FPGA region, where the basic components (e.g., PLL) are implemented.

However, these components cannot be reconfigured in the executed systems. For

example, the PLL module provides stable clocks for all the running modules. Be-

cause it works even during the reconfiguration operations, it is implemented in the

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 116

Processing System (PS)

AXI Bus

Dynamic

Par��on

1

Dynamic

Par��on

2

Dynamic

Par��on

3

Dynamic

Par��on

4

Dynamic

Par��on

5

Sta�c Region

Fixed Region

Figure 5.2: The hardware architecture of the proposed design and the reconfigu-
ration partitions.

Margin

IO Ports

Used Hardware Resources

for

Accelerator

Unused Hardware

Resources

Figure 5.3: The hardware architecture of dynamic partition.

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 117

static region.

The dynamic region is the region where the accelerators are implemented, in-

cluding a number of reconfiguration independent partition blocks for deploying

accelerators. During the reconfiguration operations, there will be new accelerator

circuits built by reconfiguring the entire area of the partition. Fig. 5.3 illustrates

the basic architecture of the dynamic region. The “used region” indicates the

hardware resources in the partitions that have been utilised to build accelerators,

while the “unused region” indicates the unused resources. To continue the oper-

ation of the circuits in the static region, a margin area is required. It occupies a

small amount of hardware resources to ensure that the static region will be unaf-

fected during the reconfiguration operations. Finally, there will be fixed Advanced

eXtensible Interfaces (AXIs) involved to transmit the data through the margin.

5.3 Working flow of the proposed system

As introduced in section 5.2, the dynamic changes to the hardware accelerators

impede the applications from any direct communication with specific accelerators.

Under the proposed scheme, those physical accelerators with the same function-

alities will be managed in the accelerator pools. The tasks will be sent to the

pools for assignment by the accelerator manager, which limits the changing of the

hardware accelerators in the accelerator group, thus avoiding the potential impact

on applications. In this section, a discussion will be conducted about the workflow

and the strategies for deploying accelerators in detail.

5.3.1 Acceleration tasks

In the proposed system, there are multiple applications running simultaneously.

Due to the constraints on hardware resources, the same accelerator may be used to

conduct hardware acceleration for some applications. For this reason, the requests

from applications are packaged into the accelerator tasks which can be sent to the

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 118

Applica�on 1 Applica�on 2 Applica�on 3

Package 1 Package 2

Queue A Queue B

Task A.2

Task A.3

Task A.4

Task A.1

Task B.3

Task B.2

Task B.1

Pool A Pool B

Figure 5.4: The acceleration tasks are sent to the hardware accelerator pools.

hardware accelerator directly. Because the type of tasks is associated with the type

of hardware accelerators, the hardware resources can be allocated to the specific

acceleration tasks instead of specific applications, thus achieving the maximum

efficiency.

There are three steps in sending the acceleration tasks to the hardware ac-

celerations. Firstly, the applications send acceleration requests to the systems.

Then the requests will be packaged into the acceleration tasks, with the necessary

information (e.g., the identities of the source applications, priorities, estimated

execution time). Secondly, those tasks will be placed into a task queue according

to the packaged information. The number of task queues is determined by the

number of task types. There will be multiple applications sharing the queues if

the same types of accelerators are required. In the third step, the task manager

will be deployed to check the corresponding accelerators for each queue. If there

are accelerators available, then the task manager will select the tasks from the

front of the queue and send them to the accelerators.

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 119

Hardware resources

Pool A Pool B

Accelerator

A

Accelerator

A

Accelerator

B

Accelerator

B

R1 R5R2 R4R3 R6

Unused

Accelerator A

Accelerator B

Region 1

Region 5

Region 2 Region 3

Region 4 Region 6

Figure 5.5: The deployment of hardware accelerators.

Fig. 5.4 shows an example of acceleration task management. In this example,

there are three applications (i.e., application 1, 2 and 3) running in the system, to

send two types of acceleration requests (i.e., A and B). Applications 1 and 2 will

send tasks to accelerator A, While Application 3 will send tasks to accelerator B.

The tasks are placed in separate queues according to their types. Pool A and Pool

B represent the combination of accelerators A and B, both of which are managed

by the pool manager. If there are accelerators available in the pools, then the pool

manager will request the task manager to send the new tasks.

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 120

T1 T2 T3 T4

Queue AWeight of Queue A

Weight of Queue B

Weights of Tasks

Weights

distribu�on
… ...

Factors

Queue B

Figure 5.6: The comparison of the weights between queue A and B. The weights
of queues indicate the congestion of the tasks.

5.3.2 The management of the accelerator pool

Fig. 5.2 provides an example of how the two types of accelerators are deployed.

There are six dynamic regions pre-designed in this system, each of which can be

reconfigured to deploy accelerator A or B. There are two regions used to deploy

accelerator A and two regions used to deploy accelerator B, with the remaining

regions awaiting further deployment. The proposed strategy will allocate the un-

used region dynamically to deploy new accelerators or remove the regions from the

accelerator pools.

5.3.3 The strategies of reconfiguration

To achieve the maximum power efficiency of the system, our strategy dynamically

manages the accelerators in the pools according to the exact system requirements.

In a multi-task system, the requirements for different tasks could vary. For exam-

ple, improved overall performance may be required for some applications to deal

with a large number of tasks, while a lower delay time may be required for each

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 121

(B.2)

Release

Resources

Deploy

New

Accelerators

(B.1)

(A.2)

(A.1)

Figure 5.7: Weight changes when applying the strategies. The new accelerator A
is deployed due to the heavy weight. The accelerator B is released for low power
consumption.

task in some other applications. In this work, a “weight” variable is used to eval-

uate the requirements. If the “weight” falls short of the requirements, the lowest

power consumption configuration will be selected by the system.

Herein, the requirements of applications are represented by a number of factors

(e.g., execution time and data throughput). As shown in Fig. 5.6, assume that

there are ‘N’ factors, the weights of the tasks can be expressed as follows:

W T =
N∑
i=1

fi(ti), (5.1)

where W T indicates the weight of tasks, ti represents the factor i and fi(ti) refers

to the effects of factor i.

Similarly, assume that there are M tasks in the queue. Then the queue weight

can be expressed as follows:

WQ =
M∑
i=1

W T
i + b, (5.2)

where WQ represents the weight of the queue, W T represents the weight of the

tasks in the queue and b indicates the fixed costs (e.g., the time required to create

the queue) of the queue.

As shown in Fig. 5.7, if the queue is “heavy”, there are probably a large num-

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 122

ber of tasks that are waiting for acceleration. In this circumstance, the system will

allocate more resources to improve the processing speed. If the queue is “light”,

there are more computing resources available for this queue than required. In

this case, the system should switch to a lower power configuration mode. Be-

sides, the trigger weight for adjustments will be adjusted according to the actual

requirements of applications.

5.4 Experiments of the dynamic deployment

5.4.1 The setup of the experiments

Herein, the experiments are designed to evaluate the proposed scheme from two

perspectives: performance and power efficiency. A prototype system was imple-

mented on a Xilinx ZCU102 development board with two hardware dynamic re-

gions. In the software part, face detection applications are running to send ac-

celeration tasks to the hardware. In the hardware part, DPUs are deployed in

the dynamic regions to build the accelerator pools for hardware acceleration in

face detection applications. In the experiments, the dedicated benchmark pro-

gram launched by Xilinx for Densebox is taken as the test application [208] to

validate the DPUs in the proposed scheme. The model used in the experiments is

Densebox, with a model resolution of 320× 320.

Fig. 5.8 shows the configuration of the experiments. In order to simulate the

working cases in working systems, there are a number of performance targets set

for the system. According to the targets, the proposed system will dynamically

adjust the number and frequency of DPUs in the accelerator pool. As shown in

Table 5.1, the frequency of DPU ranges from 100 MHz to 300 MHz, while the

maximum number of DPUs ranges from 1 to 2.

The ZCU102 boards include a Maxim PMBus based power system. There are

a number of voltage regulators used to manage the onboard currents and voltages,

which can be read back in real time via a PMBus interface. In the experiments,

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 123

ZCU102 Board

Manage

Accelerator Pool

Low work

loads

High work

loads

Number

F
re

q
u

e
n

cy

Figure 5.8: The setup of the experiments. The numbers and frequencies of accel-
erators in pools can be adjusted.

the power consumption by the system is determined by the currents and voltages

from the power pins of the chip.

Table 5.1: The configuration of accelerator pools.
Configuration Frequency of DPU 0 Frequency of DPU 1

DPU L 100 N/A
DPU M 200 N/A
DPU H 300 N/A
DPU LL 100 100

DPU MM 200 200
DPU HH 300 300

5.4.2 The power consumption and performance of different

configurations

In order to verify the proposed strategy, the power consumption and performance

were evaluated in different configurations. Fig. 5.9 shows the experimental re-

sults. “Static power” and “Dynamic power” indicate the power consumption by

the system when the face detection programme is executed and not executed, re-

spectively. “Dynamic power” indicates the maximum power consumption of the

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 124

Figure 5.9: The power consumption and the performance of the system in different
configurations.

configuration, while “static power” indicates the minimum power consumption of

the configuration.

As shown in Fig. 5.9, the best performance and maximum dynamic power

consumption increase at the same time as the frequency of the DPUs, which sug-

gests the consistent power efficiency of the accelerator with the highest utilisation

rate. In addition, the static power consumption shows an increasing trend with

the frequency of DPUs. Even without hardware acceleration in the system, more

power is still consumed by the system with higher frequency DPUs. When there

is a DPU operating at 100 MHz, the static power consumption of the system is

1.25 W. When there are two DPUs running at 300 MHz, the static power con-

sumption is 5.155 W for the system. In case of extremely low workloads for the

current tasks, the power consumption of the system will be comparable to the level

of static power consumption. In this case, there is a 75.8% power waste by the

configuration of two DPUs with 200 MHz.

5.4.3 The results of the proposed hardware adaptive sys-

tem

A number of cases with different task distributions were designed to simulate the

applications in practice. Table 5.2 shows the comparison of power consumption

between the normal design and the proposed scheme. Three cases of low loads,

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 125

Table 5.2: The performance of the proposed system in different cases.
Workloads Low Medium High
Task distribution
100 FPS 70% 25% 10%
800 FPS 20% 50% 20%
1,200 FPS 10% 25% 70%
Average power consumption
Normal design (W) 6.11 7.12 8.03
Proposed scheme (W) 2.32 3.52 6.59

medium loads and high loads represent three different scenarios. For example,

in the case of medium load, 50% of tasks require 800 FPS performance, 25%

of the tasks require 100 FPS performance and 25% of the tasks require 1,200

FPS. The power consumption is 7.12 W for the normal design, while it is 3.52 W

under the proposed scheme. The proposed scheme can reduce power consumption

by 50% in this case. Similarly, in the cases of low loads and high loads, the

proposed system consumes 32% and 82% less power respectively compared to the

normal configurations. Note that the hardware switching is based on the partial

reconfiguration, which consume some time, to write bitstream into configuration

memory. In addition, the number of hardware switching will also affect the overall

performance. If the system keeps switching between two states, the performance

will be significantly affected. To simplify the results, the system in the experiment

starts from low workloads state and moves to the high workloads states. It will

not switch back to the same states again. Therefore, compared to the task time,

it can be ignored.

5.5 Conclusion

In this scheme, the acceleration tasks are conducted by accelerator pools directly

instead of specific accelerators. Compared with other works using PR features,

the partial regions in this work are grouped for tasks to share, which make it

easy to adjust the performance of specific tasks. The reconfiguration could be

performed when applications are running. Given the different requirements in

CHAPTER 5. HARDWARE ACCELERATION FOR MULTIPLE TASKS 126

different scenarios, a coping strategy is proposed to better manage the hardware

resources. In this scheme, the acceleration tasks are placed in queues according to

the types of acceleration. By calculating the weights of queues, the constraint on

the acceleration can be identified to trigger hardware management. In addition,

the trigger conditions can be modified by adjusting the coefficient of factors. The

experimental implementation achieved a reduction by over 75% for the evaluated

experimental system requirement. Although the prototype design is based on

Xilinx FPGAs, this architecture can be applied to any FPGAs with PR features.

In the future, specific algorithms will be explored to optimise the efficiency of the

tasks and hardware deployment automatically.

This chapter focuses on hardware reconfiguration. However, the concept of

“reconfiguration” can be further extended to software and DL models. To increase

the power and computing efficiency of both DL model/software and hardware, an

improved flexible DL software framework was also proposed. It is presented in the

next chapter.

Chapter 6

AI system with adaptive DL

inference

6.1 Introduction

Although the adaptive hardware system presented in Chapter 5 can improve the

system efficiency, there are still some limitations. Firstly, hardware resources can-

not be allocated at a fine-grained level. Because different reconfigured partitions

cannot share resources, sufficient resources such as LUTs, DSPs, clocks and RAM

must be pre-allocated to each partition in order to deploy hardware accelerators.

This results in the number of partitions being limited by the size of the acceler-

ator. In addition, when using partial reconfiguration techniques, each partition

needs to lock up a margin area. An excessive number of partitions may lock up

too many resources and lead to a reduction in hardware efficiency. Secondly, hard-

ware reconfiguration is not a cost-free operation. On the one hand, it takes some

time to reconfigure the hardware. During reconfiguration, the hardware resources

in PR are not available for acceleration. On the other hand, the energy cost for

the reconfiguration will increase with the number of reconfiguration operations.

Therefore, the number of reconfiguration operations needs to be limited to reduce

excessive energy consumption. If acceleration tasks or system workloads do not

127

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 128

change dramatically, then the hardware reconfiguration may not be efficient

As detailed in Chapter 1, despite the massive potential demonstrated by such

new DNNs architectural concepts to improve on the current DNNs techniques, they

are likely to have an influence on the type of hardware and software required to

deliver such capabilities efficiently in the future. In this chapter, both acceleration

technique and design optimisation technique are addressed.

When there are multiple AI tasks running, the variation in the workloads of the

system can be complex. Adopting the concept of “dynamic reconfiguration”, the

dynamic DNNs may also be taken into account. Muliple DNNs can be dynamically

implemented for different conditions. Because the dynamic adjustment of DNN

models in the software layer are more fine-grained and less consuming, it can be

used to further improve the flexibility, performance and efficiency of the overall

system.

Therefore, in this chapter, to further improve the performance of the adaptive

hardware system, a flexible DL software framework is proposed [2, 209]. It can

provide a significant level of adaptability support for various DL algorithms on

an FPGA-based edge computing platform. The platform can dynamically con-

figure hardware and software processing pipelines to achieve better cost, power

and processing efficiency for the dedicated application requirements and operating

environments. In this work, a practical adaptive system was implemented. It may

help to develop following optimisation and scheduling algorithms.

To demonstrate the effectiveness of the proposed solution, the framework is

implemented for a DNN based real-time video processing pipeline on a Xilinx

ZCU104 platform, where a set of comprehensive experiment tests are carried out

to evaluate the performance of the proposed scheme. The achieved results (e.g.,

cars detection scenarios) show that when compared to deploying the original model

on an FPGA board, the proposed scheme can reduce the latency by 12.9%, 23.9%

and 36.5% as well as the total energy consumption by 18.9%, 38.4% and 53.8% for

three different DNN models respectively.

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 129

Trained Network

Architecture Searching Algorithm

Subnetwork1 Subnetwork2 Subnetwork3 Subnetworkn
...

Vitis AI

XModel1 XModel2 XModel3 XModeln
...

Video Analytics

Software

Runtime

Management

ARM FPGA

Data Streams Hardware Accelerators

Figure 6.1: The system architecture of the proposed scheme.

6.2 Overview of the proposed system

The proposed scheme can support one to n implementations, which improves flex-

ibility and run-time efficiency for run-time video analytics applications. It con-

sists of three main software components: 1) NAS algorithms, which can generate

different sub-networks under the given constraints, 2) the neural network model

compilation that can convert sub-networks into FPGA focused executing formats

and 3) the run-time management that can support the dynamic execution of sub-

networks on embedded devices. A high-level overview diagram is illustrated in

Fig. 6.1.

6.2.1 Neural network architecture search

NAS refers to a popular technology that can be applied to reduce the sizes of neural

networks. In general, the NAS algorithm ignores the target hardware architecture

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 130

and run-time conditions directly due to the lack of accurate cost information for

feedback to the NAS algorithm. For example, one-on-one NAS optimisation is ca-

pable of generating a network architectureNet1 that meets the design requirements

of accuracy a1 > A, power consumption p1 < P and latency l1 < L. However,

during run-time inference, it might be challenging to deal with the input data.

The accuracy falls short of the designed parameters, e.g., a1 < A.

Consequently, there could be an increase in power consumption and latency

accordingly due to a longer processing time required. In a recent work proposed

by [60], an interesting NAS method was introduced, along with the OFA that can

build a variety of different network architectures under the constraints of latency

and accuracy. In this chapter, OFA is integrated into a joint optimisation tool-

chain which takes advantage of this approach to construct a one to n inference

model for meeting various needs at the run-time. This optimisation approach will

be detailed in Section 6.3.

6.2.2 Neural network model compilation

As for the network models developed in the mainstream frameworks, there is a

necessity to map them into a high-efficient instruction set and data flow for the

targeted hardware platform. Herein, Vitis-AI is applied to establish a complied

network model, where 32-bit floating-point weights and activations are converted

into 8-bit fixed-point format[210]. Finally, the AI model is mapped onto a high-

efficient instruction set and data flow along with sophisticated optimisations as

much as possible by Vitis-AI, such as layer fusion, instruction scheduling and

reusing on-chip memory.

6.2.3 Software and hardware run-time management

The run-time management of this system is implemented using Vitis AI Runtime

(VART), which makes the applications suitable for the unified high-level run-time

API. VART enables the asynchronous submission and collection of jobs for the

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 131

accelerator and supports multi-threading and multi-process execution [208]. The

software and hardware run-time reconfiguration would generate some additional

overheads for the system. For example, when hardware fabrics are reconfigured,

two types of costs should be considered: additional time and power consumption.

The additional time consumption is majorly needed for rewriting the bitstream

and updating software drivers, and the time for rewriting bitstream is varied by

the sizes of the reconfiguration stream. In addition, the extra power consump-

tion maybe caused by rewriting the RAMs, and the frequency of rewriting would

dominate the values. This work focuses on evaluating model/software run-time

reconfiguration.

6.3 DNN model optimisation

6.3.1 Brief introduction to once-for-all network

OFA [60] consists mainly of 5 blocks and in each block, depth, width and weight

kernel size can vary as per the following example: depth D = {2, 3, 4}, width

W = {3, 4, 6}, kernel size K = {3, 5, 7}, where D, W and K represents the number

of convolution layers and channels, size of filters in a single block respectively. It is

assumed that each variable is independent of each other, which means the number

of subnetworks will be ((3 × 3)2 + (3 × 3)3 + (3 × 3)4)5 ≈ 2 ×109. In OFA, it

is possible to utilise and train any model like ResNet [211] and Mobilenet [212]

progressively while maintaining the variability in depth, width, or kernel size. In

order to identify a subnetwork from this vast number of subnetworks, both latency

and accuracy were treated as a constraint in the random search and evolutionary

search algorithms.

6.3.2 Model generation and optimisation

Herein, the OFA trained network is taken as a super network and its searching

algorithms are applied to generate multiple subnetworks as per our requirements.

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 132

Trained

Super Network

SubNet 1

SubNet N

SubNet 1

SubNet K

Random

Search Algorithm

Evolutionary

Search Algorithm

Latency Refinement

Accuracy Refinement

Figure 6.2: The model generation and optimisation technique.

The latency is first treated as an input parameter in the search algorithm. Fig.

6.2 illustrates the model generation technique, through which the model is opti-

mised in terms of both latency and accuracy. Under the OFA framework, random

search is first conducted to determine a set of subnetworks (Subnet N) that are

close to the defined latency. Then, evolutionary search is conducted to identify

the subnetworks (Subnet K) with the maximum accuracy among the previously

selected subnetworks.

6.4 System hardware/software co-design

6.4.1 Hardware architecture

In general, a real-time DNN based video analytic system consists of four parts: 1)

video decoding, 2) pre-processing (e.g., resize and normalisation), 3) DNN inference

and 4) post-processing. because DNN, inference and other processes require a

significant amount of computational resources, it is necessary to consider DNN

inference and other processing tasks for the acceleration design. In addition, the

hardware accelerators intended for video decoding and pre-processing should also

be deployed to deploy the DNN inference. However, the requirements of post-

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 133

VCU

(Hard IP)

Preprocess Core

(HSL)

DPU

(adaptive)

Processing System (PS)

Video Stream

DDR

Frame

Original

Resize

Normalization

Data Input

Data Output

Figure 6.3: The hardware architecture of the proposed platform.

processing algorithms vary between different DNN models. Therefore, the post-

processing tasks are performed in software.

Fig. 6.3 shows the overall system architecture which mainly includes three

types of accelerators: 1) Xilinx H.264/H.265 video codec unit (VCU)[213], which

is a hardware IP used for video coding and decoding tasks; 2) pre-processing

module, which is a hardware module implemented by high-level synthesis (HLS)

and dedicated to the resizing and normalisation tasks; and 3) DPUs, which is

intended for DL inference tasks and can be reconfigured in different scenarios at

run-time.

In order to process video streams in real time, the input video stream will be

decompressed by the VCU at first, for the convertion of video stream into separate

frames. Then, the pre-processing core will be used to carry out resize and pixel

value normalisation on each frame. The VCU and pre-processing modules in this

system can process up to 3, 840 × 2, 160 pixels at 60 frames per second, which

has been set to 1080p video streams in our experimental scenarios. Therefore, the

constraint on this system is supposed not to be the VCU or pre-processing modules.

Instead, it is most likely that the system performance will be restricted by the

DPUs and other processes. Allowing for this, our ultimate goal is to reconfigure

them at run-time for the optimal performance of the entire system.

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 134

Figure 6.4: The hardware architecture of the proposed platform.

6.4.1.1 Deep learning processing unit

The DPU IP in our system is DPUCZDX8G, a dedicated unit designed for the

Zynq UltraScale+ MPSoC. It is a configurable computation engine optimised for

convolutional neural networks. The degree of parallelism utilised in the engine

is a design parameter and can be selected according to the target device and

application. It includes a set of highly optimised instructions and supports most

convolutional neural networks, such as VGG, ResNet, GoogLeNet, YOLO, SSD,

MobileNet, FPN and others.

The detailed hardware architecture of the DPUCZDX8G is shown in Fig. 6.4.

In the beginning, the DPU unit gets instructions to control the operation. Ac-

cording to instructions, data in off-chip RAM will be buffered in on-chip memory

for high throughput and efficiency. The calculation is conducted by the processing

elements that take advantage of the hardware resources in FPGAs.

There are many parameters affecting the performance of the DPU. Chapter 5

has shown that the number and frequency of DPUs have great impacts on systems

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 135

performance. The DPU itself can also be configured with various convolution

architectures, which are related to the parallelism of the convolution unit. The

architectures for the DPUCZDX8G IP include B512, B800, B1024, B1152, B1600,

B2304, B3136 and B4096, where the number indicates the peak operations per

clock. Table. 6.1 shows the performance in different configurations.

Table 6.1: Performance of Different Models [214]
Device Configuration Frequency

(MHz)
Peak Theoretical

Performance (GOPS)
ZU2 B1152x1 370 426
ZU3 B2304x1 370 852
ZU5 B4096x1 350 1,400

ZU7EV B4096x2 330 2,700
ZU9 B4096x3 333 4,100

6.4.2 Software implementation

As for the software part, video analytic applications were developed using Vitis

Video Analytics SDK (VVAS) [208], which is a GStreamer-based plugin devel-

opment framework. Because the Gstreamer runs video processing pipelines in

multiple threads, the DNN inference processes can be precisely controlled by in-

troducing several customised plugins for multiple video analytic applications.

Fig. 6.5 shows two types of pipelines representing different video analytic ap-

plications. “Pipeline (a)” represents a typical one-stage video analytic application

(e.g., object detection and segmentation), where a single DNN model is applied

to conduct an inference once per frame. “Pipeline (b)” represents a two-stage

video analytic application (e.g., tracking, re-identification and car plate detec-

tion), where two DNN models are applied simultaneously. Besides, the second one

may be executed multiple times, due to the detection results of the first one.

6.4.3 Dynamic DNN model switching method

A pair of communication interfaces (e.g., read and write communications) were de-

signed in DNN inference plugins, to report DNN inference information and control

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 136

Decode Pre

AI

Inference

1

Pre/Crop

AI

Inference

2

Post

Post Output

AI

Inference

2

…

Decode Pre

AI

Inference

1

Post OutputVideo Input

Video Input

�a�

�b�

Figure 6.5: Video processing pipelines in the proposed system. (a) represents an
application with a one stage AI inference task. (b) represents an application with
a two-stage AI inference task.

its run-time DNN model process. When the pipeline is running, such information

as the execution time of the DNN model, processing time of the pipeline and power

consumption of the entire system will be sent to a separate system management

thread simultaneously. According to the real-time performance metrics from the

system, the processing pipeline can be reconfigured accordingly.

The proposed system will be reconfigured in two main aspects: 1) Hard-

ware configuration (DPUs) and 2) DNN model execution. Reagrding DPU re-

configurations, DNN inference performance is determined by DPU design speci-

fications (e.g., number of DPUs, maximum frequency and size). The power and

computing efficiency of the proposed system can be further improved by using the

method as introduced in Chapter 5, when the workloads placed on the system are

increased.

Concerning DNN model switching, DNN can be adjusted at run-time in each

video frame through the developed communication interfaces. This feature allows

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 137

both types of video analytic applications and the sizes of DNN inference models

to be updated according to the exact performance specification and its execution

environment. In the proposed system, there are three types of inter-process com-

munication interfaces available for data transfer between the host programme and

Gstreamer video pipeline:

• Named pipe (an interprocess communication method): it represents

the main method applied to send the control commands to the video pipeline.

The customised plugin reads new commands from the named pipe, before

the next frame is processed. Users can transfer data betweendpuinfer and

drawing plugins via the named pipe. This mechanism contributes to a stable

and flexible method of communication between plugins.

• File IO: this interface supports direct file output to report the status of

the video pipeline. For example, the proposed plugin can output the DPU

inference results into a file for offline analysis.

• Shared memory: As Python does not support shared memory naively, a

shared memory mechanism is developed to share information between differ-

ent video pipeline branches in the Gstreamer framework.

The design of the communication framework is shown in Fig. 6.6. There

are three software layers, including 1) Python management interfaces for user

control, 2) Gstreamer applications to run AI inference and 3) system info (e.g.,

hardware temperature and power consumption). In the work, the system info is

recorded in the Proc file system (a virtual file system in Linux). During runtime,

Gstreamer applications continuously read the virtual via file IO interfaces. Each

time when a virtual file is read, a function will be triggered to read sensor data.

The history data points are stored in applications. If necessary, the data can also

be passed to the Python management program via the name pipe interface. The

named pipe interface is the main method to transfer data between applications and

management programs. Applications can send real-time status to or get commands

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 138

Decode Pre

AI

Inference

1

Post OutputVideo Input

Temp Power
CPU

Utilisation
Frequency

Python Management Layer (for user control)

File IO

Named Pipe Mixed

System Info

Gstreamer Applications

Management

Figure 6.6: Design of the communication framework.

from the management program. The “post” plugin in Gstreamer applications is a

key module to collect system info (e.g., power) and running status (e.g., FPS). It

is also responsible for transferring inference results. If the output result contains

massive data (e.g., semantic segmentation), it will use file IO to store output

results.

6.5 Experiments

In this section, the experimental configuration and results are reported, with

a typical real-time video processing pipeline implemented on a Xilinx ZCU104

(XCZU7EV) for the detection and classification of both cars and pedestrians via

analytic applications.

6.5.1 Overall system setup

The proposed video analytics framework was implemented on a Xilinx ZCU104

(XCZU7EV- 2FFVC1156 MPSoC) development platform, as shown in Fig. 6.7,

with the main modules as follows:

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 139

Frame n

2 Crop2 Crop

1 Detection1 Detection

3 Classification3 Classification

2 Crop

1 Detection

3 Classification

video stream

ZCU104

Board

PC

Monitor

Models deployed on DPU

Pre-precessing unit

Figure 6.7: System setup diagram

1) The input : the video streams need to be processed; 2)Pre-processing unit :

carries out resizing and normalisation functions to allow the processed video data

streams to meet the input requirements of DNN models; 3) Object detection DNN

inference: deployment of object-detect DNN model on DPUs (e.g., YOLOv3 for

cars and Refinet for pedestrians detection respectively [215, 216]); 4) Image crop-

ping : cropping detected objects in each video frame and send them to a second

AI inference module for more precise classification tasks; 5) Object classification:

deployment of Resnet-50 based backbone networks, and the network models are

generated with different sizes based on the OFA algorithm.

6.5.2 Hardware configuration

The proposed design is implemented using Xilinx Vivado 2021.1 and PetaLinux

2021.1 on a Xilinx ZCU104 evaluation platform, video streams (1920×1080@30FPS)

are used as input for testing. Two DPUs (i.e., B3136) are deployed and integrate

in the video processing pipeline (i.e., Fig. 6.3) The detailed hardware utilization

are reported in Table 6.2.

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 140

Table 6.2: Sub-module resource utilisation
Sub module LUT Register BRAM DSP

DPU 47667 85,778 210 436
VPU 105 24 0 0

Pre-processing unit 13,147 17,390 12 40

6.5.3 Software configuration

6.5.3.1 Software pipeline

The proposed software pipeline is implemented under the VVAS 1.0 framework

applied to control the video data flow. Besides, the Gstreamer plugins used in our

experiments include ivas-xabrscaler, ivas-xfilter and ivas-xmetaaffixer [217].

ivas-xabrscaler: this plugin takes an input stream and outputs multiple out-

put streams with different resolutions and colour space conversion per config- ura-

tion. It is mainly used in a pre-processing pipeline.

ivas-xfilter: this plugin is used to control data stream for DPU. It relies on a

JSON configuration file to initialise the DPU module for the following tasks:

• Specify the acceleration software and other utility libraries.

• Interpret the acceleration AI library and select a suitable acceleration soft-

ware library class (e.g., Vitis-AI Library) for DNN inference and post-processing.

ivas-xmetaaffixer: this plugin is used to merge multiple incoming streams

into one, and the bounding box of the detection results is remapped on a data

stream with higher resolution.

6.5.3.2 DNN model management

Xilinx Vitis-AI 1.4.1 tool-chain is used to convert Pytorch DNN models into xmodel

files. By scaling DNN models in line with the OFA searching strategy, there are

three different sizes of the OFA-ResNet-50 models obtained: OFA700, OFA1000

and OFA2000. The number after each OFA model represents million floating-

point operations per second (MFLOPs), which is used as the threshold of the

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 141

subnet searching in the OFA algorithm. Three parameters are used to represent a

wide range of model sizes in our experiments. Table 6.3 shows a list of the models

used in our experiments, including a number of sub-networks created by using

the OFA network. To update the DNN models at frame level dynamically, the

communication interfaces as introduced in Section 6.4 is implemented.

Table 6.3: Parameters of the used DNN models

Model
Parameter size

(MB)
Workload
(MOPS)

Accuracy
(Top1/Top5 ImageNet-1k)

OFA700 10.75 1340.61 74.9%/92.4%
OFA1000 18.02 1905.48 77.0%/92.8%
OFA2000 32.88 3805.47 79.7%/94.7%
ResNet-50 26.22 7360.32 83.2%/96.5%

In our experiment, this management scheme was verified by using a DNN pow-

ered car/pedestrian re-identification application, where a two-stage DNN pipeline

is implemented. In the first stage of the DNN pipeline, Yolov3 and Refinet are

used for car/pedestrian detection, respectively. In the second stage of the pipeline,

ResNet-50 is used as a backbone network for car/pedestrian classification.

6.5.4 Results and analysis

As shown in Fig. 6.8, our framework is tested for two different video analytic

applications: car and pedestrian re-identification. Through the tests conducted in

both scenarios, the proposed framework shows the capability to handle the videos

and identify objects correctly.

(a) (b)

Figure 6.8: Testing scenarios. (a) Car re-identification; (b) Pedestrian re-
identification

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 142

In the proposed experiment, the same video processing pipeline is used to

handle different video input streams, while monitoring the performance metrics of

the system through the proposed customised communication interference plugin

continuously, such as frame rate per second (FPS), power consumption and DPU

latency. In the proposed work, the real-time power consumption of the entire

ZCU104 board is measured from the onboard registers provided by PetaLinux,

to determine the total energy consumption for the same video stream when the

DNN models of different sizes are used, as shown in Fig. 6.9. The total energy

consumption can be calculated using the following equation:

E =
n∑

i=1

Pi/f (6.1)

where E denotes the total energy consumption in Joules (J), P denotes power

consumption in Watt (W) at time i, f denotes sampling frequency in Hz. The total

energy consumption is reduced by 18.9%, 38.4% and 53.8% in the car scenarios

respectively, and similarly reduced by 25.4%, 41.1% and 61.6% respectively in the

pedestrian scenarios.

0 500 1000 1500 2000 2500

�������

�
�
���

�������

�������

������

������������
	��
����������

Figure 6.9: Total energy consumption for running different models.

The DPU inference latencies for each OFA network model are detailed in Fig.

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 143

6.10. Because the object detection model is not changed at run-time, the latencies

are thus stable, which are 24∼25 ms and 19∼20 ms for car and pedestrian scenarios

respectively. In general, the DNN models of a smaller size achieve a better DPU

inference latency due to fewer operations being required. As a result, the entire

video pipeline will take less time to complete than if a larger model is deployed.

Therefore, a dynamic model-switch strategy can be implemented to identify a

suitable DNN model based on the real-time performance metrics for improved

performance of the entire system. By comparing the original model, the proposed

system can reduce the latency of DPUs for the whole video pipeline by 12.9%,

23.9% and 36.5% in the car scenario and 14.0%, 25.9% and 38.6% in the pedestrian

scenario.

0 20 40 60 80 100
�����������������

10
15
20
25
30
35
40

�
�

���

�
�����
�
�����
�
����
	��	���

0 20 40 60 80 100
�����������������

10

15

20

25

30

35

�
�

���

�
�����
�
�����
�
����
	��	���

Figure 6.10: Latency in different scenarios. (a) represents Latency in car scenarios.
(b) represents Latency in pedestrian scenarios.

Fig. 6.11. (a) and (c) present the FPS results of OFA700, OFA1000, OFA2000

and ResNet-50 under the car and pedestrian scenarios, respectively. By comparing

the FPS of ResNet-50, it can be discovered that the overall FPS is improved by

26.3%, 65.6% and 113.0% in the car scenarios by using OFA700, OFA1000 and

OFA2000 models respectively. Similarly, it is also improved by 27.1%, 65.7%

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 144

Figure 6.11: FPS of the proposed system in different scenarios. (a) Car scenarios
without model switching. (b) Car scenarios with model switching. (c) Pedestrian
scenarios without model switching. (d) Pedestrian scenarios with model switch

and 132.1% FPS in the pedestrian scenarios respectively. The video-stream is

processed in a frame-by-frame manner, and each frame follows the architecture of

the pipeline shown in Fig. 6.7. In the proposed test scenarios, the performance

of the system will be affected by the number of objects that have been detected

in the first stage of the pipeline (i.e., car/pedestrian de- tection). Each detected

object will be cropped and then sent to the second stage of the pipeline (e.g.,

ResNet-50 or OFA-Resnet-50 networks) for the classification work. The workloads

will vary significantly in the second stage of the pipeline, because they are affected

by the number of objects detected in each frame at run-time. Therefore, the

classification task is accelerated by applying a compressed DNN model, which

means the processing time required for the entire frame will be reduced as a result.

In the experiment, I also evaluate the overhead of the model switching. Compared

with the frame without using the model switching approach, the average processing

time for the frames using the model switching approach is 1.5 ms longer. This is

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 145

mainly because the model files need to be reloaded from the external memory.

Considering that the frame time is around 30 ms in a 30 FPS video stream, it is

acceptable.

In certain running environments (e.g., simple scenarios but with varying amounts

of objects), it can dynamically switch DNN models by monitoring run-time per-

formance metrics. Thus, it could further increase overall power and computing

efficiency with an acceptable loss of classification accuracy. For example, as shown

in Fig. 6.11 (b) and (d), by switching the DNN model to a smaller one at run-

time, the average frame rates are increased from 17.04 FPS to 29.4 FPS in the car

scenarios and from 16.9 FPS to 30.8 FPS in the pedestrian scenarios respectively.

Meanwhile the energy consumption is also dropped by 34.2 % and 34.0 % respec-

tively for the two scenarios (see Fig. 6.9). Accordingly, a proper model-switch

strategy can be defined to dynamically locate a suitable DNN model based on the

current resource, task and battery requirements at run-time.

6.6 Conclusion

In this chapter, it is proposed to design a new flexible hardware accelerator frame-

work 1 for adaptive support offered to various DNN algorithms on an FPGA-based

edge computing platform. According to the obtained results (i.e. for the cars sce-

narios), the proposed system can reduce the latency of DPUs by 12.9%, 23.9% and

36.5% depending on the sizes of the models, with the total energy consumption

lowered by 18.9%, 38.4% and 53.8% for three different DNN-inference models with

accuracy (Top5) at 94.7%, 92.8% and 92.4%, respectively.

By using a dynamical model-switch strategy, the frame rates are increased im-

mediately at the switching point. The average frame rates are improved from 17.04

FPS to 29.4 FPS in the car scenarios and from 16.9 FPS to 30.8 FPS in the pedes-

trian scenarios, respectively. Further combined with a dynamic-reconfiguration

1This work won the prize of Xilinx University Program (XUP) in Adaptive Computing Chal-
lenge 2021: https://www.hackster.io/contests/xilinxadaptivecomputing2021#challen

geNav

CHAPTER 6. AI SYSTEM WITH ADAPTIVE DL INFERENCE 146

strategy in hardware modules the proposed system presents an unprecedented op-

portunity to build new adaptable architectures and algorithm models using the

hybrid-computing units and resources, which is expected to play a significant role

in improving energy efficiency, performance and flexibility.

In this system, I first combine hardware reconfiguration and software dynamic

models. The main novel contributions in this work can be concluded as follow:

• An improved flexible DNN hardware accelerator framework that can be ap-

plied to configure the hardware and software processing pipelines dynami-

cally is proposed to improve the power consumption and latency performance

metrics.

• A comprehensive evaluation of DNN model sizes and inference performance

is conducted, with Xilinx DPUs used in video analytic applications.

• A practical FPGA-based test platform for real-time software and hardware

management is designed and implemented in this work. It can help to develop

subsequent optimisation algorithms for hardware and software scheduling.

• This framework allows run-time reconfiguration to increase the power and

computing efficiency of both the DNN model/software and hardware, to

meet the requirements of dedicated application specifications and operating

environments.

Chapter 7

Conclusions and future work

7.1 Summary of Research

In this thesis, the challenges for deploying an AI hardware system in extreme

environments are addressed concerning SEE hardening, power efficiency and per-

formance.

In Chapter 3, a SEE simulation scheme is proposed to evaluate the effects of

SEE on large-scale circuits. Due to the complexity of SEE and the increasingly

large size of existing circuits, it has become a challenge to conduct SEE simula-

tions. On the one hand, accurate simulation tools (e.g., SPICE) require a large

amount of computing power. In addition, the fast simulation tools (e.g., HDL) lack

detailed SEE information in logic paths. In this work, the advantages of transistor

simulation and HDL simulation are taken to achieve high accuracy and efficiency.

Firstly, the SPICE simulation generates the SEE model for gate devices. Secondly,

the SEE model is converted into the HDL model. Thirdly, HDL simulation for

large-scale circuits is conducted. In this work, the SEE model is reusable, which

significantly reduces the time cost to evaluate multiple HDL designs and improves

the efficiency of circuit design. The gate library from SMIC and the ISCAS89

benchmark circuits are used to implement the scheme in the experiments. The

results of the experiments show that the scheme can evaluate circuits with more

than 100,000 transistors, which proves its’ capabilities for evaluating large-scale

147

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 148

circuits.

In Chapter 4, an SEU mitigation scheme is proposed for RAMs in extreme Ra-

diation environments because the RAM is one of the most SEE-sensitive elements

in embedded systems. There are two features in this work. The first one is the

capability to mitigate accumulated errors in extreme radiation environments. The

second one is the high adaptability to RAM modules requiring no additional ports

or timing modification. On the one hand, the use of the single port extends the

range of applications in hardware systems. On the other hand, a well-organised

state machine avoids the impact of detection and refreshing on the original timing

sequence. Furthermore, parallel architecture can be configured according to the

density of radiation so that it can balance the performance and hardware costs.

The experiments are conducted in the ISIS neutron source facility. Unhard-

ened RAMs, normal ECC RAMs and the RAMs hardened by the proposed scheme

are evaluated under the same conditions. It is shown that the error rates remain

robust irrespective of the RAM size. The comparison of the radiation experiments

also shows that the proposed scheme is an effective strategy for hardening em-

bedded systems and the error rate of the self-scrubbing RAM is one-fifth of the

conventional ECC RAM in 6-hour neutron radiation tests.

The third work was divided into two hardware and software parts. In chapter

5, a dynamic management scheme is proposed for hardware acceleration based

on DFX. In radiation environments, AI systems face challenges in not only AI

deployment but also in radiation resistance. Because FPGAs are RAM-based

devices, inspired by the concept of “refreshing”, the reconfiguration feature of

FPGA is adopted to build the system. In this work, I used DFX, which is a kind

of PR, to build the hardware system with DFX used to dynamically configure

the regions in the FPGAs, there are multiple types of accelerators that can be

deployed for various tasks, thus improving both power efficiency and flexibility

for multiple tasks systems. In order to dynamically manage onboard resources,

accelerator pools were used to hold different types of accelerators during hardware

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 149

reconfiguration. When there are multiple AI applications running in the system,

the acceleration tasks will be sent to corresponding pools instead of accelerators.

In this way, the tasks will not be interrupted, if accelerators are changed during

run-time. The trigger conditions for hardware reconfiguration was also discussed

in this chapter. The bottlenecks of the system were evaluated by the acceleration

task queue. By calculating the weights of queues, the constraint on the acceleration

can be identified to trigger hardware management. Factors of the queue weights

can also be modified manually for high flexibility.

In chapter 6, an adaptive DL software framework is built to enable adaptive

support for various DNN algorithms on a FPGA-based edge computing platform.

This work further improves AI systems’ adaptability by deploying a range of sub-

networks for different scenarios. By combining with the hardware reconfiguration

in Chapter 5, the system can be more precisely controlled. This work implements

a demo system supporting multi-channel video analytics on ZCU104. Hardware

accelerators, including VCU, DPU and pre-process module, comprise the hardware

base. VVAS and Gstreamer framework are used to build applications. In each

video process channel, there are a number of sub-networks generated from OFA

for different requirements. Python management interfaces are also built for real-

time control.

7.2 Novel Contributions

The main contributions of this work in this thesis are stated as follows:

The first work in Chapter 3 is a new, rapid and convenient SEE simulation

scheme. It can provide a universal comparison method to evaluate the designs of

circuits in the context of SEEs. Compared to other works, the proposed scheme

adopts the advantages of SPICE simulation and HDL simulations. In this work,

a range of new SEE behaviour models is introduced for SEE simulations. Those

models are based on the SPICE simulations. The transient current and voltage

pulses are converted into digital signal changes. Therefore it can offer lightweight

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 150

and fast simulations for large-scale circuits. In addition, can offer a high level of

flexibility in the design. Since the simulation steps in this scheme are decoupled.

The existing SEE models can be reused in different circuits without modification.

In the second work, the SEE refreshing controller is a highly flexible, area-

efficient design for scrubbing RAMs. Compared to conventional external scrub-

bers [61, 62, 63], It requires neither processor to conduct scrubbing options nor

dedicated modules (e.g., ICAP) to access RAMs. There it can be easily used in

various embedded systems. Furthermore, the design can achieve high SEU correc-

tion rates, which can significantly mitigate error accumulation in harsh radiation

environments.

The third work is an adaptive system. To improve the efficiency of embed-

ding systems for DL tasks, hardware reconfiguration and software dynamic DL

models are first combined together. In hardware, partial reconfiguration is used.

Compared with other works using PR features, the partial regions in this work are

grouped for tasks to share, which make it easy to adjust the performance of specific

tasks. Normally, acceleration systems use PR regions to build specific accelerators

for corresponding works. Instead of deploying the same accelerator for specific

acceleration tasks, the proposed systems will dynamically change the size, num-

ber and frequency of the accelerators. In software, I propose an improved flexible

DNN hardware accelerator framework that can dynamically configure the hard-

ware and software processing pipelines to achieve improved power consumption

and latency performance metrics. Based on the work in hardware and software, a

complete DNNs based real-time video processing pipeline is built to evaluate the

effectiveness of the proposed framework.

7.3 Future works

There are still some further works that can be done to improve works in this thesis.

n Chapter 3, the work of SEE simulation can be improved. Firstly, more

components should be discussed. In this work, the library was simplified and only

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 151

14 models were finally generated. However, in practice, libraries contain more

components and layouts, which may affect the accuracy of SEE simulation. For

example, OR gates may use different layouts when they are supposed to run at

different frequencies. Secondly, an automation script will help to generate digital

SEE models. Due to the inconvenience of SPICE, the injection of SEEs was

conducted by handcraft, which is slow and inefficient. Thirdly, automation can

be developed to analyse the SEE mitigation performance and provide improving

guides. It will help to design large-scale circuits.

This work in Chapter 4 can also be improved. Firstly, doubling frequency is

used to extend bandwidth for refreshing operation. This method is suitable, when

the original frequency of the target device is not too high, which was 100 MHz

in this work. However, current embedded systems for the general purpose may

use a higher frequency than radiation dedication devices. In this case, doubling

the frequency may waste bandwidth and energy. Therefore, the controller can be

improved by using adaptive frequency. If the system requires high SEE mitigation

performance, then a double frequency can be used. If the system requires low

power consumption, then a frequency slightly higher than the original frequency

can be used for refreshing. Although there may be difficulties in designing a clock

domain crossing, it will bring some additional benefits to the compatibility of the

design.

Further work for the third part, the adaptive DL system, can be done as fol-

low. First, there is always a consumption (e.g., time costs and power consump-

tion), whether it is a software or hardware reconfiguration. During switching, it

is worth developing an algorithm to evaluate the trade-off between the increase

in performance and the consumption caused by the switch. Secondly, although

software and hardware reconfiguration increases flexibility, it also incurs manage-

ment complexity. If the software and hardware switching are not well coordinated,

then the switch can potentially degrade the system’s performance. An evaluation

algorithm is thus essential. Thirdly, the FPGA resources are pre-allocated to sev-

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 152

eral blocks when using DFX or PR. If too many resources are per-allocated to

a block, then the accelerator may not be able to utilise all of them. If too few

resources are per-allocated to a block, then the accelerator may not be able to be

implemented. Therefore, an allocation algorithm for hardware resources can be de-

veloped to design suitable PR regions. Fourthly, DPUs have various architectures.

In different DPU’s architectures, the parallelisms of the core calculation matrix

differ concerning input, pixel and out channels. In Chapter 6, the performance

and efficiency are assumed to be only related to the “Peak Ops” (peak operations

per second). However, DPU’s architectures may affect the efficiency of specific

modules. Therefore, the algorithm in progress will consider the effects of DPU’s

architectures on different types of models. Finally, A scheduling algorithm may

also be necessary. There are multiple software tasks and hardware accelerators in

the proposed system. How software maps to the hardware may significantly affect

system efficiency.

To sum up, a number of the works referenced in this thesis are related to adap-

tive intelligent systems for extreme environments. The works can be divided into

two aspects: the first two works are related to radiation hardening and the last

two works are related to AI inference on an embedded platform. To mitigate SEEs

in RAM systems, I used the refreshing method to correct errors. The concept was

then extended to FPGA devices. By using the reconfiguration feature, an adaptive

hardware system was proposed to improve flexibility and efficiency. Subsequently,

the “reconfiguration” concept was also used in software to further improve per-

formance and efficiency. The works in this thesis are at the research prototype

stage and still need to be improved. Currently, I am working on the scheduling

algorithm for the adaptive hardware and software system.

Appendix A

Demo of adaptive AI system

This part includes some figures of an adaptive AI system for smart city. It is a

system based on the works in Chapter 6 and 5. The project is called ”All-in-one

Self-adaptive Computing Platform for Smart City” and it won the prize of Xilinx

University Program (XUP) in Adaptive Computing Challenge 2021 with AMD-

Xilinx (https://www.hackster.io/contests/xilinxadaptivecomputing2021).

The source code can be find in Github repository: https://github.com/luyuf

an498/Adaptive-Computing-Challenge-2021.

Figure A.1: ReID for pedestrians

153

APPENDIX A. DEMO OF ADAPTIVE AI SYSTEM 154

Figure A.2: Pose detection

Figure A.3: ReID task for cars

APPENDIX A. DEMO OF ADAPTIVE AI SYSTEM 155

(a) pedestrian detection and pose detection

(b) car detection

Figure A.4: There are 3 AI inference branches integrated in this system for different
tasks including scene recognition, pedestrian related AI inference and car related
AI inference. In this system, a segmentation algorithm is used to conduct scene
recognition tasks and the results are shown at the top left corner. The results of
pedestrian related algorithms are shown on the bottom left corner. The results of
car related algorithms are shown on the bottom right corner.

APPENDIX A. DEMO OF ADAPTIVE AI SYSTEM 156

(a) inference interval for segmentation is set to be 5

(b) inference interval for segmentation is set to be 2

Figure A.5: Using the designed python interfaces to adjust processing intervals to
improve the system performance.

APPENDIX A. DEMO OF ADAPTIVE AI SYSTEM 157

(a) AI inference with RN18 model in large size. The frame rate is 22.91 fps.

(b) AI inference with RN18 model in small size. The frame rate is 27.99 fps.

Figure A.6: Using the designed python interfaces, the running model can be
changed dynamically.

APPENDIX A. DEMO OF ADAPTIVE AI SYSTEM 158

(a) adaptive management is disabled

(b) adaptive management is enabled

Figure A.7: System performance with and without adaptive management. When
adaptive management is enable, the AI inference branches are modified to improve
the system performances. The branch 0 runs a segmentation algorithm for scene
recognition, the frame based inference interval (’II’) is set to be 5. The branch
1 runs Refindet and Openpose algorithms for pedestrian detection. It is disabled
because there is no pedestrian. The branch 2 runs a YOLO algorithm for car
detection. The inference interval is set to be 2 and the large model is replaced
with a small (’L’ to ’S’) model. As a result, the frame rate is increased to be 30fps
and the system power consumption drops from 8.4w to 7.4w.

Appendix B

Source Code

B.1 Python program: generate SEE models in

netlists

1 import re

2 #’input.txt’

3 def readFromFile(file_name):

4 f = open(file_name ,’r’)

5 txt = f.read()

6 f.close ()

7 return txt

8

9 def writeIntoFile(file_name ,txt):

10 f = open(file_name ,’w’)

11 f.write(txt)

12 f.close ()

13

14 def getHead(verilog_txt):

15 # define

16 # get names

17 match = re.search(r’module\s+(?P<Modname >\w+).+?;’,

verilog_txt ,re.S)

18 mode_name = match.group(’Modname ’)

159

APPENDIX B. SOURCE CODE 160

19 define_module = match.group ()

20 #print(define_module ,’\n’,mode_name)

21 # get signals

22 match = re.search(r’input\s+(?P<Iname >[\w,\s]+?);’,

verilog_txt ,re.S)

23 define_input = match.group()

24 input_names = re.sub(r’\s’,’’,match.group(’Iname ’)).split(’,’,

re.S)

25 #print(define_input ,’ ’,input_names)

26 # get outputs

27 match = re.search(r’output\s+(?P<Oname >[\w,\s]+?);’,

verilog_txt ,re.S)

28 define_output = match.group ()

29 output_names = re.sub(r’\s’,’’,match.group(’Oname’)).split(’,’

)

30 #print(define_output)

31 # get wires

32 match = re.search(r’wire\s+(?P<Wname >[\w,\s]+?);\n’,

verilog_txt ,re.S)

33 define_wire = match.group ()

34 wires = re.sub(r’\s’,’’,match.group(’Wname ’)).split(’,’)

35 print(’name :{0} ,\n{2} inputs :{1},\n{4} outputs :{3}\n{6} wires :{5}

’.format(mode_name ,input_names ,input_names.__len__ (),

output_names ,output_names.__len__ (),wires ,wires.__len__ ()))

36 #return head

37 head_txt = define_module+’\n’ +define_input + ’\n’ +

define_output +’\n’+define_wire

38 return head_txt ,mode_name ,input_names ,output_names

39

40 def genNewExample(verilog_txt):

41 device_id = 0;

42 unit_id = 0;

43 mod_txt = ’’

44 mods_size = {’dff’: 25, ’not’: 2, ’and’: 6, ’or’: 6, ’nand’:

8, ’nor’: 4}

APPENDIX B. SOURCE CODE 161

45 mode_rpname = {’dff’: ’DFF_S ’, ’not’: ’NOT_S ’, ’and’: ’AND_S ’,

’or’: ’OR_S’, ’nand’: ’NAND_S ’, ’nor’: ’NOR_S’}

46 keep_words = [’module ’]

47 p = re.finditer(r’(?P<old_mod >\w+)\s+(\w+)\((?P<pin >[\w,]+)\)’

, verilog_txt)

48 for u in p:

49 if (u.group(’pin’)):

50 if (u.group(’old_mod ’) in mode_rpname.keys()):

51 type = u.group(’pin’).count(’,’)

52 size_addition = 0

53 if (type > 2):

54 new_mod = mode_rpname[u.group(’old_mod ’)][: -2]

+ str(type) + mode_rpname[u.group(’old_mod ’)][-2:]

55 size_addition = type * 2 - 4

56 else:

57 new_mod = mode_rpname[u.group(’old_mod ’)]

58

59 mod_txt += ’ {3} #(. DEVICE_ID ({0})) U

{1}({2}) ;\n’.format(device_id , unit_id , u.group(’pin’),

60

new_mod)

61 device_id += mods_size[u.group(’old_mod ’)] +

size_addition

62 unit_id += 1

63 elif(u.group(’old_mod ’) not in keep_words):

64 print(’WARNING:undefined submodule ’, u.group ())

65 print(’Circuit Size :{0}, units :{1}\n’.format(device_id ,unit_id)

)

66 return mod_txt ,device_id ,unit_id

67

68 def genInjectionTask(device_id ,unit_id):

69 task_txt = ’’

70 tab = " "

71 task_txt += tab +’reg [31:0] rand_id ;\n’

72 task_txt += tab +’task SEU_INJECTION(seed);\n’

APPENDIX B. SOURCE CODE 162

73 task_txt += tab * 2 + ’begin\n’

74 task_txt += tab * 3 + ’rand_id = {1}%{0};\n’.format(device_id ,

’{$random(seed)}’)

75 for i in range(unit_id):

76 task_txt += tab*3 + ’U{0}. SEU_INJECTION(seed ,rand_id);\n’.

format(i)

77

78 task_txt += tab * 2 + ’end\n’

79 task_txt += tab * 1 + ’endtask\n’

80 return task_txt

81

82 def genNewModVerilogTxt(verilog_txt):

83 head_txt ,mode_name ,input_names ,output_names = getHead(

verilog_txt)

84 print(’_’ * 100)

85 mod_txt , device_id , unit_id = genNewExample(verilog_txt)

86

87 task_txt = genInjectionTask(device_id , unit_id)

88 return head_txt + mod_txt + task_txt + ’endmodule ’ ,mode_name

,input_names ,output_names

89

90 def genNewTestVerilogTxt(mode_name ,input_names ,output_names):

91 testbench = ’module test_ {0};\n’.format(mode_name)

92 tab = " "

93 for inputpin in input_names:

94 testbench += tab + "reg {0};\n".format(inputpin)

95

96 for outputpin in output_names:

97 testbench += tab +"wire {0};\n".format(outputpin)

98 testbench += tab +"wire {0}_f;\n".format(outputpin)

99

100 testbench += tab + ’{0} uut (\n’.format(mode_name)

101 for inputpin in input_names:

102 testbench += tab*2 + ".{0}({1}) ,\n".format(inputpin ,

inputpin)

APPENDIX B. SOURCE CODE 163

103 index = 0

104 for outputpin in output_names:

105 if(index == 0):

106 testbench += tab * 2 + ".{0}({1})".format(outputpin ,

outputpin)

107 else:

108 testbench += " ,\n" + tab * 2 + ".{0}({1})".format(

outputpin , outputpin)

109 index += 1

110 testbench += "\n" + tab + ’);\n’

111

112 testbench += tab + ’{0} uut_f (\n’.format(mode_name)

113 for inputpin in input_names:

114 testbench += tab*2 + ".{0}({1}) ,\n".format(inputpin ,

inputpin)

115 index = 0

116 for outputpin in output_names:

117 if(index == 0):

118 testbench += tab * 2 + ".{0}({1})".format(outputpin ,

outputpin)

119 else:

120 testbench += " ,\n" + tab * 2 + ".{0}({1})".format(

outputpin , outputpin)

121 index += 1

122 testbench += "\n" + tab + ’);\n’

123

124 testbench += tab + ’initial begin\n’

125 for inputpin in input_names:

126 testbench += tab*2 + "{0} = {1};\n".format(inputpin ,

inputpin == ’VDD’and 1 or 0)

127 testbench += tab + ’end\n’

128

129 for outputpin in output_names:

130 testbench += tab + "reg r{0},r{0}_f;\n".format(outputpin)

131

APPENDIX B. SOURCE CODE 164

132 for inputpin in input_names:

133 if(inputpin == ’CK’):

134 testbench += tab + ’always #5 CK = ~CK;\n’

135 elif(inputpin in [’GND’,’VDD’]):

136 pass

137 else:

138 testbench += tab + ’always #10 begin\n’

139 testbench += tab*2 + ’if (({1}%100) < 50) {0} = ~{0};\n

’.format(inputpin ,’{$random ()}’)

140 testbench += tab + ’ end\n’

141

142 testbench += tab + ’reg [31:0] seu_cnt = 0;\n’

143 testbench += tab + ’real next_time = 0;\n’

144 testbench += tab + ’always #(64 + next_time) begin\n’

145 testbench += tab*2 + ’uut.SEU_INJECTION (0);\n’

146 testbench += tab*2 + ’next_time = ({ $random () }%10000) /100.0;\n

’

147 testbench += tab*2 + ’seu_cnt <= seu_cnt + 1;\n’

148 testbench += tab + ’end\n’

149

150 testbench += tab + ’always @ (posedge CK) begin\n’

151 for outputpin in output_names:

152 testbench += tab*2 + "r{0} <= {0};\n".format(outputpin)

153 testbench += tab*2 + "r{0}_f <= {0}_f;\n".format(outputpin

)

154 testbench += tab + ’end\n’

155

156 testbench += tab + ’wire flag_reg =’

157 for outputpin in output_names:

158 testbench += " (r{0}^r{0}_f) |".format(outputpin)

159

160 testbench = testbench [:-1] + ";\n"

161

162 testbench += tab + "reg [31:0] err_cnt = 0;\n"

163 testbench += tab + "reg [31:0] err_cnt2 = 0;\n"

APPENDIX B. SOURCE CODE 165

164 testbench += tab + "always @ (posedge flag_reg) begin\n"

165 testbench += tab*2 + "err_cnt = err_cnt + 1;\n"

166

167 testbench += tab*2 + "err_cnt2 = err_cnt2"

168 for outputpin in output_names:

169 testbench += ’+ (r{0}^r{0}_f)’.format(outputpin)

170

171 testbench += ";\n"

172

173 testbench += tab + "end\n"

174 testbench += ’endmodule\n’

175

176 #print(testbench)

177 return testbench

178

179 print(’=’*100)

180 mod_txt ,mode_name ,input_names ,output_names = genNewModVerilogTxt(

readFromFile(r’.\ input.v’))

181

182 test_txt = genNewTestVerilogTxt(mode_name ,input_names ,output_names

)

183

184 writeIntoFile(mode_name + ’.v’,mod_txt)

185 print(mode_name + ’.v’ + ’generated ,file size :{0}KB’.format(

mod_txt.__len__ () /1024))

186 writeIntoFile(’test_’+mode_name+’.v’,test_txt)

187 print(’test_ ’+mode_name+’.v’ + ’generated ,file size :{0}KB’.format(

test_txt.__len__ () /1024))

188 print(’=’*100)

B.2 Verilog code: Design of FSM in self-refreshing

RAM

1 module ECC_RAM_byHM #(

APPENDIX B. SOURCE CODE 166

2 parameter ADDR_WIDTH = ’d19

3)

4 (

5 input clk ,

6 input clk_double ,// double clk

7 input rst_n ,

8 input [7:0] din ,

9 input [ADDR_WIDTH -1:0] addr ,

10 input wea ,

11 output [7:0] dout

12);

13

14

15

16

17 wire [5:0] Code_HM;

18 wire [13:0] Ext_din_ready = {din ,Code_HM };

19

20

21 (* mark_debug = "true "*) reg [13:0] ramport_dina = ’d0;

22 (* mark_debug = "true "*) reg [ADDR_WIDTH -1:0] ramport_addra =

’d0;

23 (* mark_debug = "true "*) reg ramport_wea = ’d0;

24

25 (* mark_debug = "true "*) wire [13:0] ramport_douta;

26 (* mark_debug = "true "*) wire [13:0] ramport_CHK_dout;

27 (* mark_debug = "true "*) reg [13:0] ramport_CHK_dout_d;

28

29 (* mark_debug = "true "*) reg [13:0] ecc_data = ’d0;

30 (* mark_debug = "true "*) reg ecc_ctrl = ’d0;

31 (* mark_debug = "true "*) reg [ADDR_WIDTH -1:0] ecc_addr = ’d0;

32 (* mark_debug = "true "*) wire ecc_err_flg;

33

34 reg [13:0] Ext_din_ready_d;

35 reg wea_d;

APPENDIX B. SOURCE CODE 167

36 reg [ADDR_WIDTH -1:0] addr_d;

37

38 always @ (posedge clk_double) begin

39 ramport_CHK_dout_d <= ramport_CHK_dout;

40

41 if(clk) begin

42 Ext_din_ready_d <= Ext_din_ready;

43 wea_d <= wea;

44 addr_d <= addr;

45 end

46 end

47

48 // RAMPORT IN CONTROL

49 always @(posedge clk_double or negedge rst_n)

50 begin

51 if(~ rst_n)

52 begin

53 ramport_dina <= 14’d0;

54 ramport_wea <= 1’d0;

55 ramport_addra <= 12’d0;

56 end

57 else

58 begin

59 if(~clk)// posedege

60 begin

61 ramport_dina <= Ext_din_ready_d;

62 ramport_wea <= wea_d;

63 ramport_addra <= addr_d;

64 end

65 else

66 begin

67 ramport_dina <= ecc_data;

68 ramport_wea <= ecc_ctrl;

69 ramport_addra <= ecc_addr;

70 end

APPENDIX B. SOURCE CODE 168

71 end

72 end

73

74 //PORT OUT CONTROL

75 reg [13:0] dout_crt ;

76 assign dout = dout_crt [13:6];

77

78

79 always @(posedge clk_double or negedge rst_n)

80 begin

81 if(~ rst_n)

82 begin

83 dout_crt <= 14’d0;

84 end

85 else

86 begin

87 if(clk)

88 dout_crt <= ramport_CHK_dout_d;

89 end

90 end

91

92 //ECC ADDR CONTRIL

93 parameter IDE = 4’d0;

94 parameter CHECK_CRC = 4’d1;

95 parameter REWRITE_CRC = 4’d2;

96 parameter ENDCHECK_NOERROR = 4’d3;

97 parameter ENDCHECK_CORERROR = 4’d4;

98 parameter ENDCHECK_WAITCLK = 4’d5;

99

100 (* mark_debug = "true "*) reg [3:0] fsm_state;

101 reg [ADDR_WIDTH -1:0] last_repair_addr;

102 always @(posedge clk_double or negedge rst_n)

103 begin

104 if(~ rst_n)

105 begin

APPENDIX B. SOURCE CODE 169

106 ecc_addr <= ’d0;

107 ecc_ctrl <= ’b0;

108 fsm_state <= IDE;

109 ecc_data <= ’d0;

110 end

111 else

112 begin

113 case (fsm_state)

114 IDE:

115 begin

116 if(~clk && {wea ,addr} != {1’b1 ,ecc_addr })

117 fsm_state <= CHECK_CRC;

118 else

119 if({wea ,addr} == {1’b1 ,ecc_addr })

120 begin

121 ecc_addr <= ecc_addr - ’d1;

122 end

123 else

124 fsm_state <= IDE;

125 ecc_ctrl <= 1’b0;

126 end

127 CHECK_CRC:

128 begin

129 if({wea ,addr} == {1’b1 ,ecc_addr} || ecc_err_flg == 1’

b0)

130 fsm_state <= ENDCHECK_NOERROR;

131 else

132 if(ecc_err_flg) begin

133 ecc_data <= ramport_CHK_dout; // save the crt value

134 fsm_state <= REWRITE_CRC;

135 end

136 end

137 ENDCHECK_NOERROR:

138 begin

APPENDIX B. SOURCE CODE 170

139 ecc_addr <= ecc_addr - ’d1;

140 fsm_state <= IDE;

141 end

142 REWRITE_CRC:

143 begin

144 last_repair_addr <= ecc_addr;

145 ecc_ctrl <= 1’b1;

146 fsm_state <= ENDCHECK_CORERROR;

147 end

148 ENDCHECK_CORERROR:

149 begin

150 ecc_ctrl <= 1’b0;

151 ecc_addr <= ecc_addr - ’d1;

152 fsm_state <= ENDCHECK_WAITCLK;

153 end

154 ENDCHECK_WAITCLK:

155 begin

156 fsm_state <= IDE;

157 end

158 default : fsm_state <= IDE;

159 endcase

160 end

161 end

162

163

164 Gen_CodeHM GEN_HMcode (

165 .din(din),

166 .code_hm(Code_HM)

167);

168

169

170 CoreRam_4K CORE_RAM (

171 .clka(clk_double),

172 .wea(ramport_wea),

173 .addra(ramport_addra),

APPENDIX B. SOURCE CODE 171

174 .dina(ramport_dina),

175 .douta(ramport_douta)

176);

177

178 Check_CodeHM CHK_HMcode (

179 .din(ramport_douta),

180 .dout(ramport_CHK_dout),

181 .err(ecc_err_flg)

182);

183

184 endmodule

B.3 Shell scripts: build Gstreamer pipelines

1 #! /bin/sh

2 # this is for 4k and 4 channel

3 video =/home/petalinux

4 segback ="ori"

5 branch1 ="reid"

6 sync=" false"

7

8 conf_pre_onlyresize ="\"/ opt/xilinx/share/ivas/cmpk/preprocess/

resize_reid.json \""

9 conf_pp1_status ="\"/ opt/xilinx/share/ivas/cmpk/runstatus/pp1status

.json \""

10 conf_pp2_status ="\"/ opt/xilinx/share/ivas/cmpk/runstatus/pp2status

.json \""

11 conf_pp1_recordfps ="\"/ opt/xilinx/share/ivas/branch1/fpsbranch1.

json \""

12 conf_pp2_recordfps ="\"/ opt/xilinx/share/ivas/branch2/fpsbranch2.

json \""

13 conf_dpu_seg ="\"/ opt/xilinx/share/ivas/cmpk/segmentation/dpu_seg.

json \""

14 conf_draw_seg ="\"/ opt/xilinx/share/ivas/cmpk/segmentation/

APPENDIX B. SOURCE CODE 172

drawSegmentation.json \""

15

16 while getopts f:br:sh opt

17 do

18 case $opt in

19 f)

20 video=$OPTARG

21 ;;

22 b)

23 segback =" black"

24 ;;

25 r)

26 branch1 =" $OPTARG"

27 ;;

28 s)

29 sync="true"

30 echo $sync

31 ;;

32

33 :)

34 echo "-$OPTARG needs an argument"

35 ;;

36 h)

37 echo ""

38 echo "Help:"

39 echo "-f video file source"

40 echo "-b (optional) segmentation use black background"

41 echo "-r (optional) model for branch 1 [(reid),

openopse]"

42 echo ""

43 ;;

44 *)

45 echo "-$opt not recognized"

46 ;;

47 esac

APPENDIX B. SOURCE CODE 173

48 done

49

50 if [-f $video]; then

51 echo "find video: $video"

52 else

53 echo "cant find video file: $video"

54 exit -1

55 fi

56

57

58 if [$sync == ’false ’]; then

59 videosrc_cmd =" multifilesrc location =\"${video }\" ! h264parse !

queue ! omxh264dec ! video/x-raw , format=NV12"

60 tee1_name =" maintee1"

61 tee2_name =" maintee2"

62 teeseg_name ="tseg"

63 tee1_cmd=$videosrc_cmd "!tee name=$tee1_name"

64 tee2_cmd=$videosrc_cmd "!tee name=$tee2_name"

65 teeseg_cmd=$videosrc_cmd "!tee name=$teeseg_name"

66 echo $tee1_cmd

67 echo $tee2_cmd

68 echo $teeseg_cmd

69 else

70 echo "sync video pipeline (fps will drops)"

71 tee1_name =" maintee"

72 tee2_name=$tee1_name

73 teeseg_name=$tee1_name

74 tee1_cmd=$videosrc_cmd "!tee name=$tee1_name"

75 tee2_cmd =" $tee2_name ."

76 teeseg_cmd =" $teeseg_name ."

77 echo tee2_cmd

78 fi

79

80

81 if [$segback == "black"]; then

APPENDIX B. SOURCE CODE 174

82 segbackcmd =" multifilesrc location =\"/ home/petalinux/videos/

black.nv12.h264\" ! h264parse ! queue ! omxh264dec ! video/x-

raw , format=NV12"

83 echo "use black background for segmentation ."

84 else

85 segbackcmd =" $teeseg_name ."

86 echo "use original background for segmentation ."

87 fi

88

89 if [$branch1 == "reid"]; then

90 branch1crop ="\"/ opt/xilinx/share/ivas/aibox -reid/crop.json \""

91 branch1model ="\"/ opt/xilinx/share/ivas/aibox -reid/reid.json \""

92 branch1draw ="\"/ opt/xilinx/share/ivas/aibox -reid/draw_reid.

json \""

93 echo "branch 1: use reid"

94 elif [$branch1 == "openpose"]; then

95 branch1crop ="\"/ opt/xilinx/share/ivas/cmpk/openpose/crop.json

\""

96 branch1model ="\"/ opt/xilinx/share/ivas/cmpk/openpose/openpose.

json \""

97 branch1draw ="\"/ opt/xilinx/share/ivas/cmpk/openpose/draw_pose.

json \""

98 echo "branch 1: use openopse"

99 else

100 echo "branch 1: unsported model: $branch1 [(reid), openpose]"

101 exit 2

102 fi

103

104

105

106

107

108

109 echo | modetest -M xlnx -D b0000000.v_mix -s 52@40 :3840 x2160@NV16

110 gst -launch -1.0 \

APPENDIX B. SOURCE CODE 175

111 multifilesrc location =\"${video }\" ! h264parse ! queue !

omxh264dec ! video/x-raw , format=NV12 \

112 ! tee name=$tee1_name \

113 ! queue \

114 ! ivas_xmultisrc kconfig=$conf_pre_onlyresize \

115 ! queue ! ivas_xfilter name=refinedet kernels -config ="/opt

/xilinx/share/ivas/aibox -reid/refinedet.json" \

116 ! queue ! ivas_xfilter name=crop kernels -config=

$branch1crop \

117 ! queue ! ivas_xfilter kernels -config=$branch1model \

118 ! ima.sink_master ivas_xmetaaffixer name=ima ima.

src_master ! fakesink \

119 $tee1_name. \

120 ! queue \

121 ! ima.sink_slave_0 ima.src_slave_0 \

122 ! queue ! ivas_xfilter kernels -config=$branch1draw \

123 ! queue ! ivas_xfilter kernels -config=$conf_pp1_status \

124 ! queue ! ivas_xfilter kernels -config=$conf_pp1_recordfps \

125 ! queue ! kmssink bus -id=b0000000.v_mix plane -id=34 render -

rectangle =" <0 ,1080 ,1920 ,1080 >" show -preroll -frame=false sync=

false \

126 \

127 $tee2_cmd \

128 ! queue ! ivas_xmultisrc kconfig=$conf_pre_onlyresize \

129 ! queue ! ivas_xfilter kernels -config ="/opt/xilinx/share/

ivas/branch2/dpu_yolo2.json" \

130 ! imacar.sink_master ivas_xmetaaffixer name=imacar imacar.

src_master ! fakesink \

131 $tee2_name. \

132 ! queue \

133 ! imacar.sink_slave_0 imacar.src_slave_0 \

134 ! queue ! ivas_xfilter kernels -config ="/opt/xilinx/share/

ivas/branch2/drawbox.json" \

135 ! queue ! ivas_xfilter kernels -config=$conf_pp2_status

\

APPENDIX B. SOURCE CODE 176

136 ! queue ! ivas_xfilter kernels -config=$conf_pp2_recordfps

\

137 ! queue ! kmssink bus -id=b0000000.v_mix plane -id=36 render

-rectangle =" <1920 ,1080 ,1920 ,1080 >" show -preroll -frame=false

sync=false \

138 \

139 $teeseg_cmd \

140 ! queue ! ivas_xmultisrc kconfig=$conf_pre_onlyresize \

141 ! queue ! ivas_xfilter kernels -config=$conf_dpu_seg \

142 ! imaseg.sink_master ivas_xmetaaffixer name=imaseg imaseg.

src_master ! fakesink \

143 $segbackcmd \

144 ! queue \

145 ! imaseg.sink_slave_0 imaseg.src_slave_0 \

146 ! queue ! ivas_xfilter kernels -config=$conf_draw_seg \

147 ! queue ! kmssink bus -id=b0000000.v_mix plane -id=35 render

-rectangle ="<0 ,0 ,1920 ,1080>" show -preroll -frame=false sync=

false \

148 \

149 multifilesrc location ="/ home/petalinux/videos/back_logo.nv12.

h264" \

150 ! h264parse ! queue ! omxh264dec ! video/x-raw , format=NV12 !

queue \

151 ! ivas_xfilter kernels -config ="/opt/xilinx/share/ivas/cmpk/

analysis /4K/drawPower.json" ! queue \

152 ! ivas_xfilter kernels -config ="/opt/xilinx/share/ivas/cmpk/

analysis /4K/drawTemp.json" ! queue \

153 ! ivas_xfilter kernels -config ="/opt/xilinx/share/ivas/cmpk/

analysis /4K/drawPLTemp.json" ! queue \

154 ! ivas_xfilter kernels -config ="/opt/xilinx/share/ivas/cmpk/

analysis /4K/drawfpsB1.json" ! queue \

155 ! ivas_xfilter kernels -config ="/opt/xilinx/share/ivas/cmpk/

analysis /4K/drawfpsB2.json" ! queue \

156 ! kmssink bus -id=b0000000.v_mix plane -id=37 render -rectangle

=" <1920 ,0 ,1920 ,1080 >" show -preroll -frame=false sync=false \

APPENDIX B. SOURCE CODE 177

1 #! /bin/sh

2 # this is for 1080P output

3 video =/home/petalinux/videos/cars1900.nv12.h264

4 branch1 ="reid"

5 source=file

6 conf_pre_onlyresize ="\"/ opt/xilinx/share/ivas/cmpk/preprocess/

resize_smartcam.json \""

7 conf_pre_seg ="\"/ opt/xilinx/share/ivas/cmpk/segmentation/

preprocess_seg_smartcam.json \""

8 conf_pre_seg=$conf_pre_onlyresize

9 conf_dpu_seg ="\"/ opt/xilinx/share/ivas/cmpk/segmentation/dpu_seg.

json \""

10 conf_draw_seg ="\"/ opt/xilinx/share/ivas/cmpk/segmentation/

drawSegmentationTR.json \""

11

12 while getopts f:br:i:sh opt

13 do

14 case $opt in

15 f)

16 video=$OPTARG

17 ;;

18 b)

19 segback =" black"

20 ;;

21 r)

22 branch1 =" $OPTARG"

23 ;;

24 s)

25 sync="true"

26 echo $sync

27 ;;

28 i)

29 source=$OPTARG

30 ;;

31 :)

APPENDIX B. SOURCE CODE 178

32 echo "-$OPTARG needs an argument"

33 ;;

34 h)

35 echo ""

36 echo "Help:"

37 echo "-f video file source"

38 echo "-b (optional) segmentation use black background"

39 echo "-r (optional) model for branch 1 [(reid),

openopse]"

40 echo ""

41 ;;

42 *)

43 echo "-$opt not recognized"

44 ;;

45 esac

46 done

47

48 if [$source == "usb"]; then

49 source_cmd =""

50 source_cmd=$source_cmd "! video/x-raw , width =1920 , height =1080"

51 source_cmd=$source_cmd "! videoconvert ! video/x-raw , format=

NV12"

52 elif [$source == "mipi"]; then

53 source_cmd =" mediasrcbin media -device =/dev/media0 v4l2src0 ::io-

mode=dmabuf v4l2src0 ::stride -align =256 !video/x-raw , width

=1920 , height =1080 , format=NV12 , framerate =30/1"

54 elif [$source == "file"]; then

55 source_cmd =" multifilesrc location =\"${video }\" ! h264parse !

queue ! omxh264dec ! video/x-raw , format=NV12 , framerate =30/1"

56 else

57 echo "unsupport video source :$source [usb ,mipi ,file]."

58 exit -1

59 fi

60

61 echo $source_cmd

APPENDIX B. SOURCE CODE 179

62

63 if [-f $video]; then

64 echo "find video: $video"

65 else

66 echo "cant find video file: $video"

67 exit -1

68 fi

69

70

71 ivas_xfilter ="! queue ! ivas_xfilter kernels -config ="

72

73 if [$branch1 == "reid"]; then

74 branch1firstmodel ="\"/ opt/xilinx/share/ivas/aibox -reid/

refinedet.json \""

75 branch1crop ="\"/ opt/xilinx/share/ivas/aibox -reid/crop.json \""

76 branch1model ="\"/ opt/xilinx/share/ivas/cmpk/reid/reid.json \""

77 branch1draw ="\"/ opt/xilinx/share/ivas/cmpk/reid/draw_reid.json

\""

78 branch1cmd =" $ivas_xfilter $branch1firstmodel $ivas_xfilter

$branch1crop $ivas_xfilter $branch1model"

79 echo "branch 1: use reid"

80 elif [$branch1 == "carid"]; then

81 branch1firstmodel ="\"/ opt/xilinx/share/ivas/smartcam/myapp/

dpu_yolo2.json \""

82 branch1crop ="\"/ opt/xilinx/share/ivas/aibox -reid/crop.json \""

83 branch1model ="\"/ opt/xilinx/share/ivas/cmpk/reid/reid.json \""

84 branch1draw ="\"/ opt/xilinx/share/ivas/cmpk/reid/draw_reid.json

\""

85 branch1cmd =" $ivas_xfilter $branch1firstmodel $ivas_xfilter

$branch1crop $ivas_xfilter $branch1model"

86 echo "branch 1: use reid"

87 elif [$branch1 == "openpose"]; then

88 branch1firstmodel ="\"/ opt/xilinx/share/ivas/aibox -reid/

refinedet.json \""

89 branch1crop ="\"/ opt/xilinx/share/ivas/cmpk/openpose/crop.json

APPENDIX B. SOURCE CODE 180

\""

90 branch1model ="\"/ opt/xilinx/share/ivas/cmpk/openpose/openpose.

json \""

91 branch1draw ="\"/ opt/xilinx/share/ivas/cmpk/openpose/draw_pose.

json \""

92 branch1cmd =" $ivas_xfilter $branch1firstmodel $ivas_xfilter

$branch1crop $ivas_xfilter $branch1model"

93 echo "branch 1: use openopse"

94 elif [$branch1 == "yolo"]; then

95 branch1firstmodel ="\"/ opt/xilinx/share/ivas/smartcam/myapp/

dpu_yolo2.json \""

96 branch1cmd =" $ivas_xfilter $branch1firstmodel"

97 branch1draw ="\"/ opt/xilinx/share/ivas/smartcam/myapp/drawbox.

json \""

98 else

99 echo error

100 exit -2

101 fi

102

103

104

105

106

107

108 gst -launch -1.0 \

109 $source_cmd \

110 ! tee name=t \

111 ! queue ! ivas_xmultisrc kconfig=$conf_pre_onlyresize \

112 $branch1cmd \

113 ! ima.sink_master ivas_xmetaaffixer name=ima ima.src_master !

fakesink \

114 t. \

115 ! queue \

116 ! ivas_xmultisrc kconfig=$conf_pre_seg \

117 ! queue \

APPENDIX B. SOURCE CODE 181

118 ! ivas_xfilter kernels -config=$conf_dpu_seg \

119 ! ima2.sink_master ivas_xmetaaffixer name=ima2 ima2.src_master

\

120 ! fakesink \

121 t. \

122 ! queue \

123 ! ima.sink_slave_0 ima.src_slave_0 \

124 ! queue \

125 ! ivas_xfilter kernels -config=$branch1draw \

126 ! queue \

127 ! ima2.sink_slave_0 ima2.src_slave_0 \

128 ! queue ! ivas_xfilter kernels -config=$conf_draw_seg \

129 ! queue ! ivas_xfilter kernels -config ="/opt/xilinx/share/ivas/

smartcam/myapp/drawPower.json" \

130 ! queue ! ivas_xfilter kernels -config ="/opt/xilinx/share/ivas/

smartcam/myapp/drawTemp.json" \

131 ! queue ! ivas_xfilter kernels -config ="/opt/xilinx/share/ivas/

smartcam/myapp/drawPerformance.json" \

132 ! queue ! kmssink driver -name=xlnx plane -id=39 sync=false

fullscreen -overlay=true

B.4 Python management interfaces for adaptive

platform

1 import os, sys

2 import time

3 import threading

4 def getFPS ():

5 result= []

6 read_path = "/home/petalinux /.temp/pf_tx"

7 rf = os.open(read_path , os.O_RDONLY)

8 s = b’’

9 while True:

10 try:

APPENDIX B. SOURCE CODE 182

11 s += os.read(rf , 1024)

12 if(len(s) >= 1024):

13 continue

14

15 print("received msg:",len(s))

16 for string in s.split():

17 info = str(string ,encoding = "utf -8").split(’,’)

18 if(info [0] == ’reportFPS ’):

19 result.append(float(info [1]))

20

21 break

22 except NameError as error:

23 print(error)

24 break

25

26 os.close(rf)

27 os.remove(read_path)

28 return result

29 class kv260adpFPS ():

30 _instance_dict = {}

31 busy = False

32 def __new__(cls ,read_path , *args , **kw):

33

34 if(read_path in cls._instance_dict.keys()):

35 print("warning:",read_path ," already in program!")

36 return cls._instance_dict[read_path]

37 cls._instance_dict[read_path] = object.__new__(cls)

38 return cls._instance_dict[read_path]

39

40

41 def __init__(self , read_path ,len = 5):

42 self.read_path = read_path

43 self.len =len

44

45 def get_bytesVersion(self ,timeout = None):

APPENDIX B. SOURCE CODE 183

46 if(self.busy):

47 print("busy")

48 return

49

50 self.result = []

51 self.busy = True

52 if(not os.path.exists(self.read_path)):

53 os.mkfifo(self.read_path)

54 def readfifodata ():

55 self.rf = os.open(self.read_path , os.O_RDONLY)

56 s = b’’

57 while True:

58 s = os.read(self.rf, 1024)

59 if(len(s) >= 1024):

60 continue

61 # print (" received msg:",len(s))

62

63 for string in s.split():

64

65 fps = self.praseFPSStr(str(string ,encoding = "

utf -8"))

66 if(not fps== None):

67 self.result.append(fps)

68 s = b’’

69 if(len(self.result)>= self.len):

70 break

71 time.sleep (0.1)

72

73 os.close(self.rf)

74

75 t1 = threading.Thread(target=readfifodata ,args =())

76 t1.start()

77 t1.join(timeout)

78 os.remove(self.read_path)

79 self.busy = False

APPENDIX B. SOURCE CODE 184

80 return self.result

81

82

83 def praseFPSStr(self ,msg):

84 info = msg.split(’,’)

85 if(info [0] == ’reportFPS ’):

86 try:

87 fps = float(info [1])

88 except:

89 print("invaild data:",info [1])

90 fps = None

91 return fps

92

93

94 def get_fileVersion(self ,timeout = None):

95 if(self.busy):

96 print("busy")

97 return

98 self.results = []

99 self.busy = True

100 if(not os.path.exists(self.read_path)):

101 os.mkfifo(self.read_path)

102 def func():

103 fifo_read_fd = open(self.read_path ,’r’)

104 maxcnt = self.len

105 while(maxcnt >0):

106 line = fifo_read_fd.readline ()

107 if len(line) == 0:

108 time.sleep (0.1)

109 continue

110 maxcnt -=1

111 # print(line)

112 self.results.append(self.praseFPSStr(line))

113 fifo_read_fd.close()

114 t1 = threading.Thread(target=func ,args =())

APPENDIX B. SOURCE CODE 185

115 t1.start()

116 t1.join(timeout)

117 os.remove(self.read_path)

118 self.busy = False

119 return self.results

120 class FIFOSendObj ():

121 _instance_dict = {}

122 busy = False

123 timeout = 1

124

125 def __new__(cls , write_path , *args , **kw):

126 if(write_path in cls._instance_dict.keys()):

127 return cls._instance_dict[write_path]

128 cls._instance_dict[write_path] = object.__new__(cls)

129 return cls._instance_dict[write_path]

130

131 def __init__(self ,write_path , timeout = 1, *args , **kw):

132 self.write_path = write_path

133 self.timeout = timeout

134

135 def writeData2FIFO(self ,msg):

136 if(self.busy):

137 print("Bus is busy")

138 return

139

140 self.busy = True

141 self.istimeout = True

142 def writefifodata(write_path ,msg):

143 if(not os.path.exists(write_path)):

144 os.mkfifo(write_path)

145 fifo_write_fd = open(write_path , ’w’, 1)

146 protect = open(write_path , ’r’)

147 fifo_write_fd.write(msg)

148 fifo_write_fd.flush ()

149 fifo_write_fd.close ()

APPENDIX B. SOURCE CODE 186

150 time.sleep (0.2)

151 protect.close()

152 self.istimeout = False

153 # print ("write finished ")

154

155 self.t1 = threading.Thread(target=writefifodata ,args=(self

.write_path ,msg))

156 self.t1.start ()

157 self.t1.join(self.timeout)

158 if(os.path.exists(self.write_path)):

159 os.remove(self.write_path)

160 self.busy = False

161 if(self.istimeout):

162 print("write fifo timeout!")

163 return False

164 #

165 else:

166 return True

167 class kv260adpModelCtr(object):

168

169 modelname = ""

170 modelpath = ""

171 modelclass = ""

172 enable_str = ["ON","1"]

173 disable_str = ["OFF","0"]

174

175 def __init__(self ,write_path="",*args , **kw):

176 self.write_path = write_path

177 self.timeout = 1;

178

179

180 def checkModelfile(self):

181 if(self.modelname == "" or self.modelpath ==""):

182 assert self.write_path != "" ,"model file path unset"

183

APPENDIX B. SOURCE CODE 187

184 if(not os.path.exists(os.path.join(self.modelpath ,self.

modelname ,self.modelname+’.xmodel ’))):

185 assert self.write_path != "" ,"xmodel file does not

exist!"

186

187 if(not os.path.exists(os.path.join(self.modelpath ,self.

modelname ,self.modelname+’.prototxt ’))):

188 assert self.write_path != "" ,"prototxt file does not

exist!"

189 return True

190

191 def checkModelClass(self):

192 vaildclasses =[’YOLOV3 ’,’FACEDETECT ’,’CLASSIFICATION ’,’SSD’

,’REID’,’REFINEDET ’,’TFSSD’,’YOLOV2 ’,’ROADLINE ’,’SEGMENTATION ’]

193 if(self.modelclass not in vaildclasses):

194 assert self.write_path != "" ,"invalid class , please

use valid calss name :{}".format(vaildclasses)

195

196 return True

197

198 def checkWritePath(self):

199 assert self.write_path != "" ,"please set write path"

200

201 def resetWritePath(self , write_path):

202 if(write_path != ""):

203 self.write_path = write_path;

204 self.checkWritePath ()

205

206 #

===

207 def setNewModel(self ,modelname , modelclass , modelpath ,

write_path = ""):

208 self.resetWritePath(write_path)

209 header = "switch2model"

APPENDIX B. SOURCE CODE 188

210 self.modelname = modelname

211 self.modelpath = modelpath

212 self.modelclass = modelclass

213 self.checkModelfile ()

214 self.checkModelClass ()

215 cmd = "{},{},{},{}".format(header ,self.modelname ,self.

modelclass ,self.modelpath)

216 fifosend = FIFOSendObj(self.write_path ,self.timeout)

217 fifosend.writeData2FIFO(cmd)

218

219 def setNewREIDModel(self ,modelname ,modelpath ,write_path = ""):

220 self.resetWritePath(write_path)

221 header = "switch2reidmodel"

222 self.modelname = modelname

223 self.modelpath = modelpath

224

225 if(not self.checkModelfile ()):

226 return

227

228 cmd = "{},{},{}".format(header ,self.modelname ,self.

modelpath)

229 fifosend = FIFOSendObj(self.write_path ,self.timeout)

230 fifosend.writeData2FIFO(cmd)

231

232 def setDPUInvteral(self ,inverteral ,write_path = ""):

233 self.resetWritePath(write_path)

234 inverteral = int(inverteral)

235 header = "pluginCtr_invteral"

236 if(inverteral <1):

237 print("invalid value:",inverteral)

238 return

239 fifosend = FIFOSendObj(self.write_path ,self.timeout)

240 fifosend.writeData2FIFO(’{},{}’.format(header ,inverteral))

241

242

APPENDIX B. SOURCE CODE 189

243 def setDPUenable(self ,enable ,write_path = ""):

244 self.resetWritePath(write_path)

245 header = "pluginCtr_DPUenable"

246

247

248 if str(enable).upper() in self.enable_str:

249 ctr = 1

250 elif str(enable).upper() in self.disable_str:

251 ctr = 0

252 else:

253 print("invaild",str(enable).upper () ,)

254 return

255

256 fifosend = FIFOSendObj(self.write_path ,self.timeout)

257 fifosend.writeData2FIFO(’{},{}’.format(header ,ctr))

258

259 def setIndicaterUI(self ,on ,write_path = ""):

260 self.resetWritePath(write_path)

261

262 if(on == "ON" or on == 1 or on == "on"):

263 status = 1;

264 else:

265 status = 0;

266

267

268 header = "runindicater"

269 fifosend = FIFOSendObj(self.write_path ,self.timeout)

270 fifosend.writeData2FIFO(’{},{}’.format(header ,status))

271

272 def getFPSfromFile(self , file):

273 f = open(file)

274 line = f.readline ()

275 # print ("fps:",line)

276 return float(str(line))

277

APPENDIX B. SOURCE CODE 190

278 def getSegmentationResult(self ,file):

279 f = open(file)

280 line = f.readline ()

281 rescnt = []

282 p_sum = 0

283 for s in line.split(’,’):

284 rescnt.append(int(s))

285 p_sum += int(s)

286

287 res_normal = [x/p_sum for x in rescnt]

288

289 car_related = rescnt [13] + rescnt [14] + rescnt [15] +

rescnt [17]

290 people_related = rescnt [18] + rescnt [11] + rescnt [12]

291

292 k1 = 0.1

293 k2 = 0.1

294 k3 = 0.2

295 k4 = 1.5

296 if(car_related < k1 and people_related < k2):

297 if(rescnt [0]> k3):

298 return ’car’

299 else:

300 return None

301

302

303 if(car_related > people_related * 1.5):

304 return ’car’

305 else:

306 return ’people ’

307

308

309

310 def getSegRes_FFC ():

311 classification = {-1:"unknown" ,0:"people" ,1:"car" ,2:"road"

APPENDIX B. SOURCE CODE 191

}

312 result = -1

313 read_path = "/home/petalinux /.temp/segresults"

314 rf = os.open(read_path , os.O_RDONLY)

315 s = b’’

316 while True:

317 try:

318 s += os.read(rf, 1024)

319 if(len(s) >= 1024):

320 continue

321 # print (" received msg:",len(s),s)

322 for string in s.split():

323 info = str(string ,encoding = "utf -8").split(’,

’)

324 if(info [0] == ’reportSeg ’ and int(info [1]) in

classification.keys()):

325 result = int(info [1])

326 break

327 except NameError as error:

328 print(error)

329 break

330

331 os.close(rf)

332 os.remove(read_path)

333 return result

334

335

336

337 def reidSwtichModel ():

338 reid_models = [["carid","/opt/xilinx/share/vitis_ai_library/

models/B3136/"],

339 ["personreid -res18_pt","/opt/xilinx/share/

vitis_ai_library/models/kv260 -aibox -reid/"],

340 ["RN18_08","/opt/xilinx/share/vitis_ai_library/

models/B3136/carid/"],

APPENDIX B. SOURCE CODE 192

341 ["RN18_06","/opt/xilinx/share/vitis_ai_library/

models/B3136/carid/"],

342 ["RN18_04","/opt/xilinx/share/vitis_ai_library/

models/B3136/carid/"],

343 ["RN18_02","/opt/xilinx/share/vitis_ai_library/

models/B3136/carid/"]]

344 reid_modelctr = kv260adpModelCtr("/home/petalinux /.temp/reidrx

")

345 reid_modelctr.setNewREIDModel(reid_models [5][0] , reid_models

[5][1])

346

347 def segmentationSwtichModel ():

348 modelctr = kv260adpModelCtr("/home/petalinux /.temp/dpu_seg_rx"

)

349 modelctr.setNewModel("SemanticFPN_cityscapes_256_512","

SEGMENTATION","/opt/xilinx/share/vitis_ai_library/models/B3136/

")

350 modelctr.setNewModel("ENet_cityscapes_pt","SEGMENTATION","/opt

/xilinx/share/vitis_ai_library/models/B3136/")

351 modelctr.setDPUInvteral (10)

352

353

354

355

356

357 def branchSwitch(maxcnt = -1):

358

359 # READ

360 FFC_SEG_RES = "/home/petalinux /.temp/segresults"

361 FFC_FPS_HB = ’/home/petalinux /.temp/pf_tx ’

362 FILE_FPS = ’/home/petalinux /.temp/fps’

363 FILE_FPS1 = ’/home/petalinux /.temp/fps_branch1 ’

364 FILE_FPS2 = ’/home/petalinux /.temp/fps_branch2 ’

365 FILE_SEGMENTATION = ’/home/petalinux /.temp/segres ’

366 # WRITE

APPENDIX B. SOURCE CODE 193

367 FFC_UI_BRANCH1 = ’/home/petalinux /.temp/runstatus1_rx ’

368 FFC_UI_BRANCH2 = ’/home/petalinux /.temp/runstatus2_rx ’

369 FFC_DPU_BRANCH_CAR_CTR = ’/home/petalinux /.temp/dpu_yolo_rx ’

370 FFC_DPU_BRANCH_PEO_CTR =’/home/petalinux /.temp/

dpu_refinedet_rx ’

371 FFC_DPU_SEG_CTR = ’/home/petalinux /.temp/dpu_seg_rx ’

372

373 lastseg = -1

374 traffic_modelctr = kv260adpModelCtr ()

375 traffic_modelctr.setDPUInvteral (30, FFC_DPU_SEG_CTR)

376 while(maxcnt != 0):

377 # fps1 = traffic_modelctr.getFPSfromFile(FILE_FPS1)

378 # fps2 = traffic_modelctr.getFPSfromFile(FILE_FPS2)

379 maxcnt -= 1

380 seg = getSegRes_FFC ()

381 # seg = traffic_modelctr.getSegmentationResult(

FILE_SEGMENTATION)

382 if lastseg != seg:

383 print("do switch",lastseg ,seg)

384 lastseg = seg

385 if(seg in [0]):

386 traffic_modelctr.setIndicaterUI(’on’,

FFC_UI_BRANCH2)

387 traffic_modelctr.setIndicaterUI(’off’,

FFC_UI_BRANCH1)

388 traffic_modelctr.setDPUenable(’on’,

FFC_DPU_BRANCH_CAR_CTR)

389 traffic_modelctr.setDPUenable(’off’,

FFC_DPU_BRANCH_PEO_CTR)

390

391 elif(seg in [1]):

392 traffic_modelctr.setIndicaterUI(’on’,

FFC_UI_BRANCH1)

393 traffic_modelctr.setIndicaterUI(’off’,

FFC_UI_BRANCH2)

APPENDIX B. SOURCE CODE 194

394 traffic_modelctr.setDPUenable(’off’,

FFC_DPU_BRANCH_CAR_CTR)

395 traffic_modelctr.setDPUenable(’on’,

FFC_DPU_BRANCH_PEO_CTR)

396

397 time.sleep (1)

398

399 # traffic_modelctr.setDPUenable(’0’, FFC_DPU_BRANCH_PEO_CTR)

400 # traffic_modelctr.setDPUenable(’on’,FFC_DPU_BRANCH_CAR_CTR)

401 # traffic_modelctr.setDPUenable(’on’,FFC_DPU_BRANCH_CAR_CTR)

402 # traffic_modelctr.setDPUInvteral (30, FFC_DPU_SEG_CTR)

403 # branchSwitch ()

404 # getSegRes_FFC ()

405 branchSwitch ()

B.5 C++ program: VVAS plugins

For more source codes of VVAS pulgins, please refer to https://github.com/l

uyufan498/VVAS CMPK.

B.5.1 Parse commands from the management program

1 int fifoComCtr_DPUInvteral(ivas_xkpriv * kpriv)

2 {

3 std:: string header = "pluginCtr_invteral";

4

5 cmpk:: fifocom *ffc = &kpriv ->ffc;

6 if(ffc ->lines_buffer.size() <(1+1))

7 {

8 return -1;

9 }

10

11 if(ffc ->lines_buffer [0]. compare(header))

12 {

APPENDIX B. SOURCE CODE 195

13 return -1;

14 }

15

16 string num_string = ffc ->lines_buffer [1];

17 int value = atoi(num_string.c_str());

18

19

20 if(value <= 0)

21 {

22

23 LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level , "ffc:

invail interval value %s --> %d",ffc ->lines_buffer [1]. c_str(),

value);

24 return -1;

25 }

26

27 kpriv ->interval_frames = value;

28

29 cout << "reset interval value "<<ffc ->lines_buffer [1]<<" "<<

value <<endl;

30 // LOG_MESSAGE (LOG_LEVEL_DEBUG , kpriv ->log_level , "reset

interval value %d",value);

31

32 return 1;

33 }

34

35

36 int fifoComCtr_DPUenable(ivas_xkpriv * kpriv)

37 {

38 std:: string header = "pluginCtr_DPUenable";

39

40 cmpk:: fifocom *ffc = &kpriv ->ffc;

41 if(ffc ->lines_buffer.size() <(1+1))

42 {

43 return -1;

APPENDIX B. SOURCE CODE 196

44 }

45

46 if(ffc ->lines_buffer [0]. compare(header))

47 {

48 return -1;

49 }

50

51 string num_string = ffc ->lines_buffer [1];

52 int value = atoi(num_string.c_str());

53

54 if(value < 0 or value > 1)

55 {

56 LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level , "ffc:

invail interval value %s --> %d",ffc ->lines_buffer [1]. c_str(),

value);

57 return -1;

58 }

59

60 if(value == 1)

61 {

62 cout << "enable dpu inference:"<<kpriv ->modelname <<endl;

63 kpriv ->enable = true;

64 }

65 else

66 {

67 cout << "disable dpu inference:"<<kpriv ->modelname <<endl;

68 kpriv ->enable = false;

69 }

70

71

72 LOG_MESSAGE (LOG_LEVEL_DEBUG , kpriv ->log_level , "DPU enable: %

d",value);

73

74 return 1;

75 }

APPENDIX B. SOURCE CODE 197

76

77

78 int fifoComCtr_DynamicModel(fifocom *ffc){

79 std:: string header = "switch2model";

80

81 if(ffc ->lines_buffer.size() <(3+1))

82 {

83 return false;

84 }

85

86 if(ffc ->lines_buffer [0]. compare(header))

87 {

88 cout <<"woring header:"<<ffc ->lines_buffer [0]<<endl;

89 return false;

90 }

91

92

93 ffc ->modelinfo.model_name = ffc ->lines_buffer [1];

94 ffc ->modelinfo.model_class = ffc ->lines_buffer [2];

95 ffc ->modelinfo.model_path = ffc ->lines_buffer [3];

96

97

98

99 if (! fileexists (ffc ->modelinfo.model_path))

100 {

101 // check path

102 cout << "ERROR Model Read:"<<ffc ->modelinfo.model_name <<" "

<<ffc ->modelinfo.model_class

103 <<" "<<ffc ->modelinfo.model_path <<endl;

104 return false;

105 }

106

107 cout << "FIFO Model Read:"<<ffc ->modelinfo.model_name <<" "<<ffc

->modelinfo.model_class

108 <<" "<<ffc ->modelinfo.model_path <<endl;

APPENDIX B. SOURCE CODE 198

109

110 return true;

111 }

112

113

114 int loadDynamicModelfromFFC(ivas_xkpriv * kpriv)

115 {

116

117 if(!kpriv ->run_time_model)

118 {

119 return 0;

120 }

121

122 cmpk:: fifocom *ffc = &kpriv ->ffc;

123

124 if(fifoComCtr_DynamicModel(ffc))

125 {

126

127 ivas_xkpriv *tmpxkpriv = (ivas_xkpriv *) calloc (1, sizeof (

ivas_xkpriv));

128 // ivas_xkpriv tmpxkpriv;

129 // add params

130 tmpxkpriv ->modelname = ffc ->modelinfo.model_name;

131 tmpxkpriv ->modelpath = ffc ->modelinfo.model_path;

132 tmpxkpriv ->modelclass = ivas_xclass_to_num ((char*)ffc ->

modelinfo.model_class.c_str ());

133

134

135 tmpxkpriv ->elfname = modelexits (tmpxkpriv);

136 if (tmpxkpriv ->elfname.empty ()) {

137 LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level ,"dynamic

model :%s check failed\n",tmpxkpriv ->modelname.c_str ());

138 return -1;

139 }

140

APPENDIX B. SOURCE CODE 199

141 tmpxkpriv ->need_preprocess = kpriv ->need_preprocess;

142

143 // create

144 tmpxkpriv ->model = ivas_xinitmodel (tmpxkpriv , tmpxkpriv ->

modelclass);

145

146 // LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level ," enter %p

",tmpxkpriv ->model);

147

148

149 if(tmpxkpriv ->model == NULL){

150 LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level ,"dynamic

model :%s intt failed\n",tmpxkpriv ->modelname.c_str ());

151 return -1;

152 }

153

154 cout << tmpxkpriv ->modelpath <<endl;

155 cout << tmpxkpriv ->modelname <<endl;

156 cout << tmpxkpriv ->modelclass <<endl;

157 cout << tmpxkpriv ->elfname <<endl;

158

159 // clear model and label

160 ivas_clean_currentmodel(kpriv);

161

162 // change model

163 kpriv ->modelname = tmpxkpriv ->modelname;

164 kpriv ->modelpath = tmpxkpriv ->modelpath;

165 kpriv ->modelclass = tmpxkpriv ->modelclass;

166 kpriv ->elfname = tmpxkpriv ->elfname;

167

168 // change label

169 kpriv ->labelptr = tmpxkpriv ->labelptr;

170 kpriv ->labelflags = tmpxkpriv ->labelflags;

171 kpriv ->max_labels =tmpxkpriv ->max_labels;

172

APPENDIX B. SOURCE CODE 200

173

174 kpriv ->model = tmpxkpriv ->model;

175

176 free(tmpxkpriv);

177 // kpriv ->modelfmt = tmpxkpriv.modelfmt;

178

179 // // change priority

180 // kpriv ->priority = tmpxkpriv.priority;

181

182 }

183

184 return 1;

185

186 }

187

188 void fifoComCtrAll(ivas_xkpriv * kpriv){

189 cmpk:: fifocom *ffc = &kpriv ->ffc;

190 cmpk:: fifoComRead(ffc);

191

192

193 loadDynamicModelfromFFC(kpriv);

194 fifoComCtr_DPUInvteral(kpriv);

195 fifoComCtr_DPUenable(kpriv);

196

197 }

B.5.2 Conduct inference with DPU

1 #include <opencv2/core.hpp >

2 #include <opencv2/highgui.hpp >

3 #include <opencv2/imgproc.hpp >

4 #include <opencv2/opencv.hpp >

5 #include <sys/time.h>

6 #include <sys/stat.h>

7 #include <unistd.h>

APPENDIX B. SOURCE CODE 201

8 #include <string >

9 #include <fstream >

10

11 #include <vitis/ai/bounded_queue.hpp >

12 #include <vitis/ai/env_config.hpp >

13

14 extern "C"

15 {

16 #include <ivas/ivas_kernel.h>

17 }

18 #include <gst/ivas/gstinferencemeta.h>

19 #include <gst/ivas/gstivasinpinfer.h>

20

21

22 #include "ivas_xdpupriv.hpp"

23 #include "ivas_xdpumodels.hpp"

24

25 #include "../../ cm_package/cmpk_segmentation.hpp"

26 #include "../../ cm_package/cmpk_json_utils.hpp"

27

28 #include "dpuinfer_partial_ffc.hpp"

29 #include "dpuinfer_partial_model.hpp"

30

31

32

33 using namespace cv;

34 using namespace std;

35 using namespace cmpk;

36

37 ivas_xdpumodel ::~ ivas_xdpumodel ()

38 {

39 }

40

41 /**

42 * fileexists () - Check either file exists or not

APPENDIX B. SOURCE CODE 202

43 *

44 * check either able to open the file whoes path is in name

45 *

46 */

47 inline bool

48 fileexists (const string & name)

49 {

50 struct stat buffer;

51 return (stat (name.c_str (), &buffer) == 0);

52 }

53

54 int

55 performanceTestStart(ivas_xkpriv * kpriv)

56 {

57 ivas_perf *pf = &kpriv ->pf;

58 if (kpriv ->performance_test && !kpriv ->pf.test_started) {

59 pf ->timer_start = get_time ();

60 pf ->last_displayed_time = pf->timer_start;

61 pf ->test_started = 1;

62 }

63 return 0;

64 }

65

66

67 int

68 performanceTestRecord(ivas_xkpriv * kpriv)

69 {

70 ivas_perf *pf = &kpriv ->pf;

71

72 pf->frames ++;

73

74 if(!kpriv ->performance_test)

75 return 0;

76

77 if(!kpriv ->pf.test_started)

APPENDIX B. SOURCE CODE 203

78 return 0;

79

80

81 if (get_time () - pf->last_displayed_time >= 1000000.0) {

82 long long current_time = get_time ();

83 double time = (current_time - pf ->last_displayed_time) /

1000000.0;

84 pf->last_displayed_time = current_time;

85 double fps = (time > 0.0) ? ((pf ->frames - pf ->

last_displayed_frame) / time) : 999.99;

86 pf->last_displayed_frame = pf->frames;

87

88 pf->avgFPS = fps;

89

90 if (kpriv ->performance_test && kpriv ->pf.test_started) {

91

92 char buff [20] = {0};

93 sprintf(buff ,"FPS:%f \r",fps);

94 // cmpk:: ivas_fifocommuncation_send_raw(kpriv ->ffc , buff ,

strlen(buff));

95 printf ("\rframe =%5lu fps =%6.*f \r", pf ->frames ,(

fps < 9.995) ? 3 : 2, fps); fflush (stdout);

96 }

97 }

98

99

100

101 return 0;

102 }

103

104

105

106

107 extern "C"

108 {

APPENDIX B. SOURCE CODE 204

109

110 int32_t xlnx_kernel_init (IVASKernel * handle)

111 {

112 ivas_xkpriv *kpriv = (ivas_xkpriv *) calloc (1, sizeof (

ivas_xkpriv));

113 kpriv ->handle = handle;

114

115 json_t *jconfig = handle ->kernel_config;

116 json_t *val ,* karray = NULL ,* jmodel = NULL; /*

kernel config from app */

117

118 XkprivGetJsonData_int(jconfig ,&(kpriv ->log_level),"debug_level

" ,0,3);

119 XkprivGetJsonData_bool(jconfig ,&(kpriv ->run_time_model),"

run_time_model",false , kpriv ->log_level);

120 XkprivGetJsonData_bool(jconfig ,&(kpriv ->performance_test),"

performance_test",false , kpriv ->log_level);

121 XkprivGetJsonData_bool(jconfig ,&(kpriv ->need_preprocess),"

need_preprocess",true , kpriv ->log_level);

122 XkprivGetJsonData_bool(jconfig ,&(kpriv ->enable),"enable",true ,

kpriv ->log_level);

123 XkprivGetJsonData_bool(jconfig ,&(kpriv ->buff_en),"buff_en",

true , kpriv ->log_level);

124

125

126 string tmp_videofmt;

127 XkprivGetJsonData_string(jconfig ,&(tmp_videofmt),"model -format

","BGR", kpriv ->log_level);

128 kpriv ->modelfmt = ivas_fmt_to_xfmt (tmp_videofmt.data());

129 if (kpriv ->modelfmt == IVAS_VMFT_UNKNOWN) {

130 LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level ,"SORRY NOT

SUPPORTED MODEL FORMAT %s" ,(char *) json_string_value (val));

131 goto err;

132 }

133

APPENDIX B. SOURCE CODE 205

134 XkprivGetJsonData_string(jconfig ,&(kpriv ->modelpath),"model -

path","/usr/share/vitis_ai_library/models/", kpriv ->log_level);

135 if (! fileexists (kpriv ->modelpath)) {

136 LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level ,

137 "model -path (%s) not exist", kpriv ->modelpath.c_str ());

138 goto err;

139 }

140

141 LOG_MESSAGE (LOG_LEVEL_DEBUG , kpriv ->log_level , "mid");

142 XkprivGetJsonData_string(jconfig ,&(kpriv ->ffc.txpath),"

ffc_txpath",FIFO_WRITE , kpriv ->log_level);

143 XkprivGetJsonData_string(jconfig ,&(kpriv ->ffc.rxpath),"

ffc_rxpath",FIFO_READ , kpriv ->log_level);

144 XkprivGetJsonData_int(jconfig ,&(kpriv ->ffc.tx_frame_interval),

"tx_frame_interval" ,30,kpriv ->log_level);

145 XkprivGetJsonData_int(jconfig ,&(kpriv ->ffc.rx_frame_interval),

"rx_frame_interval" ,30,kpriv ->log_level);

146 XkprivGetJsonData_int(jconfig ,&(kpriv ->target_fps),"target_fps

" ,30,kpriv ->log_level);

147 XkprivGetJsonData_int(jconfig ,&(kpriv ->interval_frames),"

interval_frames" ,1,kpriv ->log_level);

148

149

150 // typedef int (* xkprivStringProcessAPI)(char *);

151 XkprivGetJsonData_string2Int(jconfig ,&(kpriv ->modelclass),"

model -class",ivas_xclass_to_num ,IVAS_XCLASS_NOTFOUND , kpriv ->

log_level);

152 if (kpriv ->modelclass == IVAS_XCLASS_NOTFOUND) {

153 LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level ,"SORRY NOT

SUPPORTED MODEL CLASS %s" ,(char *) json_string_value (val));

154 goto err;

155 }

156 XkprivGetJsonData_string(jconfig ,&(kpriv ->modelname),"model -

name","", kpriv ->log_level);

157 kpriv ->elfname = modelexits (kpriv);

APPENDIX B. SOURCE CODE 206

158 if (kpriv ->elfname.empty ()) {

159 goto err;

160 }

161

162 XkprivGetJsonData_int(jconfig ,&(kpriv ->priority),"priority" ,0,

kpriv ->log_level);

163 //fifo communication

164 // ---

165

166 LOG_MESSAGE (LOG_LEVEL_INFO , kpriv ->log_level , "model -name = %

s",

167 (char *) json_string_value (val));

168 LOG_MESSAGE (LOG_LEVEL_DEBUG , kpriv ->log_level , "model class

is %d",

169 kpriv ->modelclass);

170 LOG_MESSAGE (LOG_LEVEL_DEBUG , kpriv ->log_level , "elf class is

%s",

171 kpriv ->elfname.c_str ());

172

173 kpriv ->model = ivas_xinitmodel (kpriv , kpriv ->modelclass);

174 ivas_xsetcaps(kpriv ,kpriv ->model);

175 if (kpriv ->model == NULL) {

176 LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level ,

177 "Init ivas_xinitmodel failed for %s", kpriv ->modelname.

c_str ());

178 goto err;

179 }

180

181 handle ->kernel_priv = (void *) kpriv;

182 return true;

183

184 err:

185 free (kpriv);

186 return -1;

187 }

APPENDIX B. SOURCE CODE 207

188

189 uint32_t xlnx_kernel_deinit (IVASKernel * handle)

190 {

191 ivas_xkpriv *kpriv = (ivas_xkpriv *) handle ->kernel_priv;

192 if (! kpriv)

193 return true;

194 LOG_MESSAGE (LOG_LEVEL_DEBUG , kpriv ->log_level , "enter");

195

196 ivas_perf *pf = &kpriv ->pf;

197

198 if (kpriv ->performance_test && kpriv ->pf.test_started) {

199 double time = (get_time () - pf ->timer_start) / 1000000.0;

200 double fps = (time > 0.0) ? (pf ->frames / time) : 999.99;

201 printf ("\rframe =%5lu fps =%6.*f \n", pf ->frames ,

202 (fps < 9.995) ? 3 : 2, fps);

203 }

204 pf ->test_started = 0;

205 pf ->frames = 0;

206 pf ->last_displayed_frame = 0;

207 pf ->timer_start = 0;

208 pf ->last_displayed_time = 0;

209

210 if (!kpriv ->run_time_model) {

211 for (int i = 0; i < int (kpriv ->mlist.size ()); i++) {

212 if (kpriv ->mlist[i]. model) {

213 kpriv ->mlist[i].model ->close ();

214 delete kpriv ->mlist[i]. model;

215 kpriv ->mlist[i]. model = NULL;

216 }

217 kpriv ->model = NULL;

218 }

219 }

220 kpriv ->modelclass = IVAS_XCLASS_NOTFOUND;

221

222 if (kpriv ->model != NULL) {

APPENDIX B. SOURCE CODE 208

223 kpriv ->model ->close ();

224 delete kpriv ->model;

225 kpriv ->model = NULL;

226 }

227 if (kpriv ->labelptr != NULL)

228 free (kpriv ->labelptr);

229

230 ivas_caps_free (handle);

231 free (kpriv);

232

233 return true;

234 }

235

236 uint32_t xlnx_kernel_start (IVASKernel * handle , int start ,

237 IVASFrame * input[MAX_NUM_OBJECT], IVASFrame * output[

MAX_NUM_OBJECT])

238 {

239 ivas_xkpriv *kpriv = (ivas_xkpriv *) handle ->kernel_priv;

240 cmpk:: fifocom *ffc = &kpriv ->ffc;

241 ivas_perf *pf = &kpriv ->pf;

242 GstInferenceMeta *infer_meta = NULL;

243 GstIvasInpInferMeta *ivas_inputmeta = NULL;

244 IVASFrame *inframe = input [0];

245 char *indata = (char *) inframe ->vaddr [0];

246 int ret , i;

247

248 LOG_MESSAGE (LOG_LEVEL_DEBUG , kpriv ->log_level , "enter");

249

250 fifoComCtrAll(kpriv);

251 infer_meta = (GstInferenceMeta *) gst_buffer_add_meta ((

GstBuffer *)inframe ->app_priv , gst_inference_meta_get_info (),

NULL);

252

253 if (infer_meta == NULL) {

254 LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level ,"ivas meta

APPENDIX B. SOURCE CODE 209

data is not available for dpu");

255 return -1;

256 }

257

258

259 if(!kpriv ->enable)

260 {

261 infer_meta ->prediction ->reserved_5 = (void*) -1;

262 return true;

263 }

264

265

266 cv::Mat image;

267 if (input[0]->props.fmt == IVAS_VFMT_BGR8 || input[0]->props.

fmt == IVAS_VFMT_RGB8)

268 image = cv::Mat (input[0]->props.height , input[0]->props.

width , CV_8UC3 , indata , input[0]->props.stride);

269 else {

270 LOG_MESSAGE (LOG_LEVEL_ERROR , kpriv ->log_level , "Not

supported format %d\n", input[0]->props.fmt);

271 return -1;

272 }

273

274 unsigned int width = kpriv ->model ->requiredwidth ();

275 unsigned int height = kpriv ->model ->requiredheight ();

276 if (width != inframe ->props.width || height != inframe ->props.

height) {

277 LOG_MESSAGE (LOG_LEVEL_WARNING , kpriv ->log_level ,"input

image size is [%d,%d], model required size is [%d,%d]",

278 inframe ->props.width ,inframe ->props.height , width , height);

279 // return false; //TODO

280 }

281

282 ret = ivas_xrunmodel (kpriv , image , infer_meta , inframe);

283 performanceTestStart(kpriv);

APPENDIX B. SOURCE CODE 210

284 performanceTestRecord(kpriv);

285

286 return ret;

287 }

288

289 int32_t xlnx_kernel_done (IVASKernel * handle)

290 {

291

292 ivas_xkpriv *kpriv = (ivas_xkpriv *) handle ->kernel_priv;

293 LOG_MESSAGE (LOG_LEVEL_DEBUG , kpriv ->log_level , "enter");

294 return true;

295 }

296

297 }

Bibliography

[1] AMD-Xilinx. All-in-one self-adaptive computing platform for smart city.

https://www.hackster.io/contests/xilinxadaptivecomputing2021,

2022. Accessed: June 15, 2022.

[2] Yufan Lu. All-in-one self-adaptive computing platform for smart city. https:

//www.hackster.io/yufan-lu/all-in-one-self-adaptive-computing-

platform-for-smart-city-933ff2, 2022. Accessed: June 15, 2022.

[3] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning

of language representations. arXiv preprint arXiv:1909.11942, 2019.

[4] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 1–9, 2015.

[5] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-

trained deep neural networks for large-vocabulary speech recognition. IEEE

Transactions on audio, speech, and language processing, 20(1):30–42, 2011.

[6] RCNN Faster. Towards real-time object detection with region pro-

posal networks. Advances in neural information processing systems,

9199(10.5555):2969239–2969250, 2015.

[7] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

211

BIBLIOGRAPHY 212

networks for semantic segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3431–3440, 2015.

[8] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev

Khudanpur. Recurrent neural network based language model. In Interspeech,

volume 2, pages 1045–1048. Makuhari, 2010.

[9] Zhida Bao, Yun Lin, Sicheng Zhang, Zixin Li, and Shiwen Mao. Threat of

adversarial attacks on dl-based iot device identification. IEEE Internet of

Things Journal, 9(11):9012–9024, 2021.

[10] Kaiqiang Zhang, Chris Hutson, James Knighton, Guido Herrmann, and Tom

Scott. Radiation tolerance testing methodology of robotic manipulator prior

to nuclear waste handling. Frontiers in Robotics and AI, 7:6, 2020.

[11] Ying Yang, Kun Yao, Matthew P Repasky, Karl Leswing, Robert Abel,

Brian K Shoichet, and Steven V Jerome. Efficient exploration of chemical

space with docking and deep learning. Journal of Chemical Theory and

Computation, 17(11):7106–7119, 2021.

[12] Lijun Zhao, Qingsheng Li, and Guanhua Ding. Wireless control industrial

robot processing irradiation system based on artificial intelligence technol-

ogy. Wireless Communications and Mobile Computing, 2022, 2022.

[13] Edgar Liberis and Nicholas D Lane. Neural networks on microcon-

trollers: saving memory at inference via operator reordering. arXiv preprint

arXiv:1910.05110, 2019.

[14] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient

processing of deep neural networks: A tutorial and survey. Proceedings of

the IEEE, 105(12):2295–2329, 2017.

[15] Travis DeWolf, Pawel Jaworski, and Chris Eliasmith. Nengo and low-power

ai hardware for robust, embedded neurorobotics. Frontiers in Neurorobotics,

14:568359, 2020.

BIBLIOGRAPHY 213

[16] Dmitrii Shadrin, Alexander Menshchikov, Dmitry Ermilov, and Andrey So-

mov. Designing future precision agriculture: Detection of seeds germination

using artificial intelligence on a low-power embedded system. IEEE Sensors

Journal, 19(23):11573–11582, 2019.

[17] Vivek Kothari, Edgar Liberis, and Nicholas D Lane. The final frontier: Deep

learning in space. In Proceedings of the 21st international workshop on mobile

computing systems and applications, pages 45–49, 2020.

[18] Jaques Reifman. Survey of artificial intelligence methods for detection and

identification of component faults in nuclear power plants. Nuclear Technol-

ogy, 119(1):76–97, 1997.

[19] Richard H Maurer, Martin E Fraeman, Mark N Martin, and David R Roth.

Harsh environments: space radiation. Johns Hopkins APL technical digest,

28(1):17, 2008.

[20] H Vanmarcke. Unscear 2000: sources of ionizing radiation. Annalen van de

Belgische vereniging voor stralingsbescherming, 27(2):41–65, 2002.

[21] George C. Messenger and Milton S. Ash. The effects of radiation on elec-

tronic systems. Van Nostrand Reinhold Co, 1986.

[22] A Campbell, P McDonald, and K Ray. Single event upset rates in space.

IEEE Transactions on Nuclear Science, 39(6):1828–1835, 1992.

[23] Wassim Mansour and Raoul Velazco. An automated seu fault-injection

method and tool for hdl-based designs. IEEE Transactions on Nuclear Sci-

ence, 60(4):2728–2733, 2013.

[24] M Nicolaidis and R Perez. Measuring the width of transient pulses induced

by ionising radiation. In 2003 IEEE International Reliability Physics Sym-

posium Proceedings, 2003. 41st Annual., pages 56–59. IEEE, 2003.

BIBLIOGRAPHY 214

[25] P Fernández-Mart́ınez, I Cortés, S Hidalgo, D Flores, and FR Palomo. Sim-

ulation of total ionising dose in mos capacitors. In Proceedings of the 8th

Spanish Conference on Electron Devices, CDE’2011, pages 1–4. IEEE, 2011.

[26] Daisuke Kobayashi. Scaling trends of digital single-event effects: A survey of

seu and set parameters and comparison with transistor performance. IEEE

Transactions on Nuclear Science, pages 1–1, 2020.

[27] Paul E Dodd. Physics-based simulation of single-event effects. IEEE Trans-

actions on Device and Materials Reliability, 5(3):343–357, 2005.

[28] Boyang Du, Josie E Rodriguez Condia, M Sonza Reorda, and Luca Sterpone.

On the evaluation of seu effects in gpgpus. In 2019 IEEE Latin American

Test Symposium (LATS), pages 1–6. IEEE, 2019.

[29] Yi Sun, Hong-Wei Zhang, Zhi-Chao Wei, Qing-Kui Yu, Min Tang, Chen

Shen, and Ding Gong. Heavy ion-and proton-induced seu simulation and

error rates calculation in 0.15 um sram-based fpga. In 2019 3rd Interna-

tional Conference on Circuits, System and Simulation (ICCSS), pages 84–88.

IEEE, 2019.

[30] Daniela Munteanu and J-L Autran. Modeling and simulation of single-event

effects in digital devices and ics. IEEE Transactions on Nuclear science,

55(4):1854–1878, 2008.

[31] Robért Glein, Bernhard Schmidt, Florian Rittner, Jürgen Teich, and Daniel

Ziener. A self-adaptive seu mitigation system for fpgas with an internal

block ram radiation particle sensor. In 2014 IEEE 22nd Annual Inter-

national Symposium on Field-Programmable Custom Computing Machines,

pages 251–258. IEEE, 2014.

[32] Adam Jacobs, Grzegorz Cieslewski, Alan D George, Ann Gordon-Ross, and

Herman Lam. Reconfigurable fault tolerance: A comprehensive framework

BIBLIOGRAPHY 215

for reliable and adaptive fpga-based space computing. ACM Transactions

on Reconfigurable Technology and Systems (TRETS), 5(4):1–30, 2012.

[33] Po-Yuan Chen, Chin-Lung Su, Chao-Hsun Chen, and Cheng-Wen Wu. Gen-

eralization of an Enhanced ECC Methodology for Low Power PSRAM. IEEE

Transactions on Computers, 62(7):1318–1331, jul 2013.

[34] Enrico Petritoli and Fabio Leccese. Reliability andSEE mitigation in

memories for space applications. In 2016 IEEE Metrology for Aerospace

(MetroAeroSpace), pages 136–140. IEEE, jun 2016.

[35] Salvatore Bianchi, Roberto Paggi, Gian Luca Mariotti, and Fabio Leccese.

Why and when must the preventive maintenance be performed? In 2014

IEEE Metrology for Aerospace (MetroAeroSpace), pages 221–226. IEEE, may

2014.

[36] Shahin Golshan, Hessam Kooti, and Elaheh Bozorgzadeh. Seu-aware high-

level data path synthesis and layout generation on sram-based fpgas. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

30(6):829–840, 2011.

[37] Mohammad Reza Rohanipoor, Behnam Ghavami, and Mohsen Raji. Im-

proving combinational circuit reliability against multiple event transients via

a partition and restructuring approach. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 2019.

[38] F Lima Kastensmidt, Luca Sterpone, Luigi Carro, and M Sonza Reorda. On

the optimal design of triple modular redundancy logic for sram-based fpgas.

In Design, Automation and Test in Europe, pages 1290–1295. IEEE, 2005.

[39] W Cary Huffman and Vera Pless. Fundamentals of error-correcting codes.

Cambridge university press, 2010.

[40] I. Herrera-Alzu and M. Lopez-Vallejo. Design Techniques for Xilinx Virtex

BIBLIOGRAPHY 216

FPGA Configuration Memory Scrubbers. IEEE Transactions on Nuclear

Science, 60(1):376–385, feb 2013.

[41] Tianming Jiang, Ping Huang, and Ke Zhou. Scrub unleveling: Achieving

high data reliability at low scrubbing cost. In 2019 Design, Automation &

Test in Europe Conference & Exhibition (DATE), pages 1403–1408. IEEE,

2019.

[42] Namhyung Kim and Kiyoung Choi. A design guideline for volatile STT-

RAM with ECC and scrubbing. In ISOCC 2015 - International SoC Design

Conference: SoC for Internet of Everything (IoE), pages 29–30. IEEE, nov

2016.

[43] Gian Mayuga, Yasuo Sato, and Michiko Inoue. Highly reliable memory ar-

chitecture using adaptive combination of proactive aging-aware in-field self-

repair and ecc. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2019.

[44] Wooyoung Jang. Error-correcting code aware memory subsystem. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

33(11):1706–1717, 2014.

[45] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram errors

in the wild: a large-scale field study. ACM SIGMETRICS Performance

Evaluation Review, 37(1):193–204, 2009.

[46] Jangwoo Kim, Nikos Hardavellas, Ken Mai, Babak Falsafi, and James Hoe.

Multi-bit error tolerant caches using two-dimensional error coding. In 40th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO

2007), pages 197–209. IEEE, 2007.

[47] Raed Mesleh, Omar Hiari, and Abdelhamid Younis. Generalized space mod-

ulation techniques: Hardware design and considerations. Physical Commu-

nication, 26:87–95, 2018.

BIBLIOGRAPHY 217

[48] Wei-Kai Cheng, Xin-Lun Li, and Jian-Kai Chen. Integration scheme for

retention-aware DRAM refresh. In 2017 International Conference on Elec-

tron Devices and Solid-State Circuits (EDSSC), pages 1–2. IEEE, oct 2017.

[49] Nour Sayed, Sarath Mohanachandran Nair, Rajendra Bishnoi, and Mehdi B.

Tahoori. Process variation and temperature aware adaptive scrubbing for

retention failures in STT-MRAM. In 2018 23rd Asia and South Pacific

Design Automation Conference (ASP-DAC), pages 203–208. IEEE, jan 2018.

[50] Wei-Chen Wang, Chien-Chung Ho, Yuan-Hao Chang, Tei-Wei Kuo, and

Ping-Hsien Lin. Scrubbing-Aware Secure Deletion for 3-D NAND Flash.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 37(11):2790–2801, nov 2018.

[51] Hooman Farzaneh, Ladan Malehmirchegini, Adrian Bejan, Taofeek Afolabi,

Alphonce Mulumba, and Precious P Daka. Artificial intelligence evolution

in smart buildings for energy efficiency. Applied Sciences, 11(2):763, 2021.

[52] Gianluca Furano, Gabriele Meoni, Aubrey Dunne, David Moloney, Veronique

Ferlet-Cavrois, Antonis Tavoularis, Jonathan Byrne, Léonie Buckley, Mihalis

Psarakis, Kay-Obbe Voss, et al. Towards the use of artificial intelligence on

the edge in space systems: Challenges and opportunities. IEEE Aerospace

and Electronic Systems Magazine, 35(12):44–56, 2020.

[53] Yanjiao Chen, Baolin Zheng, Zihan Zhang, Qian Wang, Chao Shen, and

Qian Zhang. Deep learning on mobile and embedded devices: State-of-the-

art, challenges, and future directions. ACM Computing Surveys (CSUR),

53(4):1–37, 2020.

[54] Claire L Parkinson. Aqua: An earth-observing satellite mission to examine

water and other climate variables. IEEE Transactions on Geoscience and

Remote Sensing, 41(2):173–183, 2003.

BIBLIOGRAPHY 218

[55] Robert Bogue. Robots in the nuclear industry: a review of technologies and

applications. Industrial Robot: An International Journal, 2011.

[56] David Sands. Cost effective robotics in the nuclear industry. Industrial

Robot: An International Journal, 2006.

[57] Dongjoon Park, Yuanlong Xiao, and André DeHon. Fast and flexible fpga

development using hierarchical partial reconfiguration. In 2022 International

Conference on Field-Programmable Technology (ICFPT), pages 1–10. IEEE,

2022.

[58] Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng

Wang. Adaptive deep learning model selection on embedded systems. ACM

SIGPLAN Notices, 53(6):31–43, 2018.

[59] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture

search: A survey. Journal of Machine Learning Research, 20(55):1–21, 2019.

[60] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once

for all: Train one network and specialize it for efficient deployment. In

International Conference on Learning Representations, 2020.

[61] Mahesh Kumar, Durga Digdarsini, Neeraj Misra, and T. V.S. Ram. SEU

mitigation of Rad-Tolerant Xilinx FPGA using external scrubbing for geosta-

tionary mission. In 2017 4th International Conference on Signal Processing

and Integrated Networks, SPIN 2017, pages 414–418. IEEE, feb 2017.

[62] Ju-Yueh Lee, Cheng-Ru Chang, Naifeng Jing, Juexiao Su, Shijie Wen, Rich

Wong, and Lei He. Heterogeneous configuration memory scrubbing for

soft error mitigation in fpgas. In 2012 International Conference on Field-

Programmable Technology, pages 23–28. IEEE, 2012.

[63] Raffaele Giordano, Sabrina Perrella, Vincenzo Izzo, Giuliana Milluzzo, and

Alberto Aloisio. Redundant-configuration scrubbing of sram-based fpgas.

IEEE Transactions on Nuclear Science, 64(9):2497–2504, 2017.

BIBLIOGRAPHY 219

[64] Rong-Sheng Zhang, Li-Yi Xiao, Xue-Bing Cao, Jie Li, Jia-Qiang Li, and

Lin-Zhe Li. A Fast Scrubbing Method Based on Triple Modular Redundancy

for SRAM-Based FPGAs. In 2018 14th IEEE International Conference on

Solid-State and Integrated Circuit Technology (ICSICT), pages 1–3. IEEE,

oct 2018.

[65] Wilmot N Hess. Van allen belt protons from cosmic-ray neutron leakage.

Physical Review Letters, 3(1):11, 1959.

[66] John E Naugle and Donald A Kniffen. Flux and energy spectra of the protons

in the inner van allen belt. Physical Review Letters, 7(1):3, 1961.

[67] James Alfred Van Allen, George H Ludwig, Ernest Clark Ray, and Carl E

McIlwain. Observation of high intensity radiation by satellites 1958 alpha

and gamma. Journal of Jet Propulsion, 28(9):588–592, 1958.

[68] SR Elkington, MK Hudson, and AA Chan. Enhanced radial diffusion of

outer zone electrons in an asymmetric geomagnetic field. In AGU Spring

Meeting Abstracts, volume 2001, pages SM32C–04, 2001.

[69] YY Shprits and RM Thorne. Time dependent radial diffusion modeling of

relativistic electrons with realistic loss rates. Geophysical research letters,

31(8), 2004.

[70] Stefano Gabici, Carmelo Evoli, Daniele Gaggero, Paolo Lipari, Philipp

Mertsch, Elena Orlando, Andrew Strong, and Andrea Vittino. The origin

of galactic cosmic rays: Challenges to the standard paradigm. International

Journal of Modern Physics D, 28(15):1930022, 2019.

[71] JA Simpson. Elemental and isotopic composition of the galactic cosmic rays.

Annual Review of Nuclear and Particle Science, 33(1):323–382, 1983.

[72] Giuseppe Di Sciascio. Measurement of energy spectrum and elemental com-

position of pev cosmic rays: Open problems and prospects. Applied Sciences,

12(2):705, 2022.

BIBLIOGRAPHY 220

[73] M Kachelrieß, O Kalashev, S Ostapchenko, and DV Semikoz. Minimal model

for extragalactic cosmic rays and neutrinos. Physical Review D, 96(8):083006,

2017.

[74] Sébastien Bourdarie and Michael Xapsos. The near-earth space radiation

environment. IEEE transactions on nuclear science, 55(4):1810–1832, 2008.

[75] Isabelle Lange and Scott E Forbush. Further note on the effect on cosmic-ray

intensity of the magnetic storm of march 1, 1942. Terrestrial Magnetism and

Atmospheric Electricity, 47(4):331–334, 1942.

[76] Silvia Mollerach and Esteban Roulet. Progress in high-energy cosmic ray

physics. Progress in Particle and Nuclear Physics, 98:85–118, 2018.

[77] Clive Dyer and David Rodgers. Effects on spacecraft & aircraft electronics.

In Proceedings ESA Workshop on Space Weather, ESA WPP-155, pages

17–27, 1998.

[78] Daniel C Wilkinson, Stuart C Daughtridge, John L Stone, Herbert H Sauer,

and Phil Darling. Tdrs-1 single event upsets and the effect of the space

environment. IEEE Transactions on Nuclear Science, 38(6):1708–1712, 1991.

[79] L Adams, EJ Daly, R Harboe-Sorensen, R Nickson, J Haines, W Schafer,

M Conrad, H Griech, J Merkel, T Schwall, et al. A verified proton in-

duced latch-up in space (cmos sram). IEEE Transactions on Nuclear Science,

39(6):1804–1808, 1992.

[80] DT Bartlett. Radiation protection aspects of the cosmic radiation exposure

of aircraft crew. Radiation protection dosimetry, 109(4):349–355, 2004.

[81] Erich Regener and Georg Pfotzer. Vertical intensity of cosmic rays by three-

fold coincidences in the stratosphere. Nature, 136(3444):718–719, 1935.

[82] Timothy J O’Gorman, John M Ross, Allen H Taber, James F Ziegler, Hans P

Muhlfeld, Charles J Montrose, Huntington W Curtis, and James L Walsh.

BIBLIOGRAPHY 221

Field testing for cosmic ray soft errors in semiconductor memories. IBM

Journal of Research and Development, 40(1):41–50, 1996.

[83] James F Ziegler and William A Lanford. Effect of cosmic rays on computer

memories. Science, 206(4420):776–788, 1979.

[84] Janet L Barth, CS Dyer, and EG Stassinopoulos. Space, atmospheric, and

terrestrial radiation environments. IEEE Transactions on nuclear science,

50(3):466–482, 2003.

[85] VA Naumov and TS Sinegovskaya. Simple method for solving transport

equations describing the propagation of cosmic-ray nucleons in the atmo-

sphere. Physics of Atomic Nuclei, 63(11):1927–1935, 2000.

[86] James F Ziegler, Huntington W Curtis, Hans P Muhlfeld, Charles J Mon-

trose, B Chin, Michael Nicewicz, CA Russell, Wen Y Wang, Leo B Freeman,

P Hosier, et al. Ibm experiments in soft fails in computer electronics (1978–

1994). IBM journal of research and development, 40(1):3–18, 1996.

[87] M Caldwell and P D’Antonio. A study of using electronics for nuclear weapon

detonation safety. In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Con-

ference and Exhibit, page 3465, 1998.

[88] Energy Department for Business and Industrial Strategy. UK Energy in

Brief 2021. https://assets.publishing.service.gov.uk/government/

uploads/system/uploads/attachment data/file/1032260/UK Energy i

n Brief 2021.pdf, 24 January 2022. Accessed: 2022-06-17.

[89] Boris M Bolotovskii. Vavilov–cherenkov radiation: its discovery and appli-

cation. Physics-Uspekhi, 52(11):1099, 2009.

[90] N Ezell, Kyle Reed, and Milton Ericson. Radiation-hard electronics for

nuclear instrumentation in terrestrial reactors. Technical report, Oak Ridge

National Lab.(ORNL), Oak Ridge, TN (United States), 2021.

BIBLIOGRAPHY 222

[91] L. Gonella, F. Faccio, M. Silvestri, S. Gerardin, D. Pantano, V. Re,

M. Manghisoni, L. Ratti, and A. Ranieri. Total Ionizing Dose effects in

130-nm commercial CMOS technologies for HEP experiments. Nuclear In-

struments and Methods in Physics Research, Section A: Accelerators, Spec-

trometers, Detectors and Associated Equipment, 582(3):750–754, dec 2007.

[92] Yan Liu, Wei Chen, Chaohui He, Chunlei Su, Chenhui Wang, Xiaoming Jin,

Junlin Li, and Yuanyuan Xue. Analysis of displacement damage effects on

bipolar transistors irradiated by spallation neutrons. Chinese Physics B,

28(6):067302, 2019.

[93] Sangeet Saha, Shoaib Ehsan, Adrian Stoica, Rustam Stolkin, and Klaus

McDonald-Maier. Real-Time Application Processing for FPGA-Based Re-

silient Embedded Systems in Harsh Environments. In 2018 NASA/ESA

Conference on Adaptive Hardware and Systems, AHS 2018, pages 299–304.

Institute of Electrical and Electronics Engineers Inc., nov 2018.

[94] Edward Petersen. Single event effects in aerospace. John Wiley & Sons,

2011.

[95] Rémi Gaillard. Single event effects: Mechanisms and classification. In Soft

errors in modern electronic systems, pages 27–54. Springer, 2011.

[96] Paul E Dodd, Marty R Shaneyfelt, James A Felix, and James R Schwank.

Production and propagation of single-event transients in high-speed digital

logic ics. IEEE Transactions on Nuclear Science, 51(6):3278–3284, 2004.

[97] Johan Karlsson, Peter Liden, Peter Dahlgren, Rolf Johansson, and Ulf Gun-

neflo. Using heavy-ion radiation to validate fault-handling mechanisms.

IEEE micro, 14(1):8–23, 1994.

[98] Alexey O Akhmetov, Andrey V Yanenko, and Anatoliy I Bazhan. Proton

accelerator with adjustable energy for ics radiation test. In 2013 14th Euro-

BIBLIOGRAPHY 223

pean Conference on Radiation and Its Effects on Components and Systems

(RADECS), pages 1–3. IEEE, 2013.

[99] S Buchner, D McMorrow, J Melinger, and AB Camdbell. Laboratory tests

for single-event effects. IEEE Transactions on Nuclear Science, 43(2):678–

686, 1996.

[100] TK Sanderson, D Mapper, JH Stephen, and J Farren. Use of a 252cf source

in cosmic ray simulation studies on cmos memories. Electronics Letters,

19(10):373–374, 1983.

[101] Simon Platt, ZoltÁn Torok, Chris D Frost, and Stuart Ansell. Charge-

collection and single-event upset measurements at the isis neutron source.

IEEE Transactions on Nuclear Science, 55(4):2126–2132, 2008.

[102] J Baggio, D Lambert, V Ferlet-Cavrois, P Paillet, C Marcandella, and

O Duhamel. Single event upsets induced by 1–10 mev neutrons in static-

rams using mono-energetic neutron sources. IEEE Transactions on Nuclear

Science, 54(6):2149–2155, 2007.

[103] JS Melinger, S Buchner, D McMorrow, WJ Stapor, TR Weatherford,

AB Campbell, and H Eisen. Critical evaluation of the pulsed laser method

for single event effects testing and fundamental studies. IEEE Transactions

on Nuclear Science, 41(6):2574–2584, 1994.

[104] RI Smith, S Hull, MG Tucker, HY Playford, DJ McPhail, SP Waller, and

ST Norberg. The upgraded polaris powder diffractometer at the isis neutron

source. Review of scientific instruments, 90(11):115101, 2019.

[105] Terry Ma, Victor Moroz, Ricardo Borges, Karim El Sayed, Plamen Asenov,

and Asen Asenov. Future perspectives of tcad in the industry. In 2016 Inter-

national Conference on Simulation of Semiconductor Processes and Devices

(SISPAD), pages 335–339. IEEE, 2016.

BIBLIOGRAPHY 224

[106] Xuebing Cao, Liyi Xiao, Jie Li, Rongsheng Zhang, Shanshan Liu, and Jinx-

iang Wang. A layout-based soft error vulnerability estimation approach for

combinational circuits considering single event multiple transients (semts).

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 38(6):1109–1122, 2018.

[107] Mojtaba Ebrahimi, Hossein Asadi, Rajendra Bishnoi, and Mehdi B Tahoori.

Layout-based modeling and mitigation of multiple event transients. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

35(3):367–379, 2015.

[108] Jinshun Bi, Bo Li, Zhengsheng Han, Jiajun Luo, Li Chen, and Xuefang Lin-

Shi. 3d tcad simulation of single-event-effect in n-channel transistor based

on deep sub-micron fully-depleted silicon-on-insulator technology. In 2014

12th IEEE International Conference on Solid-State and Integrated Circuit

Technology (ICSICT), pages 1–3. IEEE, 2014.

[109] AF Petrie and Charles Hymowitz. A spice model for igbts. In Proceedings of

1995 IEEE Applied Power Electronics Conference and Exposition-APEC’95,

volume 1, pages 147–152. IEEE, 1995.

[110] Chang Hoon Jeon, Jae Gwang Um, Mallory Mativenga, and Jin Jang. Fast

threshold voltage compensation amoled pixel circuit using secondary gate

effect of dual gate a-igzo tfts. IEEE Electron Device Letters, 37(11):1450–

1453, 2016.

[111] Omid Kavehei, Said F Al-Sarawi, and Derek Abbott. An automated ap-

proach for evaluating spatial correlation in mixed signal designs using syn-

opsys hspice®. Citeseer, 2009.

[112] Roy W Goody. OrCAD Pspice for Windows Volume 1: DC and AC Circuits.

Prentice Hall PTR, 2000.

BIBLIOGRAPHY 225

[113] Nisha Yadav, Shireesh Kumar Rai, and Rishikesh Pandey. New grounded

and floating memristor emulators using ota and cdba. International Journal

of Circuit Theory and Applications, 48(7):1154–1179, 2020.

[114] K Castellani-Coulie, Marc Bocquet, Hassen Aziza, Jean Michel Portal,

Wenceslas Rahajandraibe, and Christophe Muller. Spice level analysis of

single event effects in an oxrram cell. In 2013 14th Latin American Test

Workshop-LATW, pages 1–5. IEEE, 2013.

[115] Neil Rostand, Sebastien Martinie, Joris Lacord, Olivier Rozeau, Olivier Bil-

loint, Jean-Charles Barbé, Thierry Poiroux, and Guillaume Hubert. Com-

pact modelling of single event transient in bulk mosfet for spice: Applica-

tion to elementary circuit. In 2018 International Conference on Simulation

of Semiconductor Processes and Devices (SISPAD), pages 364–368. IEEE,

2018.

[116] Tze Sin Tan and Bakhtiar Affendi Rosdi. Verilog hdl simulator technology:

a survey. Journal of Electronic Testing, 30(3):255–269, 2014.

[117] Wassim Mansour, Raoul Velazco, Rafic Ayoubi, Haissam Ziade, and Wassim

El Falou. A method and an automated tool to perform set fault-injection on

hdl-based designs. In 2013 25th International Conference on Microelectronics

(ICM), pages 1–4. IEEE, 2013.

[118] Mohammad Shokrolah-Shirazi and Seyed Ghassem Miremadi. Fpga-based

fault injection into synthesizable verilog hdl models. In 2008 Second Interna-

tional Conference on Secure System Integration and Reliability Improvement,

pages 143–149. IEEE, 2008.

[119] Stan D Phillips, Kurt A Moen, Laleh Najafizadeh, Ryan M Diestelhorst,

Akil Khamsi Sutton, John D Cressler, Gyorgy Vizkelethy, Paul E Dodd,

and Paul W Marshall. A comprehensive understanding of the efficacy of n-

BIBLIOGRAPHY 226

ring see hardening methodologies in sige hbts. IEEE Transactions on Nuclear

Science, 57(6):3400–3406, 2010.

[120] JM Benedetto, PH Eaton, DG Mavis, M Gadlage, and T Turflinger. Vari-

ation of digital set pulse widths and the implications for single event hard-

ening of advanced cmos processes. IEEE Transactions on Nuclear Science,

52(6):2114–2119, 2005.

[121] M Sonza Reorda, Massimo Violante, Cristina Meinhardt, and Ricardo Reis.

A low-cost see mitigation solution for soft-processors embedded in systems

on pogrammable chips. In 2009 Design, Automation & Test in Europe Con-

ference & Exhibition, pages 352–357. IEEE, 2009.

[122] Felix Siegle, Tanya Vladimirova, Jørgen Ilstad, and Omar Emam. New voter

design enabling hot redundancy for asynchronous network nodes. In 2014

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages

23–30. IEEE, 2014.

[123] Jonathan Johnson, William Howes, Michael Wirthlin, Daniel L McMurtrey,

Michael Caffrey, Paul Graham, and Keith Morgan. Using duplication with

compare for on-line error detection in fpga-based designs. In 2008 IEEE

Aerospace Conference, pages 1–11. IEEE, 2008.

[124] Byonghyo Shim, Srinivasa R Sridhara, and Naresh R Shanbhag. Reliable

low-power digital signal processing via reduced precision redundancy. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 12(5):497–

510, 2004.

[125] Kuang-Hua Huang and Jacob A Abraham. Algorithm-based fault tolerance

for matrix operations. IEEE transactions on computers, 100(6):518–528,

1984.

[126] Felix Siegle, Tanya Vladimirova, Jørgen Ilstad, and Omar Emam. Mitiga-

BIBLIOGRAPHY 227

tion of radiation effects in sram-based fpgas for space applications. ACM

Computing Surveys (CSUR), 47(2):1–34, 2015.

[127] Fernanda Lima, C Carmichael, J Fabula, R Padovani, and Ricardo Reis. A

fault injection analysis of virtex fpga tmr design methodology. In RADECS

2001. 2001 6th European Conference on Radiation and Its Effects on Com-

ponents and Systems (Cat. No. 01TH8605), pages 275–282. IEEE, 2001.

[128] MJ Wirthlin, Nathan Rollins, PS Graham, and MP Caffrey. Hardness by

design technique for field programmable gate arrays. Technical report, Cite-

seer, 2003.

[129] Keith S Morgan, Daniel L McMurtrey, Brian H Pratt, and Michael J Wirth-

lin. A comparison of tmr with alternative fault-tolerant design techniques

for fpgas. IEEE transactions on nuclear science, 54(6):2065–2072, 2007.

[130] Manoj Franklin and Kewal K Saluja. Pattern sensitive fault testing of

rams with built-in ecc. In Digest of Papers. Fault-Tolerant Computing: The

Twenty-First International Symposium, pages 385–386. IEEE Computer So-

ciety, 1991.

[131] J. Yamada, T. Mano, J. Inoue, S. Nakajima, and T. Matsuda. A submicron

1 Mbit dynamic RAM with a 4-bit-at-a-time built-in ECC circuit. IEEE

Journal of Solid-State Circuits, 19(5):627–633, oct 1984.

[132] T. Yamada, H. Kotani, J. Matsushima, and M. Inoue. A 4-Mbit DRAM with

16-bit concurrent ECC. IEEE Journal of Solid-State Circuits, 23(1):20–26,

feb 1988.

[133] J. Yamada. Selector-line merged built-in ECC technique for DRAMs. IEEE

Journal of Solid-State Circuits, 22(5):868–873, oct 1987.

[134] Juhyung Hong, Jeongbin Kim, Sangwoo Han, and Eui-Young Chung. A

locality-aware compression scheme for highly reliable embedded systems.

BIBLIOGRAPHY 228

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 38(3):453–465, 2018.

[135] Panagiota Papavramidou and Michael Nicolaidis. Iterative diagnosis ap-

proach for ecc-based memory repair. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2018.

[136] M. Asakura, Y. Matsuda, H. Hidaka, Y. Tanaka, and K. Fujishima. An

experimental 1-Mbit cache DRAM with ECC. IEEE Journal of Solid-State

Circuits, 25(1):5–10, 1990.

[137] M. Y. Hsiao. A Class of Optimal Minimum Odd-weight-column SEC-DED

Codes. IBM Journal of Research and Development, 14(4):395–401, jul 1970.

[138] Umberto Mart́ınez-Peñas and Frank R Kschischang. Reliable and secure

multishot network coding using linearized reed-solomon codes. IEEE Trans-

actions on Information Theory, 2019.

[139] Matthew Walters and Sujoy Sinha Roy. Constant-time bch error-correcting

code. IACR Cryptology ePrint Archive, 2019:155, 2019.

[140] Jen-Wei Hsieh, Chung-Wei Chen, and Han-Yi Lin. Adaptive ecc scheme for

hybrid ssd’s. IEEE Transactions on Computers, 64(12):3348–3361, 2015.

[141] Felix Siegle, Tanya Vladimirova, Jorgen Ilstad, and Omar Emam. Availabil-

ity analysis for satellite data processing systems based on sram fpgas. IEEE

Transactions on Aerospace and Electronic Systems, 52(3):977–989, 2016.

[142] Amr M.S. Tosson, Mohab Anis, and Lan Wei. RRAM Refresh Circuit.

In Proceedings of the 26th edition on Great Lakes Symposium on VLSI -

GLSVLSI ’16, pages 227–232, New York, New York, USA, 2016. ACM Press.

[143] Luca Sterpone and Massimo Violante. A new partial reconfiguration-based

fault-injection system to evaluate seu effects in sram-based fpgas. IEEE

Transactions on Nuclear Science, 54(4):965–970, 2007.

BIBLIOGRAPHY 229

[144] Andrew M Keller and Michael J Wirthlin. Benefits of complementary seu

mitigation for the leon3 soft processor on sram-based fpgas. IEEE Transac-

tions on Nuclear Science, 64(1):519–528, 2016.

[145] A Moopenn and AP Thakoor. Programmable synaptic devices for electronic

neural nets. Control and Computers, 18(2):37–41, 1990.

[146] Yann LeCun. 1.1 deep learning hardware: Past, present, and future. In 2019

IEEE International Solid-State Circuits Conference-(ISSCC), pages 12–19.

IEEE, 2019.

[147] Ahmad Shawahna, Sadiq M. Sait, and Aiman El-Maleh. Fpga-based accel-

erators of deep learning networks for learning and classification: A review.

IEEE Access, 7:7823–7859, 2019.

[148] Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael Niemier, Jason Cong,

Yu Hu, and Yiyu Shi. Scaling for edge inference of deep neural networks.

Nature Electronics, 1(4):216–222, 2018.

[149] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang,

Han Hu, Yun Liang, and Jason Cong. Automated systolic array architecture

synthesis for high throughput cnn inference on fpgas. In Proceedings of the

54th Annual Design Automation Conference 2017, pages 1–6, 2017.

[150] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2:

A flexible accelerator for emerging deep neural networks on mobile devices.

IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

9(2):292–308, 2019.

[151] Qingxia Zhang, Zihao Meng, Xianwen Hong, Yuhao Zhan, Jia Liu, Jiabao

Dong, Tian Bai, Junyu Niu, and M Jamal Deen. A survey on data cen-

ter cooling systems: Technology, power consumption modeling and control

strategy optimization. Journal of Systems Architecture, 119:102253, 2021.

BIBLIOGRAPHY 230

[152] Carlo Puliafito, Enzo Mingozzi, Francesco Longo, Antonio Puliafito, and

Omer Rana. Fog computing for the internet of things: A survey. ACM

Transactions on Internet Technology (TOIT), 19(2):1–41, 2019.

[153] Manar Abu Talib, Sohaib Majzoub, Qassim Nasir, and Dina Jamal. A sys-

tematic literature review on hardware implementation of artificial intelli-

gence algorithms. The Journal of Supercomputing, 77(2):1897–1938, 2021.

[154] Jeremy Hsu. Ibm’s new brain [news]. IEEE spectrum, 51(10):17–19, 2014.

[155] Kizheppatt Vipin and Suhaib A Fahmy. Fpga dynamic and partial reconfig-

uration: A survey of architectures, methods, and applications. ACM Com-

puting Surveys (CSUR), 51(4):1–39, 2018.

[156] Tobias Becker, Wayne Luk, and Peter YK Cheung. Enhancing relocatability

of partial bitstreams for run-time reconfiguration. In 15th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM

2007), pages 35–44. IEEE, 2007.

[157] Jean-Philippe Delahaye, Jacques Palicot, Christophe Moy, and Pierre Leray.

Partial reconfiguration of fpgas for dynamical reconfiguration of a software

radio platform. In 2007 16th IST Mobile and Wireless Communications

Summit, pages 1–5. IEEE, 2007.

[158] Julien Delorme, Jérôme Martin, Amor Nafkha, Christophe Moy, Fabien Cler-

midy, Pierre Leray, and Jacques Palicot. A fpga partial reconfiguration de-

sign approach for cognitive radio based on noc architecture. In 2008 Joint

6th International IEEE Northeast Workshop on Circuits and Systems and

TAISA Conference, pages 355–358. IEEE, 2008.

[159] Hanaa M Hussain, Khaled Benkrid, Ali Ebrahim, Ahmet T Erdogan, and

Huseyin Seker. Novel dynamic partial reconfiguration implementation of

k-means clustering on fpgas: Comparative results with gpps and gpus. In-

ternational Journal of Reconfigurable Computing, 2012, 2012.

BIBLIOGRAPHY 231

[160] Hanaa Hussain, Khaled Benkrid, and HÜSEYİN ŞEKER. Novel dynamic

partial reconfiguration implementations of the support vector machine classi-

fier on fpga. Turkish Journal of Electrical Engineering & Computer Sciences,

24(5):3371–3387, 2016.

[161] Christopher Claus, Florian H Muller, Johannes Zeppenfeld, and Walter

Stechele. A new framework to accelerate virtex-ii pro dynamic partial self-

reconfiguration. In 2007 IEEE International Parallel and Distributed Pro-

cessing Symposium, pages 1–7. IEEE, 2007.

[162] Björn Osterloh, Harald Michalik, Sandi Alexander Habinc, and Björn Fiethe.

Dynamic partial reconfiguration in space applications. In 2009 NASA/ESA

Conference on Adaptive Hardware and Systems, pages 336–343. IEEE, 2009.

[163] Cristiana Bolchini, Antonio Miele, and Marco D Santambrogio. Tmr and

partial dynamic reconfiguration to mitigate seu faults in fpgas. In 22nd IEEE

International Symposium on Defect and Fault-Tolerance in VLSI Systems

(DFT 2007), pages 87–95. IEEE, 2007.

[164] Jonathan Heiner, Benjamin Sellers, Michael Wirthlin, and Jeff Kalb. Fpga

partial reconfiguration via configuration scrubbing. In 2009 International

Conference on Field Programmable Logic and Applications, pages 99–104.

IEEE, 2009.

[165] Shanker Shreejith, Suhaib A Fahmy, and Martin Lukasiewycz. Reconfig-

urable computing in next-generation automotive networks. IEEE embedded

systems letters, 5(1):12–15, 2013.

[166] Reza Taghipour, Tristan Perez, and Torgeir Moan. Hybrid frequency–time

domain models for dynamic response analysis of marine structures. Ocean

Engineering, 35(7):685–705, 2008.

[167] Rakan Khraisha and Jooheung Lee. A scalable h. 264/avc deblocking fil-

ter architecture using dynamic partial reconfiguration. In 2010 IEEE In-

BIBLIOGRAPHY 232

ternational Conference on Acoustics, Speech and Signal Processing, pages

1566–1569. IEEE, 2010.

[168] Manish Birla and Krishna N Vikram. Partial run-time reconfiguration of fpga

for computer vision applications. In 2008 IEEE International Symposium on

Parallel and Distributed Processing, pages 1–6. IEEE, 2008.

[169] Esam El-Araby, Ivan Gonzalez, and Tarek El-Ghazawi. Performance

bounds of partial run-time reconfiguration in high-performance reconfig-

urable computing. In Proceedings of the 1st international workshop on High-

performance reconfigurable computing technology and applications: held in

conjunction with SC07, pages 11–20, 2007.

[170] Neil Joseph Steiner. Autonomous computing systems. PhD thesis, Virginia

Tech, 2008.

[171] Xabier Iturbe, Khaled Benkrid, Chuan Hong, Ali Ebrahim, Raul Torrego,

Imanol Martinez, Tughrul Arslan, and Jon Perez. R3tos: a novel reliable re-

configurable real-time operating system for highly adaptive, efficient, and de-

pendable computing on fpgas. IEEE Transactions on computers, 62(8):1542–

1556, 2013.

[172] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon-Garcia,

and Paul Chow. Fpgas in the cloud: Booting virtualized hardware acceler-

ators with openstack. In 2014 IEEE 22nd Annual International Symposium

on Field-Programmable Custom Computing Machines, pages 109–116. IEEE,

2014.

[173] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,

Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,

Gopi Prashanth Gopal, Jan Gray, et al. A reconfigurable fabric for acceler-

ating large-scale datacenter services. In 2014 ACM/IEEE 41st International

Symposium on Computer Architecture (ISCA), pages 13–24. IEEE, 2014.

BIBLIOGRAPHY 233

[174] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtualized fpga

accelerators for efficient cloud computing. In 2015 IEEE 7th International

Conference on Cloud Computing Technology and Science (CloudCom), pages

430–435. IEEE, 2015.

[175] Christoforos Kachris and Dimitrios Soudris. A survey on reconfigurable ac-

celerators for cloud computing. In 2016 26th International conference on

field programmable logic and applications (FPL), pages 1–10. IEEE, 2016.

[176] Jim Torresen, Geir Aarstad Senland, and Kyrre Glette. Partial reconfigu-

ration applied in an on-line evolvable pattern recognition system. In 2008

NORCHIP, pages 61–64. IEEE, 2008.

[177] Yufan Lu, Xin Chen, Xiaojun Zhai, Sangeet Saha, Shoaib Ehsan, Jinya Su,

and Klaus McDonald-Maier. A fast simulation method for analysis of see in

vlsi. Microelectronics Reliability, 120:114110, 2021.

[178] Yufan Lu, Xin Chen, Xiaojun Zhai, Sangeet Saha, Shoaib Ehsan, Jinya Su,

and Klaus D McDonald-Maier. A simulation and evaluation scheme for single

event effects in vlsi. 2021.

[179] Semiconductor Manufacturing International Corporation (SMIC). Smic

foundry solutions 90nm,130/110nm,150nm,180nm,250nm,350nm. https:

//www.smics.com/en/site/mature logic, 2022. Accessed: June 4, 2022.

[180] MD Shazzad Hossain and Ioannis Savidis. Reusing leakage current for im-

proved energy efficiency of multi-voltage systems. In 2019 IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2019.

[181] V Ferlet-Cavrois, P Paillet, D McMorrow, N Fel, J Baggio, S Girard,

O Duhamel, JS Melinger, M Gaillardin, JR Schwank, et al. New insights

into single event transient propagation in chains of inverters—evidence for

propagation-induced pulse broadening. IEEE Transactions on Nuclear Sci-

ence, 54(6):2338–2346, 2007.

BIBLIOGRAPHY 234

[182] Gilson Wirth, Fernanda L Kastensmidt, and Ivandro Ribeiro. Single event

transients in logic circuits—load and propagation induced pulse broadening.

IEEE Transactions on Nuclear Science, 55(6):2928–2935, 2008.

[183] M Karimian, M Dousti, M Pouyan, and R Faez. An improved macro-

model for simulation of single electron transistor (set) using hspice. In 2009

IEEE Toronto International Conference Science and Technology for Human-

ity (TIC-STH), pages 1000–1004. IEEE, 2009.

[184] Scott Davidson. Itc’99 benchmark circuits-preliminary results. In Inter-

national Test Conference 1999. Proceedings (IEEE Cat. No. 99CH37034),

pages 1125–1125. IEEE, 1999.

[185] Alireza Kasnavi, Joddy W Wang, Mahmoud Shahram, and Jindrich Ze-

jda. Analytical modeling of crosstalk noise waveforms using weibull function.

In IEEE/ACM International Conference on Computer Aided Design, 2004.

ICCAD-2004., pages 141–146. IEEE, 2004.

[186] LR Rockett. An seu-hardened cmos data latch design. IEEE Transactions

on Nuclear Science, 35(6):1682–1687, 1988.

[187] Leo B Freeman. Critical charge calculations for a bipolar sram array. IBM

Journal of Research and Development, 40(1):119–129, 1996.

[188] Quming Zhou and Kartik Mohanram. Cost-effective radiation hardening

technique for combinational logic. In IEEE/ACM International Confer-

ence on Computer Aided Design, 2004. ICCAD-2004., pages 100–106. IEEE,

2004.

[189] Luca Sterpone and Massimo Violante. Analysis of the robustness of the tmr

architecture in sram-based fpgas. IEEE Transactions on Nuclear Science,

52(5):1545–1549, 2005.

[190] Roystein Oliveira, Aditya Jagirdar, and Tapan J Chakraborty. A tmr scheme

BIBLIOGRAPHY 235

for seu mitigation in scan flip-flops. In 8th International Symposium on

Quality Electronic Design (ISQED’07), pages 905–910. IEEE, 2007.

[191] Lorena Anghel, Dan Alexandrescu, and Michael Nicolaidis. Evaluation of

a soft error tolerance technique based on time and/or space redundancy.

In Proceedings 13th Symposium on Integrated Circuits and Systems Design

(Cat. No. PR00843), pages 237–242. IEEE, 2000.

[192] Yufan Lu, Xiaojun Zhai, Sangeet Saha, Shoaib Ehsan, and Klaus McDonald-

Maier. A self-scrubbing scheme for embedded systems in radiation environ-

ments. In 2020 IEEE 26th International Symposium on On-Line Testing

and Robust System Design (IOLTS), pages 1–4. IEEE, 2020.

[193] Xilinx. Space-grade virtex-5qv fpga. https://www.xilinx.com/products/

silicon-devices/fpga/virtex-5qv.html, 2018. Accessed: June 15, 2022.

[194] Xilinx. Ds197 artix-7 fpgas data sheet: Overview (v1.3). https://www.xi

linx.com/support/documentation/data sheets/ds197-xa-artix7-ov

erview.pdf, 2017. Accessed: June 15, 2022.

[195] Bilal Aslam, Sangeet Saha, et al. Degradation Measurement of Commercial

Camera Sensors Under Fast Neutron Beamline. In SEE MAPLD, In press.,

2019.

[196] Zeba Khanam, Sangeet Saha, et al. Degradation Measurement of Kinect

Sensor Under Fast Neutron Beamline. In Radiation Effect Data Workshop,

REDW, In press., jul 2019.

[197] L Obermueller, C Cazzaniga, S Kulmiya, and CD Frost. A fast neutron

monitor based on single event effects in srams using commercial off-the-shelf

components. In 2018 18th European Conference on Radiation and Its Effects

on Components and Systems (RADECS), pages 1–5. IEEE, 2018.

BIBLIOGRAPHY 236

[198] Carlo Cazzaniga and Christopher D. Frost. Progress of the Scientific Com-

missioning of a fast neutron beamline for Chip Irradiation. In Journal of

Physics: Conference Series, 2018.

[199] Xilinx. Xilinx 7 series fpgas memory resources. https://www.xilinx.com

/support/documentation/user guides/ug473 7Series Memory Resourc

es.pdf, 2019. Accessed: June 15, 2022.

[200] G Tsiligiannis, S Danzeca, R Garćıa Aĺıa, A Infantino, A Lesea, M Brugger,

A Masi, S Gilardoni, and F Saigné. Radiation effects on deep submicrometer

sram-based fpgas under the cern mixed-field radiation environment. IEEE

Transactions on Nuclear Science, 65(8):1511–1518, 2018.

[201] Juan Carlos Fabero, Hortensia Mecha, Francisco J Franco, Juan Antonio

Clemente, Golnaz Korkian, Solenne Rey, Benjamin Cheymol, Maud Baylac,

Guillaume Hubert, and Raoul Velazco. Single event upsets under 14-mev

neutrons in a 28-nm sram-based fpga in static mode. IEEE Transactions on

Nuclear Science, 67(7):1461–1469, 2020.

[202] Yu Nakazawa, Yuki Fujii, Eitaro Hamada, MyeongJae Lee, Yuta Miyazaki,

Akira Sato, Kazuki Ueno, Hisataka Yoshida, and Jie Zhang. Radiation study

of fpgas with neutron beam for comet phase-i. Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detec-

tors and Associated Equipment, 936:351–352, 2019.

[203] Mahesh Kumar, Durga Digdarsini, Neeraj Misra, and TVS Ram. Seu miti-

gation of rad-tolerant xilinx fpga using external scrubbing for geostationary

mission. In 2016 IEEE Annual India Conference (INDICON), pages 1–6.

IEEE, 2016.

[204] Corey Baker, Rick L Lawrence, Clifford Montagne, and Duncan Patten.

Change detection of wetland ecosystems using landsat imagery and change

vector analysis. Wetlands, 27(3):610–619, 2007.

BIBLIOGRAPHY 237

[205] Wang Lie and Wu Feng-Yan. Dynamic partial reconfiguration in fpgas. In

2009 Third International Symposium on Intelligent Information Technology

Application, volume 2, pages 445–448. IEEE, 2009.

[206] Xilinx. Vivado design suite user guide dynamic function exchange (v2020.2).

https://www.xilinx.com/support/documentation/sw manuals/xilin

x2020 2/ug909-vivado-partial-reconfiguration.pdf, 2020. Accessed:

June 4, 2022.

[207] Yufan Lu, Xiaojun Zhai, Sangeet Saha, Shoaib Ehsan, and Klaus D

McDonald-Maier. Fpga based adaptive hardware acceleration for multiple

deep learning tasks. In 2021 IEEE 14th International Symposium on Embed-

ded Multicore/Many-core Systems-on-Chip (MCSoC), pages 204–209. IEEE,

2021.

[208] Xilinx. Vitis-ai 1.4 release. https://github.com/Xilinx/Vitis-AI, 2021.

Accessed: June 15, 2022.

[209] Yufan Lu, Cong Gao, Rappy Saha, Sangeet Saha, Klaus D McDonald-Maier,

and Xiaojun Zhai. Fpga-based dynamic deep learning acceleration for real-

time video analytics. In Architecture of Computing Systems: 35th Inter-

national Conference, ARCS 2022, Heilbronn, Germany, September 13–15,

2022, Proceedings, pages 68–82. Springer, 2022.

[210] Vinod Kathail. Xilinx vitis unified software platform. In Proceedings of the

2020 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, pages 173–174, 2020.

[211] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, Los Alamitos, CA, USA, jun 2016.

IEEE Computer Society.

BIBLIOGRAPHY 238

[212] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:

Efficient convolutional neural networks for mobile vision applications, 2017.

[213] Xilinx. H.264/H.265 Video Codec Unit v1.2. https://www.xilinx.com/s

upport/documentation/ip documentation/vcu/v1 2/pg252-vcu.pdf,

2021. Accessed: June 15, 2022.

[214] Xilinx. DPUCZDX8G for Zynq UltraScale+ MPSoCs Product Guide. http

s://docs.xilinx.com/r/en-US/pg338-dpu/, 2022. Accessed: June 15,

2022.

[215] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.

arXiv preprint arXiv:1804.02767, 2018.

[216] Keren Fu, Qijun Zhao, and Irene Yu-Hua Gu. Refinet: A deep segmentation

assisted refinement network for salient object detection. IEEE Transactions

on Multimedia, 21(2):457–469, 2018.

[217] Xilinx. Vitis Video Analytics SDK (VVAS) plug-ins. https://xilinx.g

ithub.io/VVAS/main/build/html/docs/common/common plugins.html,

2022. Accessed: June 15, 2022.

