
 

Visual sensor network based early onset disease 

detection for strawberry plants 

 

Abstract—The ever increasing use of plant protection 

chemicals (PPCs) has been on the constant rise as the 

agriculture industry tries to keep up with growing demand. 

Excessive usage of PPCs leads to smaller profit margins for 

farmers as well as damage to ecosystems. An internet of things 

based visual sensor network was developed to feed data into a 

neural network classifier which would detect the early onset of 

plant disease. The sensor network was deployed at a farm owned 

and run by Wilkin & Sons, a soft fruit grower based in Essex, 

UK. A prototype convolutional neural network was developed 

with the purpose of classifying 3 types of images; healthy plants, 

powdery mildew affected plants and leaf scorch affected plants. 

The classifier was able to reach an accuracy of 95.48% for late 

stage disease detection through images alone. 
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I. INTRODUCTION  

Plant diseases have plagued the agriculture industry 

since its inception. The use of chemical agents (pesticides, 

fungicides, herbicides etc.) to protect plants has allowed the 

industry to progress by minimizing losses caused by infected 

plants with the global fungicide market worth a staggering 

£5.3 billion [1] as far back as 2010. In 2020, a decade later, 

The Food and Environment Research Agency (FERA) 

conducted a survey which found that over 66 tons of 

fungicides were used on strawberry plants in the UK alone, 

with over 87.23 % of plants being treated with fungicide more 

than 4 times in a given season. Sources from Wilkin & Sons, 

a UK based soft fruit grower, reports that this cost can exceed 

£2000 per acre per growing season, mainly used to combat 

Powdery Mildew epidemics at their farms which ruin the 

aesthetic and marketability of the fruit. 

 

While effective, Plant Protection Chemicals (PPCs) 

must be used sparingly due to ever increasing costs and 

detrimental effects on biodiversity [2]. In order use 

fungicides as effectively as possible, detecting where and 

when diseases occur is of the utmost importance so that 

treatment can be focused on the most problematic crop areas. 

This has created a research opportunity for efficient and 

accurate plant disease detection methods.  

 

This 2016 study [3] critically analyses several novel 

methods of plant disease detection including lateral flow 

microarrays, Volatile Organic Compound (VOC) profiling, 

bio sensing, nucleic acid assays, remote sensing and imaging 

spectroscopy. The study categorizes the methods based on 

how early in the disease progression, they are able to detect 

disease. Lateral flow microarrays, biosensing , image 

spectroscopy, and remote sensing were methods of that could 

detect diseases before the secondary infection. According to 

[4], primary infection is from the “initial inoculum” while 

secondary infection is from “A direct transmission between 

plant tissue.” This means that methods of detection that are 

accurate before secondary infection are extremely valuable as 

they allows crop growers to target the disease before it 

becomes an epidemic. Of the pre-secondary infection 

detection methods described in [3], remote sensing and image 

spectroscopy are only non-invasive disease detection 

methods that have negligible ongoing running and labor cost. 

 

Several computer vision based solutions have been developed 

based on deep Convolutional Neural Networks (CNNs) for 

the purpose of disease classification. One such study [5], that 

evaluated 3 popular CNN architectures; GoogleNet, VGG16 

and ResNet-50 concluded that ResNet-50 was the highest 

performing architecture for standard image based disease 

classification. The datasets used in such studies contain 

images of plants with obviously visible symptoms of disease 

by which time the disease is in its advanced stages and the 

probability of secondary infection (and an oncoming 

epidemic) is extremely high. What these studies fail to 

consider are the environmental conditions surrounding the 

analysed images which can provide a complementary view 

on the progression of plant diseases. The significance of 

environmental factors is highlighted in [6], where the 

progression of Sphaerotheca macularis, a mildew causing 

pathogen, was analysed with respect to environmental 

conditions. The study found strong positive correlations to 

the progression and spread of mildew between 15 and 25 

degrees Celsius temperatures and high relative humidity, 

while the reverse was true  when it came to the presence of 

free water (due to rainfall). 
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Cleary, the  combined information from 

environmental and image data will allow the disease 

classifiers to make more informed classification decisions 

thereby improving the classification accuracy, especially if 

the plants were continuously monitored over a period of time.  

The main aim of this study is to develop such a system, where 

continuous crop monitoring is done via a visual sensor 

network that communicates with the neural network classifier 

using Internet of Things (IoT) approaches. With the primary 

objective being to target powdery mildew in strawberries, 

thereby allowing allow fruit growers to target fungicide usage 

effectively on affected crops before they are able to spread , 

thereby reducing the fungicide usage significantly. 

II. METHODOLOGY 

A. Data Aggregation 

The visual sensor network consists of two subsystems; the 

imaging system that is responsible acquisition of visual data 

and the sensor network that is responsible for the acquisition 

of environmental data.  

 

The imaging system is composed of four Sonoff GK-

200MP2-B IP cameras , typically used in security 

applications, capable of capturing images at a 1080 x 1920 

resolution. A Raspberry Pi based camera controller which is 

deployed on the same Wi-Fi Network as the cameras, 

requests images from each camera at fixed intervals during 

the day before uploading them via a Wi-Fi access point. 

 

 In contrast to the imaging, system, the sensor 

network has been custom designed to meet the needs of this 

particular application. The ATMega644p microcontroller is 

responsible for interfacing with 7 sensor modules; 

temperature, pressure, humidity, ambient light, U.V light, soil 

moisture and leaf wetness. The microcontroller samples the 

sensors roughly once every 30 minutes and uses a Semtech 

SX1262 LoRa Transceiver to transmit the data to a Dragino 

LG01-N LoRa gateway which pushes this data to a privately 

hosted server that is responsible for parsing the data and 

storing it in a database hosted on Amazon Web Services. 

 

The sensor nodes and cameras were deployed within 

Wilkin’s New Growing System (NGS), a polythene cover 

based growing setup with automatic humidity and 

temperature regulation. The cameras were positioned 

vertically above the rows of crops to survey an area of the 

canopy while the sensors nodes were placed closer to the stem 

of the plants. Each pair of cameras and sensor nodes were 

placed with approximately 25m of separation. 

B. Analysis 

As stated in the previous subsection, the data aggregation 

system is actively collecting data that will be labelled as the 

growing season progresses. In order to begin analytics early, 

the dataset from [7] was used which contained 2500 images 

of seven different strawberry plant diseases which was used 

to develop an image segmentation system (based on the 

ResNet architecture) that isolates symptomatic parts of the 

plant in the image. 

 

Figure 2a showcases the structure of the Convolutional 

Neural Network (CNN) classifier with 5 hidden layers. The 

architecture is designed to take an RGB input image (of a 

strawberry plant) and then classify it into one of 3 categories; 

 
Figure 2a: Convolutional Neural Network Classifier Architecture  

 
Figure 3a: Model Accuracy Scores 



“Healthy” , “Leaf Scorch” and “Powdery Mildew”. Input data 

was augmented with random rotations to balance the dataset. 

 

The convolutional layers each have a kernel size of 5 with 

no padding, while the two identical Max Pooling Layers have 

a kernel size and stride of 2 respectively. During Training, the 

model was evaluated using Cross Entropy Loss and was 

optimized with stochastic gradient Descent. This particular 

architecture was designed with the convention of alternating 

convolutional and pooling layers in order to reduce the 

dimensionality and make training more efficient. While some 

of the hyperparameter tuning will be discussed in the 

subsequent section, the model architecture was not adjusted 

in this way due to a lack of graphical processing unit (GPU) 

at the time.  

 

The classifier was developed and evaluated using the 

PyTorch framework in Python on a machine running  Intel(R) 

Core(TM) i7-10750H CPU @ 2.60GHz with 32 GB of ram. 

 

 

III. RESULTS AND DISCUSSION 

 

The model was evaluated under several 

combinations of batch size and learn rate in order to find the 

best performing hyperparameter combination. Ten 

combinations were chosen via a randomized grid search 

models were all trained over 10 epochs to get an early 

indication of the models that converge the fastest. From 

figure 3a it can be seen that the model with batch size 16 and 

learning rate 0.01 converged the fastest during the training 

while the model with batch size 128 and learn rate 0.001 did 

not converge at all due to how infrequently and 

insignificantly the model weights were adjusted. 

 

The models were also evaluated on a test dataset. 

The results shown in figure 3b displays the performance of 

each model overall and by class where the percentages 

correspond to the fraction of labelled images correctly 

classified. It can be observed that the classifier performs 

consistently worse with large batch sizes and small learning 

rates. In contrast, small batch sizes with higher learning rates 

performed well on test data while being the quickest to 

converge during training as well. This is because over a 

relatively few number of epochs, weights are not updated 

frequently enough with larger batch sizes and smaller 

learning rates to converge to a steady loss. 

 

IV. CONCLUSION AND FUTURE WORK 

 

While the classifier evaluation is positive, the limitation 

of the works discussed above stem from the dataset that was 

used. It was comprised of singular images of plants in 

advance stages of diseases and not the data from Wilkin & 

Sons’ farm that the previously alluded to. This is because the 

collection and labelling process is ongoing as of September 

2022. Additionally, the overwhelmingly positive results in 

the “Leaf Scorch” category are caused due to an imbalance in 

the dataset with leaf scorch significantly outnumbering other 

categories.  

 

The next step is to incorporate data from Wilkin & Sons 

and train the model on a machine with a GPU so that hyper 

parameters and CNN architecture can be fine-tuned faster,  

especially using a more intelligent approach such as Bayesian 

Optimization. 

 

Furthermore, a Visible and Near Infrared (VNIR) image 

sensor will also be added to the data aggregation system as 

[8] has demonstrated that the most “spectral fingerprint 

features” of grey mould, another fungal disease in 

strawberries are found in this part of the spectrum with the 

main long term aim being to fuse image data with time series 

sensor data at the feature level by adding another feature 

extraction module before the classification module. This will 

allow the CNN is able to get a holistic understanding of the 

factors that indicate the early onset of plant disease before 

making the predictions. 
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Figure 3b: Average Cross Entropy Loss vs Epoch 


