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Abstract—As the number of Internet of Things Devices (IoTDs)
increases, the building Structural Health Monitoring (SHM)
system is subject to the enormous amount of data collected from
sensors. To tackle this challenge, we investigate an Unmanned
Aerial Vehicle (UAV)-enabled Wireless Powered Communication
Network (WPCN) in a building SHM scenario where a UAV
is dispatched to provide wireless charging and data relaying
services for IoTDs on the building. For preventing the channel
blockage caused by the building, we place the UAV and Access
Points (APs) in specific trajectory and locations, respectively. To
improve the system’s throughput, we maximize the minimum
data volume among devices in a given period by formulating
an optimization problem in which we jointly optimize the link
schedule, the power and time allocation and the hovering posi-
tions of the UAV. However, the formulated problem is a mixed-
integer nonlinear programming and is hard to solve. Therefore,
we adopt a bottleneck-aware idea to reduce the dimensionality
of the optimization variables in order to obtain a simplified
problem that can be solved in a low-complexity way. Also, the
Block Coordinate Descent (BCD) method is applied to reduce
the complexity of the problem. Meanwhile, we further propose a
method to deal with the heterogeneous problem for improving the
generalizability of our algorithm. To estimate the performance
of our proposed algorithm, we compare it with the Monte
Carlo (MC) method, Game Theory (GT) and Particle Swarm
Optimization (PSO). The simulation results indicate that our
algorithm can obtain better performance.

Index Terms—Structural health monitoring, wireless powered
communication network, unmanned aerial vehicle, bottleneck-
awared.

I. INTRODUCTION

Structural Health Monitoring (SHM) is extensively studied
to estimate structural damage of buildings, aerospace vehicles,
bridges, etc., with the information provided by IoTDs/sensors
about any significant change or damage occurring in a struc-
ture. In the building SHM area, the detection of structural
damage is essential in ensuring structural safety during a
building’s lifetime [1].

For traditional wired system for building SHM, it is neces-
sary to install the cables, and the IoTDs needs more mainte-
nance. To solve this problem, Wireless Sensor Network (WSN)
system is studied as data collecting system for SHM to replace
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traditional wired system. The IoTDs in the WSN transmit data
through the wireless channel toward the Access Points (AP)
equipped with the edge servers to facilitate data aggregation
and processing.

However, IoTDs produce more data because of the advance
of sensors such as the optical fiber sensor, pressure sensor,
humidity and temperature sensors, which increases the com-
munication burden. Moreover, the IoTDs usually have limited
battery energy, which causes they can hardly process the
data transmission for a long lifetime. For increasing IoTDs’
lifetime, and for avoiding any maintenance, Wireless Power
Transfer (WPT) can provide the devices with sustainable
energy supply via Radio Frequency (RF) radiation to charge
the battery of IoTDs [2]. By integrating WPT technology into
WSN, a new architecture named Wireless Powered Commu-
nication Network (WPCN) has attracted substantial research
interests [3]. In WPCN, the APs can broadcast RF energy
signals to the IoTDs and receive their own data, and the IoTDs
use the harvested energy to communicate with the APs.

Although WPT can provide sufficient energy, the long
distance between the AP and the IoTDs results in low commu-
nication rate and energy transfer efficiency. Especially in the
building SHM scenario, when the AP is located on the ground
and part of the IoTDs are located on the top surface of the
building, the Line-of-Sight (LoS) connection will be blocked
by the building. Therefore, we utilize an Unmanned Aerial
Vehicle (UAV) as Hybrid Relay Node (HRN) to broadcast RF
energy to IoTDs and forward IoTDs’ data to APs. UAV has
attracted substantial research interests in the field of communi-
cations due to its high flexibility, mobility, low cost and strong
LoS channels with IoTDs [4], [5]. UAV-enabled WPCN can
achieve ubiquitous coverage, establish strong communication
links, as well as improve the energy efficiency of WPT.

In this paper, as shown in Fig. 1, we consider a UAV-enabled
WPCN in a building SHM scenario where the IoTDs are
located at the surfaces of a cuboid-shaped building, including
the top plane. The APs, e.g. electric vehicles, with edge servers
are deployed at the ground to collect and process data from
the IoTDs via wireless channels. To tackle the problem that
the devices on the top plane cannot link directly with the
APs, we utilize a UAV to forward data from the IoTDs to
the APs, as well as to charge the IoTDs to prolong the work
period. By using high power forwarding services of the UAV,
the system can obtain higher data transmission rate and lower
energy consumption of IoTDs. Specifically, in order to ensure
the lowest communication capacity of the system, our goal is
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to maximize the minimal throughput among all devices with
consideration of the energy harvesting constraints.

The main contributions of this paper are:
1) A new application scenario of the UAV-enabled WPCN

is proposed where a UAV is dispatched to charge and collect
data from the IoTDs on the surface of a cuboid building in
the building SHM scenario. To prevent the communication
from being blocked by the building, we ensure the LoS
communication channel by reasonably arranging the UAV and
APs. Considering the amount of IoTDs is quite large, we
maximize the minimal throughput among IoTDs by jointly
optimizing the link schedule, UAV hovering positions and
wireless resource allocation. Besides, the proposed scenarios
can be used not only in the building SHM situation, but also in
situations with similar physical structures such as construction
site surveillance, building fire rescue, and edge computing in
stadium.

2) In order to efficiently tackle the formulated mixed integer
nonlinear programming (MINLP) problem, we propose a
bottleneck-awared heuristic alternating algorithm. We reduce
the dimensionality of the variables by finding the bottleneck in
the system to obtain a simplified problem that can be solved
in a very low-complexity way. Also, the Block Coordinate
Descent (BCD) method is applied to reduce the complexity of
the problem.

3) Our proposed algorithm can only cope with the case
where all IoTDs are homogeneous (i.e. all IoTDs have similar
rate requirements). To improving the generalizability of our
algorithm, we further propose a method to deal with the
heterogeneous IoTDs problem. First, we define a baseline rate
requirement γ. For the IoTDs have different rate requirements,
we can assume their requirements to be integer multiples of
γ. Then, if an IoTD’s requirement is xγ, we treat it as x
homogeneous virtual IoTDs in the same location. The problem
consisting of all virtual IoTDs is homogeneous, which can be
solved by our proposed algorithm.

4) We compare our proposed algorithm with benchmark
algorithms that include the GT, MC method over some system
parameters. The results show that our algorithm can achieve a
better solution within a much shorter time. We also evaluate
the performance of part of our algorithm which optimizes the
UAV’s hovering point by comparing with the PSO and MC
methods. It comes out that our algorithm can take less time
to achieve the same optimal value.

II. RELATED WORK

A. Building Structural Health Monitoring

Building SHM is an automated system of monitoring vari-
ations in the geometric and material qualities of buildings,
and helps to predict the damage of the structure. Sensors used
in SHM are designed to measure strain, stress, vibration, tilt,
humidity, and temperature of current state of the structure.

Im et al. [6] designed a smart structural-durability health-
monitoring system where each IoTD is composed of mul-
tisensing sensors, a 900-MHz wideband antenna and a data
communication module that supports IEEE standard 802.15.4.
The data acquired by sensors is sent to the gateway and

remote user’s software via the antenna. This system can
detect the durability condition at an early stage of concrete
deterioration. Misra et al. [7] studied a wireless module that
can generate and detect highly nonlinear solitary waves for
SHM scenarios. In this module, a sensor is in contact with
the material, and is wired to the data acquisition system for
storing the time series for post-processing. The communication
in this module is implemented by the Bluetooth module that is
suitable for short and midrange distance communication and
does not need any external network. Yan et al. [8] analyzed
the problems of untimely and inaccurate sensor fault diagnosis
in the building SHM system, and optimize the communication
load and energy efficiency for massive IoTDs. Meanwhile, a
sensor fault self diagnosis method is proposed.

B. UAV-enabled WPCN System

Depending on the objective, different problems have been
considered to improve the performance of UAV-enabled
WPCN in the existing literature.

Energy related optimization became the common research
problem in UAV-enabled WPCN, which aims to make the
system working longer in an energy-stressed situation and
save energy cost [9]–[13]. Beak et al. [9] integrated a UAV
in wireless charging sensor networks. Their objective was to
maximize the minimum energy of sensors after data trans-
mission and energy harvesting under data collection and UAV
energy constraints. They jointly optimize the UAV hovering
position and time by Lagrange multiplier method and their
proposed geometry-based algorithm. Hu et al. [10] expected
a UAV-enabled wireless powered MEC architecture, and a
problem was formulated to minimize the long-term average
energy efficiency with considering of the stochastic task ar-
rivals and random channel conditions The authors proposed a
low-complexity online computation offloading and trajectory
scheduling algorithm to optimize the system resources and
the UAV’s trajectory. Gu et al. [11] proposed a security
awared UAV-MEC scheme where energy harvesting is studied
and the eavesdropper is considered. The energy consumption
for UAV was minimized by optimizing the computation and
communication resource allocation with considering of the
computation-latency constraint. To solve the nonconvex prob-
lem, the authors convert it into a convex one by analytical
means.

Communication capacity maximization has also been stud-
ied recently [14]–[19]. Xie et al. [14] studied a UAV-assisted
WPCN, in which a UAV is dispatched as the WPT charger
and the mobile AP to serve the territorial users. The au-
thors maximized the uplink minimal throughput by solving
a problem which is subject to the UAV’s maximum speed
constraint and the users’ energy harvesting constraints. Mean-
while, the trajectory of UAV and the resource allocation are
optimized in the problem. To solve the formulated problem,
the authors obtain the locally optimal solution by alternating
optimization and successive convex programming. Xie et al.
[15] considered a WPCN scenario which contains two UAVs
and two users. And the co-channel interference for wireless
information transfer is mitigated. In order to minimize the
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uplink minimum throughput of the users, a problem was
formulated to optimize the two UAVs’ trajectories and the
communication resources allocation subject to the maximum
speed and collision avoidance constraints of UAVs, as well
as the energy harvesting constraints of devices. The problem
is solved by alternating optimization and successive convex
approximation. Du et al. [16] discussed a non-orthogonal
multiple access system where a UAV is deployed to perform
WPT service, and a problem aiming to maximize the sum rate
of the system is taken into account.

For the delay minimization area, the service latency is
minimized to perform the delay-sensitive tasks [20], [21].
Wang et al. [20] combined the task offloading decisions
optimization, connection scheduling and resource allocation
to minimize the service latency of all users in the proposed
UAV-assisted wireless powered MEC Beyond 5G network.
Wang et al. [21] minimized the time required by a UAV in
the UAV-assisted WIT and WPT system via jointly optimizing
the trajectory of the UAV and the transmission scheduling of
all users.

It is important to ensure that the IoT systems work robustly
in some application scenarios, where the packet loss rate is
considered [22], [23]. Ponnimbaduge Perera et al. [22] studied
a UAV aided wireless powered sensor network where a UAV
collects data form the cluster headers of sensor nodes, and
the sensor nodes harvest energy from the power beacons
via RF-WPT. The authors formulated a problem to minimize
the outage probability of the system by optimizing resource
allocation. Li et al. [23] investigated the resource management
problem to minimize the overall data packet loss of the IoTDs
in their proposed UAV-assisted wireless powered IoT scenario
with a deep Q-learning method.

The papers above assume that devices are located in a flat
plane, and the UAV’s feasible position falls within the free 2D
plane or 3D space. However, in the building SHM scenario,
IoTDs are in the vicinity of the building. The blockage
caused by the building may effect the communication channels
between the UAV and the IoTDs installed on the surface of
the building. In this paper, we take a UAV-enabled WPCN
application scenario, the building SHM scenario, into consid-
eration. To overcome the blockage and meanwhile simplify
the formulated problem, we design the trajectory of the UAV
and the positions of the ground APs in an reasonable manner.
The UAV performs a hover-and-fly working method, and the
hovering locations are optimized in our problem.

Moreover, we innovatively propose a bottleneck-aware al-
gorithm combined with Lagrange and BCD methods, which
can effectively reduce the complexity of the algorithm and
improve the efficiency of the solution. This approach divides
a problem that requires consideration of multiple IoTDs into
two steps to solve, with the first step trying to identify the
bottleneck IoTD and then solving a simplified problem that
includes only the bottleneck IoTD.

The rest of this paper is organized as follows. Section III
describes the system model. In section IV, the optimization
problem is formulated, and our proposed algorithm is de-
scribed. The numerical analysis is performed in section V.
In the last section, we give the conclusion of this paper.

AP1

Energy flow

UAV-AP link

AP2

IoTD-UAV link

IoTDs

UAV

(a)

AP1

AP2

(b)
Fig. 1. (a) The UAV-enabled WPCN. (b) The trajectory of the UAV.

TABLE I
LIST OF SYMBOLS

Parameter Meaning

L,W,H length, width, height of building
I set of indices of four hovering points
si the i-th plane
ni number of the IoTDs in the plane si
Ni set of IoTDs in the plane si
N number of all IoTDs
ωi,k coordinate of the k-th IoTD in the plane si
ωap

i coordinate of the i-th AP
Hu UAV’s safety height above the building
ui coordinate of the i-th hovering point
ru UAV’s horizontal safety distance
v UAV’s flying velocity
T working period of the UAV
T fly flying time of the UAV within one period
η WPT energy conversion efficiency

III. SYSTEM MODEL

As shown in Fig. 1(a), we assume a cuboid building whose
five flat surfaces are deployed with IoTDs. Specifically, the top
surface is denoted as s0, and the four side surfaces are denoted
as si, ∀i ∈ I = {1, 2, 3, 4}. We consider a UAV-aided WPCN
that includes one rotary-wing UAV, two APs and N IoTDs.
The number of IoTDs on si is ni, ∀i ∈ {0} ∪ I , and the total
amount of IoTDs is N =

∑
i∈{0}∪I ni. We denote the set of

the IoTDs on plane si by Ni = {1, 2, . . . , ni}, ∀i ∈ I ∪ {0}.
The main symbols in this paper are summarized in TABLE I.

In our model, IoTDs generate an amount of computing tasks
which need to be offloaded to the edge servers on the ground
APs with the forwarding of the UAV. The UAV is utilized as a
mobile relay to help this information exchange. Furthermore,
the UAV is equipped with a RF charger and plays a role as
a mobile energy transmitter to wirelessly charge those low-
power IoTDs on the building. On the ground, the two APs
are equipped with ultra-high-performance CPUs and they are
capable of fast calculation.

A. Geometric Model

Without loss of generality, we consider a 3D Euclidean
coordinate system as illustrated in Fig. 1(a). This build-
ing has a height H , a width W and a length L. IoTDs
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are randomly distributed on the building’s surfaces. We use
wi,k = (xi,k, yi,k, zi,k) to notate the position of k-th IoTD on
the plane si. In order to avoid the shadowing fading caused by
the building and meanwhile save cost, two APs are deployed
at wap

1 = (xap
1 , yap1 , 0) and wap

2 = (xap
2 , yap2 , 0), which are

near the two opposite corners of the building. The UAV flies
at a fixed altitude H +Hu and connects with IoTDs only at
the four hovering positions named ui = (xi, yi,H +Hu), ∀i,
where Hu means the safety height above the building.

For the sake of security and better access channel between
UAV and APs, the UAV’s horizontal trajectory is shown in Fig.
1(b) with a fixed radius ru which symbolizes the horizontal
safety distance. The four hovering points ui fall on the four
straight lines of the trajectory, which can guarantee a LoS
communication channel between the UAV and the IoTDs. The
optimizable part of the ui are U = {y1, x2, y3, x4}. For ease
of illustration, we define ui as the alias of the element in U ,
where

u1 ≜ y1, u2 ≜ x2, u3 ≜ y3, u4 ≜ x4.

Therefore, the U can be rewritten as U = {ui, ∀i}, and the
geometric constraints about the hovering points is

0 ≤ ui ≤ umax
i , ∀i ∈ I (1)

where umax
1 = umax

3 = W,umax
2 = umax

4 = L.

B. Link Schedule

At ui, the UAV connects to IoTDs in the set Ni and
a portion of IoTDs in set N0 for performing relaying and
charging service. We introduce a 4 × n0 dimensional matrix
α ≜ (αi,j)4×n0

to express the link schedule between the top
IoTDs and the UAV hovering position, and αi,j = 1 means
they are connected, otherwise αi,j = 0. In our model, the UAV
can serve at most C IoTDs at a hovering point simultaneously.
Hence, it yields the following constraints about the link
schedule α:

αi,j ∈ {0, 1}, ∀j ∈ N0, ∀i ∈ I, (2)∑
i∈I

αi,j = 1, ∀j ∈ N0, (3)∑
j∈N0

αi,j ≤ C − ni, ∀i ∈ I. (4)

After introducing the α, we represent the set of IoTDs which
are linked to ui as

N c
i = {1, 2, . . . , ni + ci}, ∀i ∈ I, (5)

where ci =
∑

j∈N0
αi,j is the number of the top IoTDs which

are linked to ui. Meanwhile, the alias of the location of the
k-th IoTD in N c

i is wc
i,k.

As for the connection between UAV and the APs, the UAV
communicates with wap

1 when it is hovering at u1,u4, and
establishes a connection with wap

2 at u2,u3.

Time for flying from the i-th to the

(i+1)-th point

hover fly hover fly hoverfly

WPT time

hover fly

T

relaying time

IoTD-UAV link UAV-AP link

IoTD-UAV link UAV-AP link

IoTD-UAV link UAV-AP link

first IoTD linked to the i-th hovering point

O
F

D
M

A

k-th IoTD linked to the i-th hovering point

last IoTD linked to the i-th hovering point

Fig. 2. System working time allocation.

C. Time Division

The working duration is cyclical. During each period T ,
the UAV starts at u1 and takes a flight around the fixed
trajectory with a linear constant acceleration a and a maximum
velocity v in a successive hover-and-fly manner [25], [26].
Moreover, we assume that the UAV undergoes three phases
during each segment of flight: acceleration, constant speed and
deceleration. Therefore, the total flight time is

T fly =
2πru + 2(W + L)

v
+

4v

a
. (6)

Fig. 2 shows the UAV’s working time allocation structure in
our system. At ui, it takes the UAV thi seconds to hover and
work. The constraint about the UAV’s hovering time is∑

i∈I

thi ≤ T − T fly. (7)

The hovering time thi is further divided into two phases: the
relaying phase and the WPT phase, which occupy tri and tei ,
respectively. Therefore, we have

tri + tei ≤ thi , ∀i ∈ I. (8)

1) Relaying Phase: During the relaying phase, the UAV is
dispatched to relay data from IoTDs to the related AP. It can
be assumed that the wireless channel between the UAV and
each IoTD is dominated by LoS due to the pre-designed UAV
trajectory. Thus, we can get the channel power gain between
ui and wc

i,k, which is denoted by hc
i,k, as

hc
i,k =

h0

(dci,k)
2
, ∀k ∈ N c

i , ∀i ∈ I, (9)

where h0 is the channel power gain at a reference distance
d0 = 1 m and dci,k = ∥wc

i,k − ui∥2.
As for the UAV-AP channel, the power gain hu

i is

hu
i =

h0

(dui )
2
, ∀i ∈ I, (10)

where du1 = ∥wap
1 − u1∥2, du2 = ∥wap

2 − u2∥2, du3 = ∥wap
2 −

u3∥2, du4 = ∥wap
1 − u4∥2.

The Orthogonal Frequency Division Multiple Access
(OFDMA) scheme is considered to mitigate the channel in-
terference among IoTDs. We divide the frequency bandwidth
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into C orthogonal subchannels. Therefore, we can get com-
munication rates Rc

i,k and Ru
i,k which represent the rate from

wc
i,k to ui and the rate from ui to its related AP, respectively,

as

Rc
i,k =

B

C
log2(1 +

pci,kh
c
i,k

N0
), ∀k ∈ N c

i , ∀i ∈ I, (11)

Ru
i =

B

C
log2(1 +

pui h
u
i

N0
), ∀i ∈ I, (12)

where N0 denotes the noise power, B is the whole transmis-
sion bandwidth, pci,k is the transmit power of the k-th IoTD
in N c

i , and pui is the transmission power of the UAV at ui.
At ui, the relaying time tri is composed of two parts: the

IoTD-UAV offloading time and the UAV-AP transmission time
for each IoTD. We use tci,k to represent the IoTD-UAV task
offloading time from IoTD wc

i,k to the UAV. The variable tuci,k
is used to be the symbol of the time for the UAV to transmit
the data from IoTD wc

i,k to the related AP. We get the time
constraint in the relaying phase:

tci,k + tuci,k ≤ tri , ∀k ∈ N c
i , ∀i ∈ I. (13)

2) WPT Phase: At ui, we assume the RF energy transmit
power as pei , and the IoTDs’ harvested energy during the WPT
time tei are:

Êc
i,k = ηhc

i,kp
e
i t

e
i , ∀k ∈ N c

i , ∀i ∈ I, (14)

where η ∈ (0, 1) is the energy conversion efficiency.
The energy consumption of each IoTD is:

Ec
i,k = pci,kt

c
i,k, ∀k ∈ N c

i , ∀i ∈ I. (15)

To ensure that the energy captured by the IoTD through
the WPT meets its communication requirements, we have the
energy harvesting constraint:

Ec
i,k − Êc

i,k ≤ 0, ∀k ∈ N c
i , ∀i ∈ I. (16)

IV. PROBLEM FORMULATION AND ALGORITHM DESIGN

A. Problem Formulation

In this paper, our purpose is to improve data throughput
in the network with aware of fairness among all IoTDs.
Therefore, the objective is to maximize the minimal data
throughput among all IoTDs, which is equivalent to maximize
the minimal transmitted data volume among IoTDs in a given
working period T . In our model, we maximize the objective
by optimizing the IoTD’s transmit power pc ≜ {pci,k}, link
schedule α, hovering positions U , IoTD’s communication
time tc ≜ {tci,k}, UAV’s forwarding time tuc ≜ {tuci,k}, UAV’s
communication time tr ≜ {tri }, UAV’s WPT time te ≜ {tei},
hovering time th ≜ {thi }. For convenience, we define the set
of all time variables as t ≜ {tc, tuc, tr, te, th}.

The problem can be formulated as P1:

(P1) : max
pc,α,U ,D,t

D (17)

s.t. D − tci,kR
c
i,k ≤ 0, ∀k ∈ N c

i , ∀i ∈ I, (17a)

D − tuci,kR
u
i ≤ 0, ∀k ∈ N c

i , ∀i ∈ I, (17b)

Ec
i,k − Êc

i,k ≤ 0, ∀k ∈ N c
i , ∀i ∈ I, (17c)∑

i∈I

thi ≤ T − T fly, (17d)

tri + tei ≤ thi , ∀i ∈ I, (17e)
tci,k + tuci,k ≤ tri , ∀k ∈ N c

i , ∀i ∈ I, (17f)

αi,j ∈ {0, 1}, ∀j ∈ N0, ∀i ∈ I, (17g)∑
i∈I

αi,j = 1, ∀j ∈ N0, (17h)∑
j∈N0

αi,j ≤ C − ni, ∀i ∈ I, (17i)

0 ≤ ui ≤ umax
i , ∀i ∈ I, (17j)

where D is an auxiliary variable representing the minimal data
volume which can be ensured from constraints (17a) and (17b).

(17a) and (17b) guarantee that D is less than the data
volume of all IoTDs. (17c) is the energy harvesting causality
constraint. (17d) indicates the maximum constraint of the sum
of hovering time at each hovering point. (17e) means that the
sum of charging time and data relaying time is less than the
hover time. (17f) indicates that the forwarding time is less than
the sum of the IoTD-UAV and the UAV-AP communication
time for each IoTD. (17g)-(17i) are the constraints w.r.t. the
link schedule. (17j) is the upper and lower bound constraint
of hovering position.

P1 is nonconvex due to (17a)-(17c). The reason is that z =
xf(y) is nonconvex w.r.t. x and y for the determinant of the
Hessian matrix of z, (i.e. −(f ′(y))2) is less than zero.

P1 is a non-convex MINLP problem which generally cannot
be solved in polynomial time. In order to solve the problem
efficiently, we proposed an iterative algorithm based on the
BCD method to obtain a sub-optimal solution.

B. Link Schedule Optimization

When the pc,U , t is given, the problem P1 becomes a sub-
problem where only the α and D are optimizable. We pro-
posed a heuristic algorithm to acquire a sub-optimal solution
of the sub-problem.

Note that our goal is to maximize the minimal data volume
among all IoTDs, so it is easy to observe that the bottleneck
IoTD which has the lowest power gain is more likely to limit
the increase in the data volume. Then, in our algorithm, the
bottleneck IoTD is give priority to establish a connection with
its nearest hovering position. The proposed heuristic method
is specified in Algorithm 1.

C. Power and Time Optimization

With fixed U and α, problem P1 can be rewritten into P2:

(P2) : max
pc,D,t

D (18)

s.t. (17a)− (17f),
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Algorithm 1 Link Schedule Optimizing
Input: U ;
Output: α;

1: Initialize α with αi,j ← 0, d with d(i, j)← ∥w0,j−ui∥2,
ept with ept(i)← C − ni;

2: d(i, :)← +∞ if ept(i) == 0, ∀i.
3: while

∑
i α(i, j) == 0, ∃j do

4: Initialize two n0-D arrays compare and nearest;
5: for j ∈ N0 do
6: if α(i, j) == 1, ∃i then
7: compare(j)← 0;
8: else
9: compare(j)← min

i
d(i, j);

10: nearest(j)← argmin
i

d(i, j);
11: end if
12: end for
13: ind← argmax

j
compare;

14: hov ← nearest(ind);
15: α(hov, ind)← 1;
16: ept(hov)← ept(hov)− 1;
17: d(hov, :)← +∞ if ept(hov) == 0.
18: end while
19: return α;

which is still non-convex.
1) Bottleneck-awared Problem Reduction: Suppose the op-

timal solutions of problem P2 are {pc∗, t∗} and the optimal
value of the problem is D∗. In this case, from the (17a) and
(17b), we get the optimal data volume of the k-th IoTD in the
set N c

i by

D∗
i,k = min{tc∗i,kRc∗

i,k, tuc∗i,k Ru
i }, ∀k, ∀i, (19)

where Rc∗
i,k is the Rc

i,k with the optimal pc∗. Similarly, we use
D∗

i to indicate the optimized data volume among IoTDs in the
set N c

i . Thus, the definition of D∗
i is

D∗
i = min

k∈Nc
i

D∗
i,k, ∀i ∈ I. (20)

According to (17a), (17b), (19) and (20), the optimal value
D∗ should have

D∗ = min
i∈I

D∗
i . (21)

Lemma 1. D∗
1 = D∗

2 = D∗
3 = D∗

4 .

Proof. Without loss of generality, we assume that D∗
1 ≤ D∗

2 ≤
D∗

3 ≤ D∗
4 and D∗

1 < D∗
4 . We firstly consider the case where

D∗
1 < D∗

2 . To prove the assumption is false, we only need to
construct a feasible solutions to reach a greater data volume
than the optimal D∗ obtained by {pc∗, t∗}. Note that when the
pc is given by pc∗, the D∗

i is linear with the time variables
t. Thus, we construct a feasible solution by amplifying the
value of tc∗1,k, t

uc∗
1,k , t

e∗
1 , tr∗1 , th∗1 to their (1 + ϵ) times, where

ϵ > 0, as well as reducing the time distributed to the fourth
hovering point. We define Df

i as the minimal data volume
that obtained by the newly constructed feasible solution. The
ϵ is small enough to guarantee: the Df

1 is still the lowest
among Df

i . The objective value under the constructed solution

is Df = Df
1 = (1+ϵ)D∗

1 > D∗
1 = D∗, which is contradictory

with that the D∗ is the optimal value. Therefore, in this case
the assumption is false. In other cases when D∗

1 = D∗
2 or

D∗
1 = D∗

2 = D∗
3 , the assumption can be similarly proved to

be false, which proves Lemma 1. ■
According to Lemma 1 and (21), we can get

D∗ = D∗
i , ∀i ∈ I. (22)

Motivated by the previous heuristic Algorithm 1, the mini-
mal data volume is mainly susceptible to the IoTDs which have
the worse channel power gain. Thus, we define the Bottleneck
IoTD (BIoTD) as the IoTD which has the worst channel power
gain that linked to the same hovering position ui, ∀i ∈ I .
According to the definition, there are four BIoTDs in our
model. The index of the BIoTD in N c

i is denoted by

bi ∈ N c
i , ∀i ∈ I. (23)

Correspondingly, the channel power gain between the BIoTD
bi and the ui is denoted as hcb

i which has

hcb
i = min

k∈Nc
i

hc
i,k, ∀i ∈ I. (24)

Supposing {pcb∗i , tcb∗i , tucb∗i } to be the optimal values of the
BIoTD bi in {pc∗, t∗} where pcb∗i = pc∗i,bi , t

cb∗
i = tc∗i,bi , t

ucb∗
i =

tuc∗i,bi
, the optimal data volume of the BIoTD bi is

Db∗
i = D∗

i,bi = min{tcb∗i

B

C
log2(1 +

pcb∗i hcb
i

N0
), tucb∗i Ru

i }.
(25)

Lemma 2. Db∗
i = min

k∈Nc
i

D∗
i,k, ∀i ∈ I .

Proof. Without loss of generality, we focus on one specified
hovering point ui. We assume there exists an IoTD at wc

i,m

with m ̸= bi and D∗
i,m < Db∗

i . In order to prove that the
assumption is false, we construct a feasible solution by using
the optimal power and time values of the BIoTD bi to replace
the corresponding values of the m-th IoTD in N c

i . The newly
achieved data volume by the m-th IoTD is Df

i,m > Db∗
i >

Dbf
i , which is conflict with the assumption. Then, the Lemma

2 is proved. ■
According to (20)-(21) and Lemma 2, we can conclude that

D∗ = Db∗
i , ∀i ∈ I, (26)

which means the minimal data volume of the system is only
subject to the four BIoTDs. Only the BIoTDs are considered,
we ignore the variables pc, tc, tuc about the other IoTDs, and
the problem P2 is simplified to P3:

(P3) : min
pcb,D,tb

−D (27)

s.t. D − tcbi
B

C
log2(1 +

pcbi hcb
i

N0
) ≤ 0, ∀i ∈ I, (27a)

D − tucbi Ru
i ≤ 0, ∀i ∈ I, (27b)

pcbi tcbi − ηhcb
i pei t

e
i ≤ 0, ∀i ∈ I, (27c)∑

i∈I

thi ≤ T − T fly, (27d)

tri + tei ≤ thi , ∀i ∈ I, (27e)

tcbi + tucbi ≤ tri , ∀i ∈ I, (27f)
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where pcb = {pcbi } is the transmit power of the BIoTDs,
tcb = {tcbi } and tucb = {tucbi } are the IoTD-UAV and
the UAV-AP communication time vectors, respectively, and
tb ≜ {tcb, tucb, tr, te, th}. The objective of the problem P3 is
to minimize −D, which is equivalent to maximize D.

It can be proved that if we use the optimal value
pcb∗, tcb∗, tucb∗ of P3 to replace the pc, tc, tuc in P2 and use
the optimal te∗, tr∗, th∗, D∗ in P3 to replace the te, tr, th, D
in P2, the constraints of P2 are still satisfied. Therefore, the
optimal value of P3 is achievable for P2.

2) Solve P3: In order to solve the problem P3, we denote
λ = {λi, ∀i}, λu = {λu

i , ∀i}, λe = {λe
i , ∀i}, µ, µh =

{µh
i , ∀i} and µr = {µr

i , ∀i} to be the Lagrange multiplier
vectors associated with the constraints (27a)-(27f), respectively
[27]. Thus, the Lagrange function of P3 is

L(D,pcb, tb,λ,λu,λe, µ,µh,µr)

= −D +
∑
i∈I

λi(D − tcbi
B

C
log2(1 +

pcbi hcb
i

N0
))

+
∑
i∈I

λu
i (D − tucbi Ru

i ) +
∑
i∈I

λe
i (p

cb
i tcbi − ηhcb

i pei t
e
i )

+ µ(
∑
i∈I

thi − T + T fly) +
∑
i∈I

µh
i (t

r
i + tei − thi )

+
∑
i∈I

µr
i (t

cb
i + tucbi − tri ).

(28)

We refer to {λ∗,λu∗,λe∗, µ∗,µh∗,µr∗} as the optimal La-
grange multipilers, and {D∗,pcb∗, tb∗} as the optimal vari-
ables. By using the Karush-Kuhn-Tucker (KKT) conditions,
we set the first-order derivatives of Lagrange function L with
respect to optimal variables to zero. Thus we have

∑
i∈I

λ∗
i +

∑
i∈I

λu∗
i = 1 (29)

λe∗
i (pcb∗i + peei ) = λ∗

i

B

C
log2(1 +

pcb∗i hcb
i

N0
), ∀i ∈ I, (30)

µr∗ = λu∗
i Ru

i , ∀i ∈ I, (31)

µ∗ = µh∗
i , ∀i ∈ I, (32)

µh∗ = µr∗
i , ∀i ∈ I, (33)

µh∗ = λe∗
i peei , ∀i ∈ I, (34)

λe∗
i = λ∗

i

B

C

hcb
i

ln 2
, ∀i ∈ I, (35)

where peei = peiηh
cb
i is the received WPT power of the BIoTD.

Lemma 3. µ∗ ̸= 0.

Proof. Reductio ad absurdum method is applied to demon-
strate Lemma 3.

Assuming µ∗ = 0, by considering (30)-(35), we can get
that µ∗ = µh∗

i = µr∗
i = λ∗

i = λu∗
i = λe∗

i = 0, ∀i, which is
contradictory with (29), i.e, µ∗ ̸= 0. ■

According to (30)-(35) and Lemma 3, we can find that all of
the Lagrange multipliers are not equal to zero. Furthermore,
the complementary slackness condition indicates that all of
the inequality constraints in P3 are not active at the optimum.
Thus, the inequality constraints in P3 take the equal sign.

According to (30) and (35), we obtain

(ln 2) log2(1 +
pcb∗i hcb

i

N0
)(
N0

hcb
i

+ pcb∗i )− pcb∗i − peei = 0. (36)

We regard the Left-Hand Side (LHS) of (36) as a function
with respect to the transmit power pcbi , and the function is
expressed as

Φi(p
cb
i ) ≜ (ln 2) log2(1+

pcbi hcb
i

N0
)(
N0

hcb
i

+pcbi )−pcbi −peei , (37)

and the optimal transmit power pcb∗i is the zero of the function
Φi(p

cb
i ).

The derivative of (37) is Φ
′

i(p
cb
i ) = (ln 2) log2(1 +

pcb
i hcb

i

N0
),

which is always positive due to pcbi > 0. Therefore, we can
conclude that Φi(p

cb
i ) is monotonically increasing with respect

to pcbi . When pcbi = 0, the function value is Φi(0) = −peei
which is less than zero, and

lim
pcb
i →+∞

Φi(p
cb
i ) = +∞. (38)

Thus, the function Φi(p
cb
i ) must have a positive zero point

pcb∗i which can be obtained by a binary-search method.
After acquiring the pcb∗i , we can get the other optimal values

by solving the equations consisting of the constraints of P3
for which the equal sign holds. The solutions are

D∗ =
T − T fly∑

i∈I

(
pcb∗
i

pee
i Rcb∗

i

+ 1
Rcb∗

i

+ 1
Ru

i
)
,

tcb∗i =
D∗

Rcb∗
i

, tucb∗i =
D∗

Ru
i

, te∗i =
pcb∗tcb∗

peei
, ∀i ∈ I,

tr∗i = tcb∗i + tucb∗i , th∗i = te∗i + tr∗i , ∀i ∈ I.
(39)

where Rcb∗
i = B

C log2(1 +
pcb∗
i hcb

i

N0
).

D. Hovering positions Optimization

Given the link schedule α, the transmit power pc, and the
UAV hovering time th, the problem P1 is simplified as

(P4) : max
U ,D,tc,tuc,tr,te

D (40)

s.t. (17a)− (17c), (17e), (17f), (17j).

It is necessary to mention that the U is optimized coopera-
tively with the time variables tc, tuc, tr, te, while the variable
th is fixed.

1) Problem Form Simplification: The range of a specific
hovering point ui is a straight-line segment, which is marked
as Li, ∀i ∈ I . For the k-th IoTD in N c

i , we define the distance
from the k-th IoTD to the line segment Li as

√
Hi,k, and the

wc
i,k component which is in the same dimensionality with ui

as gi,k. Thus, the distance from the k-th IoTD in N c
i to ui

can be re-expressed by

dci,k(ui) =
√
(ui − gi,k)2 +Hi,k, ∀k ∈ N c

i , ∀i ∈ I. (41)
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Similarly, the distance from the Li to the related AP is Hu
i ,

and the related AP’s coordinate component that is in the same
dimensionality with ui is gui . Thus, the dui is re-expressed as

dui (ui) =
√
(ui − gui )

2 +Hu
i , ∀i ∈ I. (42)

Inspired by the last two sub-problems, finding the BIoTD
is the key to solving the problem. But unlike the problem P2,
in P4, the BIoTD cannot be found directly because of the
indetermination of the ui. Therefore, we derived a two layers
method for finding a suboptimal solution of the problem P4.
The first layer (i.e., the iteration layer) is to iterate each IoTD
and regards it as the BIoTD to obtain an simplified problem.
In the second layer, we solve the simplified problem by a
bisection method.

For the k-th IoTD in N c
i , we firstly assume it as the BIoTD

at ui, and only the assumptive BIoTD is considered. Mean-
while, due to the UAV hovering time thi at each hovering point
is given, P4 can be split into four uncoupled subproblems.
Therefore, the problem only with respect to one hovering
position ui and one IoTD wc

i,k is formulated:

(P5) : min
tci,k,t

uc
i,k,t

r
i ,t

e
i ,ui,Di,k

−Di,k (43)

s.t. Di,k − tci,kR
c
i,k(ui) ≤ 0, (43a)

Di,k − tuci,kR
u
i (ui) ≤ 0, (43b)

pci,kt
c
i,k −

ηh0p
e
i t

e
i

(ui − gi,k)2 +Hi,k
≤ 0, (43c)

tri + tei ≤ thi , (43d)
tci,k + tuci,k ≤ tri , (43e)

0 ≤ ui ≤ umax
i , (43f)

where Di,k is the data volume of the assumptive BIoTD,
Rc

i,k(ui) = log2(1 +
pc
i,kh0

N0(dc
i,k(ui))2

) and Ru
i (ui) = log2(1 +

pu
i h0

N0(du
i (ui))2

) are the data rate of the BIoTD-UAV channel and
the UAV-AP channel, respectively. The unit of Di,k is bit/Hz,
and the unit of Rc

i,k(ui) and Ru
i (ui) is bit/s/Hz.

2) Iteration Layer: Supposing the optimal ui of P5 is uk
i .

To solve the problem P4, we initiate an empty set Ua
i that

contains the candidate solution of ui and put all the uk
i , ∀k ∈

N c
i into the Ua

i .
Besides, we define the

knext = arg max
j∈Nc

i

(uk
i − gi,j)

2 +Hi,j , (44)

which is the index of the farthest IoTD in N c
i when ui = uk

i .
For the k-th and the j-th IoTD in N c

i , if knext = j and jnext =
k, which means they have the potentiality to simultaneously
be the BIoTDs at the hovering position ui, then we obtain the
position ukj

i at which the UAV has the same distance with the
k-th IoTD and the j-th IoTD as

ukj
i =

g2i,k − g2i,j +H2
i,k −H2

i,j

2(gi,k − gi,j)
. (45)

The ukj
i is also put into the Ua

i . The next step is to calculate
the achievable optimal value of the minimal data volume Da

i,m

at each ua
i,m ∈ Ua

i , where m is the index of the ua
i,m in Ua

i .

In order to calculate the optimal data volume Da
i,m for each

ua
i,m, we firstly find the true BIoTD bai,m ∈ N c

i when ui =
ua
i,m. We consider a special case of the problem P5 when ui is

given as ua
i,m and the k is given as bai,m. Then the P5 becomes

a linear programming problem which is readily to be solved
by Lagrange method. The optimal data volume is

Da
i,m =

Rb
i,mthi

1 +
Rb

i,m

Rub
i,m

+
pcb
i,m

peeb
i,m

, (46)

where Rb
i,m, Rub

i,m are respectively the IoTD-UAV and the
UAV-AP channel rate ralated to the IoTD bai,m when ui =
ua
i,m, pcbi,m is the transmit power of the IoTD bai,m, and peebi,m

is the received WPT power of the IoTD bai,m. Finally, we get
the optimal index of candidates in the set Ua

i with

m∗ = arg max
m∈{1,2,...,|Ua

i |}
Da

i,m. (47)

If ua
i,m∗ is in the range of [0, umax

i ], then it is the solution of
the UAV hovering position in our derived heuristic method,
i.e, the u∗

i . If ua
i,m∗ > umax

i , we get that u∗
i = umax

i , and if
ua
i,m∗ < 0, we set u∗

i = 0.
3) Solve P5: The constraint (43f) is not considered at first,

and the Lagrange multipliers associated with the constraints
(43a)-(43e) are λ, µ, ω1, ω2 and ω3, respectively. Hence, the
Lagrange duel function of P5 is

L(Di,k, t
c
i,k, t

uc
i,k, t

r
i , t

e
i , ui, λ, µ, ω1, ω2, ω3)

= −Di,k + λ(Di,k − tci,kR
c
i,k(ui))

+ µ(Di,k − tuci,kR
u
i (ui)) + ω1(p

c
i,kt

c
i,k −

ηh0p
e
i t

e
i

(ui − gi,k)2 +Hi,k
)

+ ω2(t
i
r + tei − thi ) + ω3(t

c
i,k + tuci,k − tri ).

(48)

We use {tcki,k, tucki,k , trki , teki , uk
i , D

k
i,k, λ

k, µk, ωk
1 , ω

k
2 , ω

k
3} to

represent the optimal solutions and the optimal Lagrange
multipliers. By employing the KKT conditions, we have

λk + µk = 1, (49)

ωk
1 + ωk

3 = λkRc
i,k(u

k
i ), (50)

ωk
3 = µkRu

i (u
k
i ), (51)

ωk
2 = ωk

1

Ae

(uk
i − gi,k)2 +Hi,k

, (52)

ωk
2 = ωk

3 , (53)

2λktcki,kA

ln 2
ϕ1(u

k
i ) +

2µktucki,k Au

ln 2
ϕ2(u

k
i ) + 2ωk

1 t
ek
i Bϕ3(u

k
i ) = 0,

(54)

where

A =
pci,kh0

N0
, Au =

pui h0

N0
, Ae =

peiηh0

pci,k
,

ϕ1(ui) =
ui − gi,k

((ui − gi,k)2 +Hi,k)2 +A((ui − gi,k)2 +Hi,k)
,

ϕ2(ui) =
ui − gui

((ui − gui )
2 +Hu

i )
2 +Au((ui − gui )

2 +Hu
i )

,

ϕ3(ui) =
ui − gi,k

((ui − gi,k)2 +Hi,k)2
.
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Similar to Lemma 3, it is easy to get that all of the Lagrange
multipliers are not zero due to the equation (49). According to
the complementary slackness condition, the following equali-
ties hold:

Dk
i,k − tcki,kR

c
i,k(u

k
i ) = 0, (55)

Dk
i,k − tucki,k Ru

i (u
k
i ) = 0, (56)

pci,kt
ck
i,k −

ηh0p
e
i t

ek
i

(uk
i − gi,k)2 +Hi,k

= 0, (57)

trki + teki = thi , (58)

tcki,k + tucki,k = trki . (59)

From (55)-(57) and (50)-(53), we define

c1(u
k
i ) =

tcki,k
tucki,k

=
Rc

i,k(u
k
i )

Ru
i (u

k
i )

, (60)

c2(u
k
i ) =

tcki,k
teki

=
Ae

(uk
i − gi,k)2 +Hi,k

, (61)

θ1(u
k
i ) =

ωk
1

ωk
2

=
(uk

i − gi,k)
2 +Hi,k

Ae
, (62)

θ2(u
k
i ) =

λk

ωk
2

=
1 + θ1(u

k
i )

Rc
i,k(u

k
i )

, (63)

θ3(u
k
i ) =

µk

ωk
2

=
1

Ru
i (u

k
i )

. (64)

Thus, from (58), (59), (49) and (60)-(64) we have

tcki,k =
thi

1 + c1 + c2
, tucki,k =

c1t
h
i

1 + c1 + c2
, teki =

c2t
h
i

1 + c1 + c2
,

(65)

ωk
2 =

1

θ2 + θ3
, λk =

θ2
θ2 + θ3

, µk =
θ3

θ2 + θ3
, ωk

1 =
θ1

θ2 + θ3
.

(66)

To figure out the uk
i , we plug (65) and (66) into the equation

(54), then the equation about uk
i holds:

θ2Aϕ1 + θ3c1A
uϕ2 + θ1c2A

eϕ3 ln 2 = 0. (67)

The LHS of (67) can be regard as a function G(ui) with
respect to ui, and the optimal solution uk

i is the zero point
of the function where

G(ui) =
(ui − gi,k)

2 +Hi,k +Ae

Ae log2(1 +
A

(ui−gi,k)2+Hi,k
)

× A(ui − gi,k)

((ui − gi,k)2 +Hi,k)2 +A((ui − gi,k)2 +Hi,k)

+
1

log2(1 +
A

(ui−gi,k)2+Hi,k
)

× Au(ui − gui )

((ui − gui )
2 +Hu

i )
2 +Au((ui − gui )

2 +Hu
i )

+
Ae(ui − gi,k)

((ui − gi,k)2 +Hi,k)2
ln 2.

(68)

We use gmax to represent max{gi,k, gui } and gmin to express
min{gi,k, gui }. It is obvious that when ui > gmax, the function

value of G(ui) is always positive, and if ui < gmin, we have
G(ui) < 0. Thus, the zero point uk

i falls within the range
(gmin, gmax). We introduce a variable x to replace the ui−gi,k
in (68), and the equation G(ui) = G(x + gi,k) = 0 can be
re-expressed by P (x) = 0, where

P (x) =
A

Ae

x3 + (Hi,k +Ae)x

x2 +Hi,k +A

+
Au(x+∆)(x2 +Hi,k)

((x+∆)2 +Hu
i )

2 +Au((x+∆)2 +Hu
i )

+
Aex

x2 +Hi,k
log2(1 +

A

x2 +Hi,k
) ln 2,

(69)

in which ∆ = gi,k − gui ∈ R is the difference of gi,k and gui .
When ∆ > 0, which means gi,k > gui , the proposition that
the variable ui is in the range (gmin, gmax) = (gui , gi,k) =
(gi,k−∆, gi,k) is equivalent to the proposition that the variable
x is in (−∆, 0). Similarly, when ∆ < 0, ui ∈ (gmin, gmax)
is equivalent to x ∈ (0,−∆). When x = 0, the value P (0)

equals AuHi,k∆
(∆2+Hu

i )2+Au(∆2+Hu
i ) , which has the same sign with

∆. When x = −∆, the function value

P (−∆) =
A

Ae

(−∆)3 + (Hi,k +Ae)(−∆)

∆2 +Hi,k +A

+
Ae(−∆)

∆2 +Hi,k
log2(1 +

A

∆2 +Hi,k
) ln 2,

(70)

has a different sign with ∆. As we can see, the function P (x)
is a continuous function with respect to x, and the function
P (x) change a sign at the endpoints of the interval [0,−∆]
or [−∆, 0], which means the function P (x) has at least one
zero x∗ between 0 and −∆, and we can obtain one zero
by the binary search algorithm. It has to be mentioned that
the monotonicity of P (x) is hard to discuss, and we cannot
prove that the P (x) is a monotonic function with respect to
x. Therefore, there may be more than one zero of P (x). But
we only need to get one zero of P (x) as the suboptimal
solution and the binary search algorithm can ensure that we
can get at least a legal zero. The performance of the obtained
suboptimal solution of the UAV’s hovering points is evaluated
at the subsection V-D2.

Thus, the optimal uk
i of the problem P5 can be obtained

by uk
i = x∗+ gi,k. The procedures to optimize UAV hovering

points is summarized in Algorithm 2.

E. Overall Algorithm and Analysis

The BCD-based algorithm for solving the problem P1 is
given in Algorithm 3. The initial UAV hovering position
U (0) can be randomly selected within the feasible region.
We introduce an iterative number k and the maximal iterative
times kmax. Given U (k−1), the link schedule α(k) can be
solved by performing Algorithm 1. Then, we obtain the power
and time variables pc(k), t(k), and the achievable minimal data
volume of the system D(k) under the given α(k) and U (k−1)

by solving the P2. If we get a value D(k) which is better
than the historical best value best, we update the best solution
recorder. Before the next iteration, we update the U (k−1) to
U (k) by Algorithm 2.
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Algorithm 2 Algorithm for Optimizing UAV hovering points

Input: α, pc, th

Output: U∗

1: for i ∈ I do
2: for k ∈ N c

i do
3: Obtain uk

i by solving P5;
4: Put uk

i into the set Ua
i ;

5: Obtain knext by (44);
6: next(k)← knext;
7: end for
8: for k ∈ N c

i do
9: if next(k) ̸= k and next(next(k)) = k then

10: j ← next(k)
11: Obatin ukj

i by (45) and put ukj
i into the set Ua

i ;
12: end if
13: end for
14: for ua

i,m ∈ Ua
i do

15: Obtain Da
i,m by (46);

16: ach(m)← Da
i,m;

17: end for
18: m∗ ← argmax

m
ach;

19: u∗
i ← ua

i,m∗ ;
20: end for
21: return U∗ = {u∗

i };

Algorithm 3 Overall Algorithm

Input: initial hovering positions U (0)

Output: α∗, U∗, pc∗, t∗, D∗

1: k ← 1, best← 0;
2: while k < kmax do
3: Obatin α(k) by Algorithm 1;
4: Obtain pc(k), t(k), D(k) by solving P2;
5: if D(k) > best then
6: best← D(k);
7: α∗ ← α(k−1), U∗ ← U (k), pc∗ ← pc(k), t∗ ← t(k);
8: end if
9: Obtain U (k) by Algorithm 2;

10: k ← k + 1;
11: end while
12: return α∗, U∗, pc∗, t∗, D∗ ← best;

The iterative Algorithm 3 always converges. The proof is
established by showing that the minimum throughput of the
system is non-decreasing when the sequence (α,p, t,U ) is
updated.

The complexity of Algorithm 3 in each iteration lies in
its sub-problems. For Algorithm 1, the complexity is O(n2

0).
The complexity of performing the second subproblem is
O(N + L1), where L1 is the iteration numbers for finding
the zero point of (37) by binary-search method. As for the
Algorithm 2, the computational complexity is O(N2+NL2),
where L2 is the searching numbers for solving the zero point
of function (69). Therefore, the total complexity of Algorithm
3 is O(L3(N

2 + L1 + NL2)) in which L3 is the iteration
number of the Algorithm 3.

F. Discussion on Heterogeneous IoTDs

The above system model is based on the assumption that
the IoTDs are homogenous(i.e., their data rate requirements are
similar). However, in a real building SHM scenario, different
types of IoTDs often have different base rate requirements,
which means they are heterogeneous. In order to improve the
generalizability of this paper, we propose a method to deal
with the heterogeneous devices problem.

We first define the baseline throughput requirements Γi,k

for each device, respectively, and define a unit throughput γ
(e.g. 500kbps). Moreover, all rate requirements are integral
multiples of the unit throughput. For instance, the requirement
of an IoTD is Γi,k = nγ, where n ∈ Z+. Then, we regarded
this IoTD as n Virtual IoTDs (VIoTD). For a real IoTD, the
respective VIoTDs have the same throughput requirement γ
and the same position. By treating all heterogeneous IoTDs as
homogenous VIoTDs, the problem becomes solvable by the
algorithm proposed in this paper.

Specifically, for a real side IoTD, the respective VIoTDs can
only connect to a specific hover point. The proposed algorithm
can guarantee that these VIoTDs have the same optimal power
pci,k and optimal time tci,k, t

uc
i,k values, respectively. The real

IoTDs uses n times the bandwidth allocated to each VIoTD,
(i.e. n×B/C), to achieve n times throughput of one VIoTD.

For a real IoTD on the top plane, the respective VIoTDs may
link to different hovering points. For example, if 2 VIoTDs
link to u1 and 3 VIoTDs link to u2, the real IoTD will use
the bandwidth 2B

C to connect with u1 and use the bandwidth
3B
C to communicate with the UAV hovering at u2.

G. Discussion on Low-floor IoTDs

Depending on the location, the side IoTDs can be divided
into the high-floor and low-floor IoTDs. High-floor IoTDs
require forwarding services of the UAV. But for low-floor
IoTDs, they can communicate directly with the AP because
of the short distance from the AP. Therefore, in our model
and algorithm presented above, only high-floor IoTDs are
considered.

The division of the side IoTDs varies with the problem
parameters. Therefore, we propose a method to classify side
devices dynamically.

Firstly, all the side IoTDs are treated as high-floor IoTDs.
Secondly, we update the UAV’s hovering positions by Algo-
rithm 3. Thirdly, among the existing high-floor IoTDs, we
treat the devices closer to the AP than to the UAV as low-
floor IoTDs. Finally, we repeat the second and the third steps
until the division case converges.

It is worth emphasizing that our later comparison algorithms
are based on the same division of side IoTDs.

V. NUMERICAL RESULTS

In this section, numerical results are presented to vali-
date the performance of our proposed algorithm with other
benchmark schemes. The numerical results are obtained by
MATLAB R2020a with an Intel i5-1135G7 2.4GHz CPU and
16GB RAM.
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A. Setting

We consider a scenario where the IoTDs are randomly dis-
tributed on the surface of the building. The parameters in the
simulation are summarized in TABLE II [28]–[30]. To reduce
the influence of the random distribution, we independently
repeated the experiments 10 times in Fig. 4 - 7, and the error
bars in these figures represent the stand deviation.

TABLE II
SIMULATION PARAMETERS

Notation Value Notation Value

L,W,H 40, 10, 40m N0 -60dBm
Hu 5m η 0.8
ru 5m C 20
N 70 B 400MHz
ni 10,15,15,15,15 v 10m/s
ωap

1 (50m,−10m, 0) a 5m/s2

ωap
2 (−10m, 20m, 0) pu, pe 1, 10W
h0 -20dB T 240s

B. Convergence Performance

Firstly, we discuss the convergence performance of our
proposed Algorithm 3. The optimal value versus the number
of iterations is depicted in Fig. 3. From this figure, we
can observe that the convergence curve is increasing with
iterations, and the convergence speed is fast.
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Fig. 3. Convergence behavior of the proposed Algorithm 3.

C. Algorithm Comparison

In this part, we compare our solution with other state-of-
the-art approaches. For comparison purposes, our proposed
algorithm is labeled as BAHA (i.e. the Bottleneck-Awared
Heuristic Algorithm). The comparison algorithms are shown
below:

1). Game Theory(GT) [31], [32]: The players of the game
are all IoTDs and the UAV hovering points.

On the one hand, for each hovering position, we maximize
the minimal throughput among linked IoTDs through one-
dimensional exhaustive searching for the optimal hovering
position. On the other hand, for each IoTD, we maximize its
throughput by optimizing the power pc, time t and the link
selection variable α. In detail, the power and time variables
are optimized by Lagrange method, and the link selection is
determined by proximity principle, respectively. After iterating

TABLE III
AVERAGE TIME CONSUMPTION (IN SECOND).

Figure Scheme

BAHA GT MC4 MC6

Fig. 4 0.059 1.916 4.675 458.788
Fig. 5(a) 0.128 2.098 5.148 505.056
Fig. 5(b) 0.066 1.924 4.645 456.622
Fig. 5(c) 0.067 1.917 4.652 456.803
Fig. 5(d) 0.056 1.907 4.623 456.750

through all IoTDs once, we regard the maximum WPT time
among the IoTDs linked to the same hovering point as the
WPT time for these IoTDs. Correspondingly, the other time
variables are scaled down to meet (17e).

The GT method keeps repeating the above optimization until
the result converge. This scheme is labeled as GT.

2). Monte-Carlo Method(MC): In the MC scheme, we
sample the solutions of P1 randomly in large numbers and
select the solution with the maximum objective function value
as the algorithm solution.

During each sampling, we randomly construct a feasible
solution exclude the variable D. Specifically, the constructing
order is "U ,α,pc, th, te, tr, tuc, tc", and the constructed value
should meet the constraints of P1. Finally, the objective value
D can determined by (17a) and (17b).

In our simulation, the label MC4 is the MC method with
1× 104 times of attempts, and the scheme MC6 tries 1× 106

times to reach the solution.
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Fig. 4. Comparison versus working period. (a) minimal data volume among
IoTDs versus the UAV working period. (b) minimal throughput among IoTDs
versus the UAV working period.

Fig. 4 shows the minimal data volume and throughput
among IoTDs versus the working period T under different
schemes, and Table III illustrates the average time consump-
tion of the BAHA, GT, MC4 and MC6 schemes.

As expected, from Fig. 4, the data volume increases with the
working period T of the UAV, and the throughput is constant
w.r.t. the period T . The reason is that the minimal throughput
in our system is independent of the period T and the data
volume is in linear correlation with the period T .

From Fig. 4, we can also observe that our proposed BAHA
scheme outperforms the other benchmark algorithms. Mean-
while, the execution time of our proposed BAHA scheme is
the shortest. The MC6 scheme performs better than the MC4
scheme due to more iterations. However, more attempts result
in that the computation time of MC6 is much longer than the
MC4 scheme’s, which can be seen in TABLE III. Compared
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Fig. 5. Algorithm comparison versus different variables under different
schemes in subsection V-C. (a) minimal data volume among IoTDs versus
the total number of IoTDs. (b) minimal throughput among IoTDs versus the
WPT power. (c) minimal throughput among IoTDs versus the UAV’s relaying
power. (d) minimal throughput among IoTDs versus the total communication
bandwidth.

with MC4, the GT scheme takes less time to get a solution
which has much better performance.

Fig. 5 demonstrates the relationship between data volume
and the IoTD number, WPT power, UAV’s relaying power,
and channel bandwidth under different schemes, respectively.
It can be seen from the Fig. 5(a) that the throughput decreases
with the number of IoTDs, which is caused by the limited
bandwidth resources. We utilize the OFDMA technology to
eliminate communication interference between IoTDs, which
means the greater the number of IoTDs, the less bandwidth
is allocated for each IoTD. In Fig. 5(b), Fig. 5(c) and Fig.
5(d), we can see that the data volume increases with the WPT
power, the UAV’s relaying power and the channel bandwidth,
respectively. When the WPT power increases, the IoTDs
can harvest more energy for communication. Therefore, the
transmit power and rate between the UAV and IoTDs can be
larger, and the greater data volume can be achieved. When
the UAV’s relaying power increases, the UAV-AP channel can
use less time to forward data. Thus, the time for the IoTDs
to transmit data to UAV can be longer, and the data volume
becomes greater. As for the bandwidth, with the increasing of
bandwidth, the communication rate increases, which results in
a larger amount of traffic.

From TABLE III, it can be seen that the time required
for Fig. 5(a) is longer than that of other figures, because the
average number of IoTDs in Fig. 5(a) is more, resulting in a
larger problem scale and longer calculation time.

With regard to the performance of the algorithms involved in
Fig. 5, our proposed BAHA has the most outstanding results,
and the time consumed by our algorithm is the shortest in
TABLE III. The contrast of performance and solving efficiency
among the algorithms is similar to Fig. 4.
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Fig. 6. Hovering strategies comparison.

D. Influence of Hovering Points

1) Comparison Between Different Hovering Strategies:
Firstly, we evaluate our algorithm by comparing with different
UAV’s hovering strategies.

The benchmark hovering strategies are tagged with the
Center and the Mean schemes. In the Center scheme, the UAV
is hovering at the midpoint of each straight-line trajectory.
While in the Mean strategy, for each straight line trajectory, the
UAV is located at the projection of the centroid of all linked
IoTD’s locations on the trajectory. The variables except the
hovering positions U are optimized by our proposed method.

The result is shown in Fig. 6. The data volume achieved by
our proposed schemes are larger than the other hovering strate-
gies, which means the proposed Algorithm 2 can improve the
system’s minimal data volume. As the period T increases, the
amount of data obtained increases linearly, as the data volume
is in linear correlation with time.

2) Hovering Points Optimization Algorithm Comparison:
For the sake of evaluating the performance of the Algorithm 2,
we compare it with other schemes which replace Algorithm
2 part of Algorithm 3 with other state-of-art methods. The
comparing algorithms are introduced below [33]:

1) Particle Swarm Optimization (PSO) [34]: PSO is a
universal computational method that optimizes a problem by
iteratively trying to improve a candidate solution with regard
to a given measure of quality. The PSO method solves the
problem by updating a population of candidate particles. In
the PSO scheme, each particle is a four-dimensional vector
which represents the hovering points U . The fitness value of
each particle is obtained by our algorithm for solving the other
variables, (i.e. the Algorithm 1 and the Lagrange method for
optimizing pc and t), and the fitness value is the optimal data
volume at the hovering points U represented by the particle.
In this simulation, the number of particles in the swarm is
50, and the number of iterations is set as 100. This scheme is
labeled as PSO.

2) MC: This scheme is labeled as MCU. The solution
is obtained after massive random sampling the optimization
variables within the feasible region. In this scheme, at each
iteration, we randomly construct the hovering point variable
U within the feasible region. Then our proposed methods for
solving the other variables, (i.e. the Algorithm 1 and the
Lagrange method for optimizing pc and t) are successively
used to obtain the optimal value. After a large number of
attempts, the solution with the maximum optimal value among
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Fig. 7. Algorithm comparison versus different variables under the schemes
in subsection V-D2. (a) minimal data volume among IoTDs versus the total
number of IoTDs. (b) minimal throughput among IoTDs versus the WPT
power. (c) minimal throughput among IoTDs versus the UAV’s relaying
power. (d) minimal throughput among IoTDs versus the total communication
bandwidth.

all attempts will be assumed as the solution of the MCU
scheme. Specifically, we take two different schemes which
are named as MCU4 and MCU6, respectively. The difference
is that the sampling number of the MCU4 scheme is 1× 104,
while the MCU6 scheme’s number of attempts is 1× 106.

TABLE IV
AVERAGE TIME CONSUMPTION (IN SECOND).

Figure Scheme

BAHA PSO MCU4 MCU6

Fig. 7(a) 0.130 3.248 6.348 623.881
Fig. 7(b) 0.053 2.960 5.767 572.503
Fig. 7(c) 0.062 2.989 5.712 568.241
Fig. 7(d) 0.059 3.022 5.712 569.172

Fig. 7 illustrates the data volume versus different compari-
son variables under the BAHA, PSO and MCU schemes. The
trend of the data volume about the comparison variables in
Fig. 7 is the same as that in Fig. 5.

Regarding the performance, we can see that the PSO, MCU4
and MCU6 schemes have nearly identical performance. The
reason why MCU6 does not obtain a better solution than
MCU4 is that the variable U has only 4 dimensions, and
the attempt number 1× 104 is big enough. This phenomenon
indicates that the solutions obtained by the MCU and PSO
schemes are almost the optimal solution with respect to U .
The solution obtained by our Lagrange method for solving U
is slightly smaller than that of the other models. However, the
efficiency of BAHA is much higher, which can be observed
from TABLE IV, indicating that the time complexity of our
algorithm is lower than the benchmark schemes.

VI. CONCLUSION

In this paper, we investigate a UAV-enabled WPCN which is
deployed at the surface of a cuboid building, where a UAV is

dispatched to provide forwarding services and WPT services
for the IoTDs, and two APs are utilized as the MEC servers.
In order to maximize the throughput of the system while
considering fairness among IoTDs, we formulate a problem to
maximize the minimal throughput among IoTDs. We design
an efficient BCD-based algorithm to solve the problem with
a low algorithmic complexity. In the proposed algorithm, we
simplify the problem by finding bottleneck IoTDs to reduce
the computational effort of the algorithm. Simulation results
indicate that our algorithm can achieve a better solution within
a much shorter time. In the future work, multiple UAVs can
be used to provide real-time forwarding services. Moreover,
the scenarios where the building has more a complex shape
should be considered.
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